Kim, S. and Jang, Y. and Jang, M. and Lim, A. and Hardy, John G. and Park, H.S. and Lee, J.Y. (2018) Versatile biomimetic conductive polypyrrole films doped with hyaluronic acid of different molecular weights. Acta Biomaterialia, 80. pp. 258-268. ISSN 1742-7061
manuscript_author_accepted.pdf - Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.
Download (999kB)
Abstract
Electrically conductive polypyrrole (PPy) is an intriguing biomaterial capable of efficient electrical interactions with biological systems. Especially, biomimetic PPy-based biomaterials incorporating biomolecules, such as hyaluronic acid (HA), can impart the characteristic biological interactions with living cells/tissues to the conductive biomaterials. Here we report the effects of the molecular weight (MW) of HA on PPy-based biomaterials. We utilized HA of a wide range of MW (35 × 103 Da–3 × 106 Da) as dopants during the electrochemical production of PPy/HA films and their characterization of materials and cellular interactions. With increases in the MWs of HA dopants, PPy/HA exhibited more hydrophilic, higher electrochemical activity and lower impedance. In vitro studies revealed that PPy films doped with low MW HA were supportive to cell adhesion and growth, while PPy films doped with high MW HA were resistant to cell attachment. Subcutaneous implantation of the PPy/HA films for 4 weeks revealed that all the PPy/HA films were tissue compatible. We successfully demonstrate the importance of HA dopant MWs in modulating the chemical and electrical properties of the materials and cellular responses to the materials. Such materials have potential for various biomedical applications, including as tissue engineering scaffolds and as electrodes for neural recording and neuromodulation. Statement of Significance: Hyaluronic acid (HA)-doped polypyrrole (PPy) films were electrochemically synthesized as novel biomimetic conductive materials capable of efficient electrical signaling and preferential biological interactions. Molecular weights (MWs) of HA varied in a wide range (35 × 103–2 × 106 Da) and critically determine chemical, electrochemical, and biological properties of PPy/HA. Especially, PPy films with low MW HA markedly support cell adhesion and growth, while PPy films with high MW HA are resistant to cell attachment. Furthermore, PPy/HA exhibits greatly improved tissue compatibility and in vivo EMG signal recording ability. We for the first time demonstrate that biomimetic PPy/HA-based biomaterials can serve as versatile and effective platforms for various biomedical applications, such as tissue engineering scaffolds and bioelectrodes. © 2018 Acta Materialia Inc.