
A hybrid Fermi-Ulam-bouncer model

Edson D. Leonel and P.V.E. McClintock

Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom

Abstract. Some dynamical and chaotic properties are studied for a classical particle
bouncing between two rigid walls, of which one is fixed and the other moves in time,
in the presence of an external field. The system is a hybrid, behaving not as a purely
Fermi-Ulam model, nor as a bouncer, but as a combination of the two. We consider
two different kinds of motion of the moving wall: (i) periodic; and (ii) random. The
dynamics of the model is studied via a two-dimensional nonlinear area-preserving map.
We confirm that, for periodic oscillations, our model recovers the well-known results
of the Fermi-Ulam model in the limit of zero external field. For intense external fields,
we establish the range of control parameters values within which invariant spanning
curves are observed below the chaotic sea in the low energy domain. We characterise
this chaotic low energy region in terms of Lyapunov exponents. We also show that the
velocity of the particle, and hence also its kinetic energy, grow according to a power
law when the wall moves randomly, yielding clear evidence of Fermi acceleration.

1. Introduction

A special class of one-dimensional time-dependent systems exhaustively investigated in

recent years are those related to the Fermi model. The latter system was originally

proposed by Enrico Fermi [1] in order to study cosmic rays. It provides a mechanism

through which charged particles can be accelerated by collisions with time-dependent

magnetic fields. The model was later studied in different versions and using different

approaches [2, 3, 4, 5, 6, 7, 9, 8, 10]. One of them consists in considering the dynamics of a

classical particle bouncing between two rigid walls, one of which is fixed and the other one

moves in time, known as the Fermi-Ulam model. The main result for periodic oscillation

is that the phase space presents KAM islands surrounded by a chaotic sea. Unlimited

energy growth (the condition for observing Fermi acceleration) is not, however, observed

because the phase space exhibits a set of invariant spanning curves [11]. An alternative

version of this model, proposed by Pustylnikov [12], is often referred to as a bouncer.

It consists of a classical particle falling in a constant gravitational field, on a moving

platform. The most important property of this system is that, in contradistinction to

the Fermi-Ulam model, depending on both the initial conditions and control parameters

there is no bound to the energy gained by the bouncing particle. This special difference

between the models was clarified by Lichtenberg et al [13]. The quantum versions

corresponding to both the bouncer and Fermi-Ulam models have also been studied

[14, 15, 16, 17, 18].
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The special interest attached to studying these one-dimensional classical systems is

that they are completely integrable for zero external time-dependent forcing, but non-

integrable when the external forcing is switched on, and they allow direct comparisons

of theoretical predictions with experimental results [19, 20, 21]. Such systems present

a very rich phase space structure. Depending on the values chosen for the control

parameters, and on the initial conditions, both periodic, quasi-periodic and chaotic

behaviour can be observed. However, this kind of behaviour seems to be generic for no

degenerated Hamiltonian systems and could be observed for time dependent potentials

[22, 23, 24, 25, 26, 27], mesoscopic systems [28, 29], waveguides [30] and also for billiards

with static boundaries [31, 32, 33]. Moreover, considering time-dependent boundaries

for such billiards, the scenario can be quite different. In this sense, regular dynamics for

a fixed boundary implies a bound to the energy gained by the bouncing particle, but the

chaotic dynamics of a billiard with a fixed boundary is a sufficient condition for Fermi

acceleration in the system when a boundary perturbation is introduced. A discussion

of this interesting question, together with specific examples, can be found in Ref. [34].

In this paper we study a hybrid model that behaves, not as purely Fermi-Ulam

model, nor as a bouncer, but as a combination of both. It consists of a time-dependent

system where a classical particle is confined between two rigid walls in the presence

of a gravitational field. One wall is fixed and the other one moves in time. We will

consider in different sections two different kind of movement, namely: (i) periodic and

(ii) random. For the periodic perturbation, the system is described by a two-dimensional

nonlinear area-preserving map with two relevant control parameters. We will show that

fixed points and periodic orbits go over smoothly into orbits of the Fermi-Ulam model as

the external field goes to zero. We also show that the phase space presents a hierarchy

of behaviours. It is possible to observe KAM islands surrounded by a chaotic sea that

is limited by one invariant spanning curve. Considering an intense external field, we

show that this system presents a set of invariant spanning curves located below the

chaotic sea, indicating that the system then behaves mainly as a bouncer. If the wall

moves randomly, the system exhibits the phenomenon of Fermi acceleration, which can

be interpreted as evidence of the particle having unlimited energy gain.

This paper is organised as follows. In Sec. II we discuss in full detail all the steps

used to derive the map describing the dynamics of this system. We construct both

complete and simplified versions [35] of the problem. We also discuss briefly some

results and properties of both the Fermi-Ulam and bouncer models that are useful for

comparisons with results of our model. In Sec. III, we establish the connections between

our hybrid model and the Fermi-Ulam model, and we discuss the features that emerge

for the case of intense external fields. Sec. IV presents our numerical results for positive

Lyapunov exponents, for both the complete and simplified models. In Sec. V we discuss

the results obtained for the stochastic version of model, and Sec. VI summarises our

results and presents our conclusions.
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2. The model with periodic oscillations

The model consists basically of a classical particle of mass m, subject to a constant

gravitational field g, bouncing between two rigid walls. One of them is fixed at y = l

and the other one moves periodically in time according to the equation yw(t) = ε′ cos(ωt).

