Chen, B. and Wan, J. and Xia, M. and Zhang, Y. (2020) Exploring Equipment Electrocardiogram Mechanism for Performance Degradation Monitoring in Smart Manufacturing. IEEE/ASME Transactions on Mechatronics, 25 (5). pp. 2276-2286. ISSN 1083-4435
09088122.pdf - Accepted Version
Available under License Creative Commons Attribution-NonCommercial.
Download (4MB)
Abstract
Similar to the use of electrocardiogram (ECG) for monitoring heartbeat, this article proposes an equipment electrocardiogram (EECG) mechanism based on fine-grained collection of data during the entire operating duration of the manufacturing equipment, with the purpose of the EECG to reveal the equipment performance degradation in smart manufacturing. First, the system architecture of EECG in smart manufacturing is constructed, and the EECG mechanism is explored, including the granular division of the duration of the production process, the matching strategy for process sequences, and several important working characteristics (e.g., baseline, tolerance, and hotspot). Next, the automatic production line EECG (APL-EECG) is deployed, to optimize the cycle time of the production process and to monitor the performance decay of the equipment online. Finally, the performance of the APL-EECG was validated using a laboratory production line. The experimental results have shown that the APL-EECG can monitor the performance degradation of the equipment in real-time and can improve the production efficiency of the production line. Compared with a previous factory information system, the APL-EECG has shown more accurate and more comprehensive understanding in terms of data for the production process. The EECG mechanism contributes to both equipment fault tracking and optimization of production process. In the long run, APL-EECG can identify potential failures and provide assistance in for preventive maintenance of the equipment.