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A single-electron transistor embedded in a nanomechanical resonator represents an extreme limit
of electron-phonon coupling. While it allows fast and sensitive electromechanical measurements,
it also introduces backaction forces from electron tunnelling that randomly perturb the mechanical
state. Despite the stochastic nature of this backaction, it has been predicted to create self-sustaining
coherent mechanical oscillations under strong coupling conditions. Here, we verify this prediction
using real-time measurements of a vibrating carbon nanotube transistor. This electromechanical
oscillator has some similarities with a laser. The single-electron transistor pumped by an electrical
bias acts as a gain medium and the resonator acts as a phonon cavity. Although the operating
principle is unconventional because it does not involve stimulated emission, we confirm that the
output is coherent. We demonstrate other analogues of laser behaviour, including injection locking,
classical squeezing through anharmonicity, and frequency narrowing through feedback.

Backaction forces are an inescapable accompaniment
to nanomechanical measurements. While their ultimate
limit is set by quantum uncertainty1, in practical de-
vices they may become significant even well before this
limit is reached. Among the most sensitive nanomechan-
ical probes is the single-electron transistor (SET), which
transduces motion with a precision that can approach the
standard quantum limit2,3. However, the price is that the
force exerted even by individual electrons modifies the
mechanical dynamics. This introduces strong electron-
phonon coupling4–6, which has usually been recognised
by its incoherent effects such as dissipation, frequency
softening, nonlinearity, and cooling7. Here, we show that
electromechanical backaction can also have a coherent re-
sult, by harnessing it to create a self-sustained mechan-
ical oscillation. The resulting device is analogous to a
laser, where the optical field is replaced by the mechan-
ical displacement. In contrast to existing phonon lasers
pumped by optical or mechanical drives8–10, the oscil-
lator is driven by a constant electrical bias. The device
exhibits several laser characteristics, detected via its elec-
trical emission, including phase and amplitude coherence.
It serves both as a novel on-chip phonon source and to
explore the connection between the physics of backaction
and of lasers.

To enter this regime of strong backaction, the SET,
serving as a two-level system, must couple strongly
to a mechanical resonator serving as a phonon cav-
ity (Fig. 1a). As a high-quality resonator, we use a
suspended carbon nanotube11. Nanotubes have both
low mass and high mechanical compliance, which are
favourable for strong electron-phonon interaction5,6,12–14.
The selected nanotube is a narrow-gap semiconductor,
allowing the SET to be defined in the nanotube itself
using tunnel barriers at each end and a conducting seg-
ment near the middle. The two relevant SET states are
the configurations with and without an excess electron.
Flexural vibration of the nanotube modulates the electri-
cal potential experienced by the SET, causing the current
to vary with displacement; at the same time, each added
electron exerts a force that is larger than both quantum

and thermal force fluctuations (see Supplementary Infor-
mation).

The combination of these effects sets up an electrome-
chanical feedback with rich predicted behaviour15. If the
SET’s energy splitting is resonant with the mechanical
frequency, electrical excitations should be able to pump
the resonator in a direct analogue of the micromaser16.
More surprisingly, a laser-like instability is predicted
even in a non-resonant situation, with complex dynamics
that depend on level alignment and damping, and go
beyond conventional laser behaviour17,18. Previous
experiments measuring time-average current through a
nanotube have provided strong evidence for a threshold
between resonance and oscillation5,19,20. However,
to test these predictions by fully characterizing the
resulting states requires time-resolved displacement
measurements21,22, which have not yet been possible in
this regime of strong backaction.

