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Background: A variety of airline passenger data sources are used for modelling the 

international spread of infectious diseases. Questions exist regarding the suitability and 

validity of these sources.  

Aim: We conducted a systematic review to identify the sources of airline passenger data 

used for these purposes and to assess validation of the data and reproducibility of the 

methodology. 

Methods: Articles matching our search criteria and describing a model of the international 

spread of human infectious disease, parameterised with airline passenger data, were 

identified. Information regarding type and source of airline passenger data used was 
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collated and the studies’ reproducibility assessed. 

Results: We identified 136 articles. The majority (n = 96) sourced data primarily used by the 

airline industry. Governmental data sources were used in 30 studies and data published by 

individual airports in four studies. Validation of passenger data was conducted in only seven 

studies. No study was found to be fully reproducible, although eight were partially 

reproducible. 

Limitations: By limiting the articles to international spread, articles focussed on within-

country transmission even if they used relevant data sources were excluded. Authors were 

not contacted to clarify their methods. Searches were limited to articles in PubMed, Web of 

Science and Scopus. 

Conclusion: We recommend greater efforts to assess validity and biases of airline passenger 

data used for modelling studies, particularly when model outputs are to inform national and 

international public health policies. We also recommend improving reporting standards and 

more detailed studies on biases in commercial and open-access data to assess their 

reproducibility. 

 

Introduction 

International movement of individuals through commercial airline travel has been implicated 

in the transnational dissemination of many infectious diseases and is thought to be the 

principle mode of human pathogen transfer between continents. Examples include the global 

dissemination of the outbreak of severe acute respiratory syndrome in 2003 which quickly 

spread from Hong Kong to North America [1]. The 2009 influenza pandemic [2], which 

emerged in Mexico and affected more than 208 countries, followed a similar international 

dissemination [3]. There is, year-on-year, an increasing number of airline travellers, with a 

total of 1,186 million international tourist arrivals globally in 2015, a 4.6% increase from 2014 

and 510 million arrivals more than in 2000 [4]. In addition, tourism visits to emerging 

economies are now comparable to those of high-income countries, with countries such as 

Mexico and Thailand entering the top 15 of the most visited destinations. The global trend is 

expected to keep rising and reach 1.8 billion arrivals in 2030 [4]. Lower fares and greater 
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availability make geographically distant destinations easier to reach for a greater number of 

people [5].  

With the volume of airline passengers increasing each year [6], it is important to understand 

the dynamics of the airline network and its role in disease spread and control [7]. We need to 

be able to accurately predict international transmission through passenger flow. 

Mathematical models are useful tools that can estimate the risk of infectious disease 

importation and exportation by international airline passengers [8], especially in the early 

stages of an outbreak when accurate reporting may be difficult [9]. Models such as the one 

developed by Lopez et al. use the force of infection in the visited country to determine the 

risk to international visitors, assuming an arbitrary number of airline passengers [8]. However, 

this risk can also extend to new areas when returning passengers carry pathogens back to 

their country of residence, as was the case in Italy in 2007, when an autochthonous 

chikungunya outbreak occurred following importation [10]. Mathematical models of 

pathogen importation/exportation risks usually entail a function of the infection level in the 

visited country and the airline passenger volume between the two involved geographical 

locations, as described by Quam and Wilder-Smith [11]. Access to accurate and appropriate 

data sets describing passenger flow between locations is crucial when developing 

transmission models of global spread [12]; such models can explore the potential role the 

airline network may play in the spread of disease, but also predict future spread, particularly 

when new threats emerge. However, a variety of data sources have been used leading to 

inconsistency and incomparability between modelling studies [7]. The sources themselves are 

generally not designed for epidemic modelling purposes. They include data for use within the 

aviation industry, which may be expensive to access and impose user restrictions, including 

prohibition to share with a third party [7,12]. Open-access data sources do exist but may be 

geographically restricted, provide information in forms not easily convertible into passenger 

numbers or are limited in temporal resolution [7].  

To gain an overview of the range of airline passenger data sources used by modelling studies, 

a systematic literature review was designed and conducted. The principal aim of the review 

was to determine the data types (e.g. passenger numbers and seat capacity) and sources used 

for the purposes of modelling international infectious disease importation. A secondary aim 

of the review was to assess the reproducibility of those studies regarding sourcing and use of 
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airline passenger data. 

Methods 

Search strategy 

We conducted a search of the literature on 2 October 2017 using PubMed, Web of Science 

and Scopus with no restriction on the earliest date of the articles returned. A combination of 

three sets of search terms was used in this review (#1 AND #2 AND #3). The first set (#1) was: 

‘air’ OR ‘airline’ OR ‘aviation’ OR ‘flight’ OR ‘airport’ OR ‘passenger’ OR ‘transport*’ OR 

‘travel*’ AND NOT ‘pollution’. The second set (#2) was: ‘epidemic’ OR ‘pandemic’. The final 

set (#3) was: ‘global’ OR ‘international’. The term ‘pollution’ was classed as an exclusionary 

term as initial scoping suggested that a large proportion of results included pollution studies, 

which were deemed irrelevant to this review. 

We included articles if they matched the following inclusion criteria: (i) they were primary and 

peer-reviewed research; (ii) they modelled the international spread of human infectious 

diseases between at least two countries and (iii) the model was parameterised with airline 

passenger data. We included modelling studies which considered either dynamic models of 

the transmission process or non-dynamic modelling of the movement of infected individuals. 

We also permitted the inclusion of any additional articles if they were identified as the source 

of passenger data used in already selected articles and met the three inclusion criteria above. 

