
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Mobility-Aware Proactive Edge Caching for
Connected Vehicles using Federated Learning

Zhengxin Yu, Jia Hu, Geyong Min, Zhiwei Zhao, Wang Miao, M. Shamim Hossain

Abstract—Content Caching at the edge of vehicular networks
has been considered as a promising technology to satisfy the in-
creasing demands of computation-intensive and latency-sensitive
vehicular applications for intelligent transportation. The existing
content caching schemes, when used in vehicular networks,
face two distinct challenges: 1) Vehicles connected to an edge
server keep moving, making the content popularity varying and
hard to predict. 2) Cached content is easily out-of-date since
each connected vehicle stays in the area of an edge server
for a short duration. To address these challenges, we propose
a Mobility-aware Proactive edge Caching scheme based on
Federated learning (MPCF). This new scheme enables multiple
vehicles to collaboratively learn a global model for predicting
content popularity with the private training data distributed on
local vehicles. MPCF also employs a Context-aware Adversarial
AutoEncoder to predict the highly dynamic content popularity.
Besides, MPCF integrates a mobility-aware cache replacement
policy, which allows the network edges to add/evict contents in
response to the mobility patterns and preferences of vehicles.
MPCF can greatly improve cache performance, effectively protect
users’ privacy and significantly reduce communication costs.
Experimental results demonstrate that MPCF outperforms other
baseline caching schemes in terms of the cache hit ratio in
vehicular edge networks.

Index Terms—Content Caching, Edge Computing, Federated
Learning, Deep Learning, Vehicular Networks

I. INTRODUCTION

With the advancement in wireless communications and
Internet-of-Things (IoT), self-driving has been considered as a
key enabling technology in Intelligent Transportation Systems
(ITS) to decrease traffic congestion, improve traffic efficiency
and enhance road safety [1]. Self-driving vehicles enable a
wide range of applications, from infotainment applications to
safety-related applications [2]. These applications may require
large computation, communication and storage resources, and
have strict performance requirements on network bandwidth
and response time. Thus, supporting these applications im-
poses high pressure on the resource-constrained Vehicular Net-
works (VNs). Vehicular Edge Computing (VEC) is recognised
as a promising paradigm to satisfy the increasing demands by
integrating edge computing into VNs [2]. VEC allows data to

Z. Yu, J. Hu, G. Min, W. Miao are with the Department of Computer
Science, College of Engineering Mathematics and Physical Sciences, Uni-
versity of Exeter, Exeter, EX4 4QF, U.K. Email: {zy246, J.Hu, G.Min,
Wang.Miao}@exeter.ac.uk

Z. Zhao is with the School of Computer Science and Engineering, Univer-
sity of Electronic Science and Technology of China, 610051, China. Email:
zzw@uestc.edu.cn

M. S. Hossain is with the Department of Software Engineering, College
of Computer and Information Sciences, King Saud University, Riyadh 11543,
Saudi Arabia. E-mail: mshossain@ksu.edu.sa

Corresponding authors: Jia Hu and Geyong Min

be processed and stored at edge nodes, such as Roadside Units
(RSUs) and Base Stations (BSs).

Caching content at edge nodes enables vehicles to fetch
their requested contents within one transmission hop [3]. It is
capable of reducing service latency and alleviating backhaul
network burden. Due to the limited storage at edge nodes,
the caching schemes need to identify and cache the popular
contents that are interesting to most vehicular users. Caching
schemes can be classified into two categories: reactive caching
and proactive caching. Reactive caching utilises the observed
users’ request pattern to choose contents to be cached [4],
such as First-In-First-Out (FIFO), Most Recently Used (MRU),
and Least Recently Used (LRU). In reactive caching, contents
may only be cached after being requested. Thus, if a content
has not been requested before, there is no cached copy of
this content. However, the high mobility of vehicles and
complex vehicular environments cause highly dynamic content
popularity. In this case, the previously requested contents may
become obsolete soon, so the reactive caching scheme cannot
satisfy strict performance requirements of users. In contrast,
proactive caching predicts content popularity and caches pre-
dicted popular contents before the arrival of user requests. It
can pre-fetch the popular contents, even these contents may
have never been requested before. Thus, proactive caching
is considered to be more suitable for the VEC scenarios.
In proactive caching, Machine Learning (ML) is a powerful
approach to predict content popularity for efficient caching.
Some works focus on learning-based caching schemes in
VNs by utilising reinforcement learning [5], [6], multilayer
perceptron and convolutional neural networks [7], etc.

Although some progresses have been achieved in learning-
based proactive caching, utilising ML techniques for edge
caching in VNs still faces the following three challenges:
1) High mobility: Vehicles send requests to an RSU and
go through its coverage area quickly, making the caching
content easily to be out of date. To improve the cache
performance, the caching scheme should be both context and
mobility aware, making cache decisions based on the content
popularity predictions and vehicles’ mobility. 2) Privacy: Most
ML algorithms train models in a centralised manner where the
data generated by multiple vehicles must be sent to an edge
server for analysis. These generated data may involve personal
sensitive information used for various vehicular applications.
Therefore, uploading and processing these data centrally may
raise privacy and security concerns. 3) Scalability: As the
number of connected vehicles grows, data generated by the
vehicles increase. The centralised ML algorithms may find
it difficult to handle such data due to the incurred high

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2

computation and communication costs.
To deal with the above-mentioned challenges, a Mobility-

aware Proactive Edge Caching Scheme based on Federated
Learning (MPCF) is proposed. MPCF utilises Context-aware
Adversarial AutoEncoder (C-AAE) to predict the content
popularity and then caches the predicted popular contents in
RSUs. Our proposed proactive caching scheme is based on
the Federated Learning (FL) framework [8]. In the designed
scheme, vehicles collect and store data for local training. A
global model (i.e., C-AAE) is updated at RSU by aggregating
the locally trained models. Moreover, a mobility-aware cache
replacement policy is developed to dynamically update cached
contents according to the mobility and position information of
vehicles.

The main contributions of this paper are summarized as
follows.

1) We propose a mobility-aware federated learning scheme
for edge caching in VNs, which can protect users’
privacy, reduce communication costs, and support high
mobility of vehicles. This new scheme includes four
main components: content popularity prediction, vehicle
selection, model aggregation, and cache replacement.

2) We utilise the C-AAE model to predict the popularity
of contents, which adds the adversarial network to the
AutoEnocoder (AE) architecture by turning an AE into
a generative model. It helps to learn deep latent repre-
sentations from users’ historical requests and contextual
information, and obtain implicit relationships between
users and contents for improving prediction accuracy.

3) We design mobility-aware vehicle selection, model ag-
gregation, and cache replacement policies with the aim
of optimising the caching resource utilisation in VNs.
Especially, the decision for selecting vehicles to partici-
pate in the FL training process and the value of weights
for parameter aggregation depend on the positions and
resources of connected vehicles. It can ensure that
vehicles have enough time for training and the RSU
can aggregate high-quality updated models. Meanwhile,
the cache replacement policy dynamically updates the
contents at RSUs in response to the preferences of their
connected vehicles and predictions of content popularity.

