Nonlinear dynamic analysis of moving bilayer plates resting on elastic foundations

Esmaeilzadeh, M. and Kadkhodayan, Mehran and Mohammadi, S. and Turvey, Geoffrey (2020) Nonlinear dynamic analysis of moving bilayer plates resting on elastic foundations. Applied Mathematics and Mechanics, 41. pp. 439-458. ISSN 0253-4827

[thumbnail of AMM Paper (1)]
Text (AMM Paper (1))
AMM_Paper_1_.pdf - Accepted Version
Available under License Creative Commons Attribution-NonCommercial.

Download (656kB)

Abstract

The aim of this study is to investigate the dynamic response of axially moving two-layer laminated plates on the Winkler and Pasternak foundations. The upper and lower layers are formed from a bidirectional functionally graded (FG) layer and a graphene platelet (GPL) reinforced porous layer, respectively. Henceforth, the combined layers will be referred to as a two-dimensional (2D) FG/GPL plate. Two types of porosity and three graphene dispersion patterns, each of which is distributed through the plate thickness, are investigated. The mechanical properties of the closed-cell layers are used to define the variation of Poisson’s ratio and the relationship between the porosity coefficients and the mass density. For the GPL reinforced layer, the effective Young’s modulus is derived with the Halpin-Tsai micro-system model, and the rule of mixtures is used to calculate the effective mass density and Poisson’s ratio. The material of the upper 2D-FG layer is graded in two directions, and its effective mechanical properties are also derived with the rule of mixtures. The dynamic governing equations are derived with a first-order shear deformation theory (FSDT) and the von K´arm´an nonlinear theory. A combination of the dynamic relaxation (DR) and Newmark’s direct integration methods is used to solve the governing equations in both time and space. A parametric study is carried out to explore the effects of the porosity coefficients, porosity and GPL distributions, material gradients, damping ratios, boundary conditions, and elastic foundation stiffnesses on the plate response. It is shown that both the distributions of the porosity and graphene nanofillers significantly affect the dynamic behaviors of the plates. It is also shown that the reduction in the dynamic deflection of the bilayer composite plates is maximized when the porosity and GPL distributions are symmetric.

Item Type:
Journal Article
Journal or Publication Title:
Applied Mathematics and Mechanics
Additional Information:
The final publication is available at Springer via http://dx.doi.org/10.1007/s10483-020-2587-8
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/2200/2211
Subjects:
?? moving laminated platebidirectional functionally graded material (fgm)graphene nanoplateletporosityfirst-order shear deformation theory (fsdt)newmark’s integration methodmechanics of materialsmechanical engineeringapplied mathematics ??
ID Code:
141743
Deposited By:
Deposited On:
24 Feb 2020 09:45
Refereed?:
Yes
Published?:
Published
Last Modified:
22 Sep 2024 00:47