Although no language restriction was applied to the searches, articles in a language other 

than English were excluded during the abstract review if no translated version of the abstract 

could be found. Review articles not containing primary research were also excluded, unless 

they addressed specifically the use of airline passenger data in epidemic modelling. Articles 

for which an abstract could not be accessed were excluded at this stage.  

Following deduplication, the full list of abstracts and titles was reviewed and included or 

excluded by at least two reviewers independently. Any disagreement regarding inclusion of 

an article in the review was then discussed between all reviewers. The full text of selected 

articles was accessed and screened for relevance in more detail. Articles for which the full 

text could not be accessed, which were not open access and could not be accessed through 

the University of Liverpool or Lancaster University library subscriptions, were excluded. The 
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bibliographies of the selected articles were searched for additional relevant articles, based on 

title and full text, subject to the same inclusion and exclusion criteria. 

Data collection strategy 

From the final selection of articles, we extracted information regarding the airline passenger 

data used in each article (Table 1). This information focused on the source, type and validity 

of data used in the study (Table 1, part A) and the reproducibility of data usage judged by pre-

defined criteria (Table 1, part B). For the purposes of this review, data validation was defined 

as the comparison of primary data used in an article against at least one independent and 

appropriately comparable set of data. An article was deemed to have validated its data source 

if it cited another independent and comparable data set and contained a comparison 

between them. To determine reproducibility, each article was assessed for its reporting of 

data source using the checklist shown in Table 1, part B and scored accordingly. We did not 

plan or conduct any bias analysis of the selected publications. 

 

TABLE 1. Systematic review on airline passenger data in infectious disease modelling, (A) 

fields recorded and (B) criteria used to determine reproducibility of articles and sources 

Field Description Variable 

A. Data description 

Article information  

Authors At least the first three authors, as on article Text 
Year of publication Date 
Title Text 
Publication name Text 
Data source  

Commercial data Commercial databases collecting information about flight 
routings, aircraft size, number of bookings or passengers, 

e.g. IATA, OAG, Diio 

Yes/no 

Tourism surveys Any surveys done in the context of tourism, e.g. UNWTO Yes/no 
National passenger surveys Surveys conducted at airports, e.g. passenger survey Yes/no 
Airport published information Data collected and published by airports, may be groups 

of airports 
Yes/no 

Government immigration data Data collected by governments on migration numbers, 
inbound passengers 

Yes/no 

Other E.g. information published by airlines Yes/no 
Unreported or unclear  Yes/no 
Data type  

Seat capacity Number of seats available on a specific route Yes/no 
Itinerary Data include connections, not just information on origin 

and destination  
Yes/no 
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Number of flights Number of flights between cities/airports/countries 
following a specific routing 

Yes/no 

Number of passengers Data explicitly describe number of passengers travelling Yes/no 
Tickets sold Number of tickets sold or booked per routing Yes/no 
Origin–destination information Data include origin airport/city/country and destination 

airport/city/country 
Yes/no 

Direct flight information only Data do not inform on number of passengers taking 
connecting flights 

Yes/no 

Unreported or unclear Reported information not sufficient to determine data 
type 

Yes/no 

Data time period 

Date range of data is reported Yes/no 
Date range Text 
Reporting quality (scoring criteria see Table part B)  

Fully reproducible All handling and manipulation of the data is described to a 
detail adequate to enable reproducibility 

(reproducibility score = 4) 

Yes/no 

Partially reproducible Important information on handling of the data is missing, 
or methodology is vague 
(reproducibility score = 3) 

Yes/no 

Not reproducible Information on methods and/or data source is missing 
and methodology unclear 
(reproducibility score ≤ 2) 

Yes/no 

Data validation  

Data validation attempted A comparison was made with an independent and 
appropriate source of information 

Yes/no 

Data usage  

Transmission model Airline passenger information is used to parameterise a 
model of transmission 

Yes/no 

Network analysis Airline passenger information is described using social 
network methodology 

Yes/no 

Descriptive or illustrative Airline passenger information is used to illustrate a 
transmission risk, but no formal analysis or modelling is 

performed 

Yes/no 

Other None of the above (specify or describe what was done) Yes/no 
Unclear or unreported Insufficient information to determine data usage Yes/no 
Pathogen modelled  

Non-specific Generic model Yes/no 
MERS coronavirus Yes/no 
Seasonal influenza Yes/no 
Pandemic influenza Yes/no 
Other (specify) Text 

B. Reproducibilitya  

Data accessibility (mutually exclusive categories) Score contributionb 

Open source Publicly available, no restrictions on use, no access fees, 
and source (where online) still accessible as at January 

2017 

Yes = +1; No = 0 

Closed source Publicly available but restricted access, access may be 
granted following registration and/or fee, e.g. proprietary 

data 

Yes = 0; No = 0 

Not publicly available Private data, access at discretion of custodian, e.g. airport 
or airline company information 

Yes = 0; No = 0 

Reporting clarity of data source  (All Yes = +1)c 
Source identified The source of the original data is clearly stated Yes/no 
Data set named The specific name of the data set or database in the Yes/no 
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source is reported 
Access date specified The date(s) on which data were accessed is reported Yes/no 
Data type reported The type or unit represented by the data is reported, e.g. 

number of flights/seats/passengers 
Yes/no 

Reporting clarity of data usage  

Data handling reported Data manipulation before analysis, including data cleaning 
and/or aggregation, is reported 

Yes = +1; No = 0 

Date range of data used  

Data time range reported The time period covered by the data is reported Yes = +1; No = 0 
Total reproducibility score Maximum score = 4. 

If multiple sources were used in an article, the average score was calculated. 

