Lancaster EPrints

Non-linear kernel density estimation for binned data: convergence in entropy.

Blower, Gordon and Kelsall, Julia E. (2002) Non-linear kernel density estimation for binned data: convergence in entropy. Bernoulli, 8 (4). pp. 423-449. ISSN 1350-7265

Full text not available from this repository.

Abstract

A method is proposed for creating a smooth kernel density estimate from a sample of binned data. Simulations indicate that this method produces an estimate for relatively finely binned data which is close to what one would obtain using the original unbinned data. The kernel density estimate {\hat f}\, is the stationary distribution of a Markov process resembling the Ornstein-Uhlenbeck process. This {\hat f}\, may be found by an iteration scheme which converges at a geometric rate in the entropy pseudo-metric, and hence in L1\, and transportation metrics. The proof uses a logarithmic Sobolev inequality comparing relative Shannon entropy and relative Fisher information with respect to \hat f.

Item Type: Article
Journal or Publication Title: Bernoulli
Uncontrolled Keywords: binned data ; density estimation ; kernel estimation ; logarithmic Sobolev inequality ; transportation
Subjects: Q Science > QA Mathematics
Departments: Faculty of Science and Technology > Mathematics and Statistics
ID Code: 19254
Deposited By: ep_ss_importer
Deposited On: 14 Nov 2008 15:14
Refereed?: Yes
Published?: Published
Last Modified: 09 Oct 2013 13:12
Identification Number:
URI: http://eprints.lancs.ac.uk/id/eprint/19254

Actions (login required)

View Item