The parameter ε′ represents the amplitude of oscillation and ω is the angular frequency.

Fig. 1 illustrates the model. We will study this problem in two different versions: (i)

complete; and (ii) simplified. In the complete version, the model includes explicitly the

movement of the oscillating wall. The instant of time at which each collision occurs

is obtained numerically by solution of a transcendental equation. However, we can

introduce a very useful and more simple version to this problem that allows easier

analytical treatment: the simplified version. For the simplified version [35], we suppose

that both walls are fixed but that, when the particle collides with the wall located at

y = 0, it exchanges momentum as if the wall was moving. This simplification forces

us to introduce a strategy to avoid the successive collisions that occur only in the low

energy domain for the complete model. At the same time, this version brings the

advantage of allowing us to speed up our numerical simulations. The results obtained

for a weak gravitational field and high energy are qualitatively almost the same as for

the complete model, but differ for intense external fields or for low energy. However, in

the simplified version, it is useful and much easier to identify generic behaviours that

can immediately be sought in the corresponding complete version. We will observe that

the quantitative results, in particular the positive Lyapunov exponent, are different

in magnitude for the two versions of the model. Such differences are due to a few

crucial intrinsic differences between the systems. We will describe the dynamics of

both systems using a two dimensional map T that gives us the corresponding pair of

velocity vn and time tn values immediately after the collision with the oscillating wall,

i.e. (vn+1, tn+1) = T (vn, tn).

2.1. The complete model

Let us now begin to construct the map. Suppose that, after suffering a collision with

the moving wall at a time t = tn at the position yw = ε′ cos(ωtn), the velocity of the

particle is v = vn. Depending on both the velocity vn and the time tn, the two different

kinds of behaviour that may occur are:

(a) The particle again collides with the moving wall before exiting the collision region.

It is characterised as a successive collision.

(b) The particle exits the collision region without suffering any further collision.

The collision area is defined as the region in real space within which it is possible for

the particle to suffer a collision with the moving wall, and it is given by y ∈ [−ε′, ε′], as

can be seen in Fig. 1.
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Figure 1. Sketch of the model with constant external field.

Considering first case (a), the instant of time at which the particle collides with

the moving wall is obtained from the condition yp(tc) = yw(tc), where yp(tc) gives the

position of the particle at time tc. This condition leads to the transcendental equation

g(tc) = ε′ cos[ω(tn + tc)] − ε′ cos(ωtn) − vntc +
1

2
gt2c . (1)

Here, tc is the smallest root of g(tc) for tc ∈ (0, 2π/ω]. The time tc = 0 is excluded

because it is a fixed point of g(tc). After the collision, the new time is given by

tn+1 = tn + tc. The new velocity is obtained by requiring conservation of energy and

momentum in the frame of reference of the moving wall (in which it is instantaneously

at rest) and is given by vn+1 = −vn + gtc − 2ωε′ sin(ωtn+1). The velocity of the moving

wall, vw(t) is obtained using d
dt

yw(t) = −ωε′ sin(ωt). After that, we can write the map
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for successive collisions, Ts as

Ts :

{
vn+1 = −vn + gtc − 2ωε′ sin(ωtn+1)

tn+1 = tn + tc
, (2)

where tc is obtained numerically from g(tc).

If g(tc) does not have a solution in the interval tc ∈ (0, 2π/ω], we can conclude that

the particle leaves the collision area without suffering a successive collision. Case (b)

then applies, and there are two new different kinds of behaviour that may occur:

(b1) The particle does not reach and collide with the fixed wall located at y = l, but

returns in the downward direction due to the gravitational field alone.

(b2) The particle collides with the wall at y = l. It suffers a reversal of its momentum

and returns downwards.

The basic condition for the particle suffering a collision with the fixed wall located at

y = l is vn >
√

2g[l − ε′ cos(ωtn)]. Otherwise, the particle returns without colliding with

the fixed wall.

Let us first study case (b1), i.e. vn ≤
√

2g[l − ε′ cos(ωtn)]. The time during which the

particle rises and decelerates before its velocity falls transiently to zero is tu = vn/g. In

this time, the particle reach a maximum height, ymax = ε′ cos(ωtn) + 1
2

v2
n

g
. The particle

is then accelerated downwards by the external gravitational field until it reaches the

entrance to the collision area y = ε′. The time that the particle spends on this part

of its trajectory is td = (
√

v2
n + 2g[ε′ cos(ωtn) − ε′])/g . At the entrance of the collision

area, y = ε′, the velocity of the particle is

ve = −
√

v2
n + 2g[ε′ cos(ωtn) − ε′]. (3)

