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Abstract The aim of this study is to investigate the dynamic response of axially moving
two-layer laminated plates on the Winkler and Pasternak foundations. The upper and
lower layers are formed from a bidirectional functionally graded (FG) layer and a graphene
platelet (GPL) reinforced porous layer, respectively. Henceforth, the combined layers will
be referred to as a two-dimensional (2D) FG/GPL plate. Two types of porosity and three
graphene dispersion patterns, each of which is distributed through the plate thickness,
are investigated. The mechanical properties of the closed-cell layers are used to define
the variation of Poisson’s ratio and the relationship between the porosity coefficients and
the mass density. For the GPL reinforced layer, the effective Young’s modulus is derived
with the Halpin-Tsai micro-system model, and the rule of mixtures is used to calculate
the effective mass density and Poisson’s ratio. The material of the upper 2D-FG layer is
graded in two directions, and its effective mechanical properties are also derived with the
rule of mixtures. The dynamic governing equations are derived with a first-order shear
deformation theory (FSDT) and the von Kármán nonlinear theory. A combination of
the dynamic relaxation (DR) and Newmark’s direct integration methods is used to solve
the governing equations in both time and space. A parametric study is carried out to
explore the effects of the porosity coefficients, porosity and GPL distributions, material
gradients, damping ratios, boundary conditions, and elastic foundation stiffnesses on the
plate response. It is shown that both the distributions of the porosity and graphene
nanofillers significantly affect the dynamic behaviors of the plates. It is also shown that
the reduction in the dynamic deflection of the bilayer composite plates is maximized when
the porosity and GPL distributions are symmetric.
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1 Introduction

Due to the combined advantages of high stiffness and low self-weight, laminated composite
plates are widely used in the aerospace, automotive, marine, and nuclear industries[1]. A
laminated plate is an assembly of two or more layers (composed of fibres in a matrix material)
which can be stacked to achieve the required mechanical properties such as high flexural stiffness,
low thermal and electrical conductivity[2–4]. In the present investigation, the focus is on the
dynamic response of a bilayer plate comprised of a bidirectional functionally graded (FG) layer
and a graphene platelet (GPL) reinforced porous layer.

The foam is an engineering material which provides advantages such as low density, hard-
ness and energy absorption capability. Recent reviews of foams[5–7] consider both random and
uniform porosity distributions. Required mechanical properties have been used as design cri-
teria for determining the size and distribution of the foams’ internal cavities/pores in one or
more directions, resulting in new porous structures[8]. Several theoretical methods have been
proposed to predict the structural performance of FG porous beams. Gao et al.[9] used a Cheby-
shev surrogate model along with a discrete singular convolution technique to obtain dynamic
performances of beams with different types of porosities. Based on an Euler-Bernoulli theory,
the dynamic buckling behaviors of a simply-supported FG porous beam were also studied by
Gao et al.[10]. Chen et al.[11–12] analyzed the elastic buckling, static flexure and free/forced
vibration of beams made of porous graphite grains and open-cell metal foams, accounting for
non-uniform distributions of the pores. Chen et al.[13] examined the effect of porosity on the
nonlinear free vibration of sandwich beams with porous FG cores. The principal disadvantage
of foam is the presence of internal cavities which reduce the structural stiffness and limit their
engineering applications. However, stiffeners such as graphene and/or carbon nanotubes may
be included in the foam to enhance its mechanical properties without adversely affecting its low
self-weight. Porous nanocomposites can also lead to new applications in smart materials and
other advanced technologies, e.g., fuel cells[14–15]. Most studies on nanocomposites focus on the
mechanical properties and behaviors of structures reinforced with carbon nanotubes. Ansari
and Torabi[16] undertook a numerical analysis of the vibration and buckling response of FG
composite conical shells reinforced with carbon nanotubes. It has been demonstrated that the
use of graphene nanoparticles is more advantageous than carbon nanotubes. A small quantity
of graphene (as well as its derivatives) added to a polymer can significantly improve the com-
posite material’s mechanical properties. Rafiee et al.[17] showed that adding 0.1% of graphene
nanoparticles to an epoxy matrix increases its Young’s modulus by 31%, whereas only a 3%
increase is achieved by adding carbon nanotubes. Although it appears that graphene nanotubes
provide the superior performance compared with carbon nanotubes in composite materials, it
should be appreciated that graphene nanotube research is still in its early stage.

Yang et al.[18] analyzed multi-layer nanocomposite beams in which the graphene nanoparti-
cles were distributed in the thickness direction. Their study showed that graphene nanoparticles
significantly improved the buckling and post buckling behaviors of GPL-reinforced composite
beams. Furthermore, it is suggested that this is sensitive to the distributions of the graphene
nanoparticles (platelets). Wu et al.[19] and Song et al.[20] showed that, by combining 0.1% of
graphene nanoparticles (in a non-uniform way) in a polymer matrix, a significant improvement
was achieved. By means of the differential quadrature method, Gao et al.[21] performed a study
on the free vibration of GPL-reinforced nanocomposite plates with closed-cell geometrical im-
perfections. Kitipornchai et al.[22] also investigated the nonlinear free vibration and elastic
buckling response of porous nanocomposite beams reinforced with graphene. The effects of
damping ratios on mechanical characteristics of FG porous shells with cylindrical shapes were
investigated[23].
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Functionally graded materials (FGMs) are relatively new composite materials in which the
mechanical properties vary continuously and smoothly in one or more directions. The dynamic
response of FG structures is an interesting and important subject which has attracted the
attention of many researchers recently. By employing Hamilton’s principle and Dannell theory,
Gao et al.[24] investigated the nonlinear dynamic behavior of a cylindrical shell made of the
materials which changed continuously through the shell thickness. Sofiyev and Kuruoglu[25]

used the first-order shear deformation theory (FSDT) to study the vibration of simply-supported
cylindrical sandwich shells with an FG core subject to static and time-dependent periodic axial
forces and taking account of uniform and periodic FG distributions in the shell core. Nguyen
et al.[26] also analyzed the nonlinear vibration of bidirectional FG Timoshenko beams under
moving loads. Using a new third-order shear deformation theory, Lei et al.[27] explored the
buckling behaviors of bidirectional FG beams with initial deflections.

