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What are POPs and why are they interesting and important? 8 

In this article, I have been given the chance to ‘tell the story’ of POPs, through personal reflections on 9 

how the field has developed. I hope I can do that by conveying some of the sense of excitement, 10 

interest and importance for the environment and society that motivated me as a young research 11 

scientist and reflect on some of the ongoing needs and priorities for the environmental chemistry and 12 

chemicals management fields.   13 

Persistent organic pollutants (POPs) and related chemicals are fascinating, because of their 14 

combination of physical-chemical properties and complex effects.1 Most are man-made, but some 15 

also have natural origins. They are persistent in the environment - but can be broken down - variously 16 

by biodegradation, atmospheric reactions, and abiotic transformations. They can exist in the gas or 17 

particle phases – or both - in the atmosphere, and in the dissolved or particulate phases – or both - in 18 

water. These combinations mean that they may undergo long-range transport in the atmosphere or 19 

oceans, or they may stay close to sources.  Hence, emissions from one country are frequently a source 20 

of contamination to another country. They are also usually lipophilic, so – combined with persistence 21 

– this means they can accumulate in organisms and bio-magnify through food chains. We all have a 22 

baseline of POPs residues in our tissues – even the unborn foetus via placental transfer and the newly 23 

born baby via mother’s milk. POPs in biological systems occur in mixtures, so confirming effects caused 24 

by POPs on humans and other top predators is never straightforward. Depending on which papers you 25 

read, POPs may be relatively benign, or they could be responsible for key sub-chronic and chronic 26 
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effects – on reproductive potential, on immune response, as carcinogens and on a range of 27 

behavioural and cognitive endpoints.2-5 They could be a factor behind diseases and conditions which 28 

have been increasingly reported and studied in modern societies. In short, they are endlessly 29 

fascinating to scientists and a nightmare to regulators and policy makers.  30 

Just now, I used the term ‘tell the story of POPs’. To me, this really is a classic story of environmental 31 

science - a story of pollutants on a global scale, requiring multi-disciplinary teams to unravel their 32 

behaviour, with a powerful narrative for the public, industry and policy makers of ‘unexpected 33 

consequences’. Where do they come from? Where will they go? How long will they be on the planet? 34 

What are they doing? There is also an unfinished and evolving story about whether we can prevent 35 

more and new POPs entering our planetary system. It is a great case study for school kids and 36 

undergraduates alike. It is also very real for many people in the world, who might be impacted by 37 

living close to manufacturing facilities, combustion sources, or waste dumps, or who have elevated 38 

dietary exposures, for example, or are worried about their baseline exposure from everyday products 39 

around them.  40 

How the story started 41 

For me, the POPs story began with the publication of Rachel Carson’s classic book, Silent Spring in 42 

1962.6 As a child, I remember my parents - who were fascinated by the natural world - telling me about 43 

the book. The emotive issues raised by Silent Spring shaped me as I decided to study Environmental 44 

Science at London University in the late 1970s (a subject not taken so seriously at that time), rather 45 

than a more conventional subject. Manufacture of chemicals had been increasing dramatically 46 

through the 1930-60s. Before Silent Spring, I suspect the general view in a rapidly developing world 47 

was that the use of newly designed and manufactured chemicals – agrochemicals, industrial 48 

chemicals, chemicals of commerce – was a ‘good thing’ that was bringing a brave new world of greater 49 

food security, pest and disease control, improved standards of living and hygiene. Of course, we have 50 

seen many such benefits from the chemicals industry, but – with the publication of Carson’s book and 51 

the ensuing discussions – society started to become aware that there are always trade-offs and risks. 52 
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New chemicals cannot always be regarded as ‘good’. As we know now, the case for chemical 53 

use/restrictions is usually not black and white.7 54 

Two key issues also came together to shape the research and evaluation of POPs in the 1960/70s. One 55 

was the development of incredibly sensitive analytical methods and the other was the establishment 56 

of biological monitoring schemes/archives.  Nowadays it is often taken for granted that we have access 57 

to sensitive, sophisticated and expensive instrumentation; we talk blithely about detecting parts-per-58 

billion, even parts-per-trillion, and below in the environment. We can routinely measure chemicals 59 

that nobody knew were present in the environment in the past. However, we should not be motivated 60 

simply by making measurements. We need to give context, to justify why we are studying trace 61 

quantities of chemicals in the world around us, the significance (or otherwise) of levels detected and 62 

what they may be doing to the environment, ecosystems and humans. 63 

James Lovelock is perhaps best known as the author of the Gaia hypothesis, which argues that the 64 

Earth can be viewed as a self-regulating ‘organism’ or system.8   However, he also invented the 65 

electron capture detector (ECD) in the late 1950s, and by coupling it to gas chromatography was able 66 

to detect trace amounts of halogenated chemicals.9 GC-ECD provided the ideal tool to measure 67 

chlorinated organic molecules with high sensitivity and selectivity at that time. Prior to this – there 68 

was little or no awareness that POPs were spreading around the planet and through food chains; we 69 

are only able to fill in the pre-1960/70 time trends by retrospective analysis of archived samples, or 70 

time resolved analysis of sediment cores.  Now the ECD has largely been superseded by routine use of 71 

benchtop mass spectrometers (GC-MS) for most analysis of traditional POPs, showing how analytical 72 

developments have driven the science of research and monitoring of POPs.  73 

By the mid-1960s, researchers applied these methods to screen biological samples from top 74 

predator species, such as birds of prey, otters and marine mammals. Swedish scientists reported 75 

high parts-per-million levels of polychlorinated biphenyls (PCBs) and pesticides in species and their 76 

