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ABSTRACT

We consider the following general problem of applied stochastic nonlinear dynamics (see e.g.1). We observe a
time series of signals y(t) = y(t0 + hn) corrupted by noise. The actual state and the nonlinear vector field of
the dynamical system is not known. The question is how and with what accuracy can we determine x(t) and
functional form of f(x). In this talk we discuss a novel approach to the solution of this problem based on the
application of the path-integral approach to the full Bayesian inference. We demonstrate a reconstruction of
a dynamical state of a system from corrupted by noise measurements. Next we reconstruct the corresponding
nonlinear vector field. The emphasis are on the theoretical analysis. The results are compared with the results
of earlier research.
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1. INTRODUCTION

We consider the following typical experimental situation. A corrupted by noise measurement y(t) = y(t0 + hn)
represents time evolution of an unknown dynamical system measured at each h seconds starting at some time
t0. In a particular case of a continuous dynamical system this situation can be usually modelled as follows

ẋ = f(x|c) +
√

D̂ξ(t), (1)

y = Γ̂x +
√

M̂η(t), (2)

where x ∈ RL is an unknown L-dimensional state vector of a dynamical system, which continuous stochastic
dynamics is modelled by equation (1) represent with essentially nonlinear unknown vector field f(x|c). The
system is driven by white Gaussian noise ξ with diffusion matrix D̂. The second equation (2) represents the
model of measurements with white Gaussian noise η(t) mixed by the measurement noise M̂. The vector of
measurements y ∈ RK has in general dimension K < L and therefore Γ̂ is K × L the measurement matrix.

Such situation is typical in a broad range of applications, including e.g. physics,2 biology,3 and ecology4 to
mention a few.

The central problem in parametric model reconstruction (i.e. when the dimension of the unknown dynamical
model is given and fixed) is to infer: (i) unknown dynamical state x(t), (ii) unknown nonlinear stochastic
dynamical model f(x|c), and (iii) to estimate accuracy of the reconstruction.

Owing to broad range of applications this problem has received much attention recently in the statistical
physics and applied stochastic dynamics communities.5, 6 However, there is no currently general efficient al-
gorithm that can reconstruct unknown state and model of nonlinear dynamical system from noisy incomplete
measurements (see e.g. a collection of publications on7 and the corresponding classification of the algorithms).
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The main difficulty in the reconstruction of stochastic nonlinear systems stems, of course, from the fact that
there are no efficient method to estimate probabilities for a nonlinear system to have a given dynamical state and
given model parameters. The bulk of methods developed in earlier work can be, accordingly, roughly divided
into two main streams of algorithms. One is based on various linearizations (e.g. Kalman Filter) a and another
based on extensive numerical calculations (e.g. Markov Chains Monte Carlo (MCMC))

An important numerical technique, based on the estimation of the drift and diffusion coefficients at a number
of points in the phase space of the dynamical system, was suggested in.8–10 This method was further extended
in11 to an analysis incorporating dynamical and measurement noise. These results allow, at least in principle,
subsequent application of the least-squares method for the estimation of the model parameters. Such an empirical
method, however, requires a considerable amount of data and an intensive computational effort even for a simple
stochastic equation. In particular, if measured trajectory does not pass through the same point in the phase
space a number of times the method will fail to estimate drift coefficient. A more general theoretical approach
is therefore very desirable.

The most general approach to the solution of this problem is arguably based on Bayes’ theorem.12–14 In
particular, it was shown in13 that parameters of stochastic map with weak measurement noise can be estimated
using extended Kalman filter with subsequent application of the MCMC algorithm. The approach discussed
in13 in fact highlights the advantages and disadvantages of the algorithms introduced in earlier work on the
nonlinear model reconstruction. The algorithms work well when the system is discrete, the noise is small, the
number of measured points is less then few thousands, the model has known functional form, and one has to
estimate only a few model parameters. If any of these simplifications is lifted, the algorithm becomes much less
reliable and/or very expensive numerically. In particular, the results obtained in12–14 for the maps can not be
immediately adopted to the continuous systems, because of the dynamical noise-induced systematic error of the
Bayesian estimators introduce in earlier work.

As we will show, a prefactor accounting for the Jacobian of the transformation has to be included in the
likelihood function in the continuous case. Such a prefactor was considered in15 in the context of Bayesian
inference for continuous systems; however, an ad hoc likelihood function was used in this paper instead of the
correct form derived here. As a result a number of additional limitations on the measured data points and on
the initial conditions had to be imposed in this work to obtain good estimation.