Diio: data in, intelligence out; IATA: International Air Transport Association; MERS: Middle East respiratory 

syndrome; OAG: company providing air travel data; UNWTO: World Tourism Organization. 

a If studies used a third party’s travel model and if they did not describe the model fully but provide a link or 

citation, we assessed the cited external documentation for reproducibility. 

b Only material using open source data contributes +1 point to the reproducibility score. 

c The material must receive a ‘yes’ for all subvariables for this variable to contribute +1 point to the 

reproducibility score. 

 

Results 

From the 4,012 articles identified in the search, 2,547 were identified as duplicates and 

rejected, resulting in 1,465 articles which went forward for title and abstract screening 

(Figure). A further 1,130 were rejected at this stage as they did not meet the inclusion criteria. 

A total of 335 articles were selected based on their title and abstract and read in full. From 

these, 223 were rejected: the majority (n = 87) did not contain airline data, 73 were deemed 

not relevant (did not contain at least two required criteria, such as airline data and model) 

and 20 used no model. An additional 19 were country-specific, 17 were inaccessible (no access 

to journal or language barrier), five were reviews and two were not focused on human disease 

movement. After reading the articles in full, 112 were selected as relevant to this review. 

Finally, 24 additional articles, not detected by the search but through reading the bibliography 

of accepted articles, were included after being read in full to determine relevance. 

 

Figure. Systematic review on airline passenger data in infectious disease modelling, flow 

chart of the article selection process 
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The publication year of the 136 articles selected ranged from 1985 to 2017, with the largest 

number of articles (n = 17) published in 2016 (Table 2). In the 20 years following the 

publication by Rvachev and Longini in 1985, the oldest article relevant to this review, only 

seven relevant articles were published [13-19]. 

 

Table 2. Systematic review on airline passenger data in infectious disease modelling, list of 

selected articles with name of data source, information on data validation and reproducibility 

score (n = 136) 
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Reference Sources used Validation Reproducibility scorea 

Ajelli et al, 2009 [22] IATA No 0 

Apenteng et al, 2014 [78] Malaysian Department of Statistics No 2 

Apolloni et al, 2013 [79] 
Airports: Amsterdam, Frankfurt, Gatwick, 
Hamburg, Hannover, Heathrow, Helsinki, Luton, 
Munich, Stansted, Teheran, Venice  

No 0.33 (0, 0, 1, 0, 1, 0) 

Arino et al, 2015 [80] IATA No 1 

Bajardi et al, 2011 [42] IATA No 0 

Balcan et al, 2009 [21] IATA No 0 

Balcan et al, 2010 [23] IATA and OAG No 0 (0, 0) 

Balcan et al, 2009 [24] IATA and OAG No 0 (0, 0) 

Bedford et al, 2015 [50] Civil Aviation Authority No 3 

Bobashev et al, 2008 [35] OAG No 2 

Bogoch et al, 2016 [81] IATA No 2 

Bogoch et al, 2016 [82] IATA No 2 

Bogoch et al, 2015 [25] IATA No 2 

Bowen et al, 2006 [83] OAG (OAG MAX) No 1 

Brannen et al, 2016 [84] 
US Department of Transportation (Air Carrier 
Activity Information System) 

No 2 

Brennan et al, 2013 [51] Twitter No 3 

Brigantic et al, 2009 [62] US Department of Transport No 1 

Brockmann et al, 2013 
[36] 

OAG No 0 

Brockmann et al, 2007 
[85] 

IATA and OAG No 0 (0, 0) 

Brown et al, 2012 [86] Civil Aviation Authorities No 2 

Caley et al, 2007 [87] Unknown No 0 

Carias et al, 2016 [37] OAG No 2 

Cauchemez et al, 2014 
[88] 

IATA No 1 

Chang et al, 2010 [52] Feeyo No 3 

Cheng et al, 2017 [89] ICAO No 1 

Chong et al, 2014 [90] Unknown No 2 

Chong et al, 2012 [91] Hong Kong Tourism Board No 1 

Clements et al, 2010 [60] IATA No 0 

Colizza et al, 2007 [26] IATA No 0 

Colizza et al, 2006 [27] IATA No 1 

Colizza et al, 2006 [28] IATA No 1 

Colizza et al, 2007 [92] IATA No 0 

Colizza et al, 2008 [29] IATA No 0 

Colizza et al, 2007 [30] IATA No 0 

Colizza et al, 2008 [31] IATA No 0 

Cooper et al, 2006 [93] IATA No 1 

Corley et al, 2012 [64] 
US Department of Transport; OpenFlights.org; 
OurAirports.com 

No 
1.33 (2, 1, 1) 
 

Daniel et al, 2013 [20] [15,19] No 0.5 (0.4, 0.6)b 

Dembele et al, 2017 [94] Unknown No 0 

Dorigatti et al, 2017 [95] 
UNWTO; 
Brazilian Ministry of Tourism 

No 2.5 (2, 3) 

Ekdahl et al, 2005 [13] Swedish Tourist and Travel Database Yes 3 

Epstein et al, 2007 [96] OAG (OAG MAX) No 0 

Flahault et al, 1994 [14] IATA No 0 

Flahault et al, 2006 [97] 
US Department of Transport; OAG; IATA; ICAO; 
Back Aviation Solutions; Air Transportation 

No 
0.8 (2, 1, 1, 1, 1, 0, 0, 0, 
1, 1) 
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Statistics; Australian International Arrivals; Airbus 
Industries; Boeing corporation; unknown 

Fraser et al, 2009 [2] OAG No 2 

Gardner et al, 2017 [98] IATA (Passenger Intelligence Services) No 2 

Gardner et al, 2013 [53] IATA No 3 

Gardner et al, 2016 [99] IATA (Air passenger market analysis) No 2 

Gardner et al, 2012 [54] US Department of Transport No 3 

Gardner et al, 2012 [100] 
US Department of Transport; 
Eurostat 

No 2.5 (3, 2) 

