Mobility-Aware Proactive Edge Caching for Connected Vehicles Using Federated Learning

Yu, Zhengxin and Hu, Jia and Min, Geyong and Zhao, Zhiwei and Miao, Wang and Hossain, M. Shamim (2021) Mobility-Aware Proactive Edge Caching for Connected Vehicles Using Federated Learning. IEEE Transactions on Intelligent Transportation Systems, 22 (8). pp. 5341-5351. ISSN 1524-9050

[thumbnail of ITS_FINAL VERSION_v2]
Text (ITS_FINAL VERSION_v2)
ITS_FINAL_VERSION_v2.pdf - Accepted Version

Download (5MB)

Abstract

Content Caching at the edge of vehicular networks has been considered as a promising technology to satisfy the increasing demands of computation-intensive and latency-sensitive vehicular applications for intelligent transportation. The existing content caching schemes, when used in vehicular networks, face two distinct challenges: 1) Vehicles connected to an edge server keep moving, making the content popularity varying and hard to predict. 2) Cached content is easily out-of-date since each connected vehicle stays in the area of an edge server for a short duration. To address these challenges, we propose a Mobility-aware Proactive edge Caching scheme based on Federated learning (MPCF). This new scheme enables multiple vehicles to collaboratively learn a global model for predicting content popularity with the private training data distributed on local vehicles. MPCF also employs a Context-aware Adversarial AutoEncoder to predict the highly dynamic content popularity. Besides, MPCF integrates a mobility-aware cache replacement policy, which allows the network edges to add/evict contents in response to the mobility patterns and preferences of vehicles. MPCF can greatly improve cache performance, effectively protect users' privacy and significantly reduce communication costs. Experimental results demonstrate that MPCF outperforms other baseline caching schemes in terms of the cache hit ratio in vehicular edge networks.

Item Type:
Journal Article
Journal or Publication Title:
IEEE Transactions on Intelligent Transportation Systems
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/2200/2210
Subjects:
?? mechanical engineeringautomotive engineeringcomputer science applications ??
ID Code:
154977
Deposited By:
Deposited On:
17 May 2021 09:05
Refereed?:
Yes
Published?:
Published
Last Modified:
25 Oct 2024 00:26