A common drawback of these earlier works is their reliance on extensive numerical optimization for finding
the minimum of some cost function and intensive numerical multi-dimensional integration for evaluating certain
normalization constants. These disadvantages become increasingly more pronounced when systems with ever
larger numbers of unknown parameters are investigated.

In our earlier work16 we have introduced a novel algorithm that does not require extensive global optimization,
provides optimal compensation for noise-induced errors, and is robust for a broad range of dynamical models.
The key features of the suggested algorithm were the following: (i) a likelihood function written in the form
of a path-integral over stochastic system trajectories, properly accounting for the Jacobian prefactor term that
optimally compensates for dynamical noise; (ii) a parametrization of the unknown vector field that reduces the
problem of nonlinear dynamical inference to an essentially linear one. These features allowed us to write an
efficient Bayesian inference algorithm for nonlinear noise-driven dynamical models. However, it was assumed
that the measurement noise is absent, i.e. the dynamical state of the system (1) is known.

In this paper, we extend our technique for inferring the parameters of nonlinear stochastic dynamical systems
and encompass the case of arbitrary strong measurement noise. The method is based on the global optimization
of the likelihood function using conjugate gradient algorithm. In doing so we avoid the limitation on a small
measurement noise introduced by the linearization in the extended Kalman filter algorithm.13 Because of
the correct analytical form of the likelihood function the corresponding gradient and the Hessian matrix can
be calculated analytically. This allows us to write a very fast and efficient algorithm for optimization of the
likelihood function in the multidimensional space of stochastic dynamical trajectories. The dynamical trajectory
with filtered out measurement noise can then be used to infer model parameters.

The paper is organized as follows. In the Sec. 2 we discuss the analytical results of the two step optimization
procedure. In the Sec. 3 we illustrate the performance of the algorithm using as an example a stochastic
FitzHugh-Nagumo system. Finally, we discuss the obtained results in the Sec. 4.



2. THEORY

As we have mentioned above, in a typical experimental situation where the noisy trajectory x(t) of a dynamical
system is measured at sequential time instants a series Y = {yn ≡ y(tn); n = 0, 1, . . . , N} is obtained. The
goal of reconstruction of stochastic dynamical systems from noisy measurements is then to find both: (i) the
probability density function ρ(X|Y) to have a given stochastic trajectory X = {xn ≡ x(tn); n = 0, 1, . . . , N}
conditioned on observation and (ii) the conditional probability density function ρ(M|Y) for the complete set
M = {c, D̂, M̂} of unknown parameters.

The key to the solution of this problem is to find the correct form of the sampling distribution or likelihood
function �(Y|X ,M) to have given set of observations Y under the condition that the stochastic dynamical
trajectory X and the model M are known. In our earlier work16 (see also17 for further discussion and an
example of application) we have assumed that there is no measurement noise, i.e. the state of the dynamical
system is known. Consequently, we have use the model of observation in the form of product of delta-functions
po(Y|X ) � ∏N

n=0 δ(yn − xn) and integrated dynamical variables out of the likelihood function. However, in
general the presence of measurement noise this is not possible, because dynamical model (1) is essentially
nonlinear in x(t).

In this paper we extend our earlier results and introduce explicitly the model of measurements with arbitrary
large measurement noise. The complexity of the reconstruction problem is substantially increased in this case,
since both the state and the model are now unknown. The state of the dynamical system has now to be found
in a multidimensional space of stochastic dynamical trajectories. In traditional approach to the solution of this
problem (see e.g.4, 13, 14 and7 for further references) two basic techniques were exploit: linearization and extensive
numerical calculations. Accordingly, the stronger is the measurement noise and the larger is the dynamical model
these techniques become less and less reliable. Furthermore, results of the earlier work are mainly related to
the maps and can not be immediately applied to the continuous systems, in which dynamical noise introduces
additional systematic error in parameters estimation. Here we provide an analytical solution of this problem,
which is stable both for strong noise and high-dimensional model space.

The main steps of the method include: (i) discretization of the model and writing an explicit analytical form
of the likelihood function; (ii) global optimization of the likelihood function in the space of stochastic dynamical
trajectories conditioned on given model parameters; (iii) analytical calculation of the probability density function
for the model parameters conditioned on a given stochastic dynamical trajectory. Two last steps can be repeated
iteratively until convergence is achieved.

