Meslé, Margaux MI and Hall, Ian M and Christley, Robert M and Leach, Steve and Read, Jonathan (2019) The use and reporting of airline passenger data for infectious disease modelling : a systematic review. Eurosurveillance, 24 (31). ISSN 1025-496X
FINAL_18_00216_READ_disease_modelling.pdf - Draft Version
Available under License Creative Commons Attribution.
Download (687kB)
Abstract
Background A variety of airline passenger data sources are used for modelling the international spread of infectious diseases. Questions exist regarding the suitability and validity of these sources. Aim We conducted a systematic review to identify the sources of airline passenger data used for these purposes and to assess validation of the data and reproducibility of the methodology. Methods Articles matching our search criteria and describing a model of the international spread of human infectious disease, parameterised with airline passenger data, were identified. Information regarding type and source of airline passenger data used was collated and the studies’ reproducibility assessed. Results We identified 136 articles. The majority (n = 96) sourced data primarily used by the airline industry. Governmental data sources were used in 30 studies and data published by individual airports in four studies. Validation of passenger data was conducted in only seven studies. No study was found to be fully reproducible, although eight were partially reproducible. Limitations By limiting the articles to international spread, articles focussed on within-country transmission even if they used relevant data sources were excluded. Authors were not contacted to clarify their methods. Searches were limited to articles in PubMed, Web of Science and Scopus. Conclusion We recommend greater efforts to assess validity and biases of airline passenger data used for modelling studies, particularly when model outputs are to inform national and international public health policies. We also recommend improving reporting standards and more detailed studies on biases in commercial and open-access data to assess their reproducibility.