Mobile structures are used in many engineering applications, e.g., train’s carriages, aircraft’s
wings, marine vessels and moving walkways. Relevant to such applications, Esmaeilzadeh and
Kadkhodayan[28] investigated the nonlinear dynamic deflection of a moving porous plate with
the dynamic relaxation (DR) technique. The interaction of a fluid with a moving FG plate
containing micro-voids was studied numerically by Wang and Yang[29]. Li et al.[30] reported
a detailed study of the nonlinear forced vibration of an axially moving viscoelastic sandwich
beam. Recently, the dynamic instability of an axially mobile viscoelastic plate subject to various
boundary conditions was investigated by Zhou and Wang[31].

The computational models of structures resting on elastic media are commonly used to
designate several real samples in industrial divisions. In many cases, elastic foundations can
be considered as simple instruments such as springs. Takabatake[32] used a rectangular large
floating plate located on elastic foundations with a variable spring stiffness to model a floating
international airport. Gao et al.[33] showed the effects of some parameters such as damping
ratios and temperature variations on the dynamic behaviors of a composite orthotropic plate
resting on elastic foundations.

The present study is concerned with analyzing the dynamic behaviors of 2D FG/GPL plates
resting on elastic foundations. Two nonlinear porosity distributions and three graphene dis-
tributions are analyzed, and the results are compared and contrasted. The analysis uses the
DR and Newmark’s methods to solve the governing equations. It appears that this is the
first investigation of its type and the results may be of benefit to other researchers’ future
investigations.

2 Mechanical properties of the bilayer composite plate

Figure 1 shows a bilayer 2D FG/GPL-reinforced plate of thickness h (hFGM +hGPL), width

Fig. 1 A supported laminated rectangular plate with two layers through its thickness (color online)
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b (the y-direction), and length a (the x-direction) in a Cartesian coordinate system. This plate
travels along the x-direction with the constant speed of Vp and also is subject to a distributed
impact load F (x, y, t).
2.1 Bidirectional FG plates

The upper layer of the laminated plate is supposed to be made of two different elements
whose mechanical properties change smoothly not only from the bottom (z = h/2 − hFGM) to
the top (z = h/2), but also along the x-direction as shown in Fig. 2. In accordance with the rule
of mixtures[34], the mechanical properties of the 2D FGM plate (Young’s modulus E, Poisson’s
ratio υ, and density ρ) can be calculated as follows[27]:






EFGM(x, z) = E1 + (E2 − E1)
( z′

hFGM

)n(x

a

)m

,

υFGM(x, z) = υ1 + (υ2 − υ1)
( z′

hFGM

)n(x

a

)m

,

ρFGM(x, z) = ρ1 + (ρ2 − ρ1)
( z′

hFGM

)n(x

a

)m

,

z′ = z + hFGM −
h

2
,

(1)

where the subscripts 1 and 2 denote the materials 1 and 2, respectively, and n and m are
non-negative values that control material variations in the z- and x-directions, respectively. As
depicted in Fig. 2, the composition of the 2D FG layer varies through the thickness direction
from 100% of the material 1 at the lower surface, z = h/2−hFGM, to a mixture of the materials
1 and 2 at the top surface, z = h/2. The structure of the 2D FG layer also changes along the
x-direction, from 100% of the material 1 at x = 0, z = h/2 to 100% of the material 2 at x = a,
z = h/2.

Fig. 2 Edge view of a laminated rectangular plate embedded on elastic foundations (color online)

2.2 Porosity and graphene distributions

Figure 2 illustrates a porous GPL-reinforced layer (foam) located under a 2D FGM layer
(−h/2 < z < −h/2 + hGPL(= h/2 − hFGM)). The two porosity distributions are shown in
Fig. 3. The elastic and shear moduli and the porous nanocomposite layer’s mass density with
symmetric and unsymmetric porosity distributions 1 and 2 are[35]






E(z) = Ec (1 − êλ(z)) ,

G(z) = E(z)/ (2(1 + υ(z))) ,

ρ(z) = ρc (1 − emλ(z)) ,

(2)

where

λ(z) =

{
cos(πz/hGPL) for the porosity distribution 1,

cos(πz/(2hGPL) + π/4) for the porosity distribution 2,
(3)
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in which Ec and ρc are the maximum values of Young’s modulus and the mass density of
the nanocomposite layer without porosity[36], respectively, and z = z + h−hGPL

2 . The porosity
coefficient ê can be obtained as

ê = 1 − Ed/Ec. (4)

Here, Ed is the minimum value of Young’s modulus. Based on closed-cell patterns, the coefficient
of mass density em using the Gaussian random field (GRF) model can be defined as follows[37]:

em =
1.121(1 − (1 − êλ(z))

1/2.3
)

λ(z)
. (5)

Also, according to the closed-cell GRF scheme, Poisson’s ratio υ(z) can be obtained as[35]

υ(z) = 0.342υc

(ρ(z)

ρc

)2

+ (0.526υc − 0.221)
ρ(z)

ρc
+ 0.132υc + 0.221, (6)

where υc indicates Poisson’s ratio of pure matrix materials with no porosity.

