Bagnato, Giuseppe and Signoretto, Michela and Pizzolitto, Cristina and Menegazzo, Federica and Xi, Xiaoying and ten Brink, Gert H. and Kooi, Bart J. and Heeres, Hero Jan and Sanna, Aimaro (2020) Hydrogenation of biobased aldehydes to mono-alcohols using bimetallic catalysts. ACS Sustainable Chemistry and Engineering, 8 (32). pp. 11994-12004. ISSN 2168-0485
Full text not available from this repository.Abstract
A series of monometallic and bimetallic metal catalysts (Pd, Cu, Fe, PdCu, PdFe) supported on ZrO2 (6-8 nm) were synthesized and tested for the hydrogenation of bio-oil model compounds (furfural, vanillin, glucose) under 50 bar H2 at 100 °C. The catalysts were fully characterized and their properties related to their catalytic activity. The bimetallic PdFe and PdCu displayed enhanced catalytic performance compared to the monometallic catalysts for aldehyde hydrogenation (furfural, vanillin, glucose). For the best catalyst, 98% vanillin alcohol (VA) and 65.5% furfuryl alcohol (FA) conversion was obtained for 80 min batch-time. PdFe showed high selectivity toward sorbitol (74%) from glucose, though at low conversion (20%). Overall, we have demonstrated that bimetallic Fe- A nd Cu-based catalysts promoted by Pd show significantly better performance for the partial hydrogenation of bio-oil model compounds than the corresponding monometallic ones. The better performance of the Pd-doped Fe/Cu catalysts is linked to the presence of smaller and better dispersed Pd nanoparticles (STEM) and their lower acidity (∼90 μmol/g cat) than corresponding monometallic ones (∼167 μmol/g cat).