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Abstract⎯ Evolving Takagi-Sugeno (eTS) fuzzy 
models and the method for their on-line identification 
has been recently introduced as an effective tool for 
design of flexible system models with minimum a priori 
information. Their structure develops on-line during the 
process of model identification itself. In this paper, this 
approach has been extended for the case of multi-input-
multi-output (MIMO) system model. Both parts of the 
identification algorithm, namely the unsupervised fuzzy 
rule-base antecedents learning by a recursive, non-
iterative clustering, and the supervised linear sub-model 
parameters learning by Kalman-filtering-based 
procedure, are extended for the MIMO case. The radius 
of influence of each fuzzy rule is considered a vector 
instead of a scalar as in the original eTS approach, 
allowing different areas of the data space to be covered 
by each input variable. As in the eTS, in MIMO eTS, 
the rule-base and parameters of the fuzzy model 
continually evolve by adding new rules with more 
summarization power and by modifying existing rules 
and parameters. Simulation results using a well-known 
benchmark are considered in this paper. Further 
investigation concern the application of MIMO eTS to 
predictive modeling of the speech spectrum magnitude, 
classification of multi-channel source modulation etc. 

I. INTRODUCTION 

For many practical engineering problems the so-called 
first principle models are difficult or impossible to build 
[1]. Black-box models offer a solution, but they do not give 
much insight into the system being modeled. Fuzzy rule-
based models and especially so-called Takagi-Sugeno 
models have gained significant impetus during the last 
decade because of their computational efficiency and 
transparency [10]. 

They have a pseudo-linear nature and utilize the idea of 
approximation of a nonlinear system by a collection of 
fuzzily blended linear sub-models. The TS model 
representation often provides efficient and computationally 
attractive solutions to a wide range of modeling problems 
capable to approximate nonlinear dynamics, multiple 

operating modes and significant parameter and structure 
variations [10]. 

In the off-line case all of the data is available at the start 
of the process of training and the learning involves 
consecutive structure and parameter identification [5,10]. 
Structure identification includes estimation of the focal 
points of the rules (antecedent parameters) by fuzzy 
clustering.  With fixed antecedent parameters, the TS model 
transforms into a linear model.  Parameters of the linear 
models associated with each of the rule antecedents are 
obtained by pseudo-inversion or by applying the Recursive 
Least Square (RLS) method [4]. Alternatively, the 
antecedent parameters can be considered as initial estimates 
only, while the structure and parameters are optimized 
using back-propagation [6] or genetic algorithm [9]. The 
original TS model [10] concerns MISO model. It has been 
later generalized into MIMO structure by a cascade 
composition [7]. 

The continuous on-line learning of TS models is based 
on recursive, non-iterative clustering method responsible 
for model structure (rule base) learning on-line and 
recursive linear model parameter estimation [3]. If, in 
addition, assume that the model structure is not known a 
priori, but instead it evolves gradually (it should be noted 
that this evolution is much slower than the evolution of the 
model parameters) then we come to the concept of eTS [1-
3]. The eTS use the informative potential of the new data 
sample (accumulated spatial proximity measure) as a 
trigger to update the rule-base [1-3]. The eTS learning 
algorithm is robust (outliers have no chance to become rule 
centers because of the way of its definition). An additional 
mechanism for ensuring a gradual change of the rule-base 
structure and inheritance of the structural information is the 
replacement of a rule center by a new data sample [1-3]. 

It is important to note that learning could start without a 
priori information and only a single data sample. This 
interesting feature makes the approach potentially very 
useful in autonomous and smart adaptive systems [1].  

The concept of eTS modeling [1] is further developed 
here in respect to on-line identification of MIMO systems. 
The rest of the paper is organized as follows. The problem 
of identification of MIMO TS models is presented in 
section II. Two alternative ways (globally and locally 



optimal) of calculation of the consequent parameters are 
presented. A new vector definition of the radii of influence 
of the fuzzy sets is introduced. The approach for on-line 
learning MIMO eTS models is represented in section III. 
Section IV studies simulation results. Concluding remarks 
are given in section V. 

II. IDENTIFICATION OF MIMO TS FUZZY MODEL  

Sugeno and coworkers [10] have introduced the first 
systematic method for identification of fuzzy models. It 
concerns a special group of rule-based models with fuzzy 
antecedents and functional consequent, called briefly TS 
models that follow from the Takagi-Sugeno-Kang 
reasoning method: 
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In this paper, we consider a MIMO extension of the TS 
model, were the output is multidimensional. This results in 
the set of equations similar to (1) with the important 
difference in the variable definition, namely yi now denotes 
the multidimensional vector output of the ith linear sub-
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are its parameters. 

