Omoni, V.T. and Lag-Brotons, A.J. and Ibeto, C.N. and Semple, K.T. (2021) Effects of biological pre-treatment of lignocellulosic waste with white-rot fungi on the stimulation of 14C-phenanthrene catabolism in soils. International Biodeterioration and Biodegradation, 165: 105324. ISSN 0964-8305
Omoni_combined.pdf - Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.
Download (520kB)
Abstract
The enhancement of phenanthrene catabolism in soils amended with lignocellulosic waste material (spent brewery grains) was investigated. The soils were pre-treated with five white-rot fungi (Phanerochaete chrysosporium, Trametes versicolor, Irpex lateus, Pleurotus ostreatus, and Bjerkandera adusta). The changes in the kinetics of 14C-phenanthrene mineralisation (lag phases, the fastest rates and the overall extents) were measured in the inoculated, PAH-amended soils over time (1–100 d). Changes in the ligninolytic (laccase, lignin peroxidase and manganese peroxidase) and non-ligninolytic (β-glucosidase and phosphatase) enzymatic activities were also assessed. Overall results revealed that the amendment of fungal pre-treated SBG influenced the kinetics of mineralisation of 14C-phenanthrene as well as the enzymatic activities in soils. Soil inoculated with fungal pre-treated SBG caused reductions in lag phases as well as higher rates and extents of 14C-phenanthrene mineralisation in the following trend T. versicolor > B. adusta > P. chrysosporium = P. ostreatus > I. lateus. Furthermore, the extents of mineralisation generally reduced as levels of ligninolytic enzyme decreased, while the non-ligninolytic enzymes increased with soil-PAH contact time in all amendment conditions. These findings provided an insight on the potential of biological pre-treatment of waste materials for enhanced carbon, energy and nutrients on the bioactivities and biodegradation of organic pollutants which may be applicable during in situ remediations of contaminated soil.
Altmetric
Altmetric