Backaction turns a resonator into an oscillator
To explore these dynamic effects, we implemented an

electromechanical circuit for measuring the nanotube’s
vibrations directly12 (Fig. 1b). The carbon nanotube is
stamped across metallic contact electrodes23 to give a vi-
brating segment of length 800 nm, and is measured at
a temperature of 25 mK. Voltages applied to five finger
gates beneath the nanotube (labelled G1-G5) are used
both to tune the electrical potential and to actuate vi-
brations by injecting an RF tone with drive power PD.
A voltage bias VDS is applied between the contacts to
drive a current I. To configure the nanotube as an SET,
the gate voltages are set to tune an electron tunnel bar-
rier near each contact. The conductance thus depends
strongly on the displacement, which allows sensitive elec-
tromechanical readout via the current through the nan-
otube. The radio-frequency (RF) part of the current is
passed through an impedance transformer and then am-
plified, with the primary amplifier being an ultra-low-
noise SQUID24. Since this current varies approximately
in proportion to the instantaneous displacement, the re-
sulting RF output voltage Vout is a sensitive time-resolved
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FIG. 1: Strongly coupled single-electron electromechan-
ics. a, Schematic of a single-electron transistor (SET) coupled to
a mechanical resonator. The SET acts as a two-level system, while
the resonator is a phonon cavity at mode frequency fM. Electron
tunnelling through the SET leads to a non-equilibrium popula-
tion distribution which pumps the oscillator. b, Device realisa-
tion and measurement setup. The vibrating nanotube, configured
as an SET, is suspended between contact electrodes (green) and
above gate electrodes (yellow). The SET is biased by a drain-
source voltage VDS, and the motion is measured via the electrical
current, which is monitored both at DC (I, current path indicated
by blue arrows) and via an RF circuit for time-resolved measure-
ments (Vout, signal path marked by undulating arrows; see text and
Supplementary Information). The resonator can be driven directly
by a tone with power PD at frequency fD, part of which is routed
via a cancellation path to avoid saturating the amplifiers.

record of the mechanical vibrations
To identify signatures of electromechanical feedback,

we first measure the DC conductance as a function
of bias and DC gate voltage VG applied to gate G2
(Fig. 2a). Superimposed on the diamond pattern char-
acteristic of single-electron charging are irregular sharp
ridges of strongly positive or negative conductance as the
nanotube switches between high and low-current states.
Such features are associated with the onset of mechanical
instability for bias exceeding a critical threshold5,18.

We detect the mechanical resonance by fixing the bias
voltage and measuring the transmission of the drive tone
to the RF amplifier input, using a scalar network anal-
yser. When the drive frequency matches the mechani-
cal resonance, the resulting motion relative to the gate
electrodes changes the chemical potential of the SET,
modulating the current at the drive frequency. This cur-
rent, entering the impedance transformer, excites an RF
output voltage Vout. The RF output signal voltage is

therefore proportional to the nanotubes displacement,
apart from the contributions of nonlinear SET transcon-
ductance and of RF electrical leakage12. For most gate
voltage settings, these contributions are small. The me-
chanical resonance therefore appears as a sharp peak in
the electrical transmission from the drive to the output
(Fig. 2b). The resonance frequency fluctuates quasiperi-
odically with gate voltage, which is a further indication of
electromechanical coupling and arises because the effec-
tive spring constant is softened close to a Coulomb charge
transition5,6. From the peak width, the mechanical qual-
ity factor is QM ≈ 1.8 × 104, with some gate voltage
dependence because of electromechanical damping.

Mechanical oscillations, as distinct from a mechanical
resonance, become evident when the output power
spectrum is measured without driving using a spectrum
analyser (Fig. 2c). This undriven emission, plotted as
a power spectral density S referenced to the amplifier
input, shows a peak whose frequency approximately
follows the resonance of Fig. 2b. The peak is only present
for some gate voltage settings, and is brightest close to
the transport ridges of Fig. 2a. Furthermore, this peak
strengthens with increasing bias (see Supplementary
Information). For some gate voltage settings on the
right of the graph, the peak switches between two or
more frequencies, suggestive of dynamical bifurcation.
All these observations imply that the observed emission
is a result of self-excited mechanical oscillations driven
by the DC bias across the device.