The rest of this paper is organised as follows: Section
II reviews the related work. The system architecture of the
proposed cache scheme is presented in Section III. Section
IV describes the detailed implementation of the MPCF. The
performance evaluation and analysis of MPCF are provided in
Section V. Section VI concludes this paper.

II. RELATED WORK

Vehicle networks have drawn much research attention [9],
[10], [11] with a wide range of works on resource allocation,
routing, security, etc. Cheng et al. [9] presented a concept
IoVB-net and a routing method for the Internet of Vehicles
(IoV), which can realise interconnections among nodes. This
solution will promote the deployment of the IoV in an urban
scene and open a door to other related researches such as

routing strategy, security and privacy. Zhang et al. [10] cre-
atively proposed the Chinese remainder theorem based condi-
tional privacy-preserving authentication protocol, which only
needs realistic TPDs and greatly reduces the computational
complexity. This will greatly promote the application of the
authentication protocol in VNs.

Edge servers (e.g., BSs and RSUs) and vehicular users
with ample caching capacities can cache popular contents to
increase the agility for service provisioning. A number of
recent works [12], [13], [14], [15], [16] have been reported to
investigate the content caching at RSUs in vehicular networks.
Hu et al. [12] proposed a multi-object auction-based method
to solve the competition of content providers caused by the
limited storage resources of RSUs. Ding et al. [13] studied
three methods (optimal, sub-optimal and greedy) to allocate
contents on RSUs, aiming to minimise the average download-
ing time for requested contents. Su et al. [14] designed a cross-
entropy based dynamic content caching scheme to optimise
cache resources by utilising cooperation among RSUs and
the request history of vehicles. High movement of vehicles
results in unstable connectivity, and vehicles may not have
enough time to download the entire requested content during
the time staying in the area of one edge node. Thus, a mobility-
aware probabilistic caching scheme was applied in [15] by
considering the vehicle trajectories and content service time at
the edge node. Mahmood et al. [16] developed a probabilistic
caching scheme to store content chunks at edge nodes by
considering both the historical statistics of achievable data
rates and the time of vehicles staying in the area of edge
nodes.

Connected vehicles, equipped with storage resources, can be
exploited as caching entities to cache the popular contents lo-
cally, which brings the benefits of utilising their own resources.
Kumar et al. [17] presented a peer-to-peer cooperative caching
scheme for data dissemination that leverages a Markov chain
model to share information among multiple vehicles and uses
a probabilistic method to update the existing data. Fang et al.
[18] provided a cooperative caching scheme for cluster-based
VNs, which considers both the caching resource-constrained
vehicles and caching status of vehicular clusters in a global
view. Deng et al. [19] presented a distributed probabilistic
caching scheme to make caching decisions. In this scheme,
users’ content requests, the importance of vehicles and their
movement characteristics are all taken into consideration. A
cooperative caching scheme was designed in [20]. It is based
on the mobility prediction that estimates the probability of
vehicles visiting hot spot areas. In order to minimise users’
delay, [21] investigated a caching placement in both vehicular
and RSU layers. Zhang et al. [22] developed a mobility-
aware cooperative caching framework, where vehicles are as
caching nodes to share contents tasks with BSs. Park et al.
[23] proposed a distributed proactive caching scheme in VNs
by distributing contents for RSUs, based on the movement
of vehicles. Ainagar et al. [24] introduced a mobility-aware
proactive caching scheme by taking the effect of the vehicle
velocity into account.

Recent advances in ML have attracted extensive research
interests with fruitful outcomes [25], [26], [27], [28]. ML has

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 3

Direction

Direction

Internet

BackhaulMBS

RSU
RSU

RSU

MBS

MBS

Fig. 1. Proactive edge caching for connected vehicles

also been widely used in content caching. Ndikumana et al.
[7] studied a deep learning based proactive caching scheme
by adopting a Multi-Layer Perceptron (MLP) approach to
predict the popularity of contents within the coverage area
of mobile edge computing (MEC) servers, and exploiting a
Conventional Neural Network (CNN) to estimate the age and
gender of passengers. Comparing the MLP’s outputs with
CNN’s outputs, the contents which need to be downloaded
from MEC servers to vehicles can be decided. MEC is one
of the prospective technologies to enhance the performance of
5G. It brings the cloud computing and caching capabilities to
network edges (e.g., base stations, access points), thus various
tasks can be executed at the edge rather than remote clouds. A
Q-learning based proactive caching scheme was devised in [6]
with the support of a long short-term memory neural network.
A deep reinforcement learning based content caching scheme
was exploited in [29] by optimising the content placement and
content delivery to minimise content delivery latency.

Most existing caching schemes for conducting prediction
are based on a centralised method that RSUs gather all
vehicles’ data. However, the contextual information of vehicles
in uploading data contains personal sensitive data, which may
cause privacy and security issues. Therefore, we propose a
mobility-aware proactive edge caching for connected vehicles
based on federated learning to improve cache performance as
well as protect vehicles’ privacy.

III. SYSTEM ARCHITECTURE

We consider a vehicular network in an urban scenario,
consisting of several MBSs, RSUs and vehicles, as shown in
Fig. 1. The MBSs are located in different locations at the edge
of VNs. Within the coverage area of an MBS, a set of RSUs
S = {S1, S2, S3, ..., Sn} are placed equidistantly with distance D
over both sides of the road, where n is the number of RSUs.
Each RSU serves its connected vehicles. These vehicles are
denoted by a set V = {V1,V2,V3, ...,Vm}, where m is the number
of connected vehicles. Vehicles traverse the coverage areas of

several MBSs. The communication among vehicles, RSUs and
MBSs are through wireless links, while MBSs connect to the
Internet via a reliable backhaul link. Both MBSs and RSUs
are equipped with cache-enabled edge servers. RSUs are used
to cache contents likely to be requested by the vehicles nearby.
MBSs store the lists of cached contents in connected RSUs
and manage their cache resources.

The speeds of vehicles are assumed to be independent and
identically distributed, forming a set U = {U1,U2,U3, ...,Um}.
They are generated by a truncated Gaussian distribution.
Compared to the normal Gaussian distribution or a fixed
speed, the truncated Gaussian distribution is more feasible
for modelling vehicles’ speed because it limits the scope of
vehicles’ speed to a certain range. This assumption has also
been widely used in many state-of-the-art works of vehicular
networks [24], [30], [31]. Vehicles keep their assigned speeds
invariable during each experiment. There is an entrance RSU
on each side of the road. The number of arrived vehicles for
entering each entrance during the period t is defined as Vq (t).
It follows a Poisson process with the parameter λ:

P
(
Vq (t) = g

)
=
(λt)g

g!
e−λt, (1)

where g equals the number of vehicles generated in a period
t.

These entered vehicles are interested in a set of popular
contents. In the concerned scenario, each RSU can prefetch
up to N contents from the Internet and cache these contents
locally. The moving vehicles can connect to an RSU and send
content requests to it, when vehicles are located within the
area of the RSU. If the requested content is available in the
current connected RSU (i.e., a cache hit), the RSU can directly
transmit this content to the vehicle. Otherwise, the RSU has
to obtain the requested content from the Internet (i.e., a cache
miss).

