Facile one pot preparation of magnetic chitosan-palygorskite nanocomposite for efficient removal of lead from water

Rusmin, R. and Sarkar, B. and Mukhopadhyay, R. and Tsuzuki, T. and Liu, Y. and Naidu, R. (2022) Facile one pot preparation of magnetic chitosan-palygorskite nanocomposite for efficient removal of lead from water. Journal of Colloid and Interface Science, 608. pp. 575-587. ISSN 1095-7103

[thumbnail of Rusmin_JCIS_Paly-chitosan_pre-print]
Text (Rusmin_JCIS_Paly-chitosan_pre-print)
Rusmin_JCIS_Paly_chitosan_pre_print.pdf - Accepted Version
Available under License Creative Commons Attribution-NonCommercial-NoDerivs.

Download (1MB)

Abstract

Development of polymeric magnetic adsorbents is a promising approach to obtain efficient treatment of contaminated water. However, the synthesis of magnetic composites involving multiple components frequently involves tedious preparation steps. In the present study, a magnetic chitosan-palygorskite (MCP) nanocomposite was prepared through a straight-forward one pot synthesis approach to evaluate its lead (Pb2+) removal capacity from aqueous solution. The nano-architectural and physicochemical properties of the newly-developed MCP composite were described via micro- and nano-morphological analyses, and crystallinity, surface porosity and magnetic susceptibility measurements. The MCP nanocomposite was capable to remove up to 58.5 mg Pb2+ g−1 of MCP from water with a good agreement of experimental data to the Langmuir isotherm model (R2 = 0.98). The Pb2+ adsorption process on MCP was a multistep diffusion-controlled phenomenon evidenced by the well-fitting of kinetic adsorption data to the intra-particle diffusion model (R2 = 0.96). Thermodynamic analysis suggested that the adsorption process at low Pb2+ concentration was controlled by chemisorption, whereas that at high Pb2+ concentration was dominated by physical adsorption. X-ray photoelectron and Fourier transform infrared spectroscopy results suggested that the Pb adsorption on MCP was governed by surface complexation and chemical reduction mechanisms. During regeneration, the MCP retained 82% Pb2+ adsorption capacity following four adsorption–desorption cycles with ease to recover the adsorbent using its strong magnetic property. These findings highlight the enhanced structural properties of the easily-prepared nanocomposite which holds outstanding potential to be used as an inexpensive and green adsorbent for remediating Pb2+ contaminated water.

Item Type:
Journal Article
Journal or Publication Title:
Journal of Colloid and Interface Science
Additional Information:
This is the author’s version of a work that was accepted for publication in Journal of Colloid and Interface Science. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Colloid and Interface Science, 608, 2022 DOI: 10.1016/j.jcis.2021.09.109
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/1500/1505
Subjects:
?? adsorbent regenerationchitosanlead removalmagnetic nanocompositepalygorskitewastewater treatmentcolloid and surface chemistryenvironmental chemistrypollutionenvironmental engineeringbiomaterialssurfaces, coatings and filmselectronic, optical and magnetic ??
ID Code:
161813
Deposited By:
Deposited On:
03 Nov 2021 20:31
Refereed?:
Yes
Published?:
Published
Last Modified:
26 Sep 2024 00:59