Mechanical coherence

With fast electromechanical readout, the coherence of
this mechanical oscillator can be directly confirmed by
measuring the output signal in real time. To do this, the
signal is mixed with a local oscillator in a heterodyne cir-
cuit26,27 to generate records of the in-phase and quadra-
ture voltages VI(t) and VQ(t) as a function of time t.
The output record (Fig. 3a) shows clear sinusoidal oscil-
lations. The onset of mechanical coherence is seen when
the in-phase and quadrature time traces are represented
as two-dimensional histograms for gate voltage settings
above and below the oscillation threshold. Below thresh-
old, the histogram is peaked near the origin, consistent
with a band-limited but quasi-thermal source such as a
randomly kicked resonator (Fig. 3b). However, above
threshold the histogram has a ring shape, showing am-
plitude coherence characteristic of a laser-like oscillator
(Fig. 3c). The ring diameter corresponds to an approx-
imate phonon number n̄p ∼ 105, i.e. an oscillation am-
plitude of ∼ 1 nm, although there is a large uncertainty
because of unknown device parameters (see Supplemen-
tary Information).

The clearest comparison to an ideal classically coher-
ent source comes from a histogram of total output power,
which is proportional to the number of phonons in the
mode (Fig. 3d). Below threshold, the histogram fol-
lows the exponential distribution of completely incoher-
ent quasi-thermal emission26. Above threshold, the his-
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FIG. 2: Mechanical resonance and oscillation a, Differential conductance of the nanotube as a function of gate voltage VG and
bias VDS, with no driving applied. The diamond pattern is characteristic of Coulomb blockade in an SET, with some irregularity due
to electrostatic disorder. Superimposed on the expected diamond pattern are sharp lines of strongly positive or negative differential
conductance (green or purple in this colour scale), indicating thresholds for self-oscillation. b, Mechanical resonance detected in a
transmission measurement. The nanotube is biased with VDS = 2.5 mV (dashed line in a) and driven with power PD = −99 dBm to
gate G2. The transmission is plotted as the emitted power Pout into the amplifier chain. The mechanical resonance appears as a sharp
spectral peak, or occasionally as a faint dip when RF leakage interferes destructively with the mechanical signal. c, Emission spectrum
density S as a function of frequency f under the same conditions but with no RF drive. A spectral peak is still present, at almost exactly
the same frequency as in b. This indicates self-driven mechanical oscillations. Faint sidebands to the main signal are artefacts of the
SQUID (see Supplementary Information).

togram shifts to a distribution where the most probable
state has a non-zero output power, as expected for a co-
herent source. It is approximately fitted by a Gaussian
distribution, characteristic of a coherent oscillator in the
limit of large phonon number n̄p. However, the distri-
bution is slightly skewed, while its width, which for an
ideal coherent state would be ∼ √n̄p, is much larger than
expected. Both the excess width and the skew indicate
additional noise in the oscillator, presumably due to com-
plex feedback between motion and electron tunnelling.
The faint spot at the centre of Fig. 3c indicates bistabil-
ity18,28, where the nanotube is either below threshold or
has switched to a different frequency outside the measure-
ment bandwidth. The weight of the spot shows that for
this gate setting the device spends approximately 0.5 %
of its time in such a state26.

While amplitude coherence is shown by the histogram,
phase coherence is determined by plotting the autocor-
relation of the demodulated signal g(1)(τ) as a function
of time interval τ (Fig. 3e). For these settings, the data
are well fitted by an decaying sinusoid, reflecting the slow
phase drift of the free-running oscillator. The envelope
decay gives a phase coherence time τcoh = 99 µs, i.e. a
coherence linewidth of δfcoh = 1/πτcoh = 3 kHz, approx-
imately three times narrower than the mean resonance
linewidth fM/QM (See Supplementary Data). The emis-
sion spectrum shows no dependence of linewidth on tem-
perature up to 700 mK (data not shown). Coherence is
further confirmed by plotting the second-order correla-

tion function g(2)(τ), which shows chaotic quasi-thermal
behaviour below threshold but nearly coherent behaviour
above threshold25 (Fig. 3f).

