Plug-In Repetitive Control Strategy for High-Order Wide-Output Range Impedance-Source Converters

Wang, Yachao and Darwish, Ahmed and Holliday, Derrick and Williams, Barry W. (2017) Plug-In Repetitive Control Strategy for High-Order Wide-Output Range Impedance-Source Converters. IEEE Transactions on Power Electronics, 32 (8). pp. 6510-6522. ISSN 0885-8993

[thumbnail of IEEETPE2016_Plug_in_repetitive_control_strategy_for_high_order_wide_output_range_impedance_source_converters]
PDF (IEEETPE2016_Plug_in_repetitive_control_strategy_for_high_order_wide_output_range_impedance_source_converters)
Wang_etal_IEEETPE2016_Plug_in_repetitive_control_strategy_for_high_order_wide_output_range_impedance_source_converters.pdf - Accepted Version
Available under License Creative Commons Attribution-NonCommercial.

Download (2MB)


High-order wide-output (HOWO) impedance-source converters (ISCs) have been presented for ac inverter applications that require voltage step-up ability. With intrinsic passive impedance networks as energy sources, these converters are able to achieve voltage boosting with either polarity, leading to improved dc-link voltage utilization compared with the conventional two-level converter. However, HOWO-ISCs suffer from transfer functions giving low bandwidth, a penalty of increased passive devices and right-half-plane zeros, which result in lower order distortion of the ac output power. In this paper, a modified plugin repetitive control scheme is presented for HOWO-ISCs with accurate reference tracking (hence low distortion), fast dynamic response, and enhanced robustness. By using zero-phase-shift finite impulse response filters in both the internal model of the repetitive controller and its compensation network, the proposed method achieves zero steady-state error and an extended closedloop bandwidth. For HOWO-ISC cases, this method outperforms conventional proportional-integral (PI) control, which has considerable steady-state error. It also eliminates the need of parallel loops for several frequencies when proportional resonant control or orthogonal transformation-based PI schemes are used to remove lower order distortion. The design process and performance analysis of the proposed repetitive control strategy are based on a novel three-phase HOWO-ISC configuration with a reduced number of switches. Simulation and experimental results confirm the feasibility and effectiveness of the proposed control approach.

Item Type:
Journal Article
Journal or Publication Title:
IEEE Transactions on Power Electronics
Additional Information:
©2016 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Uncontrolled Keywords:
?? electrical and electronic engineering ??
ID Code:
Deposited By:
Deposited On:
23 May 2018 14:02
Last Modified:
31 Dec 2023 00:57