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E. KASTIS AND S. C. POWER

ABSTRACT. The parabolic algebra A, is the weakly closed operator algebra on L?(R)
generated by the unitary semigroup of right translations and the unitary semigroup of
multiplication by the analytic exponential functions e**, X > 0. It is reflexive, with
an invariant subspace lattice LatA, which is naturally homeomorphic to the unit disc
(Katavolos and Power, 1997). The structure of LatA, is used to classify strongly irre-
ducible isometric representations of the partial Weyl commutation relations. A formal
generalisation of Arveson’s notion of a synthetic commutative subspace lattice is given
for general subspace lattices, and it is shown that LatA, is not synthetic relative to the
H>(R) subalgebra of A,. Also, various new operator algebras, derived from isometric
representations and from compact perturbations of A,, are defined and identified.

1. INTRODUCTION

Let M), and D, be the unitary operators on the Hilbert space L?(R) given by
Mf(a) =™ f(x), Duf(z)=flz—p)

where g, A are real. As is well-known, the 1-parameter unitary groups {D,, x € R} and
{M),\ € R} provide an irreducible representation of the Weyl commutation relations
My\D,, = e*D,M,, and the weak operator topology closed operator algebra that they
generate is the von Neumann algebra B(L?*(R)) of all bounded operators. See Taylor [25],
for example. On the other hand Katavolos and Power [11] considered the weakly closed
operator algebra generated by the unitary semigroups, for > 0 and A > 0, and showed it
to be a proper subalgebra, containing no self-adjoint operators, other than real multiples
of the identity, and no nonzero finite rank operators. Moreover this operator algebra, the
parabolic algebra A,, was shown to be reflexive, in the sense that A, = AlgLatA,, with
the set of invariant subspaces naturally homeomorphic to a closed disc.

In what follows we revisit the parabolic algebra and its noncommutative invariant sub-
space lattice and we examine associated operator algebras arising from semigroups of
isometries and from compact perturbations. Also, an isometries generalisation of the
Stone-von Neumann uniqueness theorem is obtained by making use of the identification
of LatA,.

Recall that the Stone-von Neumann theorem provides a complete classification of pairs
of strongly continuous unitary groups acting on a separable Hilbert space satisfying the
Weyl commutation relations [24], [15]. Specifically, there is one irreducible class, modelled
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by translation and multiplication operators on L?(R), and the finite and countable direct
sums of this representation determine the other unitary equivalence classes. Rosenberg
[21] has given an interesting historical perspective on the origins of this result, whose strict
proof was completed by von Neumann [15] in 1931. It is possibly well-known that a strongly
continuous isometric representation of the (partial) Weyl commutations relations for two
semigroups of isometries may be dilated to a unique minimal strongly continuous unitary
representation of the (full) Weyl commutation relations. A proof is given in Theorem
4.2. However we are not aware of a unitary equivalence class classification for such pairs of
semigroups and we obtain partial results here. We show that the classes which are strongly
irreducible, in the sense that their unique minimal unitary dilations are irreducible, are
parametrised by the closed unit disc with a boundary point removed.

Recall also, that an invariant subspace lattice £ of an operator algebra is a commutative
subspace lattice (CSL) if its associated orthogonal projections form a commuting family.
Arveson [1] has defined such a lattice to be synthetic if AlgL coincides with a certain
minimal weak*-closed algebra A, constructed directly from pseudo-integral operators
associated with £. Less technical than this is the equivalent property that £ is synthetic if
and only if AlgL is the unique weak*-closed algebra A such that LatA = £ and A contains
a maximal abelian self-adjoint algebra associated with £. Arveson showed, moreover, that
this notion of synthesis is related to sets of spectral synthesis in harmonic analysis, and that
CSLs failing to be synthetic could be constructed in terms of sets failing spectral synthesis.
On the other hand the continuous projection nest N,,, for L?(R), and indeed any complete
projection nest, is synthetic. See also Davidson [3], [4] and Shulman and Turowska [23].
In Section 3 we introduce an analogous notion of synthesis for a noncommutative reflexive
subspace lattice £, namely synthesis relative to a maximal abelian subalgebra of AlgL{, and
we show that LatA, is not synthetic relative to the maximal abelian subalgebra Mo )
of Ap.

In Sections 5, 6 we examine, respectively, the weakly closed operator algebras determined
by the restrictions of A, to an invariant subspace, and the quasicompact algebra of A,,
which is the C*-algebra

QA, = (A, +XK) N (A, + XK).

In particular we show that QA, strictly contains (A, NAY) + K = CI + X.
Understanding the algebraic and geometric structure of the parabolic algebra presents
some interesting challenges and in the final section we discuss four natural problems.

2. THE PARABOLIC ALGEBRA

We start by recalling basic facts and notation concerning the parabolic algebra A,, its
subspace of Hilbert-Schmidt operators and its invariant subspaces. Also, in Section 2.1
we indicate the unitarily equivalences with A, of the operator algebras associated with
(A, p)-cones.

The Volterra nest N, is the nest of subspaces L?([\, +00)), for A € R, together with the
trivial subspaces {0}, L*(R). The analytic nest N, is the unitarily equivalent nest F*N,,
where F' is Fourier transform with

Ffz) = \/LQ_W /R ) dt.
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By the Paley-Wiener theorem the analytic nest consists of the chain of subspaces
e H*(R), scR,

together with the trivial subspaces. These nests determine the Volterra nest algebra
A, = AlgN, and the analytic nest algebra A, = AlgN,, where AlgS denotes the algebra of
operators that leave invariant the subspaces in a set 8 of closed subspaces. In particular, by
simple duality, both algebras are reflezive operator algebras in the sense that A = AlgLatA
where LatA denotes the lattice of closed subspaces left invariant by each operator of A.

Define also the reflexive Fourier binest algebra App = Alg(N, UN,) = A, N A,. The
union N, UN,, is a continuous complete lattice of subspaces with noncommuting subspace
projections, and is known as the Fourier binest [11].