As the gate voltage is swept, the device switches
between oscillating and non-oscillating states, and both
the power and coherence time change (Fig. 4). By
simultaneously measuring the RF and DC signals, the
consequences for DC transport can be seen. Figure 4a
shows current as a function of gate voltage over several
periods of Coulomb blockade, while Fig. 4b shows the
coherence time and emission power Ptotal over the same
range. The oscillator switches on and off approximately
once per Coulomb period. Both the coherence time
and the emitted power vary irregularly, but as expected
most switches between oscillating and non-oscillating
conditions coincide with abrupt current changes.

At least three theoretical mechanisms allow an elec-
trical current to create the positive feedback force that
drives coherent oscillations. When two energy levels, for
example in a double quantum dot, are misaligned by a
multiple of the phonon energy29, positive feedback oc-
curs through conventional stimulated emission26. How-
ever, such a condition should occur at precise gate voltage
settings, whereas Fig. 2c shows emission across a wide
range of gate voltage. Another possible mechanism is
electrothermal, in which the thermal mass of the res-
onator delays the expansion or contraction due to ohmic
heating30. While this mechanism may contribute in our
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FIG. 3: Coherence of the free-running oscillator. a, Time traces of in-phase (I) and quadrature (Q) components demodulated
from the oscillator output. The heterodyne demodulation circuit is shown in the inset. (LO: local oscillator; LPF: low-pass filter).
b, Joint histogram of demodulated components with the gate voltage set below the oscillation threshold (VG = −1982 mV). c, Histogram
when configured above threshold (VG = −1568 mV), showing the characteristic ring of coherent emission. d, Symbols: Histograms of
total power V 2(t) = V 2

I (t) + V 2
Q(t) below and above threshold, corresponding to the joint histograms in b, c. The former is scaled

downwards for clarity. Dashed curve: fit to below-threshold data, assuming quasi-thermal source. Solid curve: fit to above-threshold data,
assuming a Gaussian distribution of phonon numbers plus a small quasi-thermal fraction. e, Symbols: Autocorrelation as a function of
time difference τ . Solid curve: Above-threshold fit of the form g(1)(τ) = e−τ/τcoh cos(2π∆fτ), giving coherence time τcoh = 99 µs and
heterodyne frequency detuning ∆f = 13 kHz. Dashed curve: Similar fit to below-threshold data with ∆f fixed at zero, giving a decay time
τcoh = 3.3 µs consistent with the filter bandwidth. f, Symbols: Second-order correlation, plotted with respect to the coherence time fitted
above. Curves: Parameter-free predictions for Gaussian chaotic emission and for coherent emission25. Insets in e and f are zoom-ins.

device, the sign of the feedback should be proportional
to dI/dVG. However, Fig. 4 shows oscillations occur
on both sides of the Coulomb peaks. We therefore at-
tribute the oscillations mainly to a third mechanism; the
combination the SET’s capacitance with delayed electron
tunnelling. When the tunnel barriers are such that the
usual dependence of the SET’s charge on displacement
is inverted, this creates the required positive feedback
force17,18 (see Supplementary Information).

Injection locking and anharmonic effects

While the phase coherence time extracted from the au-
tocorrelation characterizes the long-term oscillator sta-
bility, it is limited by slowly varying extrinsic effects
such as charge noise or adsorbed atoms13. To evalu-
ate sensing schemes that rely on detecting mechanical
frequency shifts, it important to identify the oscillator’s
intrinsic linewidth if this slow variation could be elimi-
nated, which may be much narrower. To measure the
intrinsic linewidth, we employ two techniques from laser
spectroscopy to stabilise the oscillator frequency.