Fig. 3 Porosity distributions

The Halpin-Tsai micro-mechanics model[38] is used to calculate Young’s modulus of the
void-free nanocomposite. It is assumed that GPLs are randomly distributed in a matrix as
rectangular solid fillers, the effective composite Young’s modulus Ec is approximated as[35]

Ec =
3

8

(1 + χGPL
l ωGPL

l VGPL

1 − ωGPL
l VGPL

)
EM +

5

8

(1 + χGPL
w ωGPL

w VGPL

1 − ωGPL
w VGPL

)
EM, (7)

in which the filler geometry factors χGPL
l and χGPL

w for GPLs and the parameters ωGPL
l and

ωGPL
w are






χGPL
l =

2lGPL

tGPL
, χGPL

w =
2wGPL

tGPL
,

ωGPL
l =

(EGPL/EM) − 1

(EGPL/EM) + χGPL
l

, ωGPL
w =

(EGPL/EM) − 1

(EGPL/EM) + χGPL
w

,

(8)

where wGPL, lGPL, and tGPL denote the average width, length, and thickness of GPLs, respec-
tively, and EM and EGPL are Young’s moduli of the metallic matrix and GPLs, respectively. The
mass density ρc and Poisson’s ratio υc of the GPL-reinforced metallic matrix can be calculated
by using the rule of mixtures,

{
ρc = ρGPLVGPL + ρMVM,

υc = υGPLVGPL + υMVM,
(9)
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where ρGPL, υGPL, and VGPL (ρM, υM, and VM = 1 − VGPL) are the mass density, Poisson’s
ratio, and the volume fraction of GPLs (metallic matrix), respectively[22].

Based on the distributions in Fig. 4, namely, the patterns A, B, and C, the volume factors
of GPLs can be written as follows[22]:

VGPL =






zi1 (1 − cos(πβ(z))) for the pattern A,

zi2

(
1 − cos

(π

2
β(z) +

π

4

))
for the pattern B,

zi3 for the pattern C,

(10)

where β(z)=z/hGPL. The maximum values of zi1, zi2, and zi3 can be calculated based on the

weighting coefficient Â for the entire layer with the following equations[22]:

ÂρM

Â (ρM−ρGPL)+ρGPL

∫ −h/2+hGPL

−h/2

ρ(z)

ρc
dz

=






zi1

∫ −h/2+hGPL

−h/2

(1−cos(πβ(z)))
ρ(z)

ρc
dz for the pattern A,

zi2

∫ −h/2+hGPL

−h/2

(
1 − cos

(π

2
β(z)+

π

4

))ρ(z)

ρc
dz for the pattern B,

zi3

∫ −h/2+hGPL

−h/2

ρ(z)

ρc
dz for the pattern C.

(11)

It should be noted that ρ(z) in these equations is related to the specific porosity distribution
given in Eqs. (2) and (3).

Fig. 4 Three types of GPL distributions

2.3 Fundamental equations

To derive the governing equations, it is supposed that the layers are entirely interconnected,
and hence there is no slippage at the interface between the layers of the plate. On the basis of
the FSDT, the displacement fields are as follows:






u1(x, y, z, t) = u(x, y, t) + zθx(x, y, t),

u2(x, y, z, t) = v(x, y, t) + zθy(x, y, t),

u3(x, y, z, t) = w(x, y, t),

(12)

where u, v, and w are the displacement components of the middle surface in the directions
of x, y, and z. Also, θx and θy are the rotational displacements about the y- and x-axes,
respectively. In accordance with Hooke’s law, the stress-strain relationships for bidimensional
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FG and nanocomposite materials can be written as





σxx

σyy

σxy

σyz

σxz





2D-FGM

=





Q11 Q12 0 0 0
Q12 Q11 0 0 0
0 0 Q66 0 0
0 0 0 C44 0
0 0 0 0 C55





2D-FGM

· (Y1 + zY2) , (13)





σxx

σyy

σxy

σyz

σxz





GPL

=





A11 A12 0 0 0
A12 A11 0 0 0
0 0 A66 0 0
0 0 0 H44 0
0 0 0 0 H55





GPL

· (Y1 + zY2) , (14)

in which

Y1 =





∂u

∂x
+

1

2

(∂w

∂x

)2

∂v

∂y
+

1

2

(∂w

∂y

)2

∂u

∂y
+

∂v

∂x
+

∂w

∂x

∂w

∂y

θy +
∂w

∂y

θx +
∂w

∂x





, Y2 =





∂θx

∂x
∂θy

∂y
∂θx

∂y
+

∂θy

∂x
0

0





,






Q11 =
EFGM(x, z)

1 − υ2
FGM(x, z)

for the 2D FGM,

Q12 =
υFGM(x, z)EFGM(x, z)

1 − υ2
FGM(x, z)

for the 2D FGM,

C44 = C55 = Q66 = GFGM(x, z) =
EFGM(x, z)

2(1 + υFGM(x, z))
for the 2D FGM,

(15)






A11 =
EGPL(z)

1 − υ2
GPL(z)

for the GPL,

A12 =
υGPL(z)EGPL(z)

1 − υ2
GPL(z)

for the GPL,

H44 = H55 = A66 = GGPL(z) =
EGPL(z)

2(1 + υGPL(z))
for the GPL.