Below we consider this procedure in details.

2.1. The likelihood function

A convenient framework for derivation of the correct form of the likelihood function is a pre-point Euler dis-
cretization scheme of the model (1), (2) in the form

xn+1 = xn + h f(x∗
n|c) + zn,

yn = Γ̂xn + νn,

}
(3)

where we have adopted a uniform sampling scheme tn = t0+nh with constant and small time step h ≡ (tN−t0)/N .
In the notations of (3) x∗

n ≡ 1
2 (xn+1+xn) while zn and νn are independent, zero-mean Gaussian random variables

with 〈zn zT
n′〉 = h D̂ δnn′ and 〈νn νT

n′〉 = M̂ δnn′ .

Then the sampling distribution can be factorized as a product of two main factors

�(Y|X ,M) = po(Y|X )FM[x(t)], (4)

where po(Y|X ) represents the conditional probability density of observations and FM[x(t)] is the probability
density functional to have given dynamical trajectory conditioned on fixed values of the model parameters.



The conditional probability density of observations can be readily written in the form

po(Y|X ) =
N∏

n=0

1
√

(2πh)L|M̂|
exp

(
−1

2
[yn − Γ̂xn]T M̂−1 [yn − Γ̂xn]

)
, (5)

The explicit form of the probability density functional FM[x(t)] has been given in.18–21 Here for convenience
of the reader we derive this results for a particular case (3). The starting point of the derivation is an observation
that probability of a particular realization of the random noise process is simply given by

P[{zn}] =
N−1∏

n=0

dzn√
(2πh)L|D̂|

exp
(
− 1

2h
zT

n D̂−1 zn

)
. (6)

Changing to dynamical variables using (3), we obtain the PDF for the system (1) to have an arbitrary dynamical
trajectory {xn} in the form

FM[{xn}] = ps(x0)J({xn})

×
N−1∏

n=0

1
√

(2πh)L|D̂|
exp

(
− 1

2h
[ẋn − f(x∗

n|c)]T D̂−1 [ẋn − f(x∗
n|c)]

)
, (7)

where ps(x) signifies the stationary distribution of x(t), ẋn ≡ (xn+1 − xn)/h is the “velocity”, and the Jacobian
of the transformation is given by

J({xn}) =
∣∣∣
∣

{
∂zln

∂xl′n′

}∣∣∣
∣ �

N∏

n=1

L∏

l=1

[
1 − h

2
∂fl(x∗

n|c)
∂xln

]
� exp

[

−h

2

N∑

n=1

tr Φ̂(x∗
n|c)

]

, (8)

approximated to leading order in h, with Φll′(x|c) ≡ ∂fl(x|c)/∂xl′ .

With these substitutions, (4) is easily evaluated, yielding

− 2
N

ln �(Y|M) = − 2
N

ps(y0) + 2L ln(2πh) + ln |D̂| + ln |M̂|

+
1
N

N∑

n=0

[yn − Γ̂xn]T M̂−1 [yn − Γ̂xn] +
h

N

N−1∑

n=0

{
tr Φ̂(xn|c) + [ẋn − f(x∗

n|c)]T D̂−1 [ẋn − f(x∗
n|c)]

}
. (9)

It is important to note that this likelihood function is asymptotically exact in the limit h → 0 and N → ∞ while
T = Nh remains constant.

It is the term tr Φ̂(yn|c) in the above that provides optimal compensation for the detrimental effects of
dynamical noise, and distinguishes our likelihood function from those introduced in earlier works. Formally, this
term emerges from the path integral as the Jacobian of the transformation from noise variables to dynamical
variables.19, 22

2.2. Global optimization in the space of dynamical trajectories
To find the global minimum of the minus likelihood function (13) derived above in the space of dynamical
trajectories we employ a conjugate gradient method.23 The computational efficiency is achieved by analytical
calculations of the gradient and the Hessian matrix of S = − ln �(Y|M).

