Ilyas, Kanwal and Zahid, Saba and Batool, Madeeha and Chaudhry, Aqif Anwar and Jamal, Arshad and Iqbal, Farasat and Nawaz, Mian Hasnain and Goerke, Oliver and Gurlo, Aleksander and Shah, Asma Tufail and Rehman, Ihtesham Ur (2019) In-vitro investigation of graphene oxide reinforced bioactive glass ceramics composites. Journal of Non-Crystalline Solids, 505. pp. 122-130. ISSN 0022-3093
Full text not available from this repository.Abstract
In graphene oxide (GO) reinforced composite materials, the uniform dispersion of GO and its interaction with matrix is highly desired for better mechanical properties. In order to achieve better interlocking and uniform microstructure, ion interaction approach has been used for the synthesis of GO and bioactive glass ceramics (BGC) composites. Oxygenated functional groups of GO played a decisive role in GO and BGC interlocking and towards the uniform homogeneity of the composite. GO-BGC composites with different GO to BGC weight ratios (0.5 to 2.0 wt.-%) were synthesized via the base-catalyzed sol-gel method and characterized by FTIR, RAMAN, SEM, TGA-DSC, and X-Ray diffraction techniques. An increase in micro-hardness was observed with the addition of GO up to 1 wt.-%, however, further loading led to a decrease in hardness. Moreover, GO-BGC composites were thermally more stable as compared to pristine GO. Bio-mineralization studies showed that composites were bioactive and GO supported the formation of the apatite layer. Furthermore, the composites were cytocompatible as was demonstrated by MTT assay using rat mesenchymal stem cells. This study can provide interesting insights into the synthesis and applications of novel composite biomedical materials.