The antisymmetry property App N App = CI follows readily, since A, N A} is the
algebra of multiplication operators M, with ¢ € L>(R), and these operators must leave
H?(R) invariant. Also Arp contains no non-zero finite rank operators. This follows from
the structure of such operators in a nest algebra (see Davidson [3]) and the fact that a
pair of proper subspaces from N, and N,, have trivial intersection.

Consider now the parabolic algebra A,. This is the weak operator topology closed
operator algebra generated by the unitary semigroups of operators {M,, A > 0} and
{D,, p > 0}. Since the generators of A, leave the binest invariant, we have A, C App.
That these two algebras are equal was shown in Katavolos and Power [11]. We recall this
here by repeating the argument of Levene [13].

Write €y for the space of Hilbert-Schmidt operators on L*(R) and recall that every such
operator has the form Intk for some square-summable function k(z,y) in L*(R?) where
Intk denotes the Hilbert-Schmidt operator acting on L?*(R) given by

(Inth f)(x) = / ke, ) f(y)dy.

R
The following identification of the Hilbert-Schmidt operators in the Fourier binest algebra
is a straightforward argument using the Fourier-Plancherel transform. The tensor product
H?(R) ® L*(R,) is the Hilbert space tensor product.

Proposition 2.1. For k € L*(R?) let ©,(k)(x,t) = k(z,x —t). Then
App N € C {Intk|0,(k) € H(R) @ L*(R.)}.

Now, given h € H*(R) N H*(R),¢ € L'(R;) N L*(R,), let h ® ¢ denote the function
(x,y) — h(z)¢p(y). The integral operator Intk, that is induced by the function k =
0, '(h® ¢), lies in the parabolic algebra. Indeed, we have Intk = M,A,, where M), is the
bounded multiplication operator for 2 and where Ay is the bounded operator defined by
the sesquilinear form

@ofa) = | [ oD @)a@)dadt, where f.g € I*(R).

When ¢ is a step function then Ay is a linear combination of translation operators D,
with ¢ > 0, and by standard approximation and dominated convergence arguments it
follows that in general A, lies in the weak*-closed span of these translation operators.
Alternatively, this may be deduced from the fact that A, commutes with the unitary
semigroup of translations.
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Since the linear span of the functions h®¢ is dense in the Hilbert space H*(R)® L*(R, ),
it follows from Proposition 2.1 that

App N Cy C {Intk|O,(k) € H*(R) ® L*(R,)} C A, NECy C App N Cy
and so App N Cy = A, N Cs.

Theorem 2.2. The parabolic algebra coincides with the Fourier binest algebra and is a
reflexive operator algebra.

Proof. Let h,(x) = ni/(x + ni) so that h, € H>®(R) with |h,(x)] < 1 for all z and
hp(x) — 1 uniformly on compact sets. Then M, — I boundedly in the strong operator
topology. Consider a sequence of operators K,, = M;, Ay, , where, similarly, |¢,(z)| <1
for all x and ¢, (x) — 1 uniformly on compact sets. This is an operator norm bounded
sequence of Hilbert-Schmidt operators which tends to the identity operator in the strong
operator topology. Thus if X € App then X is the strong operator topology limit of the
Hilbert-Schmidt operators X K, and so X belongs to A,. Il

We remark that the sequence (K,) in the proof above is a bounded approximate identity
for Arpp with respect to the strong operator topology. The existence of such sequences,
consisting of compact operators, plays a key role in Section 6.

Let us now consider the invariant subspace lattice LatA,. In [11] a cocycle argument
with inner functions and unimodular functions on the line is used to obtain the following
identification:

LatA, = {K\s]A € R,s > 0} UN,
where
Ko = MyMy H*(R) and ¢, (z) = e %/,

In fact we employ a similar cocycle argument in Section 3. Note that we continue to write
M, as shorthand for the multiplication operator M_ix.

For s > 0 we have the nest Ny = M, N,, and for distinct values of s > 0 these are
disjoint, except for the trivial subspaces. If we view LatA, as a set of projections endowed
with the strong operator topology, then it is homeomorphic to the closed unit disc and
the topological boundary is the Fourier binest. See Figure 1.

It follows in particular that the Fourier binest lattice is not reflexive. That is, the lattice
LatAlg(N, UN,) strictly contains N, UN,,.

We note that similar results have been obtained by Kastis [8] for the strong operator
topology closed operator algebras on L4(R) generated by the corresponding shift isometries
and multiplication isometries of LI(R), for 1 < ¢ < 00, q # 2. However, it is not known
whether there is a similar homeomorphism between their invariant subspace lattices and
the closed unit disc.

2.1. The parabolic algebra and (), 1)-cones. The parabolic algebra is defined as the
weak*-closed linear span of the unitary operators M, D,, associated with parameters (A, i)
in the first quadrant cone in R?. Other parameter cones in R? similarly determine operator
algebras, in view of the Weyl commutation relations. However we now show that that these
algebras, for simple cones, are canonically unitarily equivalent to A,,.
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FIGURE 1. Parametrising LatA, by the unit disc.

Let & be a cone in R?, that is, an additive semigroup containing 0 with the additional
property that r(A, pu) € &, for all r > 0 and (A, u) € &. Define Ag to be the w*-closed
linear span of the unitaries MyD,, for (A, ) € &. This is an operator algebra and is equal
to A, if & = Ri. We show that for any simple cone &, that is, one determined by an
acute or obtuse angle, there is an explicit unitary equivalence between Ag and A,. The
following parametrisation will be convenient. With s1,s2 € R let &;, 5, be the additive
cone for distinct rays, (v, s17),z > 0, and (z, s,z),r > 0, and let Ay, o, = As,, ., Also we
write Ady for the map X — ZX7* determined by a unitary operator Z and an associated
domain of operators.

Theorem 2.3. Let G be a simple cone in R?. Then Ag is unitarily equivalent to the
parabolic algebra.

Proof. Since AdpD,, = M_,, without loss of generality we consider cones &, and &, ,,
with s,s; > 0. In particular, it suffices to prove that the corresponding algebras A, and
As, s, (see Figure 2) are unitarily equivalent to the parabolic algebra.