The gradient function is given by the following expression

∂S

∂xn
= −(yn − Γxn)T M̂−1Γ

+
h

2
∂

∂xn

[
tr Φ̂(xn|c)

]
+ [ẋn−1 − f(x∗

n−1|c)]T D̂−1 − h[ẋn − f(x∗
n|c)]T D̂−1

[
Î/h +

∂f
∂xn

]
. (10)



The Hessian matrix has a tridiagonal block structure. In particular case of two dimensional dynamical model
it takes the form

Ĥ =






B̂00 B̂01 0̂ . . . 0̂ 0̂
B̂10 B̂11 B̂12 . . . 0̂ 0̂
. . . . . . . . . . . . . . . . . .

0̂ 0̂ 0̂ . . . B̂n−1,n B̂nn




 , (11)

where matrices B̂nm are given by the following expression

B̂nm =
∂S

∂xn∂xm
= ΓT M̂−1Γδnm +

h

2
∂

∂xn∂xm

[
tr Φ̂(xn|c)

]
δnm +

1
h
D̂−1δnm

+h

[
Î/h +

∂f
∂xn

]T

D̂−1

[
Î/h +

∂f
∂xn

]
δnm − h [ẋn − f(x∗

n|c)]T D̂−1

[
∂2f
∂x2

n

]
δnm

−h

[
Î/h +

∂f
∂xn−1

]T

D̂−1δm,n−1 − hD̂−1

[
Î/h +

∂f
∂xn

]
δm,n+1 (12)

2.3. The algorithm

Given a set of noisy observations Y we first minimize S with respect to X keeping fixed values for the model
parameters. According to the standard conjugate gradient procedure23 we follow steps:

1. choose initial values for the state vector X0 and choose initial directions d0 = −∇S(X0)

2. update values of the coordinates using X1 = X0 + αd0 where

α = − (dT
0 ∇S(X0)

)
/
(
dT

0 Ĥ(X0)d0

)

3. update direction, using

d1 = −∇S(X1) +
|∇S(X1)|2
|∇S(X0)|2 d0

Once the conjugate gradient algorithm has converged to some global minimum X in the space of dynamical
trajectories. We use this trajectory to infer model parameters in two steps as was described earlier in.16 In the
first step we assume that the diffusion matrix D̂ is known and infer model parameters c. In the second step we
infer D̂ for obtained values of c. This procedure is repeated until convergence is reached.

We start by writing an abbreviated likelihood function to have given dynamical trajectory X conditioned on
fixed model parameters M (cf.16)

− 2
N

ln �̃(Y|M) = L ln(2πh) + ln |D̂| + h

N

N−1∑

n=0

{
tr Φ̂(xn|c) + [ẋn − f(x∗

n|c)]T D̂−1 [ẋn − f(x∗
n|c)]

}
. (13)

Next we choose a prior model PDF that is Gaussian in c and uniform in D̂:

ppr(M) ∝
√

|Σ̂pr|
(2π)M

exp
[
−1

2
(c − cpr)T Σ̂pr (c − cpr)

]
, (14)

and apply Bayes theorem to obtain the posterior model PDF in the form ppost(M|X ) = const×exp[−S̃(M|X )],
where

S̃(M|X ) ≡ S̃X (c, D̂) =
1
2

ρX (D̂) − cT wX (D̂) +
1
2

cT Ξ̂X (D̂) c (15)



is the cost function whose global minimum yields the most probable model M∗. Here, use was made of the
definitions

ρX (D̂) = h

N−1∑

n=0

ẋT
n D̂−1 ẋn + N ln |D̂|, (16)

wX (D̂) = Σ̂pr cpr + h
N−1∑

n=0

[
ÛT

n D̂−1 ẋn − v(xn)
2

]
, (17)

Ξ̂X (D̂) = Σ̂pr + h
N−1∑

n=0

ÛT
n D̂−1 Ûn, (18)

where Ûn ≡ Û(xn), and the components of the vector v(x) are

vm(x) =
L∑

l=1

∂Ulm(x)
∂xl

, m = 1, . . . ,M. (19)

For a given block of data X of length N , the best estimates for the model parameters are given by the
posterior means of c and D̂, which coincide with the global minimum of SX (c, D̂). We handle this optimization
problem in the following way. Assume for the moment that c is known in (15); for the first iteration, take
c = cpr. Then, minimizing SX (c, D̂) with respect to D̂, we find that the posterior distribution over D̂ has a
mean

〈D̂〉 =
1
N

N−1∑

n=0

[
ẋn − Û(xn) c

] [
ẋn − Û(xn) c

]T
. (20)

Assume next that D̂ is known, and note from (15) that in this case, the posterior distribution over c is Gaussian.
Its covariance is given by Ξ̂X (D̂), and its mean

〈c〉 = Ξ̂−1
X (D̂)wX (D̂) (21)

minimizes SX (c, D̂) with respect to c. Thus, for the second iteration, cpr and Σ̂pr are replaced with 〈c〉 and
Ξ̂X (D̂), respectively. This two-step (analytical) optimization procedure is continued iteratively until convergence,
which is typically much faster than brute-force numerical optimization that has been attempted in earlier works.

