Additional Information:
Export Date: 6 December 2018 Correspondence Address: Sturrock, C.J.; University of Nottingham, Division of Agricultural and Environmental Sciences, School of Biosciences, Sutton Bonington Campus, United Kingdom; email: craig.sturrock@nottingham.ac.uk References: Ray, D.K., Mueller, N.D., West, P.C., Foley, J.A., Yield trends are insufficient to double global crop production by 2050 (2013) PLoS ONE, 8 (6); Long, S.P., Marshall-Colon, A., Zhu, X.-G., Meeting the global food demand of the future by engineering crop photosynthesis and yield potential (2015) Cell, 161 (1), pp. 56-66; Glowacka, K., Kromdijk, J., Kucera, K., Xie, J.Y., Cavanagh, A.P., Leonelli, L., Photosystem II Subunit S overexpression increases the efficiency of water use in a field-grown crop (2018) Nat Commun, 9, p. 868; Kromdijk, J., Glowacka, K., Leonelli, L., Gabilly, S.T., Iwai, M., Niyogi, K.K., Improving photosynthesis and crop productivity by accelerating recovery from photoprotection (2016) Science, 354 (6314), pp. 857-861; Long, B.M., Hee, W.Y., Sharwood, R.E., Rae, B.D., Kaines, S., Lim, Y.L., Carboxysome encapsulation of the CO2-fixing enzyme Rubisco in tobacco chloroplasts (2018) Nat Commun, 9, p. 3570; Mathan, J., Bhattacharya, J., Ranjan, A., Enhancing crop yield by optimizing plant developmental features (2016) Development (Cambridge, England), 143 (18), pp. 3283-3294; Evans, J.R., Kaldenhoff, R., Genty, B., Terashima, I., Resistances along the CO2 diffusion pathway inside leaves (2009) J Exp Bot, 60 (8), pp. 2235-2248; Park, S., Internal leaf area and cellular CO2 resistance: photosynthetic implications of variations with growth conditions and plant species (1977) Physiol Plant, 40, pp. 137-144; Turrell, F.M., The area of the internal exposed surface of dicotyledon leaves (1936) Am J Bot, 23 (4), pp. 255-264; Thain, J.F., Curvature correction factors in the measurement of cell surface areas in plant tissues (1983) J Exp Bot, 34 (138), pp. 87-94; James, S.A., Smith, W.K., Vogelmann, T.C., Ontogenetic differences in mesophyll structure and chlorophyll distribution in Eucalyptus globulus ssp. globulus (1999) Am J Bot, 86 (2), pp. 198-207; Theroux-Rancourt, G., Earles, J.M., Gilbert, M.E., Zwieniecki, M.A., Boyce, C.K., McElrone, A.J., The bias of a two-dimensional view: comparing two-dimensional and three-dimensional mesophyll surface area estimates using noninvasive imaging (2017) New Phytol, 215 (4), pp. 1609-1622; As, H., Scheenen, T., Vergeldt, F.J., MRI of intact plants (2009) Photosynth Res, 102 (2-3), pp. 213-222; Metzner, R., Eggert, A., Dusschoten, D., Pflugfelder, D., Gerth, S., Schurr, U., Direct comparison of MRI and X-ray CT technologies for 3D imaging of root systems in soil: potential and challenges for root trait quantification (2015) Plant Methods, 11, p. 17; Schmittgen, S., Metzner, R., Dusschoten, D., Jansen, M., Fiorani, F., Jahnke, S., Magnetic resonance imaging of sugar beet taproots in soil reveals growth reduction and morphological changes during foliar Cercospora beticola infestation (2015) J Exp Bot, 66 (18), pp. 5543-5553; Metzner, R., Dusschoten, D., Bühler, J., Schurr, U., Jahnke, S., Belowground plant development measured with magnetic resonance imaging (MRI): exploiting the potential for non-invasive trait quantification using sugar beet as a proxy (2014) Front Plant Sci, 5, p. 469; Li, K., Song, W., Zhu, L., Observation and measurement of plant root architecture in situ: a review (2011) Shengtaixue Zazhi, 30 (9), pp. 2066-2071; Eberhard, M., Hardy, R., Steffen, O.-J., Johannes, F., André, G., Thomas, N., A functional imaging study of germinating oilseed rape seed (2017) New Phytol, 216 (4), pp. 1181-1190; Garbout, A., Munkholm, L.J., Hansen, S.B., Petersen, B.M., Munk, O.L., Pajor, R., The use of PET/CT scanning technique for 3D visualization and quantification of real-time soil/plant interactions (2012) Plant Soil, 352 (1-2), pp. 113-127; Sharpe, J., Optical projection tomography (2004) Annu Rev Biomed Eng, 6, pp. 209-228; Lee, K., Avondo, J., Morrison, H., Blot, L., Stark, M., Sharpe, J., Visualizing plant development and gene expression in three dimensions using optical projection tomography (2006) Plant Cell, 18 (9), pp. 2145-2156; Flannery, B.P., Deckman, H.W., Roberge, W.G., D'Amico, K.L., Three-dimensional X-ray microtomography (1987) Science (New York, NY)., 237 (4821), pp. 1439-1444; Dhondt, S., Vanhaeren, H., Loo, D., Cnudde, V., Inzé, D., Plant structure visualization by high-resolution X-ray computed tomography (2010) Trends Plant Sci, 15 (8), pp. 419-422; Marone, F., Mokso, R., Modregger, P., Fife, J., Pinzer, B., Thuring, T., Present and future X-ray