FIGURE 2. Parameter cones for the algebras A,, Ay and Ay, .
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Let s € R. Given u € R and f € L*(R), compute

(DpMy, () = (Mg, f)(w — p) = e f( — )
_ e—isu?/26—7L5x2/262'8;wcf(3j . M) _ e—isu2/2(M¢S MsuDuf)(x)>

which implies
(2.1) Ady, (My,D,) = /D,

Also, applying Adpg to this equation we obtain

Adp, (Dg,M_,)) = 72N,

where, for a function v, we write Dy, for the operator FM,F*. With the substitutions
s — —s7 1y — —pus we obtain

(22) AdD2571 (DNMSM) = e_iS/LQ/QMSM.

Thus, Ay s is unitarily equivalent to the parabolic algebra, since, by equation (2.1), the map
AdM¢S sends A s onto A,. In the general case, let s; > s5. In view of the equation (2.2),
the map Adz, with Z = D} , restricted to the domain A, s,, is an isomorphism onto

2
Ap,s,—s,, and so the theorem follows. 0J

3. SYNTHETIC LATTICES AND LATA,,.

Let £ be a reflexive subspace lattice in the usual sense of Halmos, so that £ = LatAlgL,
and let B be a maximal abelian subalgebra of AlgL. We define £ to be synthetic relative
to B if whenever A is a weak*-closed operator algebra with B C A and LatA = £ then
A= AlgL.

For a commutative subspace lattice £, being synthetic relative to a maximal abelian
self-adjoint subalgebra of AlgL{ is equivalent to Arveson’s definition of synthetic. In this
more technical formulation AlgL must coincide with a certain minimal algebra generated
by so-called pseudo-integral operators constructed with the help of a coordinatisation of
L. (See also Theorem 5.3 of [4].) These generating operators play a role analogous to the
Hilbert-Schmidt operators in a nest algebra.

As we have seen, the parabolic algebra is the weak*-closure of its Hilbert-Schmidt in-
tegral operators [11]. Despite this regularity property we now show that its invariant
subspace lattice fails to be synthetic relative to My (r), the maximal abelian subalgebra
of analytic multiplication operators.

Theorem 3.1. The subspace lattice LatA, is not synthetic relative to Mpoo ().

Proof. Let Ap be the subalgebra of A, generated by the operators M)y, for A > 0, and the
products M,D,, where A > 2 (and ¢ > 0) or g > 2 (and A > 0), and let A be the weak
operator topology closure of A. In the first part of the proof we show that LatA = LatA,
by means of the inner function cocyle argument similar to that used for the determination
of LatA, in [11]. In the second part of the proof we show that A # A,,.

Let K € LatA. Since MK C K for all A > 0, it follows from Beurling’s theorem that
K = uH?(R), for some unimodular function u, or K = L?(E), where FE is a Borel set in
R. If K = L?*(E) then, since it is an invariant subspace for D, M), for p > 0,\ > 2, it
follows that E = [t, 00), for some ¢ € R.
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Suppose now that K = uH?*(R). Fix A > 2. Then M,D, is in A, for all A > 0,
and M\D,K C K. Also M,D,K is invariant under My, for all A’ > 0, and so, by
Beurling’s theorem, D, MK = w,uH?*(R), for some unimodular function w,. Note that
Wy, divides wy,, for all 0 < po < py. Moreover, calculating directly we have D, MK =
u(z — p)e**H%(R). Hence we obtain u(zr — p)e*® = c,w,u(zx), for some unimodular
constant. Redefining w, we may assume that ¢, = 1. Thus

o U(l’ - M) ei)\m

" u(e)
Therefore, we get the cocycle equation
Cou(r = — ) u(r — ) _ —iM(@—p1)
Whitpe = U(ZL‘ _ ,Ul) u(x) € = Wha (I Ml)wﬂz (ZE)G :

Thus wy, (z — r) divides wy,, for all 0 < r < p3 — po. Fix pg and po with 0 < pg < pig. If
wy, has any zeros in the upper half plane, then those zeros and all their translates by r,
with 0 <7 < p; — pe, must be zeros of w,,. However, this would imply that the analytic
function wy,, is identically zero, a contradiction, so w,, admits a trivial Blaschke product.
Hence w,, can be written in the form

. 1 1
Wy, (2) = e exp {Z/R SSZ_‘FZ oo 1dﬂ(3)} , Imz >0,

for some unimodular «, some real § and some singular measure ;. Let w,, be associated
with the triple o/, " and v. Again, w,,(z — r) divides w,,, which yields that all the
translates of p by r, with 0 < r < puy — s, are dominated by the singular measure v, and
so i = 0. Thus

where « is unimodular and  is strictly increasing. By the cocycle equation, we have
(g + pio)ePUatie — o(y)BW) @) o (1) B W2)7 =Nz —p),

which implies that o (g1 4 pg) = (1) o(pg)e BH2meiMn and B(py4pg) = B(r) +B(pg) —
A. Thus B(usg) = ppz + A, for some p > 0. Therefore, a(uy) = €“*2e~#13/2 Hence

_ iops ,—ipu3/2 Ji(puz+A)T _ U(ilf B /L2> AT
wy, = €72 e = ———=Le"7,
u(x)

Therefore, fixing x = xy we have
(— 2
u(‘TO - ,LLQ) = u(x[))ez( p“2/2+0#2+pu2x0).