First, we demonstrate that the oscillator can be locked

to a stable but weak seed tone applied to the gate32,33.
This phenomenon of injection locking, previously demon-
strated for trapped ions34 and driven mechanical res-
onators35, arises because feedback amplifies small forces
close to the operation frequency. In this measurement,
the emission is monitored while the seed tone is applied
at a nearby frequency fD (Fig. 5). As seen in Fig. 5a, b,
for a range of fD settings near the free-running oscilla-
tor’s frequency and with sufficient drive power PD, the
broad emission line collapses onto the injection frequency.
The locking events are accompanied by steps in the DC
current (Fig. 5c, d).

The frequency range ∆fD over which the oscillator is
locked extends over many linewidths. Figure 5e shows
the locking range as a function of injected power, confirm-
ing that a stronger injection tone has greater frequency
pull. The data are well fitted by a power law of the form
fD = APαD , where A and α are fit parameters. However,
whereas the theory of conventional oscillators31 predicts
an exponent α = 0.5, the data show a smaller exponent
α ∼ 0.3.
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FIG. 4: Tuning the coherence with a gate voltage. a, The
DC current I through the device as a function of gate voltage VG,
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emission power Ptotal (left axis) and fitted coherence time τcoh
(right axis). Shading marks voltage settings with detectable emis-
sion.

A second unexpected feature is a pair of weak spectral
satellites, marked by arrows in Fig 5a-b. To investigate
these further, Fig. 5f shows the emission spectrum as a
function of injection power across the transition to lock-
ing. Surprisingly, the satellite offset frequency ∆fside

depends on injection power, with a dependence that is
approximately ∆fside ∝ P 0.3

D (Fig. 5g).
Both the anomalous locking range and the sidebands

can be explained by the oscillator’s anharmonicity, which
modifies the conventional theory of injection locking in
harmonic oscillators. As recently demonstrated in a
high-quality nanowire, similar satellites can appear when
the anharmonic frequency shift is much larger than the
linewidth36. They arise because the fluctuations of the
displacement about its stationary driven value experience
an effective restoring spring constant which is modified
by the anharmonicity and therefore different from the
resonator’s bare spring constant37. The effective spring
constant may differ between fluctuations in magnitude
and phase, leading to classically squeezed fluctuations;
the degree of squeezing can be inferred from the relative
intensities of the satellites.

In this respect the nanotube oscillator behaves very
differently from an anharmonic (Duffing) resonator. In
an anharmonic resonator, the satellites are asymmet-
ric36, with the ratio of their intensities never greater than
tanh2 1

4 ln 3 ≈ 0.27; however, in Fig. 5f the intensity ratio
is close to unity. The reason is illustrated in Fig. 5h and
explained further in the Supplementary Information. In
an anharmonic driven resonator, a perturbed state orbits
the stationary point in the rotating frame, which when
transformed to the lab frame gives sidebands in the dis-
placement spectrum. An elliptical orbit contains a higher
spectral weighting at the frequency corresponding to its
sense of rotation, and therefore transforms to asymmetric
sidebands. In the anharmonic driven oscillator, the or-
bits can become very elongated, because the self-feedback
stabilises magnitude but not phase. Such an orbit con-

tains nearly equal components in both rotation senses,
and therefore generates symmetric sidebands. This is an
indication that the injection-locked oscillator generates a
classically squeezed state, in the sense that the displace-
ment variance is much larger in the phase quadrature
than in the amplitude quadrature.

