Extended Object Tracking Using Monte Carlo Methods.

Angelova, D and Mihaylova, L (2008) Extended Object Tracking Using Monte Carlo Methods. IEEE Transactions on Signal Processing, 56 (2). pp. 825-832. ISSN 1053-587X

[img]
Preview
PDF (IEEE_TR_SP_2007.pdf)
IEEE_TR_SP_2007.pdf

Download (1MB)

Abstract

Abstract—This paper addresses the problem of tracking extended objects, such as ships or a convoy of vehicles moving in urban environment. Two Monte Carlo techniques for extended object tracking are proposed: an Interacting Multiple Model Data Augmentation (IMM-DA) algorithm and a modified version of the Mixture Kalman Filter (MKF) of Chen and Liu [1], Mixture Kalman Filter modified (MKFm). The DA technique with finite mixtures estimates the object extent parameters, whereas an IMM filter estimates the kinematic states (position and speed) of the manoeuvring object. Next, the system model is formulated in a Partially Conditional Dynamic Linear (PCDL) form. This affords us to propose two latent indicator variables characterising, respectively, the motion mode and object size. Then a MKFm is developed with the PCDL model. The IMM-DA and the MKFm performance is compared with a combined IMM-Particle Filter (IMM-PF) algorithm with respect to accuracy and computational complexity. The most accurate parameter estimates are obtained by the DA algorithm, followed by the MKFm and PF.

Item Type: Journal Article
Journal or Publication Title: IEEE Transactions on Signal Processing
Additional Information: "©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE." "This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder."
Uncontrolled Keywords: /dk/atira/pure/researchoutput/libraryofcongress/qa75
Subjects:
Departments: Faculty of Science and Technology > School of Computing & Communications
ID Code: 993
Deposited By: Dr L Mihaylov
Deposited On: 21 Jan 2008 14:02
Refereed?: Yes
Published?: Published
Last Modified: 18 Aug 2019 00:57
URI: https://eprints.lancs.ac.uk/id/eprint/993

Actions (login required)

View Item View Item