Thus
u(y) = cel(—py?2+op2)
and the first part of the proof is complete.
We now give a separation argument showing that Dy ¢ A,. An intuitive argument for
this is also given in Remark 3.2.
Let fu, g, € L*0,2], with ||full2 = ||gull2 = 1, let () be a summable sequence, and
define the associated weak*-continuous functional w on B(L?(R)) with

W(T) =Y an(TMy, F~" fr, My, F ' g).

neN
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Consider a finite sum ) ¢, My, D, in Ao, with \,, + p,, > 2 for every m, and h in
H>(R). We have

W(Mh + Z CmM)\"LDM’"L + Dl) = Z a”((Mh + Z CmMA’mD/'L’m + Dl)M¢1F_1fn7 M¢1F_lgn>

neN m

=" (M, F YDy + Y ene™™ Dy, D, Moy, + 2D M_y) for, Mg, F'g,)

neN

- Z o (Mg, F~H (D + Z cme_m2/2D>\m+umM—um + 62‘/QDIAM—I)fn» My, F~"gy)

neN

— Z Oén<(Dh —+ 67i/2D1M71)fn7 gn)

neN

The last equality follows from the fact that for all f,g € L?*0,2] we have (D)f,g) = 0,
when A\ > 2.
We may write the previous equality as

WMy, + Y enMy, Dy, + Di) = wo(Dy + e/ DiM_y)

where wyy denotes the w*-continuous functional on B(L?[0,2]) determined by the se-
quences (f,) and (g,), and we note that every w*-continuous functional on B(L?[0,2]) is
of this form.

Now the operator D;M_; does not lie in the w*-closure of the compression of the al-
gebra {Dy, : h € H*(R)} to L*0,2]. Indeed, the compression algebra is commutative
while the compression of Dy M_; does not commute with the compression of D;/,. Thus,
by the topological Hahn-Banach theorem, there exists a w*-continuous functional w9 on
B(L?[0,2]), such that |wjoo(e~/?>D1M_1)| = 1, while w9 (Dy) = 0 for every h € H*(R).
However, from the calculations above, this implies that there exists a w*-continuous func-
tional w on B(L*(R)), such that w(My + > a, My, D,,.) = 0 and |w(D;)| = 1. Thus
D, ¢ A and the proof is complete. O

Remark 3.2. Note that A is also the closure of the subalgebra Mpeor) + MaA, + D2A,
and this is contained in A,, the Volterra nest algebra of operators with “lower triangular
support”. The following rough argument based on support sets shows that A # A, and
provides insight for the more explicit separation argument above, showing that Dy ¢ A,,.
The support of D,, with 0 < p < 2, is a line parallel to the main diagonal. This main
diagonal is the support set for My~ ®) and the support set for DA, is empty “above”
the support for D,. It follows from this that if D, is in A then it must be in the weak
operator topology closure of MyA,. Since MyA, is closed in this topology it follows that
D, € M>A,. However, this cannot be true for all such p since this implies that I € M>A,,
a contradiction.

Remark 3.3. While synthesis relative to a maximal abelian algebra generalises the CSL
notion of synthetic we note that for a noncommutative lattice £ there may be no coun-
terpart to the notion of a minimal weak*-closed subalgebra. To see this consider the
subalgebras A; = Mpyeow) + MuA, + DiA,, for t > 0, which form a decreasing chain of
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weak*-closed subalgebras with intersection equal to Mpe ). The proof above shows that
LatA, = LatAy, for all ¢, and yet LatMpe () # LatA,,.

We remark that the stronger synthesis property for a reflexive lattice £, which requires
that A = AlgL for every weak*-closed unital subalgebra A with LatA = AlgL is a
distinctly stronger notion. Indeed, the discrete nest and the Volterra nest fail to have this
uniqueness property since these lattices can be attained by a single operator, and hence
by an abelian weak*-closed unital subalgebra. See [3], [19] for such unicellular operators.

On the other hand we remark that H*(R), as an operator algebra on L?(R), or even
as the Toeplitz operator algebra on H?*(R), does have this property by virtue of being
hereditarily reflexive. This in turn is a consequence of the fact that dual space functionals
are implementable by rank one operators. See, for example, Davidson [2] and Hadwin [7].

4. ISOMETRIC REPRESENTATIONS OF THE WCR

Let us define an isometric representation of the Weyl commutation relations to be a
pair of strongly continuous semigroups of isometries Uy, V},, A, u > 0, acting on a separable
Hilbert space X, with

UV, =™V, Uy, A\ p>0.

An isometric representation is irreducible if there is no proper reducing closed subspace
for the representation, and we say that it is strongly irreducible if it has a minimal unitary
dilation on a separable Hilbert space which is irreducible.

For A € R,s > 0, let py s be the isometric representation arising from the restriction of
the analytic multiplication semigroup and the right translation semigroup to the invariant
subspace K ;. Also, for A € R, let p) be the restriction representation given by restriction
to MyH?*(R), and for u € R let p* be given by restriction to D,L*(R). Finally, let p;q be
the identity representation.

Recall that a semigroup of isometries is said to be pure if the intersection of the ranges
of the isometries is the zero subspace. We say that the isometric representation p is
of type wu,up, pu, or pp if the semigroups of isometries {Uy}, {V,} are, respectively, (i)
unitary semigroups, (ii) a unitary semigroup and a pure semigroup, (iii) a pure semigroup
and unitary semigroup, and (iv) pure semigroups. In particular p is of type pp if the
intersection of the spaces U XK for A > 0 is the zero subspace, and the intersection of the
spaces V, X for © > 0 is the zero subspace.

The Stone-von Neumann uniqueness theorem for unitary groups satisfying the Weyl
commutation relations ensures that the strongly irreducible isometric representations p of
type uu are unitarily equivalent to p;q. More generally we obtain the following classifica-
tion.

Theorem 4.1. Let p be an isometric representation of the Weyl commutation relations
which s strongly irreducible and which is not of type uu. Then p satisfies one of the
following 3 equivalences.

(i) p is of type pu and is unitarily equivalent to py for some X € R,
(ii) p is of type up and is unitarily equivalent to p* for some p € R,
(111) p is of type pp and is unitarily equivalent to py s for some A € R, s > 0.
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Moreover, no pair of distinct representations from the set of representations
p)\ap'uap)\,sa fOT’ )\,,U € R,S > 07
1 a unitarily equivalent pair.

The proof has 3 ingredients, namely, the unitary dilation of isometric representations
of the Weyl commutation relations, the Stone-von Neumann theorem, and the nature of
the closed invariant subspaces for the model representation p;q. The following dilation
theorem, for the first step here, is perhaps well-known. The proof we give is a simple
variation of the proof of the dilation of commuting isometries given in Paulsen’s book [16].