potential for toxicological impacts.10  This triggered one of the earliest examples of a ‘voluntary 77 

ban/restriction’ on chemical manufacture and use. Monsanto was the major manufacturer of the 78 
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estimated 1.4 million tonnes of PCBs produced globally. 11  Markowitz and Rosner12  recently 79 

published an interesting perspective. They conclude: Despite Monsanto’s claim that it ‘voluntarily’ 80 

got out of the business (of PCB manufacture) in 1977, it was the concerted efforts of environmental 81 

activists, regulators, and the media that forced Monsanto finally to make this decision, because of its 82 

concern about the broad impact of the negative publicity on its image and ultimately its bottom 83 

line.’  In 2018, a classic paper was published which argued that PCBs are probably responsible for 84 

major reproductive and immune system impairments to about half of the global population of killer 85 

whales (Orcas) 5 – even now - 50 years after PCB manufacture was curtailed.11  Imagine if the early 86 

ban had not taken place; the situation for top predators could have been even more dire.  With 87 

hindsight, the end result can be seen as a relatively rapid, very fortunate and far-sighted response. 88 

Now we have the Stockholm Convention, which is the international instrument to ban or restrict 89 

POP chemicals, but it was not in place until 2004 and the process to add chemicals to the list of 90 

restricted substances can take many years. Table 1 summarises the compounds and current status 91 

of the Convention. 92 

Co-ordinated collection of biological samples (biobanks, national archives) are an essential tool for 93 

early warning of chemical problems. This work started in earnest in the 1960s. Such collections have 94 

been invaluable for monitoring trends, providing definitive evidence of the changing chemical burdens 95 

in ecosystems, their response times following management interventions and providing clues about 96 

effects on key charismatic species.13-15 Without them, there would not have been early warnings and 97 

restrictions on PCBs, DDT and other persistent and bio-accumulative chemicals. 98 

POPs as multi-media chemicals and as tracers of processes 99 

By the late 1970s/early 1980s, armed with the increasingly sophisticated analytical tools mentioned 100 

above, focus switched to understanding POPs on the regional scale and their multi-media transfer 101 

processes. Rather than simply studying direct ‘visible’ discharges of chemicals, attention started to 102 

focus on ‘diffuse’ atmospheric emissions and transport mechanisms.  The North American Great Lakes 103 

provided a classic test system for the pioneering US and Canadian groups. Measurement, mechanistic 104 



5 
 

understanding and modelling approaches were being brought together by researchers, such as Terry 105 

Bidleman, Steve Eisenreich, Ron Hites, Don Mackay, Derek Muir and Ross Norstrom. For the first time, 106 

these scientists and their teams shed light on the combined role of physical, chemical and biologically 107 

mediated processes on POPs. They brought clarity and quantitative understanding to: i. the potential 108 

for dynamic exchanges of POPs between air-water bodies and the water column and underlying 109 

sediments;16-24 ii. mechanistic understanding to the processes of chemical bioconcentration, 110 

bioaccumulation and biomagnification; 25,26 iii. an appreciation of how effects of POPs on top 111 

predators can occur far from sources.27-30    112 

As a student, I remember reading how Beluga whales living in the St Lawrence Estuary – 1000s of km 113 

from sources to the Great Lakes themselves – had accumulated such high residues of POPs that their 114 

bodies were classified as ‘hazardous waste’ if they were washed up on the shore.31  After graduating 115 

with my PhD in environmental chemistry in 1984, and starting a faculty position at Lancaster University 116 

in 1985, I attended the annual North American SETAC conference in Toronto in 1987. I listened to the 117 

session on POPs, and was overwhelmed by the quality of the science being discussed, and excited by 118 

the way in which specialists in the chemical, physical and biological sciences came together to present 119 

and discuss their findings.  A major theme at that conference concerned POPs transferring to the Arctic 120 

and the native peoples living there, in ecosystems which many people had previously believed were 121 

pristine. The interplay between good science and the political and societal ramifications were 122 

emerging and fascinating (indeed, a big push for the Stockholm Convention came from the indigenous 123 

peoples of the circumpolar countries – see Downie and Fenge32). I resolved to work on POPs myself 124 

at that time.  Interestingly, in Europe, a couple of related issues were emerging then too. One was the 125 

role of long-range atmospheric transport (LRAT) in carrying acid rain, heavy metals and radionuclides 126 

from the UK and other heavily industrialised countries to sensitive terrestrial and freshwater 127 

ecosystems in Scandinavia. The other was a focus on dioxins and related compounds from waste 128 

incineration and other combustion sources. Incineration was attracting much political attention, but 129 

there were questions about whether this was the most important contribution to the dioxin 130 
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inventory.32-34 This required ultra-sensitive analytical procedures with high resolution GC-MS, so this 131 

aspect of European POPs work was led by strong analytical chemistry groups in Germany and Sweden, 132 

such as the teams of Karl-Heinz Ballschmiter, Otto Hutzinger and Christoffer Rappe. This research 133 

helped pave the way for the step-change in analytical sensitivity which would be required to work on 134 

POPs in remote ‘receiving environments’ such as the Arctic, Antarctic and deep oceans, and to address 135 

questions around possible pre-industrial/natural sources of POPs. There were obvious parallels to the 136 

pioneering work of Claire Patterson at CalTech, who had introduced a new level of analytical rigour 137 

into studies on the sources and pre-industrial levels of lead. This was needed to resolve the highly 138 

politically charged questions around the addition of lead to vehicle fuels and lead solder in food cans, 139 

and the link to lead’s possible neurotoxicological effects in modern societies.35 His work led to a total 140 

re-evaluation of the growth in industrial lead concentrations in the atmosphere and the human body. 141 

