Items where Author is "Letchford, A. N."

Group by: Item Type | No Grouping
Number of items: 12.

Journal Article

Letchford, A. N. and Lodi, A. (2003) Primal separation algorithms. 4OR: A Quarterly Journal of Operations Research, 1 (3). pp. 209-224. ISSN 1619-4500

Letchford, A. N. and Lodi, A. (2002) Primal cutting plane algorithms revisited. Mathematical Methods of Operational Research, 56 (1). pp. 67-81. ISSN 1432-2994

Letchford, A. N. and Lodi, A. (2002) Strengthening Chvatal-Gomory cuts and Gomory fractional cuts. Operations Research Letters, 30 (2). pp. 74-82. ISSN 0167-6377

Letchford, A. N. (2002) Totally tight Chvatal-Gomory cuts. Operations Research Letters, 30 (2). pp. 71-73. ISSN 0167-6377

Letchford, A. N. (2001) On disjunctive cuts for combinatorial optimization. Journal of Combinatorial Optimization, 5 (3). pp. 299-315. ISSN 1382-6905

Letchford, A. N. (2000) Separating a superclass of comb inequalities in planar graphs. Mathematics of Operations Research, 25 (3). pp. 443-454. ISSN 0364-765X

Letchford, A. N. (1999) The general routing polyhedron : a unifying framework. European Journal of Operational Research, 112 (1). pp. 122-133. ISSN 0377-2217

Eglese, R. W. and Letchford, A. N. (1998) The rural postman problem with deadline classes. European Journal of Operational Research, 105 (3). pp. 390-400. ISSN 0377-2217

Letchford, A. N. (1997) New inequalities for the general routing problem. European Journal of Operational Research, 96 (2). pp. 317-322. ISSN 0377-2217

Clarke, David D. and Letchford, A. N. (1995) Rules from behaviour : the use of a computational 'rule-finder' as a tool for social psychology. British Psychological Society Social Psychology Section Newsletter, 33. pp. 4-13.

Contribution in Book/Report/Proceedings

Eglese, R. W. and Letchford, A. N. (2000) Polyhedral theory for arc routing problems. In: Arc Routing : Theory, Solutions and Applications. Kluwer Academic Publishers, Dordrecht, pp. 199-230. ISBN 0792378989

Monograph

Galli, L and Letchford, A. N. (2011) Reformulating mixed-integer quadratically constrained quadratic programs. Working Paper. The Department of Management Science, Lancaster University.

This list was generated on Thu Apr 24 12:24:29 2025 UTC.