Theorem 4.2. Let {S) : A > 0},{T, : p > 0} be an isometric representation of the
Weyl commutation relations on the Hilbert space J. Then there is a Hilbert space K and
a unitary representation of the Weyl commutation relations given by {Uy : A € R} and

{V,, : p € R} acting on K, with Pg{U)\|g{ = Sy and Pg{VM|H =1T,, for \, ;1 > 0.

Proof. By Naimark’s theorem ([16] Theorems 4.8 and 5.4), there is a Hilbert space X
containing H and a strong operator topology continuous (SOT-continuous) unitary group
{Sx : A € R} such that Pg{S,\|j{ = Sy for every A > 0. We may assume that this is a

minimal dilation of {Sy : A > 0}, that is, the linear span of {Syh : A € R, h € H} is dense
in le.
Fix some p > 0 and define :

N N
TH (Z gAnhn> = Z GM"‘“S}\”Tﬂhn.

n=1 n=1

- N .
We claim that T, is well-defined and isometric. To see this note that given h = Sy, hy
n=1
we have

N N
HTuhH2 = <TM (Z g/\nhn) 7Tu (Z gkmhm>>
n=1 m=1

N N

n=1 m=1

= 3 (P8 b, 8y Th )+ 3 (€S0, Ty, €75y, Ty )

An>Am A >An

- Z <6i(An_Am)ugAn*AmTuhmTuhm>+ Z <Tﬂhn>@i(Am_A”)“gAmfAn)Tuhm>
An>Am Am>An

= > (e Sy nTah Tyh) + Y (Tyhy, €218y Ty,
>\n2>\'m >\m>>\n

= Z <TuSAn—/\mhmTuhm>+ Z <TuhmTuS/\m—>\nhm>'
A >Am Am>An

Thus
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HTuhHQZ Z (Sxn—mPins him) + Z (Pny Sxp = i)

An>Am Am>An
= Z (San—rmhns hin) + Z (s Sapy—2n Fom)
>\TLZ>\77L A77L>A’7L

N ~ N B
- <Z S SAmhm> = [|hlI*.
n=1 m=1

Also, it follows that {TM : 1> 0} is a SOT-continuous semigroup of isometries and that
the unitary operators S and the isometries 7T, . satisfy the WCR for all real A and for
> 0.

Now consider the minimal unitary dilation V|, of the semigroup of isometries Tu on
a Hilbert space X containing X;, so that Pﬂﬁv/ﬁ‘xl = Tu for 4 > 0. We have K =

span{V,k: p e R, k € iKl}M and we may define the unitary group {U, : A € R} by

N N
Uy <Z V,Mhn> => T, Sih,.
n=1 n=1

That the operators U, are unitaries follows from the argument above and it follows that
{U,} and {V,,} give the required unitary dilation. O

Proof of Theorem 4.1. By the previous theorem and the Stone von Neumann theorem
every strongly irreducible isometric representation p is unitarily equivalent to a represen-
tation ps obtained from the restriction of {M) : A > 0} and {D,, : ¢ > 0} to an invariant
subspace H. In particular H is a nonzero subspace in LatA, and by the description of
this lattice in Section 2 the subspace H takes one of the 4 types, (i) L*(R), (ii) M,y H*(R),
(iii) D,L*(Ry), (iv) Ky, for some A € R and s > 0.

Let pg¢,, p3c, be any two representations, of the same type, (ii), (iii) or (iv), which are
unitarily equivalent. Then there is a unitary Z : Hy; — Hy such that Z o pg, 0 Z* = py,.
In particular

ZM,\’gfl :M,\’}CQZ, for)\20
By the intertwining form of the lifting theorem for the commutant of a continuous semi-
group of isometries it follows that Z = Py, Z|s, where Z is an operator in the commutant
of {My : A > 0}. (The single isometry variant of this, from which this semigroup lifting
theorem may be deduced, is due to Sarason [22].) Thus Z = M, for some unimodular
analytic function h(z). Since Z is isometric it follows, in each of the cases (ii)-(iv), that
the operator Z = Py, My |4, is equal to the restriction operator Mp|s;,. We now have

MhDu’j{l = DuMh‘j{l; for 1% 2 O,

from which it follows that D,h = h for all ;. Thus h is a constant function and H; is
equal to Hs. O

Remark 4.3. We note that the assumption of strong irreducibility is necessary in Theorem
4.1. Let H be the subspace of L?(R?) given by

H={f € L*R?: f(zx,y) =0, for ae. (z,y) € R*}
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and consider the strongly continuous isometric semigroups with Uy = M, ® Dy and V,, =
D, ® I. This gives an isometric representation of the partial Weyl commutation relations
which is irreducible. However, their joint minimal unitary dilation is given by the pair of
semigroups M, ® D, and D, ® I, acting on L*(R?). This representation is not irreducible,
since the space L?(R) ® H?(R) reduces both unitary groups, and in fact is a representation
with infinite multiplicity.

5. RESTRICTION ALGEBRAS

Let us refer to an operator algebra of the form A|x, with K in LatA, as a restriction
algebra for A, and refer to the weak*-closure, (Al )™, as a closed restriction algebra. In
Theorem 4.1 we showed that the strongly isometric representations of the partial Weyl
commutation relations were in bijective correspondence with the restriction representa-
tions, px say, for nonzero subspaces K in LatA,. We now show that nevertheless, the
closed restriction algebras of A, for K a proper subspace, are all unitarily equivalent, and
in fact are unitary equivalent to the Volterra nest algebra for the half-line.

We obtain this uniqueness of closed restriction algebra, for K proper, in two steps. In
the first step, Lemma 5.1, we see that within the 3 types for K, a pair of closed restriction
algebras are unitary equivalent in a canonical way in terms of explicit operators, including
dilation unitaries V;. In the second step we show that there are noncanonical unitary
equivalences with the half-line Volterra nest algebra. The arguments for this rely on the
density property in Lemma 5.3.

Lemma 5.1. Let Ky, Ky be proper closed subspaces which both belong to one of the fol-
lowing three subsets of LatA,: (i) Ny, (i) Ng, (iii) the subspaces Ky 5, for A € R;s > 0.
Then the restriction algebras for K1 and Ky are unitarily equivalent.