Patterson had used an ultraclean chamber, one of the first ‘clean rooms’ and paid scrupulous attention 142 

to sample collection and handling, so that his measurements of isotopic ratios were free of the 143 

contamination from sampling equipment and modern ambient air and dust that confounded the 144 

findings of other groups at that time. Inspired by such approaches, as our work on POPs started in 145 

Lancaster, we learned how important it was to avoid samples becoming contaminated with ambient 146 

POPs from the lab36 and how all-pervasive POPs can be from diffusive sources, which can hamper 147 

measurements in supposedly background environments.37 All this was a steep but necessary learning 148 

curve, before we could properly investigate the global scale movement of POPs and before research 149 

on possible natural/pre-industrial versus modern anthropogenic sources could really begin in earnest. 150 

This was an important topic for dioxins and furans (PCDD/Fs) in the 1980/90s, when there was a 151 

prevailing view that their presence in the environment was ‘recent’, linked to chloroaromatic chemical 152 

production and incineration of wastes containing chlorine, such as PVC plastic. However, with careful 153 

control of sample collection and handling, elimination of sample contamination and ultra-sensitive 154 

detection, analysis showed that: i. PCDD/Fs could be detected in samples that pre-dated the Cl 155 

industry; ii. inefficient (low temperature) combustion of coal and wood (e.g. for domestic heating) and 156 
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even volcanic activity also led to PCDD/F formation; different sources have characteristic compound 157 

signatures, which can be used as a source apportionment tool to improve emissions inventories. This 158 

all helped to inform the public and policy debate and lead to scientifically based source reduction 159 

programmes. 38-41  160 

POPs on a global scale - the ‘big idea’ 161 

Science works best when there are ‘big ideas’ and well-articulated hypotheses to test. Such an idea 162 

emerged for POPs through the 1970/80s (see 42) and was further extended in the early 1990s, in classic 163 

papers by Frank Wania and Don Mackay.43,44 The ‘global redistribution’ hypothesis proposed that 164 

certain POPs can undergo LRAT, then be deposited onto the earth’s surface, and potentially be re-165 

emitted to cycle (hop) again. Temperature is a principle control of this tendency to re-emit, such that 166 

– over time and with repeated hopping if the chemical was sufficiently persistent – POPs would 167 

ultimately ‘condense’ into colder environments. The Arctic, Antarctic and mountainous areas would 168 

therefore become important sinks for some POPs. Figure 1 shows the ideas presented in the original 169 

Wania and Mackay papers – highlighting the key processes of cold condensation or distillation, 170 

fractionation and grass-hopping. Their paper visualised and clarified processes that had been 171 

discussed in a classic paper by Brynjulf Ottar entitled ‘The Transfer of Airborne Pollutants to the Arctic 172 

Region’ some years earlier.45  Ottar’s far-sighted article discussed re-emission, long-term transfer of 173 

mercury and chlorinated hydrocarbons from warm to cold climates, the concept of equilibrium 174 

between air and surfaces, different times required to attain equilibrium and the transfers to biota 175 

from source – all key parts of the global re-distribution hypothesis. Interestingly, before the science 176 

was resolved, the hypothesis acted to drive policy discussions and international agreements to restrict 177 

transboundary air pollution, because it invokes several important ideas. For example: it focuses on 178 

atmospheric  transport as the key transfer pathways and therefore draws attention to trans-boundary 179 

issues; the Arctic represents the key receiving system; it identifies humans and top predators in 180 

remote locations as potentially vulnerable; and temperature is seen as the key driver, at a time when 181 

climate change was also emerging as a global concern.  182 
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However, in the late 1980s/early 1990s, systematic evidence specifically supporting cold condensation 183 

and global fractionation of POPs, and indeed evidence for large-scale global re-distribution of POPs 184 

generally, was very limited. Certainly POPs were being detected far from sources,45 but that could 185 

simply be due to dispersion via LRAT, rather than repeated hopping. An early study of carbon 186 

tetrachloride in seawater had found higher concentrations in polar waters than in temperate or 187 

tropical ones,46 but carbon tetrachloride is not a POP and more akin to the chlorofluorocarbons (CFCs) 188 

which were being linked to ozone depletion over the poles by that time.47 Calamari et al 48 published 189 

an important early study, showing hexachlorobenzene (HCB) at higher concentrations in Arctic 190 

vegetation than temperate or tropical vegetation, but again – by itself – this was not definitive 191 

evidence, as there was an important confounding factor. Because there is no ‘standard plant’ growing 192 

everywhere, they had to compare long-living lichens, mosses and pine needles from cold places with 193 

short-lived tropical tree leaves.  If plants have a high capacity to store airborne POPs in their waxy 194 

cuticles, they could continue to take up POPs over months or years,49 so exposure times differed for 195 

the species tested.  Later, this notion of a ‘standard sampler’ of air which could be deployed on 196 

networks and transects inspired the development and widespread application of passive air samplers 197 

(see below).  198 

Against this back-drop, a series of scientific questions arose about the global re-distribution 199 

hypothesis: Is global re-distribution really occurring for a range of POPs and conditions?; What is the 200 

solid evidence for fractionation, cold condensation and hopping?; Are there really higher loadings and 201 

doses of POPs in remote cold places than in warmer source areas?; Is temperature the/a ‘dominant 202 

driver’ or are there confounding factors and other important processes controlling where POPs are 203 

and where they might go?; Is the Arctic really a major sink?  Will POPs approach a ‘global equilibrium’ 204 

over time and – if so – how long will this take?; What will ultimately control the clearance of a POP 205 

from the environment, once it has been banned? Such questions led to a focus on studying 206 

