Sasikumar, Anagha and Griffin, John M and Merlet, Céline (2022) Understanding the Chemical Shifts of Aqueous Electrolyte Species Adsorbed in Carbon Nanopores. The Journal of Physical Chemistry Letters, 13 (38). pp. 8953-8962. ISSN 1948-7185
Sasikumar22_accepted.pdf - Accepted Version
Available under License Creative Commons Attribution-NonCommercial.
Download (624kB)
Abstract
Interfaces between aqueous electrolytes and nanoporous carbons are involved in a number of technological applications such as energy storage and capacitive deionization. Nuclear magnetic spectroscopy is a very useful tool to characterize ion adsorption in such systems thanks to its nuclei specificity and the ability to distinguish between ions in the bulk and in pores. We use complementary methods (density functional theory, molecular dynamics simulations, and a mesoscopic model) to investigate the relative importance of various effects on the chemical shifts of adsorbed species: ring currents, ion organization in pores of various sizes, specific ion-carbon interactions, and hydration. We show that ring currents and ion organization are predominant for the determination of chemical shifts in the case of Li ions and hydrogen atoms of water. For the large Rb and Cs ions, the additional effect of the hydration shell should be considered to predict chemical shifts in agreement with experiments.