3. NUMERICAL EXAMPLE

Consider as an example a nonlinear system with stable limit cycle in the form

ẋ1 = x2 − x2
1x2 + ξ1(t) ẋ2 = −x1 + 0.1(1 − x2

1)x2 + ξ2(t). (22)

The state of the dynamical system is unknown. We assume for simplicity that both coordinates where measured
with measurement noise of amplitude 0.4 in both coordinates, i.e.

yi(t) = xi(t) + 0.4νi(t), i = 1, 2.

Here the measurement matrix has the form Γ̂ = Î and measurement noise matrix has the form M̂ = 0.16Î.

We further assume that the vector field of (22) is unknown and model it as follows (cf.16)

f(x|c) = Û(x) c, (23)

where matrix Û has the form

Û =













φ1 0 . . . 0
0 φ1 . . . 0
...

...
. . .

...
0 0 . . . φ1














φ2 0 . . . 0
0 φ2 . . . 0
...

...
. . .

...
0 0 . . . φ2







. . .








φG 0 . . . 0
0 φG . . . 0
...

...
. . .

...
0 0 . . . φG














, (24)



Table 1. Convergence of some coefficients of the system (25). We have used one block of data with 40000 points.

coefficients true values inferred values updated values

c3 1 1.46 1.08
c4 0 -42.64 0.02
c10 -1 -10.93 -1.07
c11 0.1 -35.68 0.258
c15 0 1.82 0.005
c16 -0.1 -27.96 -0.17
D11 0.04 325 0.045
D12 0 6 0.006
D22 0.04 318 0.03

and the set of 8 known base function is taken to be

φ = {1;x1;x2;x2
1;x

2
2;x1x2;x3

1;x
2
1x2}.

In explicit form the model of the limit cycle system (22) takes the following form

ẋ1 =
8∑

i=1

c2i−1φi + ξ1(t) ẋ2 =
8∑

i=1

c2iφi + ξ2(t). (25)

We now apply algorithm described in the previous section to infer both the unknown state and vector field
field of this system. An example of corrupted by noise measurements of the (22) is shown in the Fig. 1(a). Our
technique allows to recover stochastic dynamics of the system (22) as shown in the Fig. 1(b) and to estimate
model parameters. The results of the estimations are shown in the Table 1.
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Figure 1. (a) Example of corrupted by noise measurements (22) with intensity of dynamical noise 〈ξ2
x(t)〉 = 0.1 and

〈ξ2
y(t)〉 = 0.2 and the amplitude of measurements noise 0.4 in both coordinates. (b) Recovered stochastic dynamics of the

system (22) (dotted line) is shown in comparison with the actual dynamical trajectory (solid line).

4. DISCUSSION

We introduce a novel technique of reconstruction of the unknown state and model of nonlinear stochastic dy-
namical systems from noisy incomplete measurements. The method is fast and efficient since it does not rely on



extensive numerical calculations. Another important advantage of this technique is that we avoid linearizations
and assume an arbitrary strong measurement noise.

In particular case of a dynamical system with global attractor such as Lorenz system or the one considered in
(22) the method allows for analytical solution of the problem. Specifically, the efficiency of the global optimization
in the multidimensional space of stochastic trajectories (with 40000 points in each trajectory) was achieved by
analytical calculations of the gradient and the Hessian of the likelihood function. We illustrate the convergence
of our algorithm by reconstructing the unknown dynamical state and 19 unknown model parameters of two-
dimensional dynamical system with stable limit cycle.

For a more general case the method can be generalized readily by supplementing the discussed algorithm
with simulated annealing technique.

In its present form, however, the method has essential limitation since we have assumed that all the dynamical
variables are measured. The extension of the algorithm to encompass the later case will be discussed elsewhere.
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