After the particle enters this region, the instant of time at which the collision occurs is

obtained from the condition yp(tc) = yw(tc), giving rise to the transcendental equation:

f(tc) = ε′ cos[ω(tn + tu + td + tc)] − ε′ − vetc +
1

2
gt2c . (4)

Here, tc is the smallest root of the function f(tc) in the interval tc ∈ [0, 2π/ω]. We can

now write the map Tns as

Tns :

{
vn+1 = −ve + gtc − 2ωε′ sin(ωtn+1)

tn+1 = tn + tu + td + tc
. (5)

We now consider situation (b2), i.e. vn >
√

2g[l − ε′ cos(ωtn)]. The time that the

particle spends on going up is tu = (vn −
√

v2
n − 2g[l − ε′ cos(ωtn)])/g. When the

particle arrives at and collides with the fixed wall at y = l, its velocity is given by

v =
√

v2
n − 2g[l − ε′ cos(ωtn)]. The time it spends on going down before it reaches

the entrance to the collision area is given by td = (
√

v2
n + 2g[ε′ cos(ωtn) − ε′])/g −

(
√

v2
n − 2g[l − ε′ cos(ωtn)])/g. The velocity of the particle immediately before entering

the collision area ve is still described by Eq. (3). The instant of time at which it suffers a

collision with the moving wall is obtained by solution of f(tc). Again, tc is the smallest



A hybrid Fermi-Ulam-bouncer model 6

value of tc ∈ [0, 2π/ω]. After the collision, the new velocity and the new time are again

given by applying the map Tns.

It is easy to see that, in the form (2) and (5) in which the map T was constructed,

there is an excessive number of control parameters, 4 in total, namely ε′, ω, l and g.

We now define dimensionless and much more appropriate variables in order to reduce

the effective and relevant control parameters to just 2. The first change is to measure

time in terms of the period of oscillation of the moving wall, φn = ωtn. We can also

define a new velocity as Vn = vn/(ωl) so that the new amplitude of oscillation is given

by ε = ε′/l. Using the period of oscillation τ , given by τ = 2π/ω, we are able to define

a new variable Nc = τc/τ . Here, τ 2
c = 2l/g gives us the squared time that the particle

spends in travelling the distance l under the influence of the gravitational field g starting

with initial velocity v = 0. In this way, Nc gives us the number of oscillations that the

moving wall completes in a time τc.

Using these new variables, the map is written as

T :

⎧⎨
⎩ Vn+1 = V ∗

n + φc

2π2N2
c
− 2ε sin(φn+1)

φn+1 = φn + ΔTn mod2π
(6)

where ΔTn and V ∗
n are given by different expressions that depend on the following

conditions:

(i) Successive collision. ΔTn = φc and V ∗
n = −Vn. Here φc is obtained as the smallest

root of G(φc) in the interval φc ∈ (0, 2π] and G(φc) is given by

G(φc) = ε cos(φn + φc) − ε cos(φn) + V ∗
n φc +

φ2
c

4π2N2
c

. (7)

(ii) Indirect collision without reflection, Vn ≤
√

1−ε cos(φn)

πNc
. This condition establishes

an indirect collision without reflection at y = 1. Then

ΔTn = φu + φd + φc , (8)

V ∗
n =

√
V 2

n +
ε

π2N2
c

[cos(φn) − 1]. (9)

Here φu = 2π2N2
c Vn, φd = 2πNc

√
ε cos(φn) − ε + π2N2

c V 2
n and φc is obtained

numerically as the smallest root of F (φc) in the interval φc ∈ [0, 2π], where F (φc)

is given by

F (φc) = ε cos(φn + φu + φd + φc) − ε + V ∗
n φc +

φ2
c

4π2N2
c

. (10)

(iii) Indirect collision with reflection, Vn >

√
1−ε cos(φn)

πNc
. This condition establishes

an indirect collision with reflection at y = 1. The terms ΔTn and V ∗
n

are given by Eq. (8) and (9), as in the previous case. The only the

difference is that here φu = 2πNc

[
πNcVn −

√
π2N2

c V 2
n − 1 + ε cos(φn)

]
, φd =

2πNc

[√
ε cos(φn) − ε + π2N2

c V 2
n −

√
ε cos(φn) − 1 + π2N2

c V 2
n

]
, and φc is obtained

numerically as the smallest root of Eq. (10) under the same conditions as in the

previous case.
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Figure 2. Phase space for the complete model. The control parameters used here
were ε = 10−3 and Nc = 28.

After some tedious but necessary algebra, we can show that this map preserves the

following measure on the phase space: dμ = [V + ε sin(φ)]dV dφ. It is interesting that

this measure dμ is the same as that obtained [10] for the Fermi-Ulam model itself.

The same measure was also found for the breathing circle [36]. Note however that a

diametrical orbit in the breathing circle necessarily recovers the results of the Fermi-

Ulam model.