At the heart of the TS method for fuzzy modeling is the 
segmentation of the data space into fuzzily defined regions. 
The fuzzy regions are parameterized and each region is 
associated with a linear sub-system. As a result, the 
nonlinear system forms a collection of loosely (fuzzily) 
coupled (blended) multiple linear models. The degree of 
firing of each rule is proportional to the level of 
contribution of the corresponding linear model to the 
overall output of the TS model.  Without loss of generality 
we use Gaussian antecedent fuzzy sets, which ensures 
greatest possible generalization of the description:  
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where r is a positive constant, which defines the radius of 
the antecedent and the zone of influence of the ith model; 

*ix is the focal point of the ith
  rule antecedent. 

The radius r is one of the few parameters of the 
algorithm, which needs to be pre-defined. Its value is an 
important leverage for a trade-off between the model 
complexity and precision [8]. As a general guidance, too 
large values of r lead to averaging, too small - to over-
fitting. A value of r in the range of [0.3; 0.5] has been 
recommended [1-3,8]. Since the parameters of the linear 
models are boundless, there is no need for normalization of 
the inputs. However, when the values of inputs differ 
significantly a vector representation of the radius gives 
more flexibility and can compensate the weights of the 
projections of the distance between a data point and a rule 
center on different inputs: 

  T
nrrrr ],...,,[ 21=           (3) 

The vector of radii can be expressed as a proportion of the 
expected range of each variable: 

)( xxrr −=            (3a) 

where T
nxxxx ],...,,[ 21= is the vector of expected 

maximums of the inputs; T
nxxxx ],...,,[ 21= is the vector 

of expected minimums of the inputs; the recommended 
value for r is [0.3; 0.5]. 

It should be noted that in on-line mode one could only 
expect the range of each of the inputs, but the precise 
values of xand x are not critically important as they are 

compensated to some extend by the value of r , and 
ultimately by the boundless consequent parameters. 

In this paper we use different radii for each of the input 
variables: 
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The TS model output is calculated by weighted averaging 
of individual rules' contributions: 
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of the ith rule; 
It can be represented in a vector form as:  
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where [ ]TTRTT )(,...,)(,)( 21 πππθ = is a vector composed 
of the linear model parameters; 
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are weighted by the normalized firing levels of the rules. 
For a given set of input-output data ( T

kx , yk), k=[1, TD], 
TD is the number of training data samples (in off-line mode 
they are fixed) and fixed antecedent parameters the vector 
of sub-model parameters θ  should minimize the following 
objective function: 
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The optimal solution can be estimated by the RLS 
algorithm called also the Kalman filter [4,10]. The 
objective function (5) is globally optimal, but this does not 
guarantee locally adequate behavior of the sub-models that 
form the TS model [3,11]. Locally meaningful sub-models 
could be found using the locally weighted objective 
function [3]: 
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A set of solutions to individual cost functions JLi associated 
with each rule can be recursively calculated through the 
weighted RLS (wRLS) algorithm [3]. 

III. ON-LINE LEARNING OF MIMO ETS MODELS 

In on-line mode, the training data are collected 
continuously, rather than being a fixed set. On-line learning 
of eTS models includes recursive clustering under 
assumption of a gradual change of the rule-base and wRLS 
method [3].  

The on-line clustering procedure starts (stage 1) with the 
first data point established as the focal point of the first 
cluster (i=1). Its coordinates are used to form the 
antecedent part of the fuzzy rule (1) using for example 
Gaussian membership functions (2). Its potential, P  is 
assumed equal to 1.  
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where *1z is the first cluster center; *1x is focal point of 

the first rule being a projection of *1z  on the axis x. 
Starting from the next data point (k:=k+1) onwards 

(stage 2 in a loop) the potential of the new data points ( kz ) 
is calculated recursively. As a measure of the potential, we 
use a Cauchy type function of first order: 
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where )( kk zP denotes the potential of the data point (zk) 

calculated at time k; j
k

j
i

j
ik zzd −= , denotes projection of 

the distance between two data points ( j
iz and j

kz ) on the 
axis zj (xj for j=1,2,…,n and on the axis y for j=n+m). 

It should be noted that since we consider MIMO system 
each data sample is (n+m) dimensional. 

Potential of the new data sample is recursively calculated 
at stage 3 in the same loop as follows: 
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Parameters kϑ  and kν  in (9) are calculated from the 

current data point zk, while j
kβ  and kσ  are recursively 

updated as follows: 
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After the new data are available in on-line mode, they 
influence the potentials of the centers of the clusters ( *lz , 
l=1,2,...,R), which are respective to the focal points of the 
existing rules ( *lx , l=1,2,...,R). The reason is that by 
definition the potential depends on the distance to all data 
points, including the new ones (the sum in the denominator 
by i in (8) has an increasing number of components). 