Proof. 1t is straightforward to check that the restriction algebras of (i) (resp. (ii)) are
unitarily equivalent to the restriction algebra Ap|r2mr,) (resp. A,|p2r)) by means of a
unitary of the form D, (resp. M,). For the algebras in (iii) we first introduce the dilation
unitaries V;, ¢ > 0, defined by (Vif)(x) = e/2f(e'x). (This abuses earlier notation for
WCR isometries but is consistent with the My, D,,, V; notation of [10], [11], [12].) We have
the commutation relations

‘/tMA = M)\et‘/ta V;iD,u, = D,ue*tv;'
In particular the unitary automorphism Ady, of B(L?*(R)) restricts to a unitary automor-
phism of A,. Also, for s1,s, >0 and ¢ = 1 log 2, we have ViMy, H*(R) = My, H*(R). It
follows routinely from this that the algebras of (iii) are unitarily equivalent to the algebra
Ap|M¢1H2(R) by means of unitaries of the form M,D,V;. O

The next lemma is well-known and is a consequence of the weak*-density of the algebra
of analytic trigonometric polynomials in L*>°(R, ). For completeness we give a proof which
is also a prelude to the separation argument for the proof of Lemma 5.5.

Lemma 5.2. Let P, be the orthogonal projection on L*(R.). Then the operator algebra
P+MHoo|L2(R+) is w*-dense in the maximal abelian von Neumann algebra Mpeor, ).

Proof. If Py Mp~P, is not dense in My, ), then there exists an essentially bounded
function ¢ supported on R, and a w*-continuous functional w : B(L*(R)) — C, such that
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w(PyMsP,) = 0, for every bounded analytic function f, and w(My) = 1. On the other
hand, the restriction of w to the multiplication algebra M g) induces a w*-continuous
functional on L°°(R), which we also denote by w. Hence there exist h € L'(R), such that

w(f) = [ ).
Take f(z) = ¢*. Then
w(PLMiPy)=0 <« /Re""\f"’x]ghr (x)h(z)dx = 0.

Since this is true for all A > 0 it follows that xg, h lies in H'(R) and so is equal to the
zero function. Therefore the essential support of the function A is contained in R_. Hence,
given any function ¢ € L>*(R,)

w(My) = / o(x)h(z)dx = 0,
R
which is the desired contradiction. O

The Volterra nest algebra A, on L*(R,) is defined as the algebra of operators on this
space which leaves invariant each of the subspaces L?[t, c0), for ¢ > 0.

Lemma 5.3. The restriction algebra Ap|r2mw, ) is w*-dense in A, .

Proof. As noted in the introduction, the weak*-closed linear span of the products M,D,,,
for A\, u € R, is equal to B(L*(R)). Let P, and Q; be the orthogonal projections onto the
subspaces L?[0,t] and L*[t, o) respectively. Then Q,M,\D,P, = 0, for all 4 < 0. Tt follows
that the weak*-closed linear span, A; say, of the products Q;M,D, P;, for 1 > 0, X € R, is
equal to the space Q; B(L*(R))P;. Also, by Lemma 5.2 the spaces A; belong to the weak*-
closure of A, |2k, ). On the other hand, every finite rank operator of A, necessarily lies
in a finite sum of the spaces A; [3], and so belongs to this weak*-closure. Also, the finite
rank operators of A, are weak*-dense in A, , and so the proof is complete. |

Proposition 5.4. The restriction algebra Ap| 2wy is w*-dense in the nest algebra AlgN,
on H?(R) for the nest

Noy = {e?H*(R) : A > 0} U {0},

and is unitarily equivalent to A, .

Proof. Let F : H*(R) — L?*(R,) be the restriction of the Fourier-Plancherel transform.
Then,

FAp|H2(R)F*P+ = {FAPy)F*Py : A€ A} = {FAF*P, : A€ A,}.
Also, FM\F* = Dy and FD,F* = M_,. As in the proof of Lemma 5.2 the algebra
generated by the semigroup {M_ P, : A > 0} is dense in Mp~®, ). Therefore it follows
that FAp|H2(R)F*|L2(R+) is w*-dense in A,. Thus
(AP‘H%R)Y

as required. O

w

= F*(‘Av+)F|H2(R) = AlgNa‘H%R)’
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We now fix s > 0 and consider the case K = K; = My, H*(R). Recall from the proof of
Theorem 2.3 that My M, D, M; = e*“’ﬂ/QDu. Applying Ad(M; ) to AP‘K we have the
following identification of operator algebras on H?(R):

M;fsAp|KsM¢é = {M; APx M,, : Aec Ay}
= {M; AMy Py : A € Ap}
= {APHQ . A € Asp}

where Ay, is the weak*-closed algebra generated by {M, M,,D,, : A\, u > 0}.
Applying the Fourier transform we obtain that the algebra
F I nt
Asp L2(Ry) =F ASPF‘W
is generated as a weak*-closed algebra by the set of isometries

{DA}L2(]R ’DSHM—H‘[;(RJF) : /\7,U/ > 0}

Lemma 5.5. The algebra A 15 dense in the Volterra nest algebra A, .

wlrz.)

Proof. Fix some s, u > 0. Let w be a w*-continuous functional

w:B(L*R) - R:T — Z(Thk,gk>

for some hy, gr € L?(R). Suppose that it annihilates P, A7 , P+, and therefore the operators
PyDy,M_,P; for all A € [0, u]. Then for these parameters we have

W(P+D5#M_AP+) =0.
Define the bounded linear functional
wy: B(L*(R)) = R: T+ w(P, D, TP,).