A typical phase space for the complete model is shown in Fig. 2. The control

parameters used were ε = 1 × 10−3 and Nc = 28. For this combination of control

parameters, a hierarchy of behaviours is immediately evident. In the low energy regime,

the system shows a set of KAM islands that are surrounded by a chaotic sea. This
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chaotic sea, characterised by positive Lyapunov exponents, is limited by one invariant

spanning curve. Above the chaotic sea, it is possible to observe KAM islands as well as

small chaotic regions confined by two different invariant spanning curves. For yet higher

values of energy, we can see basically invariant spanning curves. A characteristic feature

of this model, quite unlike the Fermi-Ulam model, is that in the low energy regime for

appropriate combinations of control parameters (especially for intense external fields),

it is possible to observe a set of invariant spanning curves as well as stable fixed points.

We will show that this kind of behaviour is property of the bouncer model. A more

detailed discussion of the necessary conditions for such observations will be given in Sec.

3.

We now describe briefly the tool used to characterise the chaotic low energy region:

the Lyapunov exponent. It is well known as a practical tool that can quantify the average

expansion or contraction rate for a small volume of initial conditions. One can say that

a negative Lyapunov exponent implies a convergence of nearby initial conditions. An

orbit that has this property is said to be regular (periodic or quasi-periodic). When

the Lyapunov exponent is positive, however, it characterises an exponential divergence

of initial conditions and it is related to chaotic motion. An orbit that is characterised

by a positive Lyapunov exponent is referred to as chaotic. We use the algorithm of

triangularisation [37] to evaluate the Lyapunov exponents. They are defined as

λj = lim
N→∞

1

N

N∑
n=1

ln |Λn
j | , j = 1, 2 , (11)

where Λn
j are the corresponding eigenvalues of DT N =

∏N
n=1 Jn. The matrix J is

the Jacobian matrix for the map T . As the map is area-preserving, the Lyapunov

exponents obey the relationship that λ1 = −λ2. Fig. 3(a) shows the convergence for

5 different initial conditions related to the chaotic sea, for the complete model. Each

initial condition was iterated 5 × 108 times in order to produce a good convergence of

the asymptotically positive Lyapunov exponent. The ensemble average of five different

initial conditions gives us that λ̄ = 0.794 ± 0.005. The error represents the standard

deviation of the five samples.

2.2. The simplified model

Let us now discuss the simplified model [35]. It consists basically in supposing that

both walls are fixed but that, after each collision, the wall located at y = 0 transfers

momentum to the particle as if it was moving. It can immediately be seen that the

transcendental equations G(φc) and F (φc) no longer need to be solved. Although this

simplification brings the huge advantage of allowing very fast simulations, it also gives

rise to a problem that we need to avoid. In the complete model, depending on the

combination of both velocity and phase, it is possible for the particle, after suffering a

collision with the moving wall, to suffer a second successive collision before exiting the

collision area, as well as possibly having a negative velocity following the first such a

collision. In the simplified model, non-positive velocities are forbidden because they are
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Figure 3. Time evolution from 5 different initial conditions related to the chaotic sea
on: (a) the complete and (b) the simplified model. The control parameters used were
ε = 1 × 10−3 and Nc = 28.

equivalent to the particle travelling beyond the wall. In order to avoid such problems,

if after the collision the particle has a negative velocity, we inject it back with the same

modulus of velocity. Such a procedure is effected perfectly by use of a module function.

Note that the velocity of the particle is reversed by the module function only if, after the

collision, the particle remains travelling in the negative direction. The module function

has no effect on the motion of the particle if it moves in the positive direction after

the collision. We stress that this approximation is valid only for small values of ε. In
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accordance with this discussion, the map for the simplified model is written as{
Vn+1 = |Vn − 2ε sin(φn+1)|
φn+1 = φn + ΔTn mod2π

, (12)

where

ΔTn = 4π2N2
c

[
Vn −

√
V 2

n − 1

π2N2
c

]
if Vn >

1

πNc

(13)

ΔTn = 4π2N2
c Vn if Vn ≤ 1

πNc
(14)

This map is area-preserving because detJ = ±1. The phase space for the simplified

version shows basically the same properties present in the complete model, i.e. it has

a structure of KAM islands, a chaotic sea and invariant spanning curves. However,

due to the module function, the velocity of the particle has the following constraint

[Vn − 2ε sin(φn+1)] > 0. It is shown in Fig. 3(b) the time evolution of the positive

Lyapunov exponent for 5 different initial conditions related to the chaotic sea. The

asymptotic value is 1.509 ± 0.006. Here, the error of 0.006 represents the standard

deviation of the five samples.

2.3. Fermi-Ulam model

Before considering the connection between the models, let us briefly discuss some

properties of the Fermi-Ulam model. Considering g = 0 on Fig. 1, and using the

optimal variables, the map describing the dynamics of the simplified Fermi-Ulam model

is given by {
Vn+1 = |Vn − 2ε sin(φn+1)|
φn+1 = φn + 2

Vn
mod2π

. (15)

The phase space for this system exhibits KAM islands surrounded by a chaotic sea that

is limited by one invariant spanning curve in the low energy domain. For high energy, it

shows basically a set of invariant spanning curves. As discussed in [10], the position of

the first invariant spanning curve can be rescaled for different control parameters and

connected to the Standard Map (SM) to appear for the same effective control parameter

(KFU ≈ 0.971 . . .) at which the SM undergoes a change of locally to globally stochastic

behaviour [39]. Such scaling provides the explanation for the quasi-invariance of the

positive Lyapunov exponent in the chaotic sea for this model [10]. (See also Ref. [7] for

recent results of the simplified Fermi-Ulam model). Table I shows the classification of

periodic orbits for the Fermi-Ulam model.