By solving the equations of motion including a Duffing
restoring force (proportional to displacement cubed) in
the limit of strong driving and weak damping (see Sup-
plementary Information), both fD and ∆fside are found

to be proportional to P
1/3
D . This is in good agreement

with the data (Fig. 5e, g). A numerical solution not as-
suming strong drive gives slightly better fit for ∆fside

(Fig. 5g).
Stabilisation through feedback
While injection locking clearly stabilises the oscilla-

tor’s state, it also contaminates the output spectrum
with the high-frequency seed tone. An improved way
to measure the oscillator’s intrinsic linewidth is to use
feedback to cancel out slow frequency wander. To im-
plement this (Fig. 6), the oscillator is incorporated into
a phase-locked loop using an error signal voltage fed to
gate G1 (see Methods). Figure 6a shows dramatic fre-
quency narrowing when the feedback is turned on. With
optimised control parameters, the stabilised linewidth is
δf < 2 Hz (Fig. 6b), which is limited by the spectral fre-
quency spacing and implies over 108 coherent oscillations
at the operating frequency of 230 MHz. This represents
an upper limit on the intrinsic linewidth, and shows it is
limited by slowly varying environmental perturbations,
such as voltage noise, substrate switchers, and changing
surface contamination, rather than by intrinsic damping
or by high-frequency noise, which the feedback does not
cancel. It is the linewidth that the free-running oscilla-
tor would achieve if these slow perturbations could be
eliminated by better fabrication or filtering. Similar to
the Schawlow-Townes limit on a laser’s linewidth38, the
ultimate linewidth for an oscillator without stimulated
emission is39 δfult = fM/4n̄pQM ∼ 0.3 Hz.

As expected, the feedback circuit succeeds in concen-
trating nearly the entire output into a narrow spectral
line, provided that the oscillator’s free-running frequency
is close to the target frequency (Fig. 6c, d) The stabilisa-
tion range is set by the maximum feedback voltage. How-
ever, feedback stabilises part of the emission even when
this condition is not met, as seen by a weak spectral peak
persisting beyond the expected voltage range (Fig. 6d).
This indicates that the oscillator occasionally deviates by
several linewidths from its central frequency. Feedback
makes these excursions visible by temporarily capturing
them.
Conclusion
The dynamical instability explored here is an extreme
consequence of invasive displacement measurement. For
many kinds of nanomechanical sensing, it is a nuisance,
because it means that the large bias necessary for precise
measurement also strongly perturbs the displacement.
However, when the aim is to detect a small frequency
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shift (e.g. for mass spectrometry40 or some force-detected
magnetic resonance schemes41), introducing feedback di-
rectly into the sensing element can be beneficial. Clearly,
the external frequency stabilization schemes described in
the previous section are not directly useful for sensing
because they render the oscillator insensitive both to the
undesirable drift and to the desirable signal (unless these
can be separated spectrally). However, even without ap-
plying external stabilization, the oscillation linewidth is
narrower than the resonance linewidth, just as a laser’s
emission is narrower than its cavity linewidth17, making

small shifts easier to detect.

A complement to this instability induced by positive
feedback (negative damping) is nanomechanical cooling
induced by negative feedback (positive damping). This
should occur when the electromechanical contribution to
the damping rate becomes positive, and may allow cool-
ing below the refrigerator temperature, possibly down to
few phonons. Unfortunately, in our experiment the mea-
surement sensitivity, which ws limited by amplifier noise
and by inefficient conversion from displacement to signal
voltage, was not sufficient to resolve Brownian motion
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when the oscillator’s central frequency has moved outside the main locking range, indicating that occasional large frequency excursions
occur that can be detected when they are temporarily stabilised by the feedback circuit.

(see Supplementary Information). Further cooling may
have occurred at some gate voltage settings, but was not
resolved here.

The similarities between SET nanomechanics and laser
physics are intriguing16,17. Like a laser, this device com-
bines a pumped two-level system with a boson cavity,
and shows phase and amplitude coherence as well as self-
amplification. It differs from a conventional laser by not
requiring degeneracy between the SET and the resonator,
since there is no stimulated emission. A desirable feature
of a true phonon laser is that it should emit directionally
into a propagating sound wave42, which this experiment
(like previous phonon laser realisations8–10) does not test.
However, to the extent that the key laser characteristic is

output coherence43, this experiment does indeed realise a
phonon laser. It resembles unconventional lasers such as
atom lasers that have coherent output statistics without
stimulated emission44.