At stage 4 in the same loop the potentials of the focal 
points of the existing clusters are updated recursively: 
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where Pk( *lz ) is the potential of the l-th cluster *lz , which 
is a prototype of the lth rule at time k. 

At stage 5 in the loop the potential of the new data point 
is compared to the updated potential of the centers of the 
existing clusters and a decision whether to modify or up-
grade the rule-base is taken. The evolution of the rule-base 
is driven by the following two basic principles: 

Principle 1 (REPLACE):  

IF the potential of the new data point (zk) is higher than the 
potential of the existing rule centers: 
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AND zk is close to an existing rule center given by: 
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THEN the new data point (zk) replaces this center (let us 
suppose that it has index j): 
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Principle 2 (ADD):  

IF only (11) is satisfied but not (12)  
THEN the new data point is added to the rule-base as a 
new center and a new rule is formed with a focal point 
based on the projection of this center on the axis x 
(R:=R+1; k

R xx =* ). 
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 In eTS the rule-base gradually evolves [1-3]. Therefore 
the normalized firing strengths of the rules (λi) change, 
which affects all the data (including the data collected 
before time of the change). Therefore, the straightforward 
application of the RLS or wRLS is not correct [3]. A 
resetting of the covariance matrices and parameters 
initialization of the RLS is made at each time a new (R+1)th 
rule is added to the rule base estimating them as a weighted 
average of the respective covariance and parameters of the 
remaining R rules [3].  

In case when the globally optimal objective function is 
minimized (5) the following RLS procedure is applied 
(stage 6 in the loop): 
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When a new rule is added (ADD) to the rule-base, the 
RLS is reset in the following way [3]: 

i) Parameters of the new rule are determined by the 
weighted average of the parameters of the other rules. The 
weights are the normalized firing levels of the existing 
rules iλ . Parameters of the other rules are inherited from 
the previous step [3]: 
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ii) Co- variance matrices are reset as: 
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where ijς , i=1,2,..,R(n+1); j=1,2,..,R(n+1) is an element 

of the covariance matrix; 
2
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When a rule is replaced (REPLACE) with another one 
the covariance matrices are inherited from the previous 
time step. 

Finally, in the same loop at stage 7 having the estimated 
parameters of the linear sub-models we can predict the next 
value of the outputs in on-line: 
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In case the locally optimal objective function (8) is 
minimized, the local parameter estimation is based on 
wRLS (stage 6 in the loop): 
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In this case, the covariance matrices are separate for each 

rule and have smaller dimensions 
( RiRc nni

k ,...,2,1;)1()1( =∈ +×+ ). Parameters of the newly added 
rule (when ADD is activated) are determined as weighted 
average of the parameters of the rest R rules by (18). 
Parameters of the other R rules are inherited 
( Rii

k
i
k ,...,2,1;: 1 == −ππ ). When a rule is replaced by 

another rule (when REPLACE is activated) then parameters 
of all rules are inherited ( Rii

k
i
k ,...,2,1;: 1 == −ππ ). The 

covariance matrix of the newly added rule (ADD) is 
initialized by:  
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The covariance matrices of the rest R rules are inherited 
( Ricc i
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The recursive procedure for on-line learning of MIMO 
eTS models includes the following stages: 
Stage 1: Initialization of the rule-base structure. 
Stage 2: Reading the next data sample. 
Stage 3: Recursive calculation of the potential of each new 

data sample. 
Stage 4: Recursive up-date of the potentials of existing 

centers.  
Stage 5: Comparison of the potentials of the new data 

sample and the existing centers. Evolution of the 



rule-base structure based on the closeness of the 
new data point to the existing focal points. 

Stage 6: Recursive calculation of the consequent 
parameters. 

Stage 7: Prediction of the outputs for the next time step 
using the MIMO eTS model. 

                              
                       
                       
                       
                       
                       
                       
                       
                       
                       
                       
                       
                       
                       
                 
 

 

 

 

 

 

 

 

 

 

Fig. 1 Flow chart of the algorithm of eTS learning 

IV. EXPERIMENTAL RESULTS 

The proposed approach has been tested on a benchmark 
problem: prediction of the Mackey-Glass chaotic time 
series, which is generated from the differential delay 
equation defined by [2,3,5]: 
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The aim is using the past values of v to predict future 
values of v. The value of the signal 6, 12 and 85 steps ahead 
y=[v(t+6), v(t+12), v(t+85)] is predicted based on the 
values of the signal at the current moment, 6,12, and 18 
steps back: x=[v(t-18),v(t-12),v(t-6),v(t)]T. The only 
parameters pre-specified in the algorithm are r =0.4 (the 
same is used in both [3] and [8]) and Ω=109. 

