Application of the dianion croconate violet for symmetric organic non-aqueous redox flow battery electrolytes

Armstrong, C.G. and Hogue, R.W. and Toghill, K.E. (2019) Application of the dianion croconate violet for symmetric organic non-aqueous redox flow battery electrolytes. Journal of Power Sources, 440: 227037. ISSN 0378-7753

Full text not available from this repository.

Abstract

Redox active organic molecules (ROMs) are promising candidates for redox flow battery (RFB) energy storage due to their high sustainability and low cost. Herein, the pseudooxocarbon derivative croconate violet (Croc2-) is applied as a novel symmetric ROM in acetonitrile electrolyte, whereby Croc2- is used as both the battery posolyte and negolyte, with a 1.82 V cell potential and ≃1 M solubility. Characterisation of the dianion Croc2- is given by way of voltammetry and battery cycling techniques to demonstrate the high number of oxidation states accessible by Croc2-, thus highlighting a high intrinsic capacity for a low molecular weight ROM. The stability of Croc2- and its charged radical states is investigated to assess the viability of the symmetric design, and an undesirable radical disproportionation mechanism of the Croc•3- oxidation state is identified to account for poor capacity retention. Asymmetric battery experiments of a Croc2- posolyte with 2,1,3-benzothiadiazole or tetracyanoquinodimethane negolytes gave improved battery performance, indicating that Croc2- is a promising anionic ROM posolyte.

Item Type:
Journal Article
Journal or Publication Title:
Journal of Power Sources
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/2100/2102
Subjects:
?? croconate violetnon-aqueous organicredox flow batterysymmetric electrolyteenergy engineering and power technologyphysical and theoretical chemistryelectrical and electronic engineeringrenewable energy, sustainability and the environment ??
ID Code:
137114
Deposited By:
Deposited On:
04 May 2020 12:55
Refereed?:
Yes
Published?:
Published
Last Modified:
15 Jul 2024 19:54