A coherent nanomechanical oscillator driven by single-electron tunnelling

Wen, Yutian and Ares, N. and Schupp, F. J. and Pei, T. and Briggs, G. A. D. and Laird, Edward (2020) A coherent nanomechanical oscillator driven by single-electron tunnelling. Nature physics, 16 (1). pp. 75-82. ISSN 1745-2473

[img]
Text (Wen main_v3)
Wen_main_v3.pdf - Accepted Version
Available under License None.

Download (4MB)

Abstract

A single-electron transistor embedded in a nanomechanical resonator represents an extreme limit of electron–phonon coupling. While it allows fast and sensitive electromechanical measurements, it also introduces back-action forces from electron tunnelling that randomly perturb the mechanical state. Despite the stochastic nature of this back-action, it has been predicted to create self-sustaining coherent mechanical oscillations under strong coupling conditions. Here, we verify this prediction using real-time measurements of a vibrating carbon nanotube transistor. This electromechanical oscillator has some similarities with a laser. The single-electron transistor pumped by an electrical bias acts as a gain medium and the resonator acts as a phonon cavity. Although the operating principle is unconventional because it does not involve stimulated emission, we confirm that the output is coherent. We demonstrate other analogues of laser behaviour, including injection locking, classical squeezing through anharmonicity and frequency narrowing through feedback.

Item Type:
Journal Article
Journal or Publication Title:
Nature physics
Additional Information:
© 2019 Springer Nature Limited
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/3100
Subjects:
ID Code:
136638
Deposited By:
Deposited On:
10 Sep 2019 14:20
Refereed?:
Yes
Published?:
Published
Last Modified:
18 Sep 2020 05:09