‘background environments’, away from the direct impact of sources. 207 
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These are challenging questions to address, because there are often important confounding factors. 208 

Proximity to/distance from sources, ongoing diffusive sources following a ban and varying source 209 

strengths over time can all confound the picture, whilst environmental gradients of factors other than 210 

temperature (e.g. precipitation, carbon stocks, ecosystem types) can impact what is deposited and 211 

retained in the environment.  212 

Comments on the source term 213 

A new chemical can spread into the environment from fresh ‘primary’ sources and subsequently be 214 

released from stocks, stores and environmental reservoirs, such as in-use products, waste dumps, soils 215 

and sediments, waters – so-called ‘secondary sources’.50 For most traditional POPs (e.g. PCBs, the 216 

pesticide dichlorodiphenyltrichloroethane (DDT) and other organochlorine (OC) pesticides, HCB – see 217 

Table 1) there has been a ‘pulse’ of chemical introduced into the environment, following increasing 218 

manufacture over several decades (e.g. the 1940-1960/70s), then a ban and decline in primary sources 219 

(e.g. 1980s-present). The input source term will therefore have been changing throughout this period, 220 

during which air-surface exchange moves the POP towards steady state between environmental 221 

compartments. Simultaneously - removal from surface compartments to deeper horizons of soils, 222 

water bodies and sediment, as well as degradation processes, have also been acting to remove the 223 

POP from the ‘recyclable pool’ (see Figure 2). Given that POPs are inherently persistent and the 224 

processes just mentioned act concurrently, measuring or deriving estimates of their loss/removal is 225 

challenging.51-55 Meanwhile, for some industrial POPs such as PCBs and polybrominated biphenyl 226 

ether (PBDE) flame retardants, there could be substantial reservoirs of the chemical still in use, in 227 

products or in wastes. Products such as capacitors, electronic goods and furnishings, for example, that 228 

may contain industrial POPs can have life times of decades and they may themselves have 229 

contaminated buildings and infrastructures close to points of manufacture and use, such that they will 230 

slowly outgas or release POPs themselves over decades too. There is a parallel here with pesticides. 231 

Pesticide stocks continued to be used in some regions of the world long after they were banned. 232 

Unravelling the significance of different sources, reservoirs and sinks is a scientific challenge, but also 233 
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crucial to inform policymakers, faced with the question ‘is there more we can do to reduce POPs, or 234 

have we taken most practical measures already?’  This, of course, is behind the Stockholm 235 

Convention’s requirement for countries to conduct source inventories and monitoring of POPs.1 236 

Gathering evidence to test the global re-distribution hypothesis 237 

Unravelling these various processes has required a combination of research approaches and tools. 238 

These can be broadly grouped as follows: 239 

Global scale source and emissions inventories: This is critical information, but often difficult to obtain 240 

reliably and rigorously. It may be difficult to know how much of a POP was manufactured or released, 241 

where and when. Tracking its use patterns can be very difficult too, and deriving estimates of 242 

emissions from products in use, or from environmental reservoirs is subject to large errors. Early work 243 

led by Knut Breivik on the global inventory for PCBs highlighted these uncertainties.12,57,58 Later 244 

improvements became possible, as the early inventories helped identify the key uncertainties, so that 245 

an iterative process of measurement/modelling and refinement helped close the gaps between 246 

emission/release estimates and environmental measurements.  247 

Long-term time trend data at air monitoring stations: This is a key source of information. It allows 248 

changing emissions to be inferred, and the role of environmental factors (temperature, wind speed 249 

and direction etc) to be understood. Such stations were first set up in the late 1980s/early 1990s 250 

around the North American Great Lakes (the Integrated Atmospheric Deposition Network)59 and the 251 

Arctic and in the UK.60,61 These networks are still running today and are a valuable source of 252 

information, from which the rates of POPs decline following bans and restrictions can be measured 253 

directly62,63 and where the presence and increases of new compound classes can be detected. The 254 

paper by Hites in this Special Issue showcases what is possible.64  Unfortunately reliable air 255 

measurements and time trends were not made directly pre-1990, because the analytical methods, 256 

sampling equipment, resources and political will were not robust enough, so the pre-ban trends have 257 

to be inferred by other means (see below).  258 
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Passive air sampling techniques: For the first time, passive air sampling allowed time-integrated 259 

measurements to be made in many locations around the world simultaneously. This was a critical 260 

requirement to enable source areas, gradients and remote areas to be identified, based on differences 261 

in concentrations. Latitudinal transects were established specifically to look for evidence of 262 

fractionation and cold condensation.  A UK-Norway transect started in the early 1990s 65,66 and is still 263 

being maintained today. By the early 2000s, surveys were being undertaken at the continental scale 264 

in Europe, North America and Asia 67-69, while Tom Harner and colleagues established GAPS 70 - a 265 

global air monitoring network for POPs - which has yielded a wealth of key data. Passive air sampling 266 

is a tool which has been viewed with some scepticism, but is quick, convenient and low cost and has 267 

become widely used and accepted as a key asset in the Global Monitoring Programme (GMP) operated 268 

under the Stockholm Convention.1 269 

Time trends from biological monitoring programmes: As discussed earlier, systematic biological 270 

monitoring schemes have proved invaluable in unravelling the changes in POPs over time. 271 

Programmes established in the 1960/70s have been maintained for a few areas (i.e. the Great Lakes, 272 

Sweden and the UK),13,15,71-73 so there is a limited geographical/latitudinal coverage, but well designed 273 

and maintained biobanks are becoming a major resource for exposure monitoring and for research on 274 

possible effects.3,4   275 

Retrospective analysis of archived samples and dateable sediment cores: Time trends have been 276 

obtained for decades/centuries from sediment and peat cores, enabling the rise and fall of certain 277 