Further development from this device could replace the
SET with a coherent two-level system such as a double
quantum dot45, a superconducting SET16, or an electron
spin46,47. This would allow a phonon laser driven by
conventional stimulated emission. Ultimately, superpo-
sitions might be transferred between the two-level sys-
tem and the oscillator, allowing dynamic backaction to
be studied in the fully quantum limit.
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Methods
IQ tomography. To generate the time traces in

Fig. 3a, the amplified emission is mixed with a lo-
cal oscillator running at a nominal frequency offset by
∆f = 15 kHz below the mechanical frequency. The
local oscillator and the IQ mixer are implemented in
a Zurich Instruments UHFLI lock-in amplifier. The
mixer’s two intermediate-frequency outputs, correspond-
ing to the two quadratures of the signal and oscillating
at frequency ∆f , are low-pass filtered with a 100 kHz
cutoff to generate the time traces of Fig. 3a. Histograms
and autocorrelation traces are built up from 1 s of data at
each voltage setting. For the data of Fig. 4, in which the
oscillator frequency changes with gate voltage, the local
oscillator is adjusted at each voltage setting to maintain
approximately constant frequency offset ∆f .

The histograms resulting from these time traces
(Fig. 3d) were fitted as follows26, using the fact that
V 2(t) is proportional to the number of phonons. Below
threshold, the histogram was fitted assuming a quasi-
thermal distribution

P (V 2) ∝ e−V
2/V 2

T , (1)

with VT as a free parameter. Above threshold, the fit is

P (V 2) ∝ e−(V 2−V 2
0 )2/σ4

V +ATe
−V 2/V 2

T (2)

with V0, σV , VT and AT as free parameters, where the
two terms represent a Gaussian distribution over phonon
numbers and a small quasi-thermal contribution, respec-
tively.

The sharpness of the central spot in Fig. 3c compared
with the ring in Fig. 3c and spot in Fig. 3b confirms that
these latter features are broadened by intrinsic device
noise rather than by detection noise.

Signal autocorrelation. The autocorrelation is de-
fined as

g(1)(τ) ≡ 〈VI(t)VI(t+ τ)〉
〈V 2

I (t)〉
, (3)

where the expectation value is calculated over a long
time trace. In Fig. 3e, this function is fitted with the
exponentially decaying oscillation stated in the caption,
with τcoh and ∆f as fit parameters. While the fit here
is good, at other gate voltages the oscillator sometimes
jumps between different frequencies during data acquisi-
tion. For Fig. 4b, a more general function is therefore
used: g(1)(τ) = µe−τ/τcoh cos(2π∆fτ) + (1−µ)e−τ/τfilter .
The first term represents the contribution of the oscilla-
tor running at its primary frequency, and the second term
represents contributions from other frequencies outside
the detection bandwidth. The additional fit parameters
are µ, the fraction of time at the primary oscillation fre-
quency, and τfilter, the decay time of the other contribu-
tions.

The second-order correlation function25 is

g(2)(τ) ≡ 〈V
2(t)V 2(t+ τ)〉
〈V 2(t)〉2

. (4)

For a perfectly coherent source, g(2)(τ) = 1 at all τ ,
whereas Gaussian chaotic emission has g(2)(τ) = 1 +

e−π(τ/τcoh)2 . These are the functions plotted in Fig. 3f.

Feedback stabilization. In the phase-locked loop
used for Fig. 6, the amplified emission is first mixed
with a local oscillator running at the target frequency to
generate a quadrature voltage proportional to the phase
error. This error signal is digitised at up to 14.06 MHz
and used as input for a proportional-integral-derivative
(PID) controller48 to generate a correction voltage. The
correction voltage is filtered with a 350 Hz low-pass
cutoff and clipped to a range of ±0.8 mV, before being
fed back to gate G1 of the device.
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