Placing the popular caching contents at RSUs can effec-
tively improve cache performance, which primarily depends
on the knowledge of content popularity. The popularity of
contents is influenced by many factors, including the contex-
tual information of vehicular users (e.g., age and gender) and
the mobility pattern of vehicles. Thus, to enhance the cache
performance, predicting the content popularity and deciding
which contents to be cached in RSUs need to consider the
above information.

To address the above challenge, we design a mobility-aware
proactive content caching scheme for connected vehicles using
FL. As shown in Fig. 1, it is a three-layered architecture.
The bottom layer contains vehicles requesting for contents.
The middle layer includes several RSUs equipped with cache-
enabled edge servers. The top layer has a cache-enabled MBS.
The multiple connected vehicles in an RSU collaboratively
train a shared global learning model. The RSU firstly dis-
seminates an initial global model to the connected vehicles.
Based on the received model, vehicles utilise their local data
to compute an updated model. Next, each vehicle sends the
updates of global model back to the RSU. Finally, the RSU
aggregates the updates from vehicles and builds an updated
global model. The above steps are repeated until a satisfying

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 4

global model is achieved. The learning model in this work is
specially developed to predict content popularity by learning
data representation from the data of local vehicles. We rank
all contents by their predicted popularity and select the top N
popular contents as caching contents in the RSU. Meanwhile,
the list of cached contents in RSU is stored at the MBS.

The federated deep learning model in RSU uses the data
from current connected vehicles to predict the content pop-
ularity and prefetches their predicted results in the cache.
However, the high mobility characteristic of vehicles may
result in the following situation: Vehicles send content requests
to the current RSU, but trying to fetch the requested contents
from another RSU. Furthermore, due to the small coverage
area of the RSU, vehicles may not have enough time to
download the whole requested content. It may pass several
RSUs to obtain the full content. Therefore, a mobility-aware
cache replacement policy is developed to address these issues.
Based on the prior knowledge of vehicle trajectories, predicted
content popularity and lists of cached contents in MBS, the
MBS dynamically updates the caching contents of each RSU.
This policy enables the predicted contents of vehicles to serve
themselves. When the vehicle is going to leave the current
RSU and enter to the next RSU, the MBS will cache the
popular contents for the vehicle in the neighbour RSU that
it will enter. Due to the similar locations of these vehicles,
cached contents in RSUs have less geographical features.
Thus, the predicted popular contents for each RSU may not
vary much so only a small number of contents need to be
replaced during this cache replacement.

IV. MOBILITY-AWARE FEDERATED DEEP LEARNING FOR
EDGE CACHING

This section elaborates on our proposed caching scheme.
We first describe the mobility-aware federated deep learning
framework which includes the connected vehicle selection,
federated training process and weighted aggregation method.
Then, we introduce the context-aware adversarial autoencoders
based method to predict the popularity of contents. Finally,
with the prediction of the content popularity and a coarse
knowledge of vehicle trajectories, we explore a mobility-
aware replacement cache policy. Table I lists the definition
of notations in the MPCF.

A. Mobility-aware Federated Deep Learning

FL facilitates collaborative training of a deep neural network
model among vehicles under the orchestration of a server in
RSU by keeping the training data on vehicles. It significantly
mitigates the privacy risk of vehicles and largely reduces
communication costs, resulting from centralised ML [8]. FL
is performed by multiple communication rounds (iterations).
Based on the speed and position of vehicles, K vehicles
are selected at each communication round to conduct model
training, as shown in Fig. 2. The K vehicles are indexed by
k. Then, each vehicle receives a global model from the RSU
and trains this model from its local data. Following the local
training of vehicles, the updated weights and gradients are sent
back to the RSU. The RSU aggregates the collected models

RSU 1

Cache Decision

Model Aggregation
∑

Popular Contents

RSU Server

Updated
Model

Local Dataset

Download
Model

Vehicle Local Training

1 Vehicle Selection

3

5

2 4

D
ow

nl
oa

d
M

od
el

U
pl

oa
d

M
od

el

3

5

Fig. 2. Mobility-aware Federated Deep Learning

from vehicles to construct an updated global model. Finally,
according to the predicted content popularity by the updated
global model and the coarse knowledge of vehicle trajectories,
the caching replacement strategy will decide where and which
contents to be cached.

The details of our designed FL communication round con-
sists of the following steps:

1) Vehicle Selection: Due to the small coverage area of
an RSU, some vehicles with high-mobility may go though
quickly and cannot finish the FL training. It leads to train
an inefficient model and deteriorates the cache performance
[32]. Aggregating high-quality updated models of vehicles on
the RSU server can construct a more accurate global model.
Thus, we design a mobility-aware vehicle selection method
to cope with high-mobility training environment. Only the
RSU located at the road entrance is chosen to execute the
FL training. A set of its connected vehicles are selected as
nodes performing computation on their local data to update
the global model. The vehicle selecting process will consider
the factors of good channel condition, unmetered wi-fi stable
connectivity, sufficient local training data and a long standing
time in the current RSU’s coverage area [25]. Sufficient local
training data guarantees to train a high-quality model. The
standing time is the driving time of the vehicle staying in the
area of RSU. It largely depends on the position and speed of
connected vehicles. The long standing time in the coverage
area promises that the training process can be completed and
its results can be delivered.

Uk denotes the speed of the k-th connected, which is a con-
stant with the lower and upper bounds (Umin ≤ Uk ≤ Umax)

in the urban area. We suppose that Uk follows a truncated
Gaussian distribution [24]:

f (Uk) =


e
− 1

2σ2 (Uk−µ)
2

√
2πσ2

(
er f

(
Umax−µ

σ
√

2

)
−er f

(
Umin−µ

σ
√

2

)) ,
Umin ≤ Uk ≤ Umax,

0, otherwise,
(2)

where σ2 is the variance and µ (−∞ < µ < ∞) is the mean,
er f () is the Gauss error function, and Pk is the position of
the k-th vehicle that represents the distance to the entrance.
The diameter of coverage area of RSU s is D. Thus, for each
vehicle, the standing time in the coverage area of current RSU

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 5

TABLE I
NOTATIONS DEFINITION

Notation Definition
S Set of RSUs
n Number of RSUs
V Set of connected vehicles for the RSU
m Number of connected vehicles
U Set of vehicles’ speed
N Maximum number of caching contents in RSU
λ Rate parameter of Poisson process
K Set of selected vehicles for FL training
k Index of selected vehicles for FL training
H Set of datasets stored in selected vehicles
dk Size of the local dataset in the connected vehicle k
d Size of datasets among connected vehicles
Pk Position of the connected vehicle k
D Diameter of the coverage area of RSU

(Distance between RSUs)
T k
st anding

Standing time of the connected vehicle k

r Number of FL communication rounds
Tround Average training time for each communication round
Tin f Inference time
w Parameters of model
wr Parameters of model in the r th round
Lk (w) FL loss function of the selected vehicle k
Q Position of RSU
c Number of contents
b Local minibatch size
η Learning rate
D Discriminative model
G Generative model
X User-by-content request matrix
x Sample from X
â Users’ context matrix
X̃ Reconstructed user-by-content request matrix
z Latent code
z′ Real input with the required distribution
p (x) Model distribution
pd (x) Data distribution
p (z) Prior distribution
q (z | x) Encoding distribution
p (x | z) Decoding distribution

is:

Tk
standing = (D − Pk) /Uk (3)

We assume that the average training time for each communi-
cation round is Tround and the inference time is Tin f . (They
depend on the size of dataset and the deep learning model. In
this work, they are sampled from our experiments.) As shown
in Fig. 2, step (1), if the Tk

standing
> Tround +Tin f , the vehicle

will meet the requirement for standing time and is chosen for
FL training.

