Zhao, Shizhen and Breivik, Knut and Jones, Kevin C and Sweetman, Andrew J (2018) Modelling the time-variant dietary exposure of PCBs in China over the period 1930 to 2100. Environmental Science and Technology, 52 (13). pp. 7371-7379. ISSN 0013-936X
4_PCB_human_exposure_20180526_clean.pdf - Accepted Version
Available under License Creative Commons Attribution-NonCommercial.
Download (538kB)
Abstract
This study aimed for the first time to reconstruct historical exposure profiles for PCBs to the Chinese population, by examining the combined effect of changing temporal emissions and dietary transition. A long-term (1930-2100) dynamic simulation of human exposure using realistic emission scenarios, including primary emissions, unintentional emissions and emissions from e-waste, combined with dietary transition trends was conducted by a multimedia fate model (BETR-Global) linked to a bioaccumulation model (ACC-HUMAN). The model predicted an approximate 30-year delay of peak body burden for PCB-153 in a 30-year-old Chinese female, compared to their European counterpart. This was mainly attributed to a combination of change in diet and divergent emission patterns in China. A fish-based diet was predicted to result in up to 8 times higher body burden than a vegetable-based diet (2010-2100). During the production period, a worst-case scenario assuming only consumption of imported food from a region with more extensive production and usage of PCBs would result in up to 4 times higher body burden compared to consumption of only locally produced food. However, such differences gradually diminished after cessation of production. Therefore, emission reductions in China alone may not be sufficient to protect human health for PCB-like chemicals, particularly during the period of mass production. The results from this study illustrate that human exposure is also likely to be dictated by inflows of PCBs via the environment, waste and food.