Jones, Kevin (2021) Persistent Organic Pollutants (POPs) and Related Chemicals in the Global Environment : Some Personal Reflections. Environmental Science and Technology, 55 (14). pp. 9400-9412. ISSN 0013-936X
Jones_ES_T_revised_January_2021.pdf - Accepted Version
Available under License Creative Commons Attribution-NonCommercial.
Download (1MB)
Abstract
Persistent organic pollutants (POPs) and related chemicals are fascinating because of their combination of physical-chemical properties and complex effects. Most are man-made, but some also have natural origins. They are persistent in the environment, but they can be broken down variously by biodegradation, atmospheric reactions, and abiotic transformations. They can exist in the gas or particle phases, or both, in the atmosphere and in the dissolved or particulate phases, or both, in water. These combinations mean that they may undergo long-range transport in the atmosphere or oceans, or they may stay close to sources. Hence, emissions from one country are frequently a source of contamination to another country. They are also usually lipophilic, so–combined with persistence–this means they can accumulate in organisms and biomagnify through food chains. We all have a baseline of POPs residues in our tissues, even the unborn fetus via placental transfer and the newly born baby via mother’s milk. POPs in biological systems occur in mixtures, so confirming effects caused by POPs on humans and other top predators is never straightforward. Depending on which papers you read, POPs may be relatively benign, or they could be responsible for key subchronic and chronic effects on reproductive potential, on immune response, as carcinogens, and on a range of behavioral and cognitive end points. They could be a factor behind diseases and conditions which have been increasingly reported and studied in modern societies. In short, they are endlessly fascinating to scientists and a nightmare to regulators and policy makers.