2) Model Download: A set of vehicles Kr are selected to
participate in FL training for the r-th communication round.
The next step in the typical FL training process is that selected
vehicles download the global model from the RSU and train
this model over their own local data, see Fig. 2, step (2).
In self-driving scenario, the MBS has a coarse knowledge of
vehicle trajectories. Thus, the MBS allows some vehicles to
directly use their own models downloaded from the previous
RSU to participate in the currently FL training. The previous
connected RSU of these vehicles is located next to the current
connected RSU with the same direction. Using the previous
model brings the benefits to accelerate the training of a global
shared model, as it trains based on a high-quality model

and the training time can be greatly saved. In this way, it
also considers preferences of the vehicles connected by the
previous RSU. They may enter the current connected RSU
with high probability. Considering the preferences of future
coming vehicles can help to train a mobility-aware model. For
other selected vehicles, they perform the typical FL training
process. They download the parameters wr of the global model
from the RSU.

3) FL Model Training: The third step in our proposed FL is
to train the model by utilising local data at vehicles, as shown
in Fig. 2, step (3). Let H = {H1,H2,H3, ...,Hk} represent the
datasets stored in selected vehicles. Hk represents the local
dataset of the k-th vehicle with the length dk , dk = |Hk |. d is
the size of the whole data among the selected vehicles. Similar
to the typical FL, the goal of our proposed FL is to minimise
the loss function ` (w):

min
w

` (w) =

K∑
k=1

dk
d

Lk (w) where Lk (w) =
1
nk

∑
j∈Hk

`j (w) ,

(4)

where `j (w) is the loss of the prediction on the j-th dataset
in H with the parameters of model w. k is the index of total
selected vehicles K . Lk (w) represents the local loss function
of vehicle k. Minimising the weighted average of local loss
function Lk (w) is equal to optimise the loss function ` (w) of
FL.

4) Upload Updated Model: As shown in Fig. 2, step
(4), the fourth step is to upload the local model wk

t+1 from
vehicles to the RSU server. Compared to the computation
costs, communication costs dominate in FL [26]. In order to
reduce communication costs and save the upload time, the
model can be compressed before being uploaded to the RSU,
as the uplink speed is slower than the download speed [33].

5) Weighted Aggregation: After vehicles upload their mod-
els, the fifth step is to generate the new global model wr+1
by computing a weighted sum of all received local models
wk
r+1, as shown in Fig. 2, step (5). The new constructed

global model is used for the next training round. r denotes the
communication rounds in FL. Federated Averaging (FedAVG)
algorithm is widely applied in FL. Compared to the typical
federated stochastic gradient descent algorithm (FedSGD)
[26], it increases local training epochs as well as decreases
mini-batch sizes. In FedSGD, each vehicle k utilises its own
data to locally compute the average gradient OLk (w) on
its global model wr . The RSU server then aggregates these
computed gradients by taking a weighted average sum and
applies the update gradients:

wr+1 ← wr − η

K∑
k=1

dk
d
wk
r+1, (5)

where η is the fixed learning rate. Whereas, in FedAVG, each
vehicle adds more computation by iterating the local updates
wk
r ← wk

r − ηOLk

(
wk
r

)
multiple times before the averaging

step in the RSU server. The weighted averaging algorithm is
implemented to aggregate the model. Weights for parameter
aggregation is dependent on the position of the connected

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 6

1 0 1

1 0

0 1

0 1

0.9 0.4 0.2 0.8

0.6 0.8 0.3 0.1

0.3 0.7 0.5 0.4

0.1 0.4 0.6 0.9

Input Output

X

1 0 0

0 1 0

1 0 1

0 1 1

!"

+

#$Additional Information

Discriminator D

[0 , 1]

Encoder q (z | x) Decoder p (x | z)

z ~ q (z | x)

Draw samples from z ~ p (z)
z' ~ p (z)

Fig. 3. C-AAE model architecture

vehicle, which is γk = Pk/D, and the number of local training
data. Then, we can re-write the aggregate method as

wr+1 ← wr − η

K∑
k=1

γk
dk
d
wk
r+1. (6)

Selected vehicles with a longer available training time account
for more contributions and are given greater weight in model
aggregation.

Additionally, after training a shared global model, each RSU
predicts its popular contents and then sends a list to the MBS.
The MBS stores all lists of cached contents for future replacing
contents use. The above process is repeated. The full algorithm
is outlined in Algorithm 1.

B. Contextual-aware Adversarial Autoencoders For Content
Popularity Prediction

The model we trained in the above FL framework is the
Contextual-aware Adversarial Autoencoders (C-AAE) model.
It is used to predict the popularity of contents for proactive
edge caching purpose. Adversarial Autoencoders (AAE) is a
probabilistic AutoEncoder (AE), combining Generative Adver-
sarial Networks(GANs) and Variational Autoencoders (VAE)
[34]. The architecture of a C-AAE is shown in Fig. 3. The top
row is an AE. It is able to learn a latent code z to replicate its
input X to its output X̃ in an unsupervised learning manner
[35]. The bottom row is an adversarial network. It is mainly
used to distinguish whether the sample generates from the
specified distribution of the user or the sample comes from the
latent code z of the AE. A user-by-content request matrix X ,
used as the input data, is content retrieval history by vehicular
users. It consists of samples of variable x, where X ∈ Nm×c . m
and c stand for the number of connected vehicles and contents,
respectively. Moreover, which contents will be requested in
the future may depend on the vehicular users’ context. The
contextual information of connected vehicular users â is used
in our proposed method, in order to predict the popularity
of context-specific contents. â is appended to X . The output
of C-AAE is X̃ , which is the reconstructed inputs filling in
prediction values.

C-AAE adds the GAN to the AE architecture by turning an
AE into a generative model. It trains an AE with an adversarial

loss to adapt the distribution of latent space to an arbitrary
prior. GANs build two neural networks: the generative model
G and the discriminative model D. G uses a vector of random
numbers as the inputs and generates the input at the output. D
is utilised to differentiate between a sample is generated from
the G and a sample is taken from the input data. The minmax
game of GAN between G and D can be expressed as follows
[34]:

min
G

max
D

Ex∼pd (x) [logD (x)] + Ez∼p(z) [log (1 − D (G (z)))] .

(7)

The reconstruction phase and regularization phase are two
phases in the training process of C-AAE. In the phase of
reconstruction, an AE is to update the encoder and encoder
is to minimise reconstruction error of input x. Firstly, z is
generated by the generator network q (z | x), an encoding
distribution. Next, z is feed to the decoder and the output x̃ is
reconstructed from z. The loss of reconstruction is calculated
between x and x̃. In the phase of regularization, discriminator
D is firstly updated by the adversarial network to distinguish
true prior samples from generated samples. Then, in order
to fool the discriminator D, the generator G is updated. The
hidden code is essential to be considered by the discriminative
network, which are distributed as the true prior distribution
p (z). This generator is also the encoder of the AE.

