The parabolic algebra revisited

Power, Stephen and Kastis, Eleftherios (2021) The parabolic algebra revisited. Israel Journal of Mathematics. ISSN 0021-2172 (In Press)

Text (KastisPower_IJM_2)
KastisPower_IJM_2.pdf - Accepted Version
Restricted to Repository staff only until 1 January 2050.
Available under License Creative Commons Attribution-NonCommercial.

Download (398kB)


The parabolic algebra A_p is the weakly closed operator algebra on L^2(R) generated by the unitary semigroup of right translations and the unitary semigroup of multiplication by the analytic exponential functions e^{iλx}, λ ≥ 0. It is reflexive, with an invariant subspace lattice Lat A_p which is naturally homeomorphic to the unit disc (Katavolos and Power, 1997). The structure of Lat A_p is used to classify strongly irreducible isometric representations of the partial Weyl commutation relations. A formal generalisation of Arveson's notion of a synthetic commutative subspace lattice is given for general subspace lattices, and it is shown that Lat A_p is not synthetic relative to the H∞(R) subalgebra of A_p. Also, various new operator algebras, derived from isometric representations and from compact perturbations of A_p, are defined and identified.

Item Type:
Journal Article
Journal or Publication Title:
Israel Journal of Mathematics
Uncontrolled Keywords:
ID Code:
Deposited By:
Deposited On:
13 Dec 2021 17:00
In Press
Last Modified:
22 Nov 2022 10:54