Gardner et al, 2015 [101] IATA No 2 

Gautreau et al, 2007 [102] IATA No 0 

Gautreau et al, 2008 [57] IATA Yes 0 

Goedecke et al, 2007 [103] OAG (OAG MAX) No 2 

Gomes et al, 2014 [66] IATA; OAG No 0 (0, 0) 

Gonçalves et al, 2013 [43] IATA; OAG No 0 (0, 0) 

Goubar et al, 2009 [104] ICAO; National Bureau of Statistics of China No 1 (1, 1) 

Grais et al, 2003 [15] 

US Department of Transport; OAG; IATA; ICAO 
(Traffic by Flight Stage); Back Aviation Solutions; 
Air Transportation Statistics; Australian 
International Arrivals; Airbus Industries; Boeing 
corporation; unknown 

No 
0.3 (2, 0, 0, 0, 0, 0, 0, 0, 
0, 1) 

Grills et al, 2016 [105] Diio No 1 

Hanvoravongchai et al, 
2011 [106] 

Mexican Secretary of communication and 
transport 

No 2 

Hatz et al, 2009 [107] 
UNWTO; 
UK Office for National Statistics 

No 2 (1, 3) 

Hollingsworth et al, 2006 
[108] 

Beijing Capital International Airport (Traffic 
Data); Hong Kong International Airport 
(Provisional Civil International Air Traffic 
Statistics); IATA 

No 0.67 (1, 1, 0) 

Hollingsworth et al, 2007 
[109] 

IATA (International Travel Statistics); Hong Kong 
International Airport; Beijing Capital Airport 

No 0.67 (1, 1, 0) 

Hosseini et al, 2010 [32] IATA No 1 

Hsu et al, 2010 [110] Amadeus; Landing.com No 0.5 (0, 1) 

Hufnagel et al, 2004 [16] IATA; OAG No 0 (0, 0) 

Hwang et al, 2012 [111] Diio No 2 

Johansson et al, 2012 
[112] 

OAG (Traffic Analyser); US Department of 
Transport 

No 0.5 (0, 1) 

Johansson et al, 2011 [65] 
OAG (Traffic Analyser); US Department of 
Transport 

No 0.5 (0, 1) 

Johansson et al, 2014 
[113] 

Diio No 2 

Kenah et al, 2011 [114] Unknown No 0 

Kernéis et al, 2008 [115] 
US Department of Transport; OAG; IATA; ICAO; 
Back Aviation Solutions 

No 0.4 (2, 0, 0, 0, 0) 

Khan et al, 2009 [116] IATA No 1 

Khan et al, 2014 [75] IATA No 2 

Khan et al, 2013 [58] IATA Yes 2 

Khan et al, 2010 [48] Unknown No 2 

Khan et al, 2012 [61] IATA No 1 

Khan et al, 2010 [117] 
ACI; Saudi Arabia Authority of Civil Aviation; IATA 
(Worldwide passenger ticket sales) 

No 1 (1, 2, 0) 

Khan et al, 2013 [118] IATA No 2 

Knipl et al, 2013 [119] Statistics Canada; unknown No 1 (1, 1) 

Lawyer, 2016 [120] OpenFlights.org No 2 
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Lemey et al, 2014 [38] OAG No 1 

Longini, 1988 [17] [21] No 0.6 b 

Longini et al, 1986 [18] 
Air Transport Statistics; Australian International 
Airport traffic dynamics; ABC World Airways 
Guide; OAG; ICAO 

No 0.4 (0, 1, 0, 0, 1) 

Lourenço et al, 2014 [121] Airport: Madeira No 1 

Malone et al, 2009 [63] US Department of Transport No 1 

Marcelino et al, 2009 [39] OAG No 2 

Marcelino et al, 2012 
[122] 

OAG No 2 

Massad et al, 2017 [123] IATA No 1 

Massad et al, 2016 [124] IATA No 1 

Massad et al, 2009 [125] Singapore Tourism Sector Performance No 2 

Massad et al, 2014 [126] Brazilian Ministry of Tourism No 1 

Matrajt et al, 2013 [127] OAG (OAG MAX); unknown No 1 (2, 0) 

Meloni et al, 2011 [128] OAG No 2 

Merler et al, 2010 [129] Eurostat No 2 

Nah et al, 2016 [130] OpenFlights.org No 2 

Nah et al, 2016 [131] OpenFlights.org No 2 

Napoli et al, 2012 [132] CapStat No 1 

Pastore-Piontti et al, 2016 
[44] 

IATA; OAG No 1 (1, 1) 

Paul, et al, 2008 [133] US Department of Transport No 2 

Pinset et al, 2014 [134] 
UNWTO; 
UK Office for National Statistics 

No 1.5 (2, 1) 

Poletto et al, 2016 [135] IATA No 1 

Poletto et al, 2016 [45] IATA No 0 

Poletto et al, 2014 [136] IATA; OAG No 1 (1, 1) 

Poletto et al, 2014 [33] IATA No 0 

Poletto et al, 2012 [137] EuroStat No 1 

Poletto et al, 2013 [138] UK Office for National Statistics No 1 

Polwiang, 2015 [139] Department of Tourism of Thailand No 2 

Quam et al, 2015 [10] IATA No 0 

Quam et al, 2016 [55] Japan National Tourism Organization No 3 

Quam et al, 2016 [9]  IATA No 2 

Read et al, 2015 [77] OAG (Traffic Analyser) No 2 

Rocklov et al, 2016 [140] IATA No 2 

Ruan et al, 2006 [141] IATA No 1 

Rvachev et al, 1985 [19] 
OAG; ICAO; Air Transportation Statistics; 
Australian International Arrivals; unknown 