The output is imposed to the encoder by an adversarial
network to follow the distribution of p (z). z can be obtained
by the discriminator. z′ is drawn by p (z). Backpropagation is
applied to adjust the weights of discriminator. Meanwhile, the
parameters of generator are updated. This process is repeated.
The generative model is defined by the decoder of the AE,
when the procedure of training is finished. The imposed prior
of p (z) is mapped to the data distribution pd (x). Thus, the
regularisation of C-AAE can be achieved by matching q (z) to
p (z), where q (z) is the aggregated posterior and p (z) is the
arbitrary prior. The q (z) is given by [34]:

q (z) =
∫
x

q (z | x) pd (x) dx, (8)

where p (x) is the model distribution. The loss of the discrim-
inator is

LD = −
1
b

b∑
a=1

log (D (z′)) + log (1 − D (z)) , (9)

where b is the minibatch size. The adversarial generator we
used is

LG = −
1
b

b∑
a=1

log (D (z)) . (10)

Additionally, C-AAE is inspired in VAE. VAE is a genera-
tive autoencoder, aiming to learn the data distribution p (x). It
attempts to minimize the KL-Divergence between latent codes
distribution and the desired distribution (i.e., Gaussian). A
sample from the desired distribution is feed to the decoder,
for reconstructing inputs. VAE can effectively cluster similar
input data in the latent space [36]. However, one drawback of
utilising the KL-divergence in VAE is to handle the functional

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 7

RSU 1 RSU 2 RSU 3

Round 1 Contents 1 Contents 1 Contents 1

Vehicle Group 1

Round 2 Contents 2 Contents 1 Contents 1

Vehicle Group 2 Vehicle Group 1

Round 3 Contents 3 Contents 2 Contents 1

Vehicle Group 3 Vehicle Group 2 Vehicle Group 1

(a) Summary

MBS

··

RSU1

Popular contents
lists for each round

MBS Server

RSU2 RSU3

Vehicle Group 3Direction

Caching Replacement
C3:

C1:

Caching Replacement
C2:

Caching Replacement
C1:

Vehicle Group 2

C2:
C3:

Vehicle Group 1

(b) Example: round 3

Fig. 4. Mobility-aware caching replacement process

form of p (z). Instead, AAE provides a more flexibility way
that is to sample from p (z), in order to match latent codes
distribution with the prior. As a result, more distributions can
be used as prior for the latent code.

In our design, the input matrix is the user-by-content request
matrix X , which is binary. 1 and 0 represent user’s interested
contents and uninterested contents, respectively. We mark the
contents that users requested before as the interested contents.
In fact, it is hard to identify the uninterested contents, since
unknown contents and uninterested contents are mixed in the
unrequested contents. Marking all unrequested contents as
uninterested contents is a bias prediction. Thus, we marked
unknown contents, corresponding to the missing entries by
a random sampling mechanism. The probability of random
sampling is related to the preference of clients for contents.
We utilise the proposed C-AAE model to predict these missing
values. The C-AAE learns the latent code Z from the input
matrix X . Then, X can be recovered from Z to generate X̃ .
X has incomplete rows and columns. X̃ is a matrix with
predicting the missing entries. We rank the predicted contents
and the highest score contents in outputs will be chosen as the
caching contents in the RSU. The complexity of the MPCF
algorithm depends on the C-AAE model’s complexity, which
is O (h). h is the size of a hidden layer in the C-AAE model.

C. Mobility-aware Cache Replacement Policy

As the vehicles move from one RSU to another, the re-
quested contents cached at one RSU might become obsolete,
whereas the other RSUs do not cache these previously re-
quested contents for the coming vehicles. Such ineffective util-
isation of cache resources motivates us to design a mobility-
aware cache replacement policy. This policy enables the RSU
to replace its caching contents, in response to the mobility of
vehicles.

Fig. 4 shows the details about how the process of cache
replacement is carried out between RSUs and vehicles. Fig. 4
(a) summarises the activities of each RSU in three rounds.
To explain the dynamic process, Fig. 4 (b) illustrates the
interactions amongst three RSUs, groups of vehicles and
one MBS in the third round of the process. All RSUs are
located within the coverage area of MBS. RSU 1 is located
at the entrance to the road. It is different from other RSUs,
because RSU 1 is the only RSU that executes the training

of C-AAE model to predict popularity of contents for its
connected vehicles. In self-driving scenario, MBS holds prior
knowledge of its connected vehicles, including speed, position
and destination. MBS has the capacity to estimate the arrival
times of vehicles at each RSU.

In round 1, Vehicle Group 1 is moving through the area
covered by RSU 1. At the same time, popularity of contents
is predicted and a list of predicted popular contents (C1) for
Vehicle Group 1 is instantly sent to MBS. MBS then sends the
predicted contents (C1) to all RSUs to cache. In round 2, new
vehicles (i.e., Vehicle Group 2) move into the coverage area of
RSU 1 and Vehicle Group 1 moves to the area covered by RSU
2. MBS then updates the caching contents for all RSUs. RSU 1
will cache the second round prediction (C2), RSU 2 and RSU
3 still store C1. In round 3, new vehicles (i.e., Vehicle Group
3) enter the RSU1’s coverage area. Similar to round 2, RSU
1 replaces caching contents to newly updated prediction (C3),
depending on the requests made by the new vehicles. C2 is
cached in RSU 2, as Vehicle Group 2 moves into the coverage
area of RSU 2. RSU 3 still stores C1. Vehicles continue to
move over time. In the fourth round, Vehicle Group 1 will
leave the area covered by the current MBS and enter to the
next MBS. Therefore, the current MBS shall remove C1 from
the cache.

To sum up, the proposed cache replacement policy aims
to effectively update the contents on RSU in response to its
connected vehicles’ prediction results. It is worth noting that
the predict contents (e.g., C1, C2, C3 etc.) can be similar
and MBS only needs to replace the different contents at each
round, which effectively reduces the processing time.

V. PERFORMANCE RESULTS AND ANALYSIS

The performance of the proposed MPCF under various
environments in VEC is evaluated in this section.