(16)

Hamilton’s principle is used in order to determine the fundamental equations of plates[24],

∫ T

0

(δS + δX + δC − δP )dt = 0, (17)

where S signifies the strain energy of the structure, X is the virtual work done by the applied
force, C denotes the potential energy of non-conservative forces resulting from damping effects,
and P is the kinetic energy of the system. The symbol δ represents the variation operator. To
obtain the variation of strain energy, the following equation is used:

δS =

∫∫∫
σijδεijdV. (18)
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The virtual variation of potential energy of non-conservative forces resulting from damping
influence is stated as below[24],

δC =

∫∫∫
Cd (ρ(z) + ρGPL(x, z)) (u̇1δu1 + u̇2δu2 + u̇3δu3) dV. (19)

Here, Cd is the corresponding symbol of the damping coefficient of the solid. The changes of
virtual kinetic energy are obtained from the following equation:

δP =

∫∫∫
(ρ(z) + ρGPL(x, z)) (u̇1δu̇1 + u̇2δu̇2 + u̇3δu̇3) dV. (20)

The velocity vector of the axially moving plate can be obtained as[28]

V =
(
Vp +

∂u1

∂t
+ Vp

∂u1

∂x

)
i+

(∂u2

∂t
+ Vp

∂u2

∂x

)
j +

(∂u3

∂t
+ Vp

∂u3

∂x

)
k, (21)

in which Vp is the velocity term, and i, j, and k are the unit vectors in the x-, y-, and z-axes
of a three-dimensional (3D) Cartesian coordinate system, respectively. Hence, the variation of
non-conservative forces of the system with consideration of Eq. (12) can be measured by

δC =

∫∫∫
Cd (ρ(z) + ρFGM(x, z)) ·

((
Vp +

∂(u + zθx)

∂t
+ Vp

∂(u + zθx)

∂x

)
δ(u + zθx)

+
(∂(v + zθy)

∂t
+ Vp

∂(v + zθy)

∂x

)
δ(v + zθy) +

(∂w

∂t
+ Vp

∂w

∂x

)
δw
)
dV. (22)

Similarly, the modified equation for the virtual kinetic energy is calculated as

δP =

∫∫∫
(ρ(z) + ρFGM(x, z)) ·

((
Vp +

∂(u + zθx)

∂t
+ Vp

∂(u + zθx)

∂x

)

·
(
δVp + δ

∂(u + zθx)

∂t
+ Vpδ

∂(u + zθx)

∂x

)
+
(∂(v + zθy)

∂t
+ Vp

∂(v + zθy)

∂x

)

·
(
δ
∂(v + zθy)

∂t
+ Vpδ

∂(v + zθy)

∂x

)
+
(∂w

∂t
+ Vp

∂w

∂x

)(
δ
∂w

∂t
+ Vpδ

∂w

∂x

))
dV. (23)

Figure 1 reveals that −h
2 + hGPL and h

2 − hFGM are equal. Therefore, the inertia of the whole
body can be obtained as

Ik =

∫ h/2−hFGM

−h/2

ρ(z)zkdz +

∫ h/2

h/2−hFGM

ρFGM(x, z)zkdz, k = 0, 1, 2. (24)

The principal equations of a nanocomposite plate subject to a dynamic load F (x, y, t) are based
on Hamilton’s theory as follows[39]:





∂Nxx

∂x
+

∂Nxy

∂y
= I0

(D2u

Dt2
+ CdVp + Cd

Du

Dt

)
+ I1

(D2θx

Dt2
+ Cd

Dθx

Dt

)
,

∂Nxy

∂x
+

∂Nyy

∂y
= I0

(D2v

Dt2
+ Cd

Dv

Dt

)
+ I1

(D2θy

Dt2
+ Cd

Dθy

Dt

)
,

∂Qx

∂x
+

∂Qy

∂y
+N(w)+F (x, y, t)−Kww + Ks

(∂2w

∂x2
+

∂2w

∂y2

)
= I0

(D2w

Dt2
+ Cd

Dw

Dt

)
,

∂Mxx

∂x
+

∂Mxy

∂y
− Qx = I1

(D2u

Dt2
+ CdVp + Cd

Du

Dt

)
+ I2

(D2θx

Dt2
+ Cd

Dθx

Dt

)
,

∂Mxy

∂x
+

∂Myy

∂y
− Qy = I1

(D2v

Dt2
+ Cd

Dv

Dt

)
+ I2

(D2θy

Dt2
+ Cd

Dθy

Dt

)
,

(25)
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in which

N(w) = Nxx
∂2w

∂x2
+ 2Nxy

∂2w

∂x∂y
+ Nyy

∂2w

∂y2
,






D2

Dt2
=

∂2

∂t2
+ 2Vp

∂2

∂x∂t
+ V 2

p

∂2

∂x2
,

D

Dt
=

∂

∂t
+ Vp

∂

∂x
,

(26)

Kw is the Winkler foundation modulus, and Ks is the Pasternak shear foundation. Also, the
damping coefficient can be related to the damping ratio as

Cd = 2ξωn, (27)

in which ξ and ωn are, respectively, the damping ratio of the plate and the circular natural
frequency. Similar to Eq. (24), the stress resultants are






(Ni, Mi)=

∫ h/2−hFGM

−h/2

((1, z)σi)GPL dz+

∫ h/2

h/2−hFGM

((1, z)σi)2D-FGM dz, i=xx, yy, xy,

Qi =K2

(∫ h/2−hFGM

−h/2

(σiz)GPL dz +

∫ h/2

h/2−hFGM

(σiz)2D-FGM dz

)
, i = x, y,

(28)

where K2 is the transverse shear correction coefficient equal to 0.833. The boundary conditions
used in the present study are as follows.