Identify the restriction of Wu on the multiplication algebra M) with the w*-continuous

functional w,(f) = [5 f( x)dz, where hy, is an L'(R) function. Then it follows from
the definition of w,, that h 1s zero on R_.
Thus

0=w(DsyM_\Py) =w,(M_)) = / e " h,(z)dz.
R
Since [, e=*h,,(v)dx = 0, it follows that h, vanishes on the interval (0, ). On the
other hand, h, € H*(R) U Co(R) and so h, = 0. Thus for f € L>(R,) we have
w(My) = im w(Py Dy My P.) = limw,(My) = 0.
It follows, by the usual separation principle, that the multiplication algebra for L>(R.)

must lie in the w*-closure. Since the right shift operators also lie in the algebra it follows
by standard arguments that A, is contained in the closure, completing the proof. O

Combining the results of this section, we have the following,

Theorem 5.6. Let K be a proper invariant subspace of the parabolic algebra. Then
(Apl)™" s unitarily equivalent to the Volterra nest algebra A, .
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6. QUASICOMPACT ALGEBRAS

Let A be a weak*-closed operator algebra on the Hilbert space H and K = K(H) the
ideal of the compact operators. Define the quasicompact algebra of A to be the C*-algebra
QA where

QA=A+K)NA +X).

Analogous algebras have been studied systematically in the theory of function spaces, the
principal example being the nonseparable algebra of quasicontinuous functions,

QC(T) = (H™(T) + C(T)) 1 (H=(T) + C(T) ),

where C'(T) is the algebra of continuous functions on the unit circle (see [5]). Determining
the structure of QA and whether it differs from A N A* + K seems to be a rather deep
problem in general. However for A = A, the following is well-known.

Theorem 6.1. The quasicompact algebra QA, is not equal to A, N A} + K.

The proof of this theorem has two main ingredients. The first of these is that the
triangular truncation operator with respect to the Volterra nest,

Py : Co(LA(R)) — A, N Co(L*(R)).

is a contractive projection in the space Cy(L?(R)) of Hilbert-Schmidt operators which is an
unbounded operator with respect to the operator norm. (See Chapter 4 of [3] for example.)
The second ingredient is to use this fact to create unit norm finite rank operators Ay in A,,,
with orthogonal domains and ranges and with operator norms || A — Aj|| tending to zero.
Then the infinite sum A of the Ay is a compact perturbation of A* which, furthermore,
does not belong to My ) + K.

In the proof of Theorem 6.3 we adopt a similar strategy. However, in A, there are no
finite rank operators and we must make use of compact operators for the A,. Also the
orthogonality of domains and ranges must be replaced by an approximate form of this.

Lemma 6.2. The restriction of the triangular truncation operator in‘ Aax 18 unbounded.
P P

Proof. Let p, be a real coefficient polynomial on T with supremum norm 1, such that the
polynomials f,(z) = pn(2) — pa(z) satisfy the property || f,|lsc — 0. For example, take
pa(2) = ¢y Z a
k=1
for appropriate constants ¢,. Let Z be a unitary operator in A, with full spectrum, such as
M;. Take (F,) to be a strong operator topology approximate identity of Hilbert-Schmidt
operators in the unit ball of A,, as in the remarks following Theorem 2.2.

By the functional calculus ||p,(Z)| = ||p.|| = 1 and there exists a sequence (&,) in the
unit sphere of L*(R), such that ||p,(2)&,| > 2/3, for every n € N. Fix n € N. Then
P ZF0)En — pn(Z2)E, as m — oo. Choose inductively a subsequence (F,, ), denoted
(F},), such that

1pn(ZFn)6nll > 1/2.
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Since p,(ZF,) belongs to A,, we have (K, p,(ZF,)*)n_s = 0, for every Hilbert-Schmidt
operator K € A, and n € N. Thus
[Pu(Pn(ZEy) = pu(ZF))|| =1Po(pn(ZF0)) = Pu(pa(ZE)7)|| =
= lpn(ZE)N 2 lpn(ZFa)&nll > 1/2.

On the other hand, since ZF,, is a contraction for every n € N we have yields
Ip(ZE,) + q(ZE)*|| < |lp + 4|

for all polynomials p, ¢ in the disc algebra. (See Theorem 2.6 and Corollary 2.8 of [16].)
Taking p = p, and ¢ = —p,, it follows

1Pn(ZFn) — pu(ZE)"[| < llpn — Pull = 0,
which completes the proof. |

Theorem 6.3. The algebra A,NA;+K = CI+X is a proper subalgebra of the quasicompact
algebra QA,.

Proof. Recall the operators p,,(ZF,,) from the proof of Lemma 6.2, where Z € A, is unitary
with spectrum the unit circle, (F,,) is the bounded approximate identity in A, of Hilbert-
Schmidt operators, and p,(z) are polynomials in C(T), of unit || - ||co-norm, with real parts
converging uniformly to zero. Also we have 1/2 < ||p,(ZF,)| < 1.

Since these operators are compact, there exist compact intervals K, such that for any
f e L*R),

(61 Ipa(ZE) 1) < 1P 1l + 51

and

(6.2) | Pave,pn(ZE) I < 5171,

where Py, is the projection on L?*(K,). We can also arrange that for all n,

63) 1 Gu(ZE) = pu(ZE)) T < In(ZE) - 2B (17,51 + 3501)
and

64 Pk, 0a(ZE) ~ puZE)) I < oollpnl ZE2) — pa(ZE) 1]

We now choose (t,,) to be an increasing sequence so that the translates A, = K,, + t,
are disjoint sets, with max A,, < min A, for all n. We also write Ag = R\ U2 A,,. Since
the projection of triangular truncation with respect to the binest commutes with Adp,, it
follows that the operators

lie in A,,.