A. Simulation Settings and Dataset

We simulate a VEC environment in an urban area consisting
of an MBS, 3 RSUs and several vehicles located within
the coverage areas of RSUs. A HP Z440 workstation with
64G memory is exploited as the MBS to store the lists of
cached contents and manage cache resources. Two HP Z440
workstations, working as RSUs, aggregate the parameters of
C-AAE model and cache the predicted popular contents. The

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 8

Algorithm 1 : Mobility-aware Proactive Edge Caching
Scheme based on Federated Learning (MPCF), M is the
set of vehicles connected to the RSU, where m ∈ M . S is the
set of RSUs, where s ∈ S; Q is the position of RSU.
RSU Server Execution:

1: Initialise w0
2: for each round r = 1, 2, ... do:
3: Kr : A set of selected vehicles in r th round
4: for each vehicle m ∈ M in parallel do:
5: Tm

standing
=

(
D − Pi

m

)
/Um

6: if Tm
standing

>Tround + Tin f then
7: add m to Kr

8: end if
9: end for

10: Cr : A set of caching contents in r th round
11: Ck : A set of predicted popular contents from vehicle k
12: for each vehicle k ∈ Kr in parallel do:
13: if Qk

s−1 == Qk
s :

14: Use the previous model wr = wr−1
15: else
16: Download the current global model wr

17: end if else
18: wk

r+1,Ck ←VehicleUpdate(wr, k)
19: Add Ck to Cr

20: end for
21: wk

r+1 ←
∑K

k=1
dk

d wk
r+1

22: Count Cr

23: Cache Top N contents from Cr

24: CacheReplace(Cr):
25: end for
26: Return wr+1

Vehicle Execution:
1: Input: X , wr , Pk , D
2: VehicleUpdate(w, k):
3: for each local epoch e = 1, 2, ...do
4: for each batch b do
5: Compute parameters with gradient descent:
6: wk

r+1 ← wr − η∇l (wr ; b)
7: γk = Pk/D

8: wk
r+1 ← γkw

k
r+1

9: end for
10: end for
11: Rank predicted contents Ck

12: Return wk
r+1, Ck

Cache Replacement Execution:
1: CacheReplace(C):
2: for each round r = 1,2,... do:
3: Compare Cr−1 and Cr

4: Update new contents from Cr

5: end for

50 100 150 200 250 300 350 400

Cache size

0

10

20

30

40

50

60

C
a

c
h

e
 h

it
 r

a
ti
o

Oracle

MPCF

AutoEncoder

LFU

LRU

Random

Fig. 5. Cache hit ratio with different cache sizes

number of vehicles under each RSU varies from 1 to 100. All
vehicles have datasets to conduct local model training. Keras
is employed as the Deep learning framework to implement C-
AAE and FL, with TensorFlow as backend. The dataset we
used in our experiments is MovieLens 1M dataset collected
from the MovieLens website [37]. About 1 million ratings are
contained in this dataset, which came from 6040 anonymized
users on 3883 movies. The contextual information of users,
e.g. gender, age, address and occupation, is also provided
in the dataset. To simulate the process of vehicular users’
requests, the rated movies are assumed to request contents
from vehicles.

B. Performance Evaluation

Cache hit ratio is the performance metric we used to
evaluate the proposed MPCF, which measures the effectiveness
of a cache in fulfilling content requests. Cache hit ratio is
calculated as follows: Cache hit ratio = cache hits/ (cache hits
+ cache misses). One cache hit is captured when the requested
content is delivered by the cache, whereas a cache miss is
captured when the requested content is not stored in the cache.

Our proposed caching scheme MPCF is compared to the
following four baseline caching schemes, as shown in Fig. 5.
• Oracle: It has the prior knowledge of the exact future

content requests from vehicles and provides the maximum
of cache hit ratio.

• Random: The contents stored at cache are randomly
selected by the RSU.

• Least Recently Used (LRU): When the limit of cache
capacity is reached, it firstly removes the least recently
used content in the cache.

• Least Frequently Used (LFU): In LFU, the least fre-
quently used content in the cache is discarded whenever
the cache capacity is full.

• AutoEncoder: It is a learning based caching scheme,
using AutoEncoder model.

Fig. 5 depicts the cache hit ratio for varying cache sizes from
50 to 400 contents. The results demonstrate that our proposed
MPCF outperforms other reference caching schemes. With
the increase of cache size, the cache hit ratios of all caching

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 9

 2 5 10 15 20 25 30

Vehicle density

12.5

13

13.5

14

14.5

15

15.5

16

16.5
C

a
c
h

e
 h

it
 r

a
ti
o

Fig. 6. Cache hit ratio vs Vehicle density

0 5 10 15 20 25 30

Communication rounds

0

2

4

6

8

10

12

14

16

18

C
a

c
h

e
 h

it
 r

a
ti
o

0

100

200

300

400

500

600

700

T
ra

in
in

g
 t

im
e

 (
s
)

Fig. 7. Cache hit ratio and Training time against Communication rounds

schemes rise. As our expected, the lowest cache hit ratio is
presented by Random. The proposed MPCF and AutoEncoder
outperform LFU, LRU and Random because they learn the
latent representations and extract features from the content
request history of connected vehicles to predict precise content
popularity. LFU and LRU follow static rules, but dynamically
changing content popularity is not considered. The MPCF
shows a better performance compared to AutoEncoder. It is
due to the fact that MPCF captures useful features from data
and clusters the data in the latent space. Oracle provides the
best cache hit ratio, because it has the prior knowledge of
content requests from vehicles in the future.

Fig. 6 presents the influence of the vehicle density on the
cache hit ratio. The cache size of RSU is fixed at 50 in this
experiment and the density of vehicles varies from 2 to 30
vehicles/km. The results show that the cache hit ratio increases
with the grown of vehicle density. When only two vehicles
are moving in the coverage area of RSU, the cache hit ratio is
13.2%. However, when five vehicles connect to the RSU, the
cache hit ratio increases to 14.4%. Along with more vehicles
in the RSU’s coverage area, more computation capacity and
training data are offered by these vehicles. Correspondingly,
more accurate prediction of content popularity can be obtained.

Fig. 7 shows the results of cache hit ratio, communication

0 100 200 300 400 500 600

Training time (s)

13

13.5

14

14.5

15

15.5

16

16.5

17

17.5

18

C
a

c
h

e
 h

it
 r

a
ti
o

FedAVG

MPCF

Fig. 8. FL training process (27 vehicles)

0 100 200 300 400 500 600

Training time (s)

13

13.5

14

14.5

15

15.5

16

16.5

17

C
a

c
h

e
 h

it
 r

a
ti
o

FedAVG

MPCF

Fig. 9. FL training process (5 vehicles)

rounds versus training time. In this experiment, 10 vehicles
collaboratively participate a global model training. In the first
round, the cache hit ratio is 14.6 %, while it increases to 14.9%
in the second round. When the communication round is 30,
the cache hit ratio achieves above 16%. These show that the
cache hit ratio rises with the increasing communication rounds.
It comes with a price of training time. The training time for
one round is about 18 seconds, compared to more than 600
seconds for 30 rounds. As can be seen in Fig. 7, the cache hit
ratio changes not significant after 15 rounds. Thus, considering
a trade-off between communication rounds, training time and
cache hit ratio, training FL model for 15 rounds is the best
choice to achieve the optimal cache hit ratio.