The training set consists of the first 300 data samples 
only and the validation set consists of the next 500 data 
samples. It should be noted that the learning mechanism is 
not active for the validation unlike [8]. During validation 
the rule set consists of the 11 rules generated in the training 
phase from scratch based on the data only and no a priori 
information. Moreover, the parameters of the linear sub-
models (consequent) are also fixed (the Kalman filters are 
not active). The non-dimensional error index defined as the 
ratio of the root mean square error over the standard 
deviation of the target data is used to evaluate the model 
performance in both training and validation phase (NDEIt, 
RMSEt; NDEIv, NDEIv).  

The results (Table 1, Figures 2 and 3) illustrate that the 
MIMO eTS can efficiently predict a vector of outputs (in 
this case the value of the chaotic signal 6, 12, and 85 steps 
ahead simultaneously) using a transparent fuzzy rule-based 
model.  

TABLE 1  PREDICTION ERROR AND NUMBER OF RULES (MIMO ETS - 
FIRST 3 ROWS; ETS [3] - NEXT ROW (SAME - SCENARIO C [8]; DIFFERENT 
SCENARIA OF ETS [8] REMAINING 4 ROWS) 

Error RMSEt NDEIt RMSEv NDEIv R 
y1=v(t+6) 0.0771 0.3428 0.0726 0.3203 11 
y1=v(t+12) 0.0925 0.4114 0.0893 0.3941 11 
y1=v(t+85) 0.1015 0.4479 0.1039 0.4547 11 
[3] /[8],C 0.0855 0.3775 0.0867 0.3827 19 

[8], D 0.0962 0.4250 0.0939 0.4146 6 
[8], E 0.0827 0.3654 0.0802 0.3542 15 
[8], F 0.0726 0.3208 0.0721 0.3183 17 
[8], G 0.0865 0.3820 0.0848 0.3744 11 

 
Fig. 2 MIMO eTS model training in prediction 6, 12, and 85 
steps ahead. Mackey Glass chaotic time series - dots; MIMO eTS 
output 1 - solid line on the top plot; output 2 - dashed line on the 

middle plot; output 3 - dotted line on the bottom plot. 
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The fuzzy rule-based model has evolved to 11 rules 
formed around data samples with indices {1; 
42;43;44;45;89;93;94;95;96;97} during the very short 
training phase (300 samples, while in [3] and [8] 3000 
training samples are used. It should also be noted that 
during the validation the rule base and the sub-model 
parameters have been fixed unlike [8]. Since the 
identification is on-line even during the training phase the 
model is used for prediction of unseen data sample, 
therefore the experimental set-up used in [8] is perfectly 
fair. The process of model evolution, however, is not 
stopped there, which requires on-line supply of training 
samples for the output, which is not always feasible. 
Therefore, here we have adopted a more harsh validation 
set-up, which is the same as in the off-line model training - 
exposure of the trained model to unseen samples with 
fixing its structure and parameters. Therefore, the results in 
Table 1 are less favorable for 85 steps ahead prediction (the 
same used in [3] and [8]) for the MIMO eTS, though they 
are better for the other two predicted cases. But notably 
they are of the same order of magnitude. The number of 
rules generated using MIMO model is similar to the number 
of rules generated using eTS [3], [8]. It should be noted that 
in MIMO eTS the same set of rules is used to predict three 
different outputs and the data space dimension is higher. 

 

 
Fig. 3 MIMO eTS model validation in prediction 6, 12, and 85 

steps ahead. Same symbols as in the above figure. 

V. CONCLUDING REMARKS 

The concept of evolving Takagi-Sugeno models (eTS) has 
been further developed in this paper for the case of MIMO 
systems. The radii of influence of the fuzzy sets are defined 
as a vector, which gives more flexibility in the problem 
definition. Using the approach, a transparent, compact and 
accurate model can be found by rule base evolution based 
on experimental data with the simultaneous recursive 
estimation of the fuzzy set parameters. It should be noted 
that all steps of the algorithm are non-iterative.  
The main advantages of the approach are: 

 it can develop/evolve an existing model when the data 
pattern changes; 

 it can start to learn a process from a single data 
samples and improve the performance of the model 
predictions on-line; 

 it is non-iterative and recursive and hence 
computationally very effective. 

The results illustrate the viability, efficiency and the 
potential of the approach when used with a limited amount 
of initial information, especially important in autonomous 
systems and robotics.  Further investigation concern the 
application of MIMO eTS to predictive modeling of the 
speech spectrum magnitude, classification of multi-channel 
source modulation etc. 
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