(i) The simply-supported boundary condition (SSSS)

{
u = v = w = θy = Mxx = 0, when x = 0, a,
u = v = w = θx = Myy = 0, when y = 0, b.

(29)

(ii) The clamped boundary condition (CCCC)

{
u = v = w = θx = θy = 0, when x = 0, a,
u = v = w = θx = θy = 0, when y = 0, b.

(30)

3 Solution methodology of the nonlinear equations

In the current investigation, Newmark’s method[28] is used to discretize Eq. (25) in the time
domain, and then the viscous DR technique along with a finite difference discretization scheme
is used to solve the differential equations.

3.1 Newmark’s integration method

In Newmark’s method, the real velocity and acceleration vectors at tj+1 (j is the number of
time steps) are as follows:

ẋj+1 =
γ

β∆tj
(xj+1 − xj) −

(γ

β
− 1
)
ẋj −

( γ

2β
− 1
)
ẍj∆tj , (31)

ẍj+1 =
1

β(∆tj)2
(xj+1 − xj) −

1

β∆tj
ẋj −

( 1

2β
− 1
)
ẍj, (32)

in which γ and β are Newmark’s constants and assumed to be 0.5 and 0.25 (constant average
acceleration method), respectively, for obtaining stable and convergent results. Furthermore,
x is the displacement field of the plate (x = u,v,w,ψx,ψy), and ∆t is the real time interval.
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By substituting Eqs. (31) and (32) into Eq. (25), it becomes






∂Nxx

∂x
+

∂Nxy

∂y
−
((

A0 + 2VpB0
∂

∂x
+ V 2

p

∂2

∂x2
+ CdB0

)
(I0uj+1 + I1θx,j+1)

+ Cd

(
I0

(
1 +

∂uj+1

∂x

)
Vp + I1Vp

∂θx,j+1

∂x

))
= −

(
I0

(
(A0+CdB0)uj+(A1+CdB1)u̇j

+(A2+CdB2)üj+2Vp

(
B0

∂uj

∂x
+B1

∂u̇j

∂x
+ B2

∂üj

∂x

))
+ I1

(
(A0 + CdB0)θx,j

+ (A1 + CdB1)θ̇x,j + (A2 + CdB2)θ̈x,j + 2Vp

(
B0

∂θx,j

∂x
+ B1

∂θ̇x,j

∂x
+ B2

∂θ̈x,j

∂x

)))
,

∂Nxy

∂x
+

∂Nyy

∂y
−
((

A0 + 2VpB0
∂

∂x
+ V 2

p

∂2

∂x2
+ CdB0

)
(I0vj+1 + I1θy,j+1)

+ Cd

(
I0Vp

∂vj+1

∂x
+ I1Vp

∂θy,j+1

∂x

))
= −

(
I0

(
(A0+CdB0)vj+(A1+CdB1)v̇j

+(A2+CdB2)v̈j +2Vp

(
B0

∂vj

∂x
+ B1

∂v̇j

∂x
+ B2

∂v̈j

∂x

))
+ I1

(
(A0 + CdB0)θy,j

+(A1+CdB1)θ̇y,j+(A2+CdB2)θ̈y,j + 2Vp

(
B0

∂θy,j

∂x
+ B1

∂θ̇y,j

∂x
+ B2

∂θ̈y,j

∂x

)))
,

(33a)






∂Qx

∂x
+

∂Qy

∂y
+ N(w) − Kww + Ks

(∂2w

∂x2
+

∂2w

∂y2

)
−
((

A0 + 2VpB0
∂

∂x
+ V 2

p

∂2

∂x2

+CdB0

)
I0wj+1 + Cd

(
I0Vp

∂wj+1

∂x

))
= −I0

(
(A0 + CdB0)wj + (A1 + CdB1)ẇj

+(A2 + CdB2)ẅj + 2Vp

(
B0

∂wj

∂x
+ B1

∂ẇj

∂x
+ B2

∂ẅj

∂x

))
− F (x, y, t),

∂Mxx

∂x
+

∂Mxy

∂y
− Qx −

((
A0 + 2VpB0

∂

∂x
+ V 2

p

∂2

∂x2
+ CdB0

)
(I1uj+1 + I2θx,j+1)

+Cd

(
I1

(
1 +

∂uj+1

∂x

)
Vp + I2Vp

∂θx,j+1

∂x

))
= −

(
I1

(
(A0 + CdB0)uj

+(A1 + CdB1)u̇j + (A2 + CdB2)üj + 2Vp

(
B0

∂uj

∂x
+ B1

∂u̇j

∂x
+ B2

∂üj

∂x

))

+I2

(
(A0 + CdB0)θx,j + (A1 + CdB1)θ̇x,j + (A2 + CdB2)θ̈x,j

+2Vp

(
B0

∂θx,j

∂x
+ B1

∂θ̇x,j

∂x
+ B2

∂θ̈x,j

∂x

)))
,

∂Mxy

∂x
+

∂Myy

∂y
− Qy −

((
A0 + 2VpB0

∂

∂x
+ V 2

p

∂2

∂x2
+ CdB0

)
(I1vj+1 + I2θy,j+1)

+Cd(I1Vp
∂vj+1

∂x
+ I2Vp

∂θy,j+1

∂x

))
= −

(
I1

(
(A0 + CdB0)vj + (A1 + CdB1)v̇j

+(A2 + CdB2)v̈j + 2Vp

(
B0

∂vj

∂x
+ B1

∂v̇j

∂x
+ B2

∂v̈j

∂x

))
+ I2

(
(A0 + CdB0)θy,j

+(A1 + CdB1)θ̇y,j + (A2 + CdB2)θ̈y,j + 2Vp

(
B0

∂θy,j

∂x
+ B1

∂θ̇y,j

∂x
+ B2

∂θ̈y,j

∂x

)))
,

(33b)
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in which





A0 =
4

(∆tj)2
, A1 =

4

∆tj
, A2 = 1,

B0 =
2

∆tj
, B1 = 1, B2 = 0.