Fig. 8 and Fig. 9 show the difference between typical
federated learning training process (FedAVG) [26] and our
proposed federated learning method (MPCF), in respect of
the training time and cache hit ratio. Both methods exhibit
the same trend. With longer training time, the more accurate
results can be achieved. In particular, after training for a
while, both methods reach a similar cache hit ratio. However,
compared with FedAVG in the first round, MPCF can obtain a
higher cache hit ratio. As depicted in Fig. 8, when 27 vehicles
participate in the FL training, the cache hit ratio of FedAVG is
14.3%. In comparison, the cache hit ratio of MPCF is 15.7%.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 10

100 200 300 400

Cache size

0

10

20

30

40

50
C

a
c
h
e
 h

it
 r

a
ti
o

MPCF without cache replacement

MPCF

Fig. 10. Mobility-aware cache replacement

Fig. 9 (5 vehicles) also shows that the MPCF outperforms
FedAVG at the beginning in terms of cache hit ratio, while
the final results are similar. In VEC, vehicles are driving at
high speed. They go through the coverage area of RSU quickly
and result in the short training time. The results exhibit that
the proposed MPCF can gain a desirable cache hit ratio in a
shorter time than FedAVG. For example, Fig. 8 depicts the
MPCF achieves the target cache hit ratio of 16% within 3
rounds, less than 60 seconds, while FedAVG needs more than
600 seconds. The reason is that the MPCF is mobility-aware
and thus more suitable to VEC scenarios.

Fig. 10 demonstrates the effectiveness of the mobility-aware
cache replacement policy. We compare the cache hit ratio of
MPCF and MPCF without cache replacement. As shown in
Fig. 10, the cache hit ratio for MPCF outperforms MPCF
without cache replacement policy. For example, the cache hit
ratio of MPCF is around 24.25% when the cache size is 100,
while MPCF without cache replacement policy achieves the
cache hit ratio of 22.2%. These experiment results demonstrate
that the proposed mobility-aware cache replacement policy is
able to further enhance the cache performance of FL learning-
based caching schemes in VEC.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new Mobility-aware
Proactive edge Caching scheme on Federated learning, termed
MPCF, to improve cache performance and protect vehicles’
privacy. MPCF utilises a context-aware adversarial autoen-
coder model to estimate content popularity and then places
predicted popular contents at the edge of vehicular networks
to reduce latency. To maximise the cache hit ratio, a mobility-
aware cache replacement policy is designed to dynamically
update caching contents at RSUs, according to the mobility
pattern of moving vehicles and their predictions of content
popularity. Numerical results demonstrate that MPCF outper-
forms other baseline caching schemes on cache hit ratio. The
FL training process of MPCF accelerates the training of a
global shared model. Implementing the mobility-aware cache
replacement policy further improves the cache hit ratio.

Due to the dynamic environment of vehicular networks and
heterogeneous communication and computing capabilities of

vehicles, some vehicles may go offline or fall behind during
the federated learning process. Thus, synchronized federated
learning can be very slow in vehicle networks. In our future
work, we intend to design a proactive content caching scheme
based on fully asynchronous federated learning to better cope
with the highly dynamic vehicular environments.

ACKNOWLEDGMENT

This work was supported in part by the UK EPSRC
project EP/M013936/2 and the Researchers Supporting Project
number (RSP-2020/32), King Saud University, Riyadh, Saudi
Arabia.

REFERENCES

[1] S. Garg, K. Kaur, G. Kaddoum, S. H. Ahmed, and D. N. K. Jayakody,
“SDN-based secure and privacy-preserving scheme for vehicular net-
works: A 5G perspective,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 9, pp. 8421–8434, 2019.

[2] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, “Vehicular edge
computing and networking: A survey,” arXiv preprint arXiv:1908.06849,
2019.

[3] S. Wang, Z. Zhang, R. Yu, and Y. Zhang, “Low-latency caching with
auction game in vehicular edge computing,” in Proc. of 2017 ICCC.
IEEE, 2017, pp. 1–6.

[4] A. Narayanan, S. Verma, E. Ramadan, P. Babaie, and Z.-L. Zhang,
“Deepcache: A deep learning based framework for content caching,”
in Proc. of 2018 SIGCOMM. ACM, 2018, pp. 48–53.

[5] Z. Ning, K. Zhang, X. Wang, M. S. Obaidat, L. Guo, X. Hu, B. Hu,
Y. Guo, B. Sadoun, and R. Y. Kwok, “Joint computing and caching in
5G-envisioned internet of vehicles: A deep reinforcement learning-based
traffic control system,” IEEE Transactions on Intelligent Transportation
Systems, doi:10.1109/TITS.2020.2970276, 2020.

[6] L. Hou, L. Lei, K. Zheng, and X. Wang, “A Q-learning-based proactive
caching strategy for non-safety related services in vehicular networks,”
IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4512–4520, 2018.

[7] A. Ndikumana, N. H. Tran, K. T. Kim, C. S. Hong et al., “Deep
learning based caching for self-driving cars in multi-access edge
computing,” IEEE Transactions on Intelligent Transportation Systems,
doi:10.1109/TITS.2020.2976572, 2020.

[8] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” NIPS Workshop on Private Multi-Party Machine Learning,
2016.

[9] J. Cheng, G. Yuan, M. Zhou, S. Gao, C. Liu, H. Duan, and Q. Zeng,
“Accessibility analysis and modeling for iov in an urban scene,” IEEE
Transactions on Vehicular Technology, vol. 69, no. 4, pp. 4246–4256,
2020.

[10] J. Zhang, J. Cui, H. Zhong, Z. Chen, and L. Liu, “Pa-crt: Chinese remain-
der theorem based conditional privacy-preserving authentication scheme
in vehicular ad-hoc networks,” IEEE Transactions on Dependable and
Secure Computing, doi: 10.1109/TDSC.2019.2904274, 2019.

[11] Y. Cao, S. Yang, G. Min, X. Zhang, H. Song, O. Kaiwartya, and
N. Aslam, “A cost-efficient communication framework for battery-
switch-based electric vehicle charging,” IEEE Communications Mag-
azine, vol. 55, no. 5, pp. 162–169, 2017.

[12] Z. Hu, Z. Zheng, T. Wang, L. Song, and X. Li, “Roadside unit caching:
Auction-based storage allocation for multiple content providers,” IEEE
Transactions on Wireless Communications, vol. 16, no. 10, pp. 6321–
6334, 2017.

[13] R. Ding, T. Wang, L. Song, Z. Han, and J. Wu, “Roadside-unit caching
in vehicular ad hoc networks for efficient popular content delivery,” in
Proc. of 2015 WCNC. IEEE, 2015, pp. 1207–1212.

[14] Z. Su, Y. Hui, Q. Xu, T. Yang, J. Liu, and Y. Jia, “An edge caching
scheme to distribute content in vehicular networks,” IEEE Transactions
on Vehicular Technology, vol. 67, no. 6, pp. 5346–5356, 2018.

[15] A. Mahmood, C. Casetti, C.-F. Chiasserini, P. Giaccone, and J. Harri,
“Mobility-aware edge caching for connected cars,” in Proc. of 2016
WONS. IEEE, 2016, pp. 1–8.

[16] A. Mahmood, C. E. Casetti, C. F. Chiasserini, P. Giaccone, and J. Härri,
“The rich prefetching in edge caches for in-order delivery to connected
cars,” IEEE Transactions on Vehicular Technology, vol. 68, no. 1, pp.
4–18, 2018.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 11

[17] N. Kumar and J.-H. Lee, “Peer-to-peer cooperative caching for data dis-
semination in urban vehicular communications,” IEEE Systems Journal,
vol. 8, no. 4, pp. 1136–1144, 2013.