No 0.6 (1, 1, 0, 1, 0) 

Sato et al, 2015 [142] OAG No 2 

Schneider et al, 2011 [143] Unknown No 0 

Semenza et al, 2014 [74] IATA No 0 

Sessions et al, 2013 [34] IATA ; OAG Yes 2 (2, 2) 

Seyler et al, 2009 [59] 
EuroStat; IATA ; ICAO 
 

Yes 0.33 (1, 0, 0) 

Struchiner et al, 2015 
[144] 

Singapore Tourism Board No 1 

Tatem et al, 2006 [145] OAG No 1 

Tatem et al, 2007 [40] OAG (OAG MAX) No 2 

Tatem et al, 2012 [41] US Office of Travel and Tourism Industries; OAG No 1.5 (2, 1) 

Tatem et al, 2006 [146] OAG No 1 

Tian et al, 2017 [147] ICAO No 2 

Tizzoni et al, 2012 [46] IATA; OAG Yes 0.5 (0, 1) 

Tuncer et al, 2014 [148] US Department of Transport No 2 
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Urabe et al, 2016 [149] ICAO No 1 

Weinberger et al, 2012 
[56] 

Icelandic Tourism Board; Statistics Iceland; 
Keflavik Airport 

No 3 (4, 3, 2) 

Wilder-Smith et al, 2017 
[150] 

UNWTO No 2 

Wilder-Smith et al, 2015 
[151] 

IATA No 1 

Wilder-Smith et al, 2014, 
[152] 

IATA No 2 

Wilson et al, 2015 [153] 
IATA (Airport Intelligence Services – Passenger 
data) 

No 1 

Xiao et al, 2015 [154] OAG No 1 

Yoneyama et al, 2012 
[155] 

UNWTO database 1; UNWTO database 2 No 1 (1, 1) 

ACI: Airport Council International; Diio: data in, intelligence out; IATA: International Air Transport Association; 

ICAO: International Civil Aviation Organization; OAG: company providing air travel data; OAG MAX: product 

produced by OAG; UK: United Kingdom; UNWTO: World Tourism Organization; US: United States. 

a Average total score shown, with individual source scores shown in brackets where multiple sources used. 

b Where the cited data source was another article, the average score of that article was used. 

 

A wide range of data sources have been used for modelling passenger flow between 

countries; in total 45 distinct sources were identified (Table 3). Commercial or industry data 

sources were most often used (14 sources, used in 131 articles), followed by governmental 

data (14 sources, used in 30 articles). Of the commercial data sources, those most often 

acknowledged were from the International Air Transport Association (IATA) (61 articles) and 

OAG, an airline industry company specialising in data provision and analysis (38 articles). 

Some articles used the airline data directly, however, two articles [17,20] used data from one 

or more articles (see Table 2) and therefore were also thought of as using industry data. 

Where a database was named from IATA or OAG sources, OAG MAX was the most common 

(5 articles). A range of other industry-orientated data sources were cited, including Diio 

(airline market information), Amadeus (travel reservations database), Feeyo (a Chinese flight 

scheduler) and OpenFlights.org (an open-access database of flight records contributed by 

members of the public). Four articles used passenger surveys such as TravelPac from the 

United Kingdom’s (UK) Office for National Statistics (ONS), and nine articles used tourism 

surveys (Table 3). Eleven articles used information published by airports, and four other 

sources were reported (the social media site Twitter, two aircraft manufacturers and 

EuroStat). 
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TABLE 3. Systematic review on airline passenger data in infectious disease modelling, data 

sources identified in the selected articles, grouped by sector (n = 136 articles) 

Data source (number of uses; percentage of total uses 
of any data source) 

Number of articles 
using data sourcea 

Reference(s) 

Commercial/industry (n = 131; 62%) 

International Air Transport Association (IATA) 

IATA − unspecified database 57  [9,10,14-16,20-34,42-46,53,57-
61,66,74,75,80-

82,85,88,92,93,97,101,102,109,115-
118,123,124,135,136,140,141,151,152 

IATA − Air passenger market analysis 1 [99] 

IATA − Airport intelligence services – passenger data 1 [153] 

IATA − International travel statistics 1 [108] 

IATA − Passenger intelligence services 1 [98] 

OAG (company specialising in airline industry data) 

OAG − Unspecified database 30 [2,15-20,23,24,34-
39,41,43,44,46,66,85,97,115,122,128,136,1

42,145,146,154] 

OAG MAX 5 [40,83,96,103,127] 

OAG − t 100 database 2 [65,112] 

OAG − Traffic analyser 1 [77] 

International Civil Aviation Organization (ICAO) 

ICAO − Unspecified database 11 [17-20,59,89,97,104,115,147,149] 

ICAO − Traffic by flight stage 1 [15] 

Air transport statistics 3 [18-20] 

Airports Council International (ACI) 1 [117] 

Amadeus 1 [110] 

BACK Aviation Solutions Incorporated 4 [15,20,97,115] 

CapStat 1 [132] 

Diio 3 [105,111,113] 

Feeyo 1 [52] 

Landings.com 1 [110] 

OpenFlights.org 4 [64,120,130,131] 

OurAirports.com 1 [64] 

Tourism surveys (n = 9; 4%) 

Icelandic Tourist Board 1 [56] 

Singapore Tourism Board 1 [144] 

Turism.se (Swedish tourist and travel commercial 
database) 

1 [13] 

