Observation of Gravitational Waves from a Binary Black Hole Merger

LIGO Scientific Collaboration and Virgo Collaboration (2016) Observation of Gravitational Waves from a Binary Black Hole Merger. Physical review letters, 116 (6). ISSN 1079-7114

Full text not available from this repository.

Abstract

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 × 10−21. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410þ160−180 Mpc corresponding to a redshift z ¼ 0.09þ0.03 −0.04 . In the source frame, the initial black hole masses are 36þ5 −4M⊙ and 29þ4 −4M⊙, and the final black hole mass is 62þ4 −4M⊙, with 3.0þ0.5 −0.5M⊙c2 radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

Item Type:
Journal Article
Journal or Publication Title:
Physical review letters
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/3100
Subjects:
?? PHYSICS AND ASTRONOMY(ALL) ??
ID Code:
135704
Deposited By:
Deposited On:
24 Jul 2019 13:35
Refereed?:
Yes
Published?:
Published
Last Modified:
20 Sep 2023 01:25