2.4. Bouncer model

In this section we will discuss a special transition observed in the bouncer model. For

simplicity and to make it easier to compare some results of this model with those for

our hybrid model, we will use the same variables to describe both models. To obtain

the bouncer model, we just need to move out the fixed wall located at y = l in Fig.
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Period V φ ε Type

1 1
jπ

, j = 1, 2, 3 . . . 0 all Hyperbolic

1 1
jπ

, j = 1, 2, 3 . . . π < 1
j2π2 Elliptic

1 1
jπ

, j = 1, 2, 3 . . . π = 1
j2π2 Parabolic

1 1
jπ

, j = 1, 2, 3 . . . π > 1
j2π2 Hyperbolic

2 2
jπ

, j = 1, 3, 5 . . . 0 and π < 2
j2π2 Elliptic

2 2
jπ

, j = 1, 3, 5 . . . 0 and π = 2
j2π2 Parabolic

2 2
jπ

, j = 1, 3, 5 . . . 0 and π > 2
j2π2 Hyperbolic

Table 1. Classification of periodic orbits of periods 1 and 2 for the simplified Fermi-
Ulam model.

1. In this way, the map that describes the dynamics of the simplified bouncer model is

given by {
Vn+1 = |Vn − 2ε sin(φn+1)|
φn+1 = φn + 4π2N2

c Vn mod2π
. (16)

The term 4π2N2
c Vn represents the time that the particle spends travelling between

impacts. The special advantage of this system is that it allow the possibility

of predicting analytically where the transition occurs between locally and globally

stochastic behaviour [39]. To put the map (16) in the same form as the SM, we must

firstly to define two variables. The first one is In = 4π2N2
c Vn and the second one is

θn = φn+1 + π. In terms of these new variables, the map (16) may now be rewritten in

the same form as the SM [3]{
In+1 = In + KB sin(θn)

θn+1 = θn + In+1
. (17)

The effective control parameter KB = 8π2εN2
c . However it is expected that, if KB ≥

0.971 . . ., the SM will exhibit globally stochastic behaviour [39]. To characterise such a

transition in the bouncer model in terms of both Nc and ε, we just need to evaluate the

effective control parameter KB. Using the above condition, 8π2εN2
c = KB ≥ 0.971 . . .,

whence

Nc ≥ 1

2π

√
0.971 . . .

2ε
. (18)

For ε = 10−3, we thus obtain Nc ≥ 3.507 . . ..
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3. The limits of Nc

We will discuss in this section how the connection of the present model to the Fermi-

Ulam one can be established. It is well known that the parameter Nc = τc/τ describes

the intensity of the gravitational field. It effectively specifies the number of oscillations

that the moving wall (in the complete model) executes during the time interval τc. This

tells us the length of time during which the particle travels a distance l (in the original

model), under a gravitational field g after starting with an initial velocity V = 0. We can

conclude that a huge (small) value of Nc implies motion in a weak (intense) gravitational

field. In this way, it is clear: (i) that Nc → ∞ implies g → 0; and (ii) that Nc → 0

implies g → ∞.

3.1. The limit Nc → ∞
Let us first discuss case (i). In this situation, it is supposed that the results of the

Fermi-Ulam model should be recovered. For simplicity of calculation, we will use the

simplified model although, with a bit more work, just the same procedure can be applied

for the complete version too. The application of Nc → ∞ excludes the Eq. (14) from the

relation of ΔTn on the simplified model because we are considering only non-negative

velocities. We can now expand Eq. (13), obtaining

ΔTn = lim
Nc→∞

4π2N2
c ×

⎡
⎣Vn −

⎛
⎝√

V 2
n − 1

2π2
√

V 2
n N2

c

⎞
⎠ + . . .

⎤
⎦ (19)

Considering that all the higher order terms disappear when the limit is applied, we can

greatly simplify the last equation to

ΔTn =
2

Vn

. (20)

This is the equation that gives the length of time which a particle spends between

collisions in the Fermi-Ulam model (see Sec. 2.3) and demonstrates that, in the present

case, the Fermi-Ulam map is indeed recovered.

It is also interesting to characterise how the fixed points for our present model go

over into the fixed points of the Fermi-Ulam model. It is well known that periodic orbits

are obtained when the following conditions are satisfied: Vn+m = Vn and φn+m = φn.

Here, m gives the periodicity of the orbit, so that one has period-one orbits with m = 1,

period-2 orbits with m = 2, and so on. To characterise such an evolution, let us consider

first the case Vn > 1/(πNc). The equations to be solved for the fixed points are

φn+1 = φn + 4π2N2
c

[
Vn −

√
V 2

n − 1

π2N2
c

]
= φn,

Vn+1 = Vn − 2ε sin(φn+1) = Vn.