POPs to be inferred,19,74 while analysis of carefully preserved stored samples can give clues about 278 

historical levels.38-41,75 Again, these studies are mainly for temperate industrialised countries in the 279 

northern hemisphere, so it is still difficult to build up a global picture of changing trends. 280 

Ship-based transects of air and seawater: These can give snapshots of source-remote regions, and 281 

important information on the dynamic exchange or equilibrium status of water bodies with the 282 

atmosphere. They have helped identify important source areas and highlighted the close coupling of 283 
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air-water-phytoplankton systems in the open oceans, showing that biota can have a key role in 284 

exchange and removal of POPs.51,76-80 285 

Chemical marker techniques as indicators of fresh or weathered signals: Primary emission signals will 286 

be unaltered by the environment when they are first released. Chiral signatures and breakdown 287 

products can provide definitive evidence that a compound has spent time in soil or water bodies, so if 288 

they are detected in air they show that re-emissions must have occurred. Terry Bidleman has 289 

championed this approach87,88 and there is a wonderful example in this Special Issue.89   290 

Physico-chemically based multi-media fate models: These are the remaining key part of the POPs 291 

scientists’ ‘toolkit’. They can draw together estimates of emissions, transport and degradation/losses, 292 

to help make sense of the whole story. They can be used to highlight the main areas of uncertainty 293 

and to make forward projections. Their champion is Don Mackay and a succession of scientists from 294 

his research group.25,26 There are many classic examples of their models being used as research tools 295 

to elucidate global scale processing of POPs.84-94 296 

Primary (fresh) or secondary (re-emission) source dominated worlds 297 

Before examining some of the evidence for the global re-distribution of POPs, it is helpful to imagine 298 

2 hypothetical scenarios and what environmental measurements would reveal in each case.  299 

A world still dominated by ongoing primary (fresh) sources of POPs and/or emission from 300 

products/stocks: Under this scenario, air concentrations would be highest close to sources/source 301 

regions and lowest in remote locations. The rate of change in air concentration would match the 302 

changing emission term and would presumably be similar near to the source and far away, assuming 303 

the air masses travelled from the source area to the remote area. Concentrations in systems receiving 304 

deposition would reflect the fact that the net flux is from air to the surface. There should be largely 305 

‘fresh and unweathered’ chemical signatures in the air (minus any changes due to 306 

photodecomposition or atmospheric reactions), with little evidence of biological alteration of the 307 

signature. 308 
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A world approaching steady state and/or dominated by secondary sources (re-mobilisation from 309 

environmental reservoirs): Under this scenario, concentrations in the air would be closely coupled to 310 

their underlying surfaces. Air concentrations could be expected to fluctuate with surface temperatures 311 

as POPs are re-emitted. The loadings to/from surface compartments (soils, water bodies, vegetation) 312 

would be a function of their storage capacity,95,96 balanced with losses (e.g. biodegradation). Because 313 

traditional (‘legacy’) POPs are lipophilic, this will reflect the organic matter (OM) loading of the surface 314 

compartment. In soils, OM represents a large store, much of which will have accumulated prior to the 315 

manufacture of POPs, but the surface layers will likely reflect several decades of POP 316 

production/accumulation and may therefore broadly reflect the balance between cumulative POPs 317 

deposition and any degradation. In lakes and oceans, the surface water’s storage capacity for POPs 318 

may be strongly influenced by water temperature in oligotrophic systems which have a low loading of 319 

carbon, and by the biological (e.g. phytoplankton) carbon store in productive systems.76 320 

What does the evidence reveal? 321 

So, what have the environmental datasets shown us? Which scenario(s) are supported by the field 322 

data for different POPs? 323 

PCBs: It is appropriate to use PCBs as a classic case, because we have the most complete information 324 

for the global emissions inventory and environmental measurements. They are also a family of 325 

chemicals with a gradation of physico-chemical properties, so they are ideal for looking for evidence 326 

of fractionation and variations in approach to equilibrium. In summary, this what the PCB story shows: 327 

i. Global production and use peaked in the 1960/70s, with temperate industrialised 328 

countries in the Northern Hemisphere the main production and use areas.12,57,58  329 

ii. In those areas of the world, air concentrations appear to have declined steadily since then, 330 

broadly matching the estimated trends for the atmospheric source inventories.62,63,66,73 331 

iii. Air concentrations still follow an urban > rural > remote gradient67 and the rates of decline 332 

are similar in different places on latitudinal transects. 62,66,97 333 
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iv. There is fractionation of different PCB congeners along the urban, rural, remote gradient, 334 

in a way that is consistent with relative travel distances from primary source areas.63,66,85 335 

This means more volatile, lower molecular weight, photo-stable compounds travel 336 

further. 337 

v. Time trends in biota tissue concentrations are also similar on latitudinal gradients.15 338 

vi. Chiral PCBs in latitudinal air transects are still racemic, although in underlying soils they 339 

are not.98 Preferential biodegradation of one stereoisomer over another in the soil occurs, 340 

but that pattern is not reflected in the overlying air, indicating that fresh inputs of PCBs 341 

still dominate the inputs to ambient air.  342 

Essentially all these observations (i-vi) indicate that the underlying trends in ambient PCBs have 343 

been/are still broadly controlled by fresh outgassing from sources or products from the past - even now 344 

- 50-60 years after voluntary bans on PCB production and use came into force worldwide.  345 

So, does this mean there is no evidence to support the global re-distribution hypothesis for PCBs? No 346 