World Tourism Organization (UNWTO) 5 [95,107,134,150,155] 

United States Office of Travel and Tourism Industries 1 [41] 

National passenger surveys (n = 4; 2%) 

Brazilian Ministry of Tourism 1 [95] 

United Kingdom Office for National Statistics 3 [107,134,138] 

Airport-published information (n = 12; 6%) 

Amsterdam Airport (Schiphol) 1 [79] 

Beijing Capital International Airport 2 [108,109] 

German airports (Hannover, Frankfurt, Hamburg, 1 [79] 
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Munich) 

Helsinki Airport 1 [79] 

Hong Kong International Airport 2 [108,109] 

Keflavik Airport 1 [56] 

London airports (Heathrow, Gatwick, Stansted, Luton) 1 [79] 

Madeira Airport 1 [121] 

Teheran Airport 1 [79] 

Venice Airport 1 [79] 

Government-published information (n = 33; 15%) 

United States Department of Transport 14 [15,20,54,62-
65,84,97,100,112,115,133,148] 

Australian Department of Transport 2 [18,19] 

Australian International Airport Traffic 4 [15,18-20] 

Brazilian Ministry of Tourism 1 [126] 

Department of Tourism of Thailand 1 [139] 

Hong Kong Tourism Board 1 [91] 

Japan National Tourism Organization 1 [55] 

Malaysian Department of Statistics 1 [78] 

Mexican Secretary Communication and Transport 1 [106] 

National Statistics China 1 [104] 

General Authority Of Civil Aviation of Saudi Arabia 1 [117] 

Singapore tourism sector performance 1 [125] 

Statistics Canada 1 [119] 

Statistics Iceland 1 [56] 

United Kingdom civil aviation authorities 2 [50,86] 

Other sources (n = 11; 5%) 

Airbus Industries 3 [15,20,97] 

Boeing Corporation 3 [15,20,97] 

EuroStat 4 [59,100,129,137] 

Twitter 1 [51] 

Unclear or unreported (n = 13; 6 %) 13 [15,18-20,48,87,90,94,97,114,119,127,143] 

a Some articles used more than one data source. 

 

Most data sources contained information about origin and destination (n = 91, 67%) or 

passenger numbers (n = 73, 54%) (Table 4). Data pertaining to direct flights only were used 

more often than data pertaining to full passenger itineraries: n=33 and n=27, respectively. Of 

the 62 studies using IATA as a data source, 15 used information of direct flight only [10,21-

34] and of the 38 using OAG, 11 used information of direct flight only [2,23,24,34-41]. Finally, 

eight articles [21,22,24,42-46] indirectly used IATA data by using the online modelling tool 

GLEAMviz [47], and two [10,48] by using BioDisapora (now Bluedot.global [49]). 

 

TABLE 4. Systematic review on airline passenger data in infectious disease modelling, 
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frequency of use of each data type identified (n = 136 articles) 

Data typea Number of articles 
using data type 

References 

n % 

Includes information on 
origin and destination  

91 67  [2,9,10,13-16,21,23-26,30,31,34,35,37-42,44,46,48,53-
56,58,59,64,66,74,75,77,79,81-83,85,86,88-90,92,93,95,96,98-
101,104-107,110-113,116-118,120,122-124,127,130-133,135-

141,145-155] 

Passenger numbers 74 54 [2,9,10,13-16,25,29,31,34,37,41,45,48,50,53-56,58,59,62-
64,74,75,77,79,82,84,86-90,94,95,98-101,104-109,113,116,117,123-

126,132-135,137,139-141,144-153,155] 

Direct flights only 33 24 [2,10,21-41,54,59,64,79,89,104,111,113,120,137] 

Full itinerary 27 20 [10,25,34,53,58,59,61,74,75,81,83,88,98,99,101,112,116,118,123,130,
136,140,141,146,152-154] 

Unreported or unclear 25 18  [15,17-
20,43,51,57,64,65,78,80,91,97,102,109,114,115,119,121,126,127,129,

138,143] 

Seat capacity 24 18  [21-24,26-
28,31,32,35,36,38,40,41,44,46,60,66,93,111,120,122,142,154] 

Flight numbers 13 10  [36,39,62,63,83,85,96,103,106,110,127,128,131] 

Tickets sold 3 2  [52,64,81] 
a An article may have included multiple data types. 

 

According to the set of standards we had established to determine an article’s reproducibility 

(see Table 1, part B), no article was considered fully reproducible. Eight (6%) articles were 

deemed partially reproducible (score of 3 or above), where some information regarding the 

description and use of passenger data was reported [13,50-56]. Of the 45 total data sources 

identified, 26 were open source, 11 were closed source, and 8 were not publicly available. 

The date range of the data (start and end date) was reported in 58% (n = 79) studies, and an 

access date was stated in 25% (n = 34) of the sources used. Data validation as previously 

defined was performed in 5% (n = 7) of the articles [13,34,46,51,57-59]. Only 40 articles (29%) 

reported performing any data cleaning or manipulation before using the data set.  

The majority of articles (n = 115; 85%) were concerned with the global spread of infectious 

diseases, while the analysis of the airline network itself (while modelling pathogen spread) 

was the next most common purpose (n = 11; 8%). Five articles used passenger data for 

descriptive or illustrative purposes [13,29,30,60,61], two articles used the data for passenger 

screening simulations [62,63] and two articles described the development of a public health 

tool [23,64]. Of the pathogens modelled, pandemic influenza was the most frequent subject 
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of the models (n = 40; 29%) (Table 5). Generic models not focussing on a specific pathogen 

were also common (n = 23; 17%). 