[18] S. Fang and P. Fan, “A cooperative caching algorithm for cluster-based
vehicular content networks with vehicular caches,” in Proc. of 2017
Globecom GC Wkshps. IEEE, 2017, pp. 1–6.

[19] G. Deng, L. Wang, F. Li, and R. Li, “Distributed probabilistic caching
strategy in vanets through named data networking,” in Proc. of 2016
INFOCOM WKSHPS. IEEE, 2016, pp. 314–319.

[20] L. Yao, A. Chen, J. Deng, J. Wang, and G. Wu, “A cooperative
caching scheme based on mobility prediction in vehicular content centric
networks,” IEEE Transactions on Vehicular Technology, vol. 67, no. 6,
pp. 5435–5444, 2017.

[21] J. Ma, J. Wang, G. Liu, and P. Fan, “Low latency caching placement
policy for cloud-based vanet with both vehicle caches and rsu caches,”
in Proc. of 2017 IEEE Globecom GC Wkshps. IEEE, 2017, pp. 1–6.

[22] K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang, “Cooperative
content caching in 5G networks with mobile edge computing,” IEEE
Wireless Communications, vol. 25, no. 3, pp. 80–87, 2018.

[23] S. Park, S. Oh, Y. Nam, J. Bang, and E. Lee, “Mobility-aware distributed
proactive caching in content-centric vehicular networks,” in Proc. of
2019 WMNC. IEEE, 2019, pp. 175–180.

[24] Y. AlNagar, S. Hosny, and A. A. El-Sherif, “Towards mobility-aware
proactive caching for vehicular ad hoc networks,” in Proc. of 2019
WCNCW. IEEE, 2019, pp. 1–6.

[25] T. Nishio and R. Yonetani, “Client selection for federated learning with
heterogeneous resources in mobile edge,” in Proc. of 2019 ICC. IEEE,
2019, pp. 1–7.

[26] H. B. McMahan, E. Moore, D. Ramage, S. Hampson et al.,
“Communication-efficient learning of deep networks from decentralized
data,” Proc. of 2016 AISTATS, pp. 1–10.

[27] X. Zhou, W. Liang, I. Kevin, K. Wang, and S. Shimizu, “Multi-modality
behavioral influence analysis for personalized recommendations in
health social media environment,” IEEE Transactions on Computational
Social Systems, vol. 6, no. 5, pp. 888–897, 2019.

[28] X. Zhou, W. Liang, I. Kevin, K. Wang, H. Wang, L. T. Yang, and
Q. Jin, “Deep learning enhanced human activity recognition for internet
of healthcare things,” IEEE Internet of Things Journal, vol. 7, no. 7, pp.
6429–6438, 2020.

[29] G. Qiao, S. Leng, S. Maharjan, Y. Zhang, and N. Ansari, “Deep
reinforcement learning for cooperative content caching in vehicular edge
computing and networks,” IEEE Internet of Things Journal, vol. 7, no. 1,
pp. 246–257, 2019.

[30] S. M. Abuelenin and A. Y. Abul-Magd, “Empirical study of traffic
velocity distribution and its effect on vanets connectivity,” in Proc. of
2014 ICCVE. IEEE, 2014, pp. 391–395.

[31] S. Yousefi, E. Altman, R. El-Azouzi, and M. Fathy, “Analytical model
for connectivity in vehicular ad hoc networks,” IEEE Transactions on
Vehicular Technology, vol. 57, no. 6, pp. 3341–3356, 2008.

[32] S. Garg, K. Kaur, S. H. Ahmed, A. Bradai, G. Kaddoum, and M. Atiquz-
zaman, “Mobqos: Mobility-aware and QoS-driven SDN framework for
autonomous vehicles,” IEEE Wireless Communications, vol. 26, no. 4,
pp. 12–20, 2019.

[33] T. Leighton, “Improving performance on the internet,” Communications
of the ACM, vol. 52, no. 2, pp. 44–51, 2009.

[34] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adver-
sarial autoencoders,” Proc. of ICLR, pp. 1–10, 2016.

[35] A. Ng et al., “Sparse autoencoder,” CS294A Lecture notes, Stanford
University, USA, vol. 72, no. 2011, pp. 1–19, 2011.

[36] Z. Jiang, Y. Zheng, H. Tan, B. Tang, and H. Zhou, “Variational deep
embedding: An unsupervised and generative approach to clustering,”
Proc. of 2017 IJCAI, pp. 1965–1972, 2017.

[37] F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” ACM Transactions on Interactive Intelligent Systems, vol. 5,
no. 4, p. 19, 2016.

Zhengxin Yu is a Ph.D. student in the Department
of Computer Science within College of Engineering,
Maths and Physical Science at the University of
Exeter, UK. She received an MSc in Information
Technology Management for Business from the Uni-
versity of Exeter in 2016. Her research interests fo-
cus on deep learning, federated learning and mobile
edge computing.

Jia Hu is a Senior Lecturer in Computer Science
at the University of Exeter. He received his Ph.D.
degree in Computer Science from the University
of Bradford, UK, in 2010, and M.Eng. and B.Eng.
degrees in Electronic Engineering from Huazhong
University of Science and Technology, China, in
2006 and 2004, respectively. His research interests
include edge-cloud computing, resource optimiza-
tion, applied machine learning, and network security.

Geyong Min is a Professor of High Performance
Computing and Networking in the Department of
Computer Science within the College of Engineer-
ing, Mathematics and Physical Sciences at the Uni-
versity of Exeter, United Kingdom. He received
the PhD degree in Computing Science from the
University of Glasgow, United Kingdom, in 2003,
and the B.Sc. degree in Computer Science from
Huazhong University of Science and Technology,
China, in 1995. His research interests include Com-
puter Networks, Wireless Communications, Parallel

and Distributed Computing, Ubiquitous Computing, Multimedia Systems,
Modelling and Performance Engineering.

Zhiwei Zhao received his PhD degree at the College
of Computer Science, Zhejiang University in 2015.
He is currently an associate professor at the College
of Computer Science and Engineering in University
of Electronic Science and Technology of China. His
research interests focus on edge computing for IoT,
low power wireless, and mobile computing. He is a
member of IEEE, ACM and CCF.

Wang Miao received his Ph.D. degree in Computer
Science from the University of Exeter, United King-
dom in 2017. He is currently a Postdoctoral Research
Associate at the College of Engineering, Mathe-
matics, and Physical Sciences of the University of
Exeter. His research interests focus on Network
Function Virtualization, Software Defined Network-
ing, Unmanned Aerial Networks, Wireless Commu-
nication Networks, Wireless Sensor Networks, and
Performance Modelling and Analysis.

M. Shamim Hossain (Senior Member, IEEE) received the Ph.D. degree in
electrical and computer engineering from the University of Ottawa, Canada, in
2019. He is currently a Professor at the Department of Software Engineering,
College of Computer and Information Sciences, King Saud University, Riyadh,
Saudi Arabia. He is also an Adjunct Professor at the School of Electrical
Engineering and Computer Science, University of Ottawa, Canada. His
research interests include cloud networking, smart environment (smart city
and smart health), AI, deep learning, edge computing, the Internet of Things
(IoT), multimedia for health care, and multimedia big data.