Their solution gives us that

Vn =
j

4πN2
c

+
1

jπ
with j = 1, 2, 3 . . . ≤ 2Nc (21)
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and φn = 0 or φn = π. The fixed points (Vn, φn) = ( j
4πN2

c
+ 1

jπ
, 0) are hyperbolic for all

values of ε. The classification of fixed points (Vn, φn) = ( j
4πN2

c
+ 1

jπ
, π) is summarised in

Table II. Comparing these results to those presented above in Table I, it is easy to see

Vn φn ε Type

j
4πN2

c
+ 1

jπ
0 all Hyperbolic

j
4πN2

c
+ 1

jπ
π < 1

j2π2 − 1
4π2N2

c
Elliptic

j
4πN2

c
+ 1

jπ
π = 1

j2π2 − 1
4π2N2

c
Parabolic

j
4πN2

c
+ 1

jπ
π > 1

j2π2 − 1
4π2N2

c
Hyperbolic

Table 2. Classification of the period-one orbits of the simplified model for Vn >

1/(πNc).

that the expressions for both the fixed point Vn and for the control parameter go over

smoothly to those of the Fermi-Ulam model when the limit Nc → ∞ is applied.

Moving now to consider the case Vn ≤ 1
πNc

, the conditions for finding the fixed

points are

φn+1 = φn + 4π2N2
c Vn = φn, (22)

Vn+1 = Vn − 2ε sin(φn+1) = Vn. (23)

Solving these conditions, we find that Vn = j
2πN2

c
with j = 1, 2, 3 . . . ≤ 2Nc and φn = 0 or

φn = π. The fixed points (Vn, φn) = ( j
2πN2

c
, π) are hyperbolic for all values of ε whereas

(Vn, φn) = ( j
2πN2

c
, 0) are elliptic for ε < 1

2π2N2
c
, parabolic for ε = 1

2π2N2
c

and hyperbolic for

ε > 1
2π2N2

c
. The same analysis for the period-two orbit yields

φn+2 = φn + 8π2N2
c [Vn − ε sin(φn + 4π2N2

c Vn)] = φn,

Vn+2 = Vn − 2ε[sin(φn + 4π2N2
c Vn) + sin(φn+2)] = Vn.

The solutions under such conditions give us that Vn+1 = Vn = j
4πN2

c
with j =

1, 3, 5 . . . ≤ 4Nc, φn = 0 and φn+1 = π. Such a period-two orbit is elliptic for ε < 1
4π2N2

c
,

parabolic for ε = 1
4π2N2

c
and hyperbolic for ε > 1

4π2N2
c
. All periodic orbits obtained for

the condition Vn ≤ 1
πNc

are the same that are present in the bouncer model. To be more

precise, for the bouncer model there is not constraint to the values of j. In that model,

j can run from 1 to infinity. Such fixed points and periodic orbits do not exist on the

Fermi-Ulam model; they are exclusively present in the bouncer model. Applying the

limit Nc → ∞, we see that both the period-one and period-two orbits disappear.

3.2. The Nc small values limit

We will discuss in this section what happens in the limit Nc → 0. It is obvious that

both complete and simplified model are singular in this limit, in the sense that they

present divergences of the velocity (V → ∞) to
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Figure 4. Phase space at low energy for both the (a) simplified and (b) complete
models. In (a) the corresponding period-one and period-two orbits for V ≤ 1/πNc are
shown. The star indicates elliptic fixed points, the filled circles give the corresponding
hyperbolic fixed points with the same label as the star just above, and the squares
illustrate the period-two orbits. (b) shows invariant spanning curves below the chaotic
sea for the complete model. The control parameters used here were ε = 10−3 and
Nc = 4.

the fixed points. Rather than applying the limit Nc → 0 directly, we will discuss

some results for small values of Nc. We saw in Fig. 2 that the combination of control

parameters used there yields a phase space exhibiting KAM islands surrounded by a

chaotic sea in the low energy regime. That chaotic sea is limited by an invariant

spanning curve. The particular new result for this model is that, depending on the

control parameter values, a set of invariant spanning curves located below the chaotic
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Figure 5. Expansion of Fig. 4 in the very low energy domain for both the (a) simplified
and (b) complete models. The control parameters used here were ε = 10−3 and Nc = 4.
(a) shows just positive velocities, and invariant spanning curves are not observed; (b)
shows invariant spanning curves below the chaotic sea for the complete model.

sea may be observed for the complete version. Such curves give us clear evidence that

the model is behaving as a bouncer. The basic condition of existence for such curves

is, at least numerically, the same as that for the fixed point (Vn, φn) = ( j
2πN2

c
, 0) to be

elliptic, in the simplified model, i.e. ε < 1
2π2N2

c
. Such curves appear to exist only in the

complete model.

It was shown in Sec. 2.4 that the bouncer model undergoes a transition from locally

to globally stochastic behaviour [39]. It means in our model that for Nc ≥ 1
2π

√
0.971...

