Noisy monitored quantum dynamics of ergodic multi-qubit systems

Schomerus, Henning (2022) Noisy monitored quantum dynamics of ergodic multi-qubit systems. Journal of Physics A: Mathematical and Theoretical, 55 (21). ISSN 1751-8113

Full text not available from this repository.

Abstract

I employ random-matrix methods to set up and solve statistical models of noisy nonunitary dynamics that appear in the context of monitored quantum systems. The models cover a range of scenarios combining random dynamics and measurements of variable strength of one or several qubits. The combined dynamics drive the system into states whose statistics reflect the competition of randomizing unitary evolution and the measurement-induced backaction collapsing the state. These effects are mediated by entanglement, as I describe in detail by analytical results. For the paradigmatic case of monitoring via a single designated qubit, this reveals a simple statistical mechanism, in which the monitoring conditions the state of the monitored qubit, which then imposes statistical constraints on the remaining quantities of the system. For the case of monitoring several qubits with prescribed strength, the developed formalism allows one to set up the statistical description and solve it numerically. Finally, I also compare the analytical results to the monitored dynamics of a quantum kicked top, revealing two regimes where the statistical model either describes the full stationary dynamics, or resolves time scales during particular parts of the evolution.

Item Type:
Journal Article
Journal or Publication Title:
Journal of Physics A: Mathematical and Theoretical
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/2600/2613
Subjects:
?? GENERAL PHYSICS AND ASTRONOMYMATHEMATICAL PHYSICSMODELING AND SIMULATIONSTATISTICS AND PROBABILITYSTATISTICAL AND NONLINEAR PHYSICSPHYSICS AND ASTRONOMY(ALL)MODELLING AND SIMULATIONMATHEMATICAL PHYSICSSTATISTICAL AND NONLINEAR PHYSICSSTATISTICS AND PROBAB ??
ID Code:
168665
Deposited By:
Deposited On:
13 Apr 2022 13:10
Refereed?:
Yes
Published?:
Published
Last Modified:
18 Sep 2023 02:03