 

TABLE 5. Systematic review on airline passenger data in infectious disease modelling, 

pathogens modelled in the selected articles (n = 136) 

Pathogena Number of articles 
modelling pathogen 

References 

n % 

Generic model (no specific 
pathogen) 

23 17 [20-
22,27,28,30,31,35,36,40,48,57,61,65,80,102,103,109,128,1

37,138,143,149] 
Chikungunya virus 6 4  [41,59,75,88,113,132] 
Vibrio cholerae 1 1  [64] 
Clostridium difficile 1 1  [60] 
Dengue virus 17 13 [10,34,53,55,59,74,89,100,101,121,125,126,132,139,144,14

7,152] 
Ebola virus 7 5  [25,44,66,77,136,142,154] 
Hepatitis A virus 1 1  [84] 
Human immunodeficiency virus 1 1  [78] 
Influenza virus – pandemic 40 29  [2,14-

19,23,24,26,32,38,39,42,46,52,54,58,62,63,79,87,90,91,93,
96,97,106,108,110,111,115-117,119,120,122,129,148,155] 

Influenza virus – seasonal 7 5  [50,51,56,84,114,127,133] 

Japanese encephalitis virus 1 1  [107] 
Plasmodium parasite species 5 4  [41,84,94,134,146] 
Measles virus 1 1  [153] 
Middle East respiratory syndrome 
coronavirus 

7 5  [33,37,45,99,118,131,135] 

Poliovirus 1 1  [151] 

Severe acute respiratory syndrome 6 4  [29,83,85,92,104,141] 
Smallpox virus 1 1  [43] 
Salmonella enterica serotypes Typhi 
and Paratyphi 

1 1  [13]* 

Vector importation 1 1  [145] 
West Nile virus 1 1  [86] 
Yellow fever virus 3 2  [95,112,150] 
Zika virus 9 7 [9,81,82,98,105,123,124,130,140] 

a An article may have included more than one pathogen. 

 

Discussion 

The purpose of this review was to assess the source and usage of airline passenger data used 

in mathematical models of international infectious disease spread. A total of 136 articles met 

the inclusion criteria, from which we identified 45 unique data sources. 
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The majority of these were sources provided on a commercial basis, e.g. IATA, OAG and the 

International Civil Aviation Organization (ICAO). These commercial sources provide 

information from the aviation industry for use within that industry and are marketed as being 

detailed and accurate. The data resolution can be high: for example, passenger data are 

available stratified by route (including stopovers), fare class, point of origin and time period. 

There are often restrictions on the use of the data, in particular non-disclosure agreements 

regarding the data, collection and retrieval methods, and financial charges apply for access 

[7]. This type of data is essentially closed data: publicly available but with restricted access. 

Furthermore, the methodology underpinning data collection is generally undisclosed and it is 

therefore difficult for researchers to assess the quality, representability and biases of the 

data. Although these data sources may have a number of subsets representing different data 

types, authors rarely provide more accurate reporting of the data sets, including name of 

subsets used and date of access, among other criteria. An additional complication is that 

customers of the same data provider may receive different data depending on the timing, 

exact parameters of their database query and their subscription levels.  

A number of data sources identified in the review were open-access and include aggregate 

numbers of passenger published by individual airports, data compiled and released by 

government agencies (e.g. the UK Office for National Statistics) and information derived from 

tourism surveys. Although freely available to access, these data sets may not provide the 

resolution of information required by modelling studies as they typically are limited to 

passengers departing from or arriving at a specific geographical region or are aggregated over 

long time periods (annual or quarterly data). In addition, the collection methodology is not 

always reported for such data sources and there may be biases in the data particularly where 

reporting is voluntary. Combining information from such sources represents a considerable 

data challenge. 

International travel data describing direct flights only were used more often than those with 

full itinerary information. Data based on direct flights exclude information on connecting 

passengers and will therefore underestimate the number of passengers travelling to a specific 

destination. This limitation is likely to introduce bias, underestimating passenger flow 

between distant or poorly served locations and overestimating passengers travelling shorter 

distances [65]. This bias has implications for public health planning as some locations or 
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countries may have an apparent lower risk of importation events because of the lack of direct 

flights from putative infecting source countries. This may explain the discrepancy during the 

Ebola epidemic in West Africa in 2014 and 2015, where several studies suggested that the 

United States (US) was at relatively low risk of importation following the suspension of direct 

flights. The US did however receive two importations through air travel from the affected 

area, one was due to a passenger reaching their final destination through indirect flights and 

the second was a returning healthcare worker [25,66,67]. 

When considering international travel patterns for public health purposes, accessing 

information on the number of passengers travelling from an origin to a destination is the most 

relevant. However, we found that several articles used data for which the unit of 

measurement was not number of passengers but described passenger traffic in terms of seat 

capacity – the number of seats on aircraft flying between two specific airports – for which 

assumptions must be made regarding how full individual flights are and how this may or may 

not vary with season. In addition, this data type cannot take into account the full routing of a 

passenger and this information must therefore be inferred from the data or the study needs 

to state that only direct flights were considered. The variety of data types used for epidemic 

modelling purposes perhaps reflects the lack of a widely accepted and accessible data source, 

and this variation in data unit could lead to differences in the conclusions between modelling 

studies. 