Claim 1: Given f € L*(R), the sequence (> A f), is convergent.
k=1
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To prove this claim, it suffices to show that the given sequence is a Cauchy sequence.
Let C be the compact set UY_ A,,. Then
o

N 2
> = [
k=n R\C

Estimating the integrals we have

ZM

ZM

k=n

N 2 N 2
/ ZAkf ‘PR\CZAkf S(ZHPR\cAka)
R\C k=n k=n
N 2 N 2
< (Zgan) = (Z;) 171
k=n k=n
Also,
N 2 N N 2 N 2 N N 2
Sat| =[S p A <2 [ [ ruan] 2 [ |23 m ]
c k=n R m=n k=n R m=n R m=n ’ic;n

The first term here gives

N N 1
= 3 P, Anf? < Z(HPAmfn + 5712
< Z  (1ne+ (e 35 ) 1)
Y /2
< |[|Pef|? + (Z (2—m + 22—m>) £

N 2
Ay,
A mz:n Py A f

m=n

Note that for every ¢; > 0, we can choose ng big enough so that ||Psf|| < €] f]|, where
A=Ur%_ Ap,.

m=ng

For the second term, it follows by relation (6.2) that

N N N N 2 N N 2
/ Z Z Py, A = Z Z Py Acfll = Z Z Py, A f
R1m=n I?;gz m=n ’I::;L1 k=n anfb—"
N 2 N 2
= 1) Poa, Arf (Z ||PC\AkAkf”>
k=n k=n

) £
k=n

[\
[]=
2|
=
~
no
I
PR
ME
82|~
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Combining the above estimates we get

3&2_) +2Z( + ) 22 | 1712

k=n

N
Hence, there exists ng € N such that || > A f||*> < e, for all n, N > ny, proving the first
k=n
claim.

Claim 2: The sequence { ) Ay}, is uniformly bounded.
k=1

Let f € L?*(R). Then

= hm ZAkf
Also
M n 2 n 2 n M 2
S OPn Y At <2 PaArf|| +2 ZZ DALS
m=0 k=1 k=1 k=
75

Applying now the relation (6.1) we obtain

n 2 n 2
1

S rant| <3 (IPusl+ 1)

k=1 k=1

n n 2
=SSP+ Y (5t g ) WP <l
k=1 k=1

Moreover
2

2 2
n n 1
‘ §<Z||PR\AkAkfII> < <Zﬁ||f||>
k=1 k=1

n M
Z Z PAmAkf

k=1 m=0
m#£k

Z Py, Arf

k=

n 2
= (Z 2i> 1712 < A1

n
Hence the norms || > Ag|| are indeed uniformly bounded, as required.
k=1

Let M = sup, || > Al < oo and define the linear operator A acting on L*(R) by the
k=1

formula

Af = liTEHZAkf.
k=1
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By the first claim A is well-defined and by the second claim, ||Af|| < M]||f]|, for f € L*(R).

Thus A is a bounded operator equal to the SOT-limit of the sequence {>_ Ax},, and so
1

k=
lies in A,. Note also that A is not a compact operator since ||Ag|| > 1/2 for all k.
Define now the Hilbert-Schmidt operators

X = A — A} = Dy, (pn(ZF,) — pu(ZF,)7) Dy,
and note that ||X,|| — 0. By the calculations above we see that the sequence of the

partial sums of > X, is Cauchy with respect to the operator norm and so the norm limit
n=1

o
X = Y X, is a compact operator on L*(R). Since involution is continuous in the weak
n=1

operator topology, we see that A — A* = X. Thus A lies in the quasicompact algebra QA,
and it remains to show that A ¢ CI + X.

Assume that this is not true. Since the algebra CI + X is norm closed we have A =
cl + K with ¢ € C and K € XK. Left multiply both sides by the projection P,,. Since
multiplication is separately SOT-continuous we see that Py, A is the SOT-limit of the

n
operators { > Px,Ag}n. Moreover we have the estimates
k=1

1
|| Pao Arll < o for every k € N,
so the above sequence converges uniformly to Py, A. Therefore Py, A is a compact operator,
and so cPy, is also compact. However, A is a union of nonempty intervals and so ¢ = 0.
But this implies that A is compact, which gives the desired contradiction. O

Remark 6.4. We remark that QA,, like QC and also QA,, is a nonseparable C*-algebra.
Indeed one can determine a well-separated uncountable set by considering operators of
the form .2 | by Ay, where (by) is a 0-1 sequence and (Ag) is a sufficiently approximately
orthogonal sequence of unit norm operators in A, as in the proof above.

Remark 6.5. As we noted in Section 2, the parabolic algebra A, is equal to the intersec-
tion A, NA,. It seems plausible, given the proof above, that the essential parabolic algebra
A, /X is a proper subalgebra of the intersection algebra (A,/K) N (A,/X) however we do
not know if this is the case. This is equivalent to determining whether (A, +X)N (A, +XK)
is strictly larger than A, + X.

7. FURTHER DIRECTIONS

The parabolic algebra sits between the very well-understood algebra H*°(R) and the
equally well-understood Volterra nest algebra A,. Determining further algebraic and geo-
metric properties of A, is likely to require methods from both commutative and noncom-
mutative perspectives. In particular, the following 3 problems seem to be rather deep
requiring both perspectives.

Question 1. How are the weakly closed ideals of A, characterised? The weakly closed
ideals of a nest algebra A are determined by left-continuous order homomorphisms from
LatA to LatA ([6], [3]). Similar such boundary functions, from LatA, to LatA,, are likely
to play a role in resolving this question.
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Question 2. What is the Jacobson radical of A,? In particular is there some kind of
analogue of Ringrose’s characterisation ([20], [3])7

Question 3. Is there a variant of Arveson’s distance formula for A,? Arveson’s distance
formula ([3], [17]) for a nest algebra is closely related to distance formulae for H*(R) so
in some ways this is a natural problem for A,. Also it would lead to the hyperreflexivity
of A,, a property known for both A, and for H>*(R) as an operator algebra on H*(R)
(Davidson [2]).

Question 4. Does A, have zero divisors? We suspect that this intriguing question [18]
is less deep and indeed we believe that there are zero divisors even in the norm-closed
algebra that is generated by the 2 semigroups. This algebra is analysable as a norm-closed
semi-crossed product [9] and elements admit natural generalised Fourier series. First let
us remark that the unclosed algebra has no divisors of zero simply because operators in
the algebra have generalised finite Fourier series of the form

where each Ay is a finite linear combination of the D, for p € Ry. It follows that a
product of nonzero elements has a nonzero first Fourier coefficient and so is nonzero. On
the other hand is it possible to construct 2 absolutely norm-convergent generalised Fourier
series (with no first nonzero coefficient) such that the product is zero?
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