(34)

For the sake of briefness, Eq. (33) can be rewritten as

Kj+1xj+1 = P j+1, (35)

where Kj+1 and P j+1 are the equivalent stiffness matrix and vector, respectively.
3.2 DR method

Equation (30) is transformed to the fictitious dynamic space by adding the artificial mass
and damping terms. This method is called the viscous DR[40],

Mn
DRa

n +Cn
DRv

n +K
n

j+1x
n
j+1 = P

n

j+1, (36)

in which Mn
DR and Cn

DR are the diagonal fictitious mass and damping matrices in the nth
DR iteration, respectively. Moreover, v and a are fictitious velocity and acceleration vectors,
respectively. Here, artificial mass matrix elements and nodal damping factors, which control
the stability of DR method, are estimated as follows[41]:

mDOF

ii > 0.25(τn)2
DOF∑

l=1

|kil|, K =
∂(K

n

j+1x
n
j+1)

∂x
, (37)

cn
i = 2

(
(xn)

T
P

n

j+1,i

(xn)
T

mn
iix

n

)1/2

, (38)

in which DOF denotes the number of degrees of freedom of the structure, it is 5 in the present
study, the symbol n represents the nth iteration, k is the element of the stiffness matrix K, m
is the element of the diagonal matrix M , c is the element of the diagonal matrix C, and τ is
an increment of fictitious time usually taken equal to 1. Moreover, x = u,v,w,ψx,ψy is the
approximate solution vector. To complete the iteration process, the velocity and acceleration
terms are substituted by the following equivalent central finite-difference expressions:

vn−(1/2) = (xn − xn−1)/τn, (39)

an = (vn+(1/2) − vn−(1/2))/τn. (40)

By integrating velocities after each time step, the displacements can be obtained as[1]

xn+1 = xn + τn+1vn+(1/2). (41)

The dynamic relaxation process keeps running until the steady state situation happens (i.e.,∑
l

v
n+(1/2)
l 6 10−12 and |P

n

j+1 −K
n

j+1x
n
j+1| 6 10−9). These steps are iterated for each time

increment of Newmark’s method.

4 Numerical results and discussion

4.1 Validation

Example 1 There are no results for porous GPL/metal nanocomposite plates. The present
analysis is applied to a simply-supported square non-porous epoxy plate reinforced with GPLs.
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The geometric and material properties are






a = b = 0.45 m, h = 0.045 m,

lGPL = 2.5 µm, wGPL = 1.5 µm, tGPL = 1.5 nm,

EGPL = 1.01 TPa, ρGPL = 1 060 kg/m3, υGPL = 0.186,

EM = 3.0 GPa, ρM = 1 200 kg/m
3
, υM = 0.34.

(42)

For the dynamic analysis, the plate is subject to a triangular pressure pulse load which is
uniformly distributed over the whole upper surface of the plate, but decays linearly over time
(see Fig. 5) as

F (x, y, t) =

{
Pm(1 − t/TP), 0 6 t 6 TP,

0, t > TP,
(43)

where Pm is the maximum pulse pressure, and TP is the duration time of loading. The values of
Pm and TP are assumed to be 500 kPa and 0.01 s, respectively. To model graphene distributions
inside the plate, Song et al.[20] utilized linear patterns as

λ(z) =






2 |z|

h
for the symmetric pattern,

1

2
+

z

h
for the unsymmetric pattern,

1 for the uniform pattern.

(44)

As seen in Fig. 6, the results obtained are in good agreement with those reported in Ref. [20].
The results depict that the distribution of more GPLs near the top and bottom surfaces of the
plates, where the stress is maximum, leads to a greater reduction of the dynamic responses of
the plates. It also has to be mentioned that wc is the maximum dynamic centre deflection of
the GPL-reinforced plate, and wm is the maximum value of transient deflection at the centre
of the plate without GPLs, which is 0.63×10−2 m at t = 1.5 × 10−3 s.

Fig. 5 A triangular pressure pulse load Fig. 6 Effects of GPL weight fractions
on wc/wm for simply-supported
GPL/epoxy nanocomposite plates
when wm= 0.63×10−2 m (color online)

Example 2 The comparison of dimensionless transverse displacement
(
= 100E1h3wcentre

12a4(1−v2

1
)F0

)
at

the centre of the plate and axial stress
(
= h2

F0a2 σxx

)
for the FG square plate subject to a

harmonic load (F (x, y, t) = F0 sin(2 000t), 0 < t 6 8 ms) for the CCCC boundary condition is



Nonlinear dynamic analysis of moving bilayer plates resting on elastic foundations 13

plotted in Figs. 7 and 8. The amplitude of applied load, geometrical dimensions and mechanical
properties of the plate are given as






F0 = 1 MPa, a = b = 5 × 10−2 m, h = 1 × 10−2 m,

E1 = 70 GPa, ρ1 = 2 702 kg/m
3
, υ1 = 0.3,

E2 = 200 GPa, ρ2 = 5 700 kg/m
3
, υ2 = 0.3.