- there is also evidence that PCBs have undergone re-cycling and dynamic exchange between the air 347 

and underlying surfaces:  348 

vii. A number of studies have shown air concentrations undergo diurnal and seasonal cycling, 349 

with higher concentrations when surface temperatures are higher. This phenomenon has 350 

been observed above vegetated surfaces in rural areas, above coastal water bodies, over 351 

parts of the remote ocean and in urban areas.77,99-103 352 

viii. Close coupling and near-equilibrium conditions have been reported between air and the 353 

surface of large water bodies.20 Removal rates to deeper waters are comparatively 354 

slow,51,53 and surface layers of oceans and lakes can buffer the atmosphere.79,80  355 

ix. Terrestrial vegetation (grasslands, forests) has a large surface area covered in a thin layer 356 

of wax, which is subject to a large diurnal temperature variation. This has a high capacity 357 

to store and then exchange POPs with the atmosphere101,104-106, so plant biomass is 358 

important in the re-cycling story.  359 
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x. There is a strong correlation between PCB concentrations and the OM content of global 360 

background soils. The correlation is strongest for lighter congeners, which can hop more 361 

readily than heavier congeners.107 When the same locations were sampled in 1998 and 362 

2008, the correlation became stronger with time,98 indicating an approach to air-SOM 363 

equilibrium partitioning over periods of years/decades.108 Soils with high OM status 364 

(which mainly occur in northern hemisphere temperate and boreal latitudes), have a very 365 

high storage capacity for POPs, probably making them a more important global sink than 366 

the ice-sheets and cold waters of the Arctic and Antarctic. Indeed, they may have served 367 

to ‘protect’ the Arctic from receiving such high loadings of POPs.   368 

In short, the data for PCBs shows a complex interplay of many sources and many factors governing 369 

their cycling. Now, in some parts of the world, lighter PCBs in the atmosphere may be beginning to 370 

transition from being controlled by ongoing diffusive releases of fresh PCBs to reflecting a secondary 371 

source controlled world,62,109 but it has taken many decades to reach this point. 372 

However, the story of PCBs doesn’t end there. Another important set of observations have been made 373 

in parts of Africa and Asia over the last 10-20 years. Despite the fact that PCBs were never widely used 374 

in these regions, some of the highest levels of PCBs have been recorded in these parts of the world. 375 

This might initially seem in total contradiction to the ideas of the cold condensation theory. However, 376 

the explanation is that there has been widespread bulk movement of PCBs (and PBDEs and other 377 

POPs) in waste materials exported from the areas of former higher use – primarily in Europe and North 378 

America.110,111 In part, the declines in ‘the industrialised west’ may reflect the exports of such 379 

stocks.112 Often the wastes are poorly dumped, sorted, or burnt on open fires, generating very high 380 

emission factors. PCBs, DDTs and other POPs are also continuously sweating out of soils which have 381 

been treated or contaminated in the past.82,113,124 In a sobering calculation, Kurt-Karakus et al115 382 

estimated that soil treated with DDT could continue to emit it to the atmosphere for centuries to 383 

come. It has been estimated that a single informal waste dump in China emitted ca 1 tonne PCB/year 384 

to the atmosphere in 2006, more than the estimated emission for the whole of the UK in that year.116 385 
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There are probably hundreds of such sites across China, India, Pakistan and west Africa, for example.  386 

Imports and open burning of such wastes is now heavily controlled in China, but this has probably 387 

shifted the exporting (often illegally) of such wastes to other countries. For China, the legacy from 388 

handling such wastes will remain an important part of their emissions inventory and baseline human 389 

exposure well into the future. 117,118   390 

We are also still learning about previously unknown sources. Unintentional production of PCBs via 391 

combustion processes (e.g. metallurgical industries) and some manufacturing processes and re-392 

mobilisation during forest fires and natural burning events have also only recently been recognised as 393 

unexpected contributors to the inventory.119,120  394 

Brief comments on other ‘legacy POPs’ and related compounds - HCB, PBDEs, DDT, PCDD/Fs 395 

Hexachlorobenzene (HCB) has lower air-surface partition coefficient values and longer atmospheric 396 

stability/residence times than PCBs, and it is therefore probably the POP that is furthest along in the 397 

transition to ‘global equilibrium’.121  It is reasonably well mixed in the atmosphere now and there is 398 

evidence for its cold condensation. However, it has a range of industrial, agricultural and combustion-399 

derived ongoing sources, some of which are ‘unintentional’ as defined by the Stockholm Convention,1 400 

which complicate the picture.  401 

In broad terms, the rise and fall of the flame retardant chemicals polybrominated diphenyl ethers 402 

(PBDEs) and their primary versus secondary global source areas, latitudinal fractionation and the 403 

regional re-distribution through transport in wastes mirrors that of PCBs.98 However, the 404 

input/decline ‘pulse’ is delayed by 20-30 years, because this class of compounds was manufactured 405 

and restricted more recently.122  406 

The insecticide DDT was used in large quantities as an agricultural chemical in North America and 407 

Europe in past decades, but its use phased out in the 1970s in the USA. There has been widespread 408 

ongoing use in the tropical zones, because of its use as an insecticide in treating malaria.123 However, 409 

like many POPs, there is a surprisingly complex story of unexpected and ongoing sources.130 410 

Degradation forms an important part of its changing global mass balance and the trends in biota 411 
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bioaccumulation.15 Polychlorinated dibenzo-p-dioxins and –furans (PCDD/Fs) and polynuclear 412 

aromatic hydrocarbons (PAHs) are ‘unintentionally produced’ 1 primarily through different 413 

combustion sources to the environment, both natural and anthropogenic. PCDD/Fs were also 414 

impurities in a range of industrial chemicals. The trends for both groups have generally been declining 415 

in many industrialised countries, as combustion and industrial sources have been controlled. Diffusive 416 

sources, which are more difficult to control, probably now dominate fresh releases. However, 417 

concentrations may be rising in some developing countries, linked to greater industrialisation, 418 

combustion and waste generation.131   419 

Comments on the Stockholm Convention and its effectiveness 420 

In 2004, the Stockholm Convention listed 12 substances as POPs for internationally agreed control 421 