2ε
it

is possible to observe a chaotic sea. However, we observe that the invariant spanning

curves located below the chaotic sea exist when the condition Nc < 1
π
√

2ε
. In this sense,
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we can shall define a range for Nc as function of ε in which these invariant spanning

curves in the very low energy can coalesce with the chaotic sea. Such a range is given

by Nc ∈ [ 1
2π

√
0.971...

2ε
, 1

π
√

2ε
). Considering the parameter ε = 10−3, the range of Nc is

Nc ∈ [3.507 . . . , 7.117 . . .).

To illustrate the existence of these invariant spanning curves and the location of

fixed points in the low energy domain, we construct the phase space for the following

control parameters values ε = 1×10−3 and Nc = 4, as shown in Fig. 4. Note however that

Nc = 4 is in fact contained in the range obtained above. For easier comparison, we focus

only on the chaotic low energy region for the simplified version, and the corresponding

region for the complete version. An expansion of Fig. 4 in the very low energy domain

is shown in Fig. 5. We can see that the complete and simplified versions behave

quite differently in this energy limit. It is also clear that the complete model allows

negative velocities, whereas they are of course not allowed in the simplified version. It

is important to stress that the invariant spanning curves in the very low energy domain

are not observed in the simplified version due to the properties of this version of the

model in that energy limit. However they were foreseen to exist, and were then observed

in the complete model.

It is interesting to note that our hybrid model has its own characteristics. In

extreme ranges of control parameters, it recovers the results of the Fermi-Ulam model

at high energy while exhibiting the results of the bouncer model in the low energy

region for intense gravitational fields. Moreover, our results show that, within a certain

range of control parameters, properties that are individually characteristic either of the

Fermi-Ulam or of the bouncer model can come together and coexist in our hybrid model.

4. Numerical results

We discuss in this section our numerical results for the region of positive Lyapunov

exponent in both the complete and simplified version of our model. We concentrate on

the low energy chaotic region analysing the behaviour of the positive Lyapunov exponent

λ as function of Nc, as plotted in Fig. 6 with a fixed control parameter ε = 10−3 for

both (a) the complete and (b) the simplified models. Each point in this figure was

obtained from the convergence of an ensemble average of 5 different initial conditions. In

order to guarantee good convergence of the asymptotically positive Lyapunov exponent

value, each initial condition was iterated 5 × 108 times. The error bars indicates the

standard deviation of the five samples. We see in Fig. 6 that the Lyapunov exponent

varies significantly as a function of Nc, and does so differently for the two versions.

For the complete version, where we have a more realistic description of the problem,

the positive Lyapunov exponent grows for small values of Nc reaching a maximum and

then decreasing asymptotically to a constant value. The maximum value of positive

Lyapunov exponent is assumed to correspond to where the system experiences the

strongest competition in whether to behave as a bouncer or as a Fermi-Ulam model. For

the simplified version, it grows for small values of Nc and reaches a regime of saturation
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Figure 6. Log × linear graph illustrating the behaviour of the positive Lyapunov
exponent as a function of Nc for the control parameter ε = 10−3 and the (a) complete
and (b) simplified models.

for large values of Nc. Both the saturation and the convergence to a constant level can

be explained as being due the fact of this model, in both its simplified and complete

versions, must recover the Fermi-Ulam model results for very large Nc, as discussed in

Sec. 3. In order to compare these asymptotic values with those from the Fermi-Ulam

model, we evaluate the convergence of the positive Lyapunov exponent for this latter

model in both complete and simplified versions. The Fermi-Ulam model is found to

have λc = 0.722 ± 0.008 for its complete version, and λs = 1.63 ± 0.01 for its simplified

one (see also Ref. [10] for Lyapunov exponents in the Fermi-Ulam model). Both results

are in good agreement with those shown in Fig. 6.
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Now let us discuss why the positive Lyapunov exponent differs between the complete

and simplified versions. Although the structure of fixed points, KAM islands and

invariant spanning curves are very similar for both versions within their high energy

domains, they are quite different in the low energy regimes. To illustrate one of

these differences, we note that the complete version exhibits invariant spanning curves,

whereas they are absent in the simplified version for ε < 1
2π2N2

c
. The obvious differences

between the models are that: (i) the simplified model does not allow immediately

sequential collisions; (ii) after the impact it does not allow a negative velocity; and

(iii) it incorporates a forbidden region into the phase space.

5. The stochastic model

In this section we discuss some dynamical properties of the stochastic model. Our

results for the complete and simplified deterministic models discussed above show that

the phenomenon of Fermi acceleration does not occur for those versions. Its absence is

attributable to the existence of invariant spanning curves in the phase space [11]. Such

curves, in particular the first one above the chaotic sea, form boundaries limiting the

size of the chaotic sea. In this sense, a particle evolving in the chaotic sea can never rise

above the first invariant spanning curve. As we will see, the hierarchy of behaviours like

KAM islands, chaotic sea, and invariant spanning curves does not arise in the stochastic

model. The most interesting result for this version is that the velocity, and consequently

the kinetic energy, grow as function of both iteration number n and time t. The model

is created by a subtle modification of the simplified version where (see above) a particle

colliding with the wall located at y = 0 exchanges momentum as if the wall was moving.