tomographic microscopy at TOMCAT (2011) 10th international conference on X-ray microscopy. AIP conference proceedings, 1365, pp. 116-119. , McNulty I, Eyberger C, Lai B, editors; Verboven, P., Kerckhofs, G., Mebatsion, H.K., Ho, Q.T., Temst, K., Wevers, M., Three-dimensional gas exchange pathways in pome fruit characterized by synchrotron X-ray computed tomography (2008) Plant Physiol, 147 (2), pp. 518-527; Kaminuma, E., Yoshizumi, T., Wada, T., Matsui, M., Toyoda, T., Quantitative analysis of heterogeneous spatial distribution of Arabidopsis leaf trichomes using micro X-ray computed tomography (2008) Plant J Cell Mol Biol, 56 (3), pp. 470-482; Schneider, J.V., Rabenstein, R., Wesenberg, J., Wesche, K., Zizka, G., Habersetzer, J., Improved non-destructive 2D and 3D X-ray imaging of leaf venation (2018) Plant Methods, 14, p. 7; Jhala, V.M., Thaker, V.S., X-ray computed tomography to study rice (Oryza sativa L.) panicle development (2015) J Exp Bot, 66 (21), pp. 6819-6825; Niet, T., Zollikofer, C.P., León, M.S., Johnson, S.D., Linder, H.P., Three-dimensional geometric morphometrics for studying floral shape variation (2010) Trends Plant Sci, 15 (8), pp. 423-426; Stuppy, W.H., Maisano, J.A., Colbert, M.W., Rudall, P.J., Rowe, T.B., Three-dimensional analysis of plant structure using high-resolution X-ray computed tomography (2003) Trends Plant Sci, 8 (1), pp. 2-6; Staedler, Y.M., Masson, D., Schoenenberger, J., Plant tissues in 3D via X-ray tomography: simple contrasting methods allow high resolution imaging (2013) PLoS ONE, 8 (9); Tracy, S.R., Gomez, J.F., Sturrock, C.J., Wilson, Z.A., Ferguson, A.C., Non-destructive determination of floral staging in cereals using X-ray micro computed tomography (microCT) (2017) Plant Methods, 13, p. 9; Herremans, E., Verboven, P., Verlinden, B.E., Cantre, D., Abera, M., Wevers, M., Automatic analysis of the 3-D microstructure of fruit parenchyma tissue using X-ray micro-CT explains differences in aeration (2015) BMC Plant Biol, 15, p. 264; Dorca-Fornell, C., Pajor, R., Lehmeier, C., Pérez-Bueno, M., Bauch, M., Sloan, J., Increased leaf mesophyll porosity following transient retinoblastoma-related protein silencing is revealed by microcomputed tomography imaging and leads to a system-level physiological response to the altered cell division pattern (2013) Plant J Cell Mol Biol, 76 (6), pp. 914-929; Lehmeier, C., Pajor, R., Lundgren, M.R., Mathers, A., Sloan, J., Bauch, M., Cell density and airspace patterning in the leaf can be manipulated to increase leaf photosynthetic capacity (2017) Plant J Cell Mol Biol, 92 (6), pp. 981-994; Schneider, C.A., Rasband, W.S., Eliceiri, K.W., NIH Image to ImageJ: 25years of image analysis (2012) Nat Methods, 9 (7), pp. 671-675; Doube, M., Klosowski, M.M., Arganda-Carreras, I., Cordelieres, F.P., Dougherty, R.P., Jackson, J.S., BoneJ Free and extensible bone image analysis in ImageJ (2010) Bone, 47 (6), pp. 1076-1079; Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Fiji: an open-source platform for biological-image analysis (2012) Nat Methods, 9 (7), pp. 676-682; Giuliani, R., Koteyeva, N., Voznesenskaya, E., Evans, M.A., Cousins, A.B., Edwards, G.E., Coordination of leaf photosynthesis, transpiration, and structural traits in rice and wild relatives (genus Oryza) (2013) Plant Physiol, 162 (3), pp. 1632-1651; Legland, D., Devaux, M.-F., Guillon, F., Quantitative imaging of plants: multi-scale data for better plant anatomy (2018) J Exp Bot, 69 (3), pp. 343-347; Karunakaran, C., Lahlali, R., Zhu, N., Webb, A.M., Schmidt, M., Fransishyn, K., Factors influencing real time internal structural visualization and dynamic process monitoring in plants using synchrotron-based phase contrast X-ray imaging (2015) Sci Rep, 5, p. 12119; Keyes, S.D., Daly, K.R., Gostling, N.J., Jones, D.L., Talboys, P., Pinzer, B.R., High resolution synchrotron imaging of wheat root hairs growing in soil and image based modelling of phosphate uptake (2013) New Phytol, 198 (4), pp. 1023-1029; Koebernick, N., Daly, K.R., Keyes, S.D., George, T.S., Brown, L.K., Raffan, A., High-resolution synchrotron imaging shows that root hairs influence rhizosphere soil structure formation (2017) New Phytol, 216 (1), pp. 124-135; Hopkins, T.M., Heilman, A.M., Liggett, J.A., LaSance, K., Little, K.J., Hom, D.B., Combining micro-computed tomography with histology to analyze biomedical implants for peripheral nerve repair (2015) J Neurosci Methods, 255, pp. 122-130; Girard, R., Zeineddine, H.A., Orsbon, C., Tan, H., Moore, T., Hobson, N., Micro-computed tomography in murine models of cerebral cavernous malformations as a paradigm for brain disease (2016) J Neurosci Methods, 271, pp. 14-24