(PCBs, HCB, PCDD/Fs, HCB, DDT and other organochlorine pesticides) (Table 1). The Convention 422 

provides a mechanism for compounds and chemical classes to be proposed as POPs, thereby making 423 

them the subject of international bans/restrictions. That process has brought forward other 424 

compound/classes which have very similar properties to these original ‘legacy dirty dozen POPs’ (see 425 

Table 1). However, in recent years some perfluorinated (PF) compounds, which have higher aqueous 426 

solubilities and complex reaction chemistries, have also been proposed and added to the list. For these 427 

substances, the issues of persistence are similar, but the primary modes of transport through the 428 

environment can be via aquatic discharges, riverine flow, ocean currents and sea spray70,99,132-135 (see 429 

also Sha et al.136 in this issue). There are also interesting issues to address, because the compounds 430 

targeted (PFOS, PFOA) are breakdown products of other PFs which are themselves chemicals of 431 

commerce.  Research on these compounds has therefore also focussed on comparing modes of 432 

transport (water versus air) and seen the development of passive water samplers,137,138 so that 433 

regional and global mapping of PFs is becoming possible, in the same way that passive air samplers 434 

have been widely deployed for traditional POPs.  435 

The Stockholm Convention drives a huge effort through the Global Monitoring Programme, which is 436 

generating co-ordinated datasets which can be used to assess the effectiveness of the Convention. 437 
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This has really gathered momentum over the last decade and shows the power of mature international 438 

co-operation. Jana Klanova and her team in Brno, Czech Republic have had a great part to play, 139 and 439 

their article in this Special Issue gives recent updates and perspectives.68  As the earlier example of 440 

exporting/importing of hazardous wastes illustrated, the work to support the SC also needs close co-441 

operation with the Basel and Rotterdam Conventions, which address international movement, 442 

handling and disposal of wastes.140,141 The European Commission also recently decided that by 2022, 443 

persistent, mobile and toxic/very persistent very mobile (PMT/vPvM) substances should be included 444 

as a new category of substances of very high concern (SVHC) under European REACH legislation. 445 

What have we learned from POPs? 446 

If we take a step back from the details, what have we learned from POPs that can help us improve our 447 

management of chemicals in future?  Perhaps we could summarise this simply as:  448 

POPs get everywhere, often via practices, pathways and processes which were not originally 449 

envisaged. Chemicals management therefore needs to address the whole life cycle of use/products, 450 

and envisage unexpected consequences of poorly managed use; POPs take a very long time to 451 

disappear and the current methods of international control are slow and cumbersome; in general, the 452 

world is a better place without them.  All of this implies chemicals management needs to be inherently 453 

pre-cautionary and risk-averse. This is especially true, given the toxicological/ecotoxicological and 454 

public health concerns surrounding POPs; these chemicals should not be allowed into our 455 

environment. 456 

The bigger societal, science and policy picture of chemicals management 457 

As just described, slowly and step-by-step, there are international mechanisms working to rid the 458 

world of troublesome persistent chemicals. This is great news, but it is – of course – addressing a 459 

‘downstream’ problem. Addition of chemicals to the Stockholm Convention list takes a long time and 460 

– meanwhile – the scale of chemical use and the rate at which new chemicals are being designed and 461 

manufactured is staggering.  For example, although I mentioned earlier that the global of production 462 

of PCBs was a large number – 1.4 million tonnes altogether – that is completely dwarfed by the scale 463 
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of total chemical release, which has been estimated at 200 billion tonnes per annum.142,143 This figure 464 

includes the full array of chemicals of commerce, most of which are more benign than POPs, but it 465 

represents a huge total loading into the planetary system. There is also an ever-increasing ‘cocktail’ of 466 

chemicals reaching our ecosystems. Over 235,000 chemicals are in use by society around the globe144 467 

and new synthetic chemicals are being developed, at a rate of 2000-3,000 per annum in recent 468 

years.145 In 2011, world sales of chemicals were estimated at $3,500 billion, equivalent to ~$500 per 469 

year for every person on the planet.146 Economists may consider this a ‘good thing’, but to me it is 470 

signalling an ever increasing and unsustainable dependency on chemicals. There is a danger we can 471 

get drawn into a cycle of chemical invention, marketing/manufacturing, use, ban/restriction, 472 

replacement/substitution.145,147,148 So, a big future challenge is: how we can take our knowledge of 473 

chemical fate, behaviour and effect, to stop new potentially troublesome chemicals from being 474 

approved and registered in the first place? 475 

At a time when the European Union has introduced greater transparency and accountability to the 476 

chemicals registration process through its REACH legislation,149,150 we have also witnessed a shift in 477 

where chemicals are made and wastes are handled globally, with China and India becoming the 478 

‘factories of the world’ and current projections suggesting production could double in just the next 479 

10-15 years.146  China is now the largest chemicals producer in the world, contributing 36% of global 480 

chemical sales in 2018.146 China is doing much to introduce its own chemicals and management 481 

process,151-153 and this is obviously a critically important opportunity to try and ensure best practice 482 

for the benefit of future global chemicals management.154 483 

Regardless of the precise chemical species, these figures point to an enormous consumption of the 484 

Earth’s resources, and huge demand on its ‘carrying capacity’ and ability to cleanse itself. Of course, 485 