In the stochastic model, such exchanges occur randomly. The map for this version is

given by {
Vn+1 = |Vn − 2εz|
tn+1 = tn + ΔTn

, (24)

where

ΔTn =

⎧⎨
⎩ 4π2N2

c

(
Vn −

√
V 2

n − 1
π2N2

c

)
if Vn > 1

πNc

4π2N2
c Vn if Vn ≤ 1

πNc

. (25)

Here, z is a random number uniformly distributed in the interval z ∈ [−1, 1].

Iteration of the stochastic map for one initial condition is shown in Fig. 7(a). The

complex structure and hierarchy of the phase space present in the deterministic models

are not observed here. Both KAM islands and invariant spanning curves are destroyed

and, as a consequence of this, any one initial condition may lead to unlimited energy

growth. To demonstrate this result we can compute the following observables

V̄ =
1

M

M∑
i=1

[
1

N

N∑
n=1

Vn,i

]
, t̄ =

1

M

M∑
i=1

[
1

N

N∑
n=1

tn,i

]
. (26)

The sum over N gives the average on the orbit, whereas the sum over M gives the

average over the ensemble of initial conditions and is just used to make the velocities
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Figure 7. (a) Phase space for the stochastic model. (b) Behaviour of the average
velocity as function of N . A power law fit yields V̄ ∝ N δn with δn = 0.499(1). The
control parameters used in both figures were ε = 10−3 and Nc = 28.

curves smoother and easier to characterise. Fig. 7(b) shows the behaviour of V̄ as a

function of N ; V̄ as a function of t̄ is shown in Fig. 8(a). The control parameters used

for acquiring the data in these figures were ε = 10−3 and Nc = 28. We used an ensemble

of 50, 000 different initial conditions. All of them started with the same initial velocity

V0 = 2 × 10−3, and different seeds were used in the random number generator. Figs.

7(b) and 8(a) allow us to describe the behaviour of the average velocity as V̄ ∝ N δn

and V̄ ∝ t̄δt . A power law fit gives δn = 0.499(1) and this exponent is found to be the

same for different control parameters. A power law fit for Fig. 8(a) gives the exponent

δt = 0.816(1). The exponent δt turns out to be dependent on Nc, as shown in Fig. 8(b)
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Figure 8. (a) Behaviour of the average velocity as function of time t. A power law
fit suggests to us that V̄ ∝ t̄δt with δt = 0.816(1). The control parameters used here
were ε = 1 × 10−3 and Nc = 28. (b) Behaviour of δt as a function of Nc for a fixed
ε = 10−3. The inset of (b) gives shows that δt → 1 when 1/Nc → 0; the actual result
obtained after extrapolation is δt = 0.999(1).

which plots the variation of δt with Nc for ε = 10−3. The result for Nc → ∞ indicates

that δt → 1, as was found for the simplified stochastic Fermi-Ulam model [38]. It can be

obtained by extrapolation, as shown in the inset of Fig. 8(b) after changing the horizontal

coordinate to Nc → 1/Nc and doing a linear fit. It is interesting to emphasise that the

authors of [34] conjectured that Fermi acceleration should be observed for a billiard

with a time-dependent boundary if the corresponding version for a fixed boundary

presents chaotic components. However, we can conclude that for the system studied

in the present paper (see also [25] and [26, 27] for comparable results in other systems)
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which exhibits chaotic behaviour under a time-dependent (periodic) perturbation, Fermi

acceleration is observed only after the introduction of random (stochastic) motion to

the time dependent wall.

6. Summary and Conclusions

We have studied a hybrid model behaving, not exclusively as a Fermi-Ulam model, nor

as a bouncer, but as a combination between them. We analysed two different kind of

movement: (i) periodic and (ii) random. For the periodic case, we derive two different

versions of the system: complete; and simplified. We have shown that these systems

present a rich and complex structure of phase space showing KAM islands, a chaotic sea

and invariant spanning curves. We also show that these models, in both their complete

and simplified forms, recover the results of the well known Fermi-Ulam model in the

limit of zero external field. We show that the periodic orbits go over smoothly into the

orbits of the Fermi-Ulam model. Such a transition characterises smooth evolution from

one area-preserving map to another that preserves the same measure in the phase space.

Considering the case of an intense external field and low energy regime, we observe that

our model exhibits a similar structure of fixed points to that obtained in the bouncer

model. In particular, the complete model presents the set of invariant spanning curves

located below the chaotic sea that was foreseen by analysis of the simplified version

of the model. We have also characterised the chaotic sea using Lyapunov exponents.

Considering the case of random perturbation, we show that the structure of KAM islands

and invariant spanning curves is completely destroyed and that, as a consequence, any

initial condition in the phase space leads to Fermi acceleration. Such acceleration is

characterised by unlimited velocity and correspondingly energy growth.
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