(45)

From Figs. 7 and 8, it is noticed that the present numerical method predicts the dynamic
deflection and stress very precisely compared with those in Ref. [42].

-

Fig. 7 Time history of the non-dimensional
centre deflection of a clamped square
FG plate (color online)

Fig. 8 Time history of the non-dimensional ax-
ial stress at the centre of the top surface
of a clamped square FG plate (color on-
line)

Example 3 In this example, the accuracy of the current model is confirmed by comparing
the dynamic responses of a clamped beam moving with a constant dimensionless velocity, U = 1
with those found by An and Sue[43]. They utilized the following parameters to obtain the results:






∂2W

∂t2
+ 2U

∂2W

∂x∂t
− (1 − U2)

∂2W

∂x2
+

EI

P0a2

∂4W

∂x4
= 0,

W =
w

a
, U = Vp

√
ρ

P0
, T = t

√
P0

ρa2
,

(46)

in which w, W , Vp, U , P0, EI, ρ, and a represent the dimensional transverse centre displacement,
the non-dimensional centre deflection, the dimensional velocity, the non-dimensional velocity,
the axial tension, the flexural rigidity, the mass density of the structure, and its length, re-
spectively. Moreover, t and T are, respectively, time and non-dimensional time. As seen from
Fig. 9, it is evident that the DR-Newmark method is really effective for solving moving beam
problems.

Example 4 Finally, the effects of two types of foundations on the deflection of a simply-
supported GPL-reinforced nanocomposite with the side length of 0.9m and the thickness of
0.045m with Kw = 0.1 GPa/m and Ks = 0.01 GPa·m are investigated, and the results are
compared with solutions in Ref. [44]. Figure 10 shows that the present results match well with
those reported in Ref. [44].
4.2 Closed-cell solids on elastic foundations

In this part, the effects of the elastic foundations, porosity fractions, porosity, and GPL
distributions on the dimensionless dynamic central deflection and the vibration of moving bilayer
plates with closed-cell porosities are investigated.
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Fig. 9 Dimensionless centre deflections of a
clamped moving beam at the dimen-
sionless velocity of 1 when EI

P0a2 = 0.1

(color online)

 

Fig. 10 Effects of elastic foundations on the
central dynamic deflection of a simply-
supported nanocomposite plate when
lGPL = 2.5 µm, wGPL = 1.5 µm, and
tGPL = 15 nm (color online)

Unless mentioned otherwise, the weight fraction of GPL, the velocity of the moving plate,
and the values of material gradient indices n and m will be, respectively, 2%, 5 m/s, 2 and 2.
Also, the geometrical and material properties are as follows:






a = b = 2 m, h = 0.15 m (hGPL = 0.1 m, hFGM = 0.05 m),

lGPL = 6 µm, wGPL = 3 µm, tGPL = 3 nm,

E1 = 116 GPa, υ1 = 0.34, ρ1 = 1 200 kg/m3,

E2 = 380 GPa, υ2 = 0.34, ρ2 = 3 960 kg/m3,

EM = 116 GPa, υM = 0.34, ρM = 1 200 kg/m3,

EGPL = 1.01 TPa, υGPL = 0.18, ρGPL = 1 060 kg/m3.

(47)

Additionally, the upper surface of the plate is subject to a uniform pressure load given by

F (x, y, t) =

{
5 × 106t, t 6 0.1,
0, t > 0.1.

(48)

The effects of the foundation stiffness on the maximum value of the dimensionless central
deflection of the fully clamped moving bilayer plate (n = m = 2) for several closed-cell porosity
and GPL distributions with a porosity fraction of 0.2, damping ratio of 0.0, and Vp = 5 m/s are
investigated, and the results are presented in Table 1. For plates without elastic foundations
(Kw = 0 GPa/m, Ks = 0 GPa·m), the highest vertical dimensionless displacement of −9.93
is for GPL plates with non-symmetric (see the pattern B) and asymmetric porosity (see the
pattern 2) distributions. The plates with symmetric GPL (see the pattern A) and symmetric
porosity (see the pattern 1) distributions have the lowest transient dimensionless deflection of
−8.59. When the plates are supported by an elastic foundation with Ks = 0.01GPa·s and
Kw = 0.1GPa/s, the deflections reduce significantly to −6.85 and −6.17, respectively. Also,
when Ks = 0.1GPa·s and Kw = 1GPa/s, the differences between the maximum values of the
transient deflections of plates with different GPL and porosity distributions are negligible. The
reason is that increasing the elastic foundation parameters enhances the bending rigidity of the
plates and thus neutralizes the effects of the porosity and GPL distributions.