To ensure reproducibility by others, studies should report information regarding the source 

and type of data used, the date of access and any cleaning or manipulation conducted. Our 

analysis showed that this standard is rarely attained. Reporting the date of access (and date 

of data extraction if different) is important as several data-providing companies update their 

data monthly, with retrospective adjustments of values [68]. Few studies reported the date 

of access to or extraction of the data set. Acknowledging any data cleaning or manipulation 

is also important for reproducibility [69]: for example, if the authors are considering 

passengers departing or arriving from cities rather than airports but the data were collected 

at the airport level, the aggregation of passenger numbers from each airport to the city should 

be acknowledged by the authors. For additional clarity, it would be useful if the authors 

reported the stage at which the data was aggregated to city level, whether this was part of 

the original data, or if this was a data manipulation done by the authors. At the time of writing 
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of this review, there was limited understanding of the sensitivity of this level of data (city 

level) and how it compares to airport-level data and other aggregated data sets, requiring 

further analytical work. Overall, the majority of articles were deemed to have methods that 

were not reproducible, and while eight studies were deemed partially reproducible, none 

were considered to be fully reproducible. It is incumbent on authors to ensure accurate 

reporting for all aspects of their methodology; our findings suggest that authors of 

international disease modelling studies should aim to improve their reporting of source and 

usage of airline passenger data. We advise authors to reference the fields reported in Table 

1, part B, at a minimum, when using any data sets. 

Data validation is often required to ensure that the collected data are free from biases and an 

accurate reflection of the subject or process they describe. For airline passenger data, 

validation is particularly important if the passenger data are sourced from a commercial 

company with limited or no collection methodology disclosed. Only seven articles reported 

validation with at least one independent or appropriately comparable set of observations. 

While there is no acknowledged gold standard data set, governmental open source data, such 

as those from the US Department of Transport or Travelpac, do at least have published 

methodology on which potential biases may be identified. 

Many pathogens can be relocated through human movement to populations where 

susceptibility or a lack of awareness may afford a greater incidence and persistence. Most 

articles reviewed, where a specific pathogen was considered, investigated transmission or 

importation of viruses. Only three articles were focused on bacteria (Vibrio cholera, 

Clostridium difficile and Salmonella enterica serotypes Typhi and Paratyphi), despite the 

known importance of international travel for the global dissemination of antibacterial 

resistance [70,71] and the capacity of bacteria to initiate epidemics following importation, 

e.g. the cholera outbreak on Haiti in 2010 [72]. Pandemic influenza was the disease most 

often considered by the reviewed articles, which perhaps reflects the global significance of 

pandemic events and the ease with which pandemic strains have spread historically. The 

other non-influenza viruses noted in these studies have all initiated outbreaks following 

introduction through international travel. Outbreaks following introduction occurred in South 

Korea with MERS Co-V [73], in the Portuguese islands of Madeira (off the coast of Western 

Africa) with dengue virus [74] and in the Caribbean (leading to imported cases in the US) and 
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Italy with chikungunya virus [75,76]. Finally, the accurate modelling of importation risks for 

specific pathogens may require very high-resolution passenger data, particularly where 

routes are indirect and the total travel time from origin to destination is important for 

screening, taking incubation periods into account [77]. 

To the best of our knowledge, direct comparisons of commercial with open-access data sets, 

or between commercial data sets, have not yet been accomplished, preventing an informed 

decision on which data sets are more suitable to represent airline passengers. Although a 

direct comparison between commercial data sets is likely to be informative for the modelling 

community, it is also likely to be expensive. In addition, the presence of a single data set that 

is agreed by the community to be the best representation of international (and national) 

airline passenger flow would be ideal, although it may be difficult to realise given proprietorial 

restrictions of certain data sets. The field should aspire to collaborate with industrial data 

providers to make accurate passenger data available for research, particularly during global 

public health emergencies. 

Strengths and limitations of the review 

The screening and selection of articles was done in a systematic manner and by two 

independent reviewers to ensure all relevant articles were included in the selection of articles 

to be read in full. The full reference lists of accepted articles were read to find additional 

relevant articles. Although a number of articles were found when going through reference 

lists, we are confident that this selection was a good representation of the range of airline 

data used. In addition, no other review that we are aware of is focused on the analysis of the 

validity and reproducibility of the data used for mathematical models of infectious disease 

spread by air travel. Limitations of this study include not contacting authors regarding their 

methods and not including other search engines which may have yielded additional articles 

but would also have returned a very large number of potential articles to process. In addition, 

by limiting the articles to international spread only, some articles which focused primarily on 

spread within a country were excluded, even though they may include relevant data sources. 

Conclusion 

We conducted a systematic review to assess the range and reporting of data used by authors 

to model the international spread of infectious diseases through the airline network. We 
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found 136 articles matching our inclusion criteria and extracted information regarding source, 

data type, validation assessment and reproducibility. We found a variety of data sources and 

types used, limited validation performed and poor reporting, rendering many studies 

unreproducible. We recommend that greater effort is devoted to validation and data sources 

and that a consensus is achieved on the use of information sources providing airline passenger 

data. Public health modelling would benefit greatly from the availability of a validated 

contemporary open-source data source which includes detailed origin–destination 

information, including connecting passengers, and has high temporal resolution. 

*Note added in proof 

During editing following acceptance, the authors became aware of a further four articles that satisfied inclusion criteria but were not 

discoverable using the search algorithm (De Jong B, Ekdahl K. BMC Public Health. 2006 Dec;6(1):4. Ekdahl K, Andersson Y. BMC Infect Dis. 

2004 Dec;4(1):54. Ekdahl K, Andersson Y. Am J Trop Med Hyg. 2005;72(6):825-30. Ekdahl K, Andersson Y. J Infect. 2005;51(3):222-9). The 

articles all utilised a previously identified data source (Turism.se) and modelled the travel-related risk of campylobacteriosis, giardiasis, 

salmonellosis and shigellosis infection. This omission affects quantitative elements of Tables 3 to 5, but does not affect our results and 

conclusions regarding data sources, nor our overall conclusions and recommendations. 
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