POPs and other forms of chemical pollution are just one of the many pressures and stressors on our 486 

planetary system. This is occurring in concert with land use change, biodiversity losses, increased 487 

urbanization, and climate change.155 Indeed, chemical pressures interact with, and can accelerate, 488 

some of those planetary changes too (e.g. CFCs and climate change; pesticides and biodiversity). 489 
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Meanwhile, in humans, the global burden of cognitive, reproductive and developmental disorders and 490 

diseases linked to environmental pollution is rising in recent decades, with ~5 million deaths attributed 491 

to environmental exposure and management of selected chemicals each year.156 The European 492 

Environment Agency157 has highlighted environmental impacts from chemicals as an area of major 493 

concern and predicted that these impacts will increase in the future due to global megatrends, such 494 

as increasing urbanisation and climate change.  495 

So, nearly 100 years after the first POPs were invented, where are we in the grand scheme of things? 496 

Where are we now and what will the next decades bring? 497 

Properly regulated chemicals provide societal benefits. However, there are many gaps in our 498 

understanding of how chemicals impact the environment and how to accurately assess, predict and 499 

manage these risks. My sense is that, right now, our scientific community is overwhelmed with the 500 

scale of the chemicals management challenges we are being asked to address. The numbers of 501 

chemicals are so large, the demand for tools and resources to manage them is enormous, and the 502 

topic is hugely complex. Our response, as a scientific community, has therefore been to develop ways 503 

of listing, screening, ranking and prioritising the thousands of chemicals currently being 504 

manufactured, to use ‘logic’ in helping to assign resources and effort. Such schemes can use an array 505 

of approaches, such as: physico-chemical property measurement and estimation; in-silico prediction 506 

and computational machine learning to design and ‘categorise’ compounds and identify problems and 507 

unintended consequences early; inventories; non-target screening of compounds in environmental 508 

and biological indicator sample; targeted screening; bio-toxicity assays; read-across methods; 509 

modelling; hazard ranking; and risk assessment.144,158-160  These are all vitally important endeavours 510 

and will keep us all busy far into the future. 511 

However, over and above this, there is an even bigger agenda and pressure on us, as a global 512 

community and civilisation.  We are faced with stark realities. How best to prioritise the use of the 513 

planet’s natural resources – the stocks of carbon, nutrients, industrial and precious metals etc. It has 514 

been estimated that humans have now consumed the majority of all the Earth’s petroleum 515 
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reserves.161,162 So, which organic chemicals (which largely use fossil fuels as the feedstock) should be 516 

made and why? Which do we really need, that justify using the planet’s resources to make? Plastics, 517 

personal care products, agrochemicals, antibiotics and other pharmaceuticals…? How can we decide 518 

and – perhaps more importantly – who should decide? Should that be the chemicals industry, who 519 

can create and ‘market’ demand? Should it be the ‘resource holders’ – governments, multi-national 520 

companies, other stakeholders, or customers and the free market, or international agencies? How can 521 

scientists become involved and help drive the debate? 522 

Our global community has identified and committed to 17 Sustainable Development Goals.163 523 

Pollution and chemicals management is relevant to most, if not all of them (e.g. number 3 – good 524 

health and wellbeing; 6 – clean water and sanitation; 12 – responsible consumption and production). 525 

Delivering these goals by 2030, or even coming close to delivering some of them, needs 526 

knowledgeable, passionate and committed environmental scientists with great communication skills. 527 

It’s time to get involved!  528 
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Table 1: POPs currently listed in the Stockholm Convention (October 2020) 955 

 956 
Annex A (Elimination) 957 
 958 
Aldrin*    Chlordane*   Chlordecone* 959 
Decabromodiphenyl ether+ Dicofol*   Dieldrin* 960 
Endrin*    Heptachlor*    961 
Hexabromobiphenyl+  Hexabromocyclododecane+ Hexabromodiphenyl ether 962 
        & heptabromodiphenyl ether+ 963 
Hexachlorobenzene*+  Hexachlorobutadiene+  Alpha hexachlorocyclohexane* 964 
Beta hexachlorocyclohexane* Lindane*   Mirex* 965 
Pentachlorobenzene*+  Pentachlorophenol*  Polychlorntaed biphenyls (PCBs)+ 966 
Polychlorinated naphthalenes+ Perfluorooctanoic acid (PFOA) Short-chain chlorinated paraffins+ 967 
    and related compounds+ 968 
Technical endosulfan*  Tetrabromodiphenyl ether and Toxaphene* 969 
    Pentabromodiphenyl ether+ 970 
 971 
Annex B (Restriction) 972 
DDT*    Perfluorooctane sulfonic acid 973 
    and related compounds+ 974 
 975 
 976 
Annex C (Unintentional production)^ 977 
Hexachlorobenzene  Hexachlorobutadiene  Pentachlorobenzene 978 
PCBs    Polychlorinated dibenzodioxins Polychlorinated dibenzofurans 979 
Polychlorinated naphthalenes 980 
 981 
 982 
Proposed for listing under the Convention (as of October 2020) 983 
Dechlorane Plus+  Methoxychlor*   UV-328+ 984 
 985 
 986 
 987 
KEY: 988 
*Pesticide 989 
+Industrial chemical 990 
^Note that some chemicals are deliberately manufactured as well as being unintentionally produced. 991 
  992 



40 
 

 993 
 994 
  995 

Figure 1. Global cycling of POPs (after Wania and Mackay 1996, adapted by Schuster, 2008) 
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Figure 2:  Illustration of some of the key compartments and processes controlling the environmental 996 
cycling of POPs (prepared by Jasmin Schuster). 997 

 998 

 999 