Figure 11 shows the variation of dimensionless centre deflection w/h versus dimension-
less time, T (= t/0.1) for the closed-cell unsymmetric porosity and GPL distribution (see the
pattern B) for SSSS and CCCC boundary conditions when ξ = 0.0, Ks = 0 GPa·m, and
Kw = 0.01 GPa/m. For both types of edge conditions, the plate with the larger porosity
coefficient has a larger dynamic deflection than that with the smaller coefficient.
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Table 1 Effects of the Winkler-Pasternak foundation parameters on dimensionless centre deflections
of fully clamped axially moving bilayer plates for different GPL distribution and porosity
dispersion patterns, bA = 2%, and Vp = 5 m/s

Ks/(GPa · m) Kw/(GPa · m−1) GPL distribution pattern

1 000wmax/h

Porosity distribution pattern

1 2

0

0

A −8.59 −9.31

B −9.31 −9.93

C −9.04 −9.68

0.1

A −7.42 −7.91

B −7.93 −8.45

C −7.75 −8.28

1

A −3.78 −3.85

B −3.83 −3.91

C −3.80 −3.88

0.01

0

A −6.92 −7.31

B −7.32 −7.75

C −7.21 −7.62

0.1

A −6.17 −6.46

B −6.55 −6.85

C −6.44 −6.74

1

A −3.45 −3.53

B −3.55 −3.59

C −3.50 −3.56

0.1

0

A −2.92 −3.00

B −3.06 −3.09

C −3.02 −3.07

0.1

A −2.80 −2.87

B −2.91 −2.96

C −2.89 −2.94

1

A −2.07 −2.11

B −2.12 −2.16

C −2.11 −2.14

Fig. 11 Effects of porosity coefficients on the dimensionless vertical displacement of bilayer plates
with asymmetric porosity and GPL distributions when Ks = 0 GPa·m, and Kw =
0.01 GPa/m (color online)
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The dimensionless central deflections of a longitudinally moving bilayer plate with ê =
0.2 (see the porosity pattern 2), Â = 2 % (see the GPL distribution pattern B), ξ = 0.0,
Ks = 0 GPa·m, and Kw = 0.01 GPa/m are shown in Fig. 12 for SSSS and CCCC boundary
conditions, respectively. It is evident in Fig. 12 that the dimensionless dynamic deflections of
the plates increase with increases in the thickness and length (see FG indices n and m) for both
boundary conditions. In comparison with the grading index n, the influence of the index m is
much greater when the plate edges are clamped.

Fig. 12 Effects of gradient indices n and m on the dimensionless vertical displacement of bilayer
plates with asymmetric porosity and GPL distributions when Ks = 0 GPa·m, and Kw =
0.01 GPa/m (color online)

Figure 13 illustrates how much the GPL weight fraction affects the dynamic deflection of
a laminated plate (n = 1 and m = 2) with the uniform GPL distribution pattern C and the
symmetric porosity pattern 1 when ê = 0.2, ξ = 0.0, Ks = 0GPa·m, and Kw = 0.01 GPa/m
for SSSS and CCCC edge conditions. The importance of graphene nanoplatelets in improving
the plate rigidity can be seen in this figure. For example, when the GPL volume fraction is
doubled from 4% to 8%, the vertical deflection for the SSSS edge condition reduces by 14%
and by about 13.6% for the CCCC condition.

Fig. 13 Effects of GPL weight fractions on the dimensionless deflection of bilayer plates with sym-
metric porosity and uniform GPL distributions when Ks = 0 GPa·m, and Kw = 0.01 GPa/m
(color online)
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Figure 14 shows the changes in the central deflection ws at T = 1 with different velocities for
three GPL distributions when ê = 0.2, ξ = 0.0, Ks = 0 GPa·m, and Kw = 0.01 GPa/m. The
results show that, for both sets of edge conditions, the central deflection increases moderately
until the critical velocity is reached, after which it tends to an infinity. The magnitude of the
critical velocity is lower for the SSSS condition than that for the CCCC condition. It is also
evident that the effects of the GPL distributions on the value of the critical velocity are small.

 

 

 

 

Fig. 14 Effects of velocity and GPL distributions on the dynamic deflection of moving bilayer
nanocomposite plates when Ks = 0 GPa·m, and Kw = 0.01 GPa/m (color online)

The transient responses of the 2D FG/GPL plate subject to various damping ratios for SSSS
and CCCC boundary conditions are shown in Fig. 15. The elastic foundation parameters are
assumed as Ks = 0 GPa·m, Kw = 0.01 GPa/m and ê = 0.2. It is evident from Fig. 15 that an
increment in the amount of damping ratio, ξ, results in a decrease in the amplitude of deflection.
This decline in the force-free zone is much more significant compared with that of the forced
vibration area. It is also seen that, as the vibration period increases, the effect of the damping
on the amplitude increases.

Fig. 15 Effects of damping ratios on the dynamic deflection of moving bilayer nanocomposite
plates with asymmetric porosity and GPL distributions when Ks = 0 GPa·m, and Kw =
0.01 GPa/m (color online)

5 Conclusions

The dynamic analysis of 2D FG/GPL plates resting on elastic foundations with SSSS and
CCCC edge conditions is studied. The equations of motion are developed based on the FSDT.
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The DR and modified Newmark’s integration methods are used to solve the equations. Two
types of porosity and three GPL distributions are explored and compared. The effects of
porosity fractions, 2D FG power indices, damping ratios, elastic foundation parameters, and
porosity and GPL distributions are analyzed. The following conclusions are drawn.

(i) Graphene nanofillers can provide a significant reinforcing effect on 2D FG/GPL plates.

(ii) Material gradient indices n and m have significant effects on the response of the plates,
and the axial FG index m has a greater effect on clamped plates than simply-supported plates.

(iii) Compared with asymmetric and uniform distributions, GLPs with symmetric distribu-
tions reduce the dynamic deflections more significantly.

(iv) The effects of porosity coefficients on central deflections are more significant for unsym-
metric distributions.

(v) In the presence of elastic foundations, dynamic deflections reduce significantly, and the
Pasternak stiffness has a greater effect than the Winkler stiffness.

(vi) A growth in the value of damping ratio leads to the decline of vibration amplitudes.
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