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Abstract. The dynamics of the full, dissipative, Fermi accelerator model is shown to

exhibit crisis events as the damping coefficient is varied. The investigation, based on

analysis of a two-dimensional nonlinear map, has also led to a numerical determination

of the basin of attraction for its chaotic attractor.
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A major challenge in the investigation of nonlinear systems is that of explain-

ing/predicting the often unexpected phenomena that they exhibit. A closely related

goal is to characterise their dynamical properties. Chaotic behaviour appears quite fre-

quently in such systems, both in the presence and the absence of dissipation [1, 2, 3].

For the dissipative case, the area-contracting property leads to time evolution of ini-

tial conditions towards a range of different asymptotic behaviours, e.g. fixed points,

limit cycles (sometimes of high order) as well as chaotic attractors. There also exist

systems with more than one chaotic attractor [4] where interest frequently centres on

determination of the basins of attraction for each chaotic attractor, whose boundaries

can be either continuous or fractal. Particular cases can also be observed where the

asymptotic behaviour wanders in an erratic way but is not characterised by a positive

Lyapunov exponent (the commonest tool for classification of the behaviour as chaotic)

[5]. For the non-dissipative case, the characteristic structure of Hamiltonian systems is

observed, often with a mixed phase space structure is commonly present in the sense

that Kolmogorov-Arnol’d-Moser (KAM) islands exist, together with invariant spanning

curves separating different portions of the phase space, and chaotic seas [6, 7, 8, 9].

The tools developed to study both the dissipative and non-dissipative cases are widely

applicable in many different fields of physics, including astrophysics, plasma physics,

fluids, accelerators, and planetary motion.

In this Letter we revisit the classical problem of the bouncing ball, a model originally

proposed by Enrico Fermi [10] in an attempt to describe the acceleration of cosmic

rays. It provides a mechanism through which charged particles can be accelerated by

collisions with moving magnetic field structures. The model was later modified and

studied in different variants. The Fermi-Ulam approach [11] considers the dynamics

of a classical particle bouncing between two rigid walls, one of which is fixed and
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the other moves in time. The main result for periodic oscillation is that the phase

space presents KAM islands surrounded by a chaotic sea. Unlimited energy growth (i.e.

the condition for observing Fermi acceleration) is not, however, observed because the

phase space exhibits a set of invariant spanning curves. An alternative version of this

model proposed by Pustylnikov [12], often referred to as a bouncer [13], consists of a

classical particle falling in a constant gravitational field, on a moving platform. Its most

important property is that, in contradistinction to the Fermi-Ulam model, depending

on both the initial conditions and control parameters, there could be no bound to the

energy gained by the bouncing particle. The distinctive difference between the models

was later clarified by Lichtenberg et. al. [14]. The corresponding quantum versions of

both the bouncer and Fermi-Ulam models have also been studied [15, 16, 17, 18, 19].

Recently, we have proposed a hybrid version of these two models [20]. It considers the

motion of a classical particle in a gravitational field, with the motion confined between

two rigid walls, one of which is fixed while the other one moves in time. We showed

that our model recovers the well know Fermi-Ulam model results in the limit of zero

external field and shows properties of the bouncer model for intense gravitational field.

Within a certain range of control parameters, however, we found that properties that

are individually characteristic of either the Fermi-Ulam or bouncer models can come

together and coexist in their hybrid.

We now consider here a classical particle in the Fermi-Ulam model suffering an

inelastic collision with the fixed wall, and we analyse the full model rather than the

simplified system that is commonly considered where the so-called successive collisions

are ignored (see references [21, 22, 23] for previous results in the simplified and dissipative

version of the model). We will show, however, that the model is area-contracting only in

relation to non-successive collision; in contrast, the map describing successive collisions

retains the area-preserving property (because collisions with the moving wall are elastic

in the moving frame of reference). We also show that dissipation destroys the mixed

phase space structure seen in the non-dissipative case. We observe a chaotic attractor,

characterized by a positive Lyapunov exponent and, of particular interest, we identify

and characterize a crisis event [24, 25] for this version of the problem. In addition,

the basin of attraction for the chaotic attractor is located and the manifold branches

obtained.

The model thus consists of a classical particle confined to move between two rigid

walls in the absence of gravitational or other fields. One wall is fixed at x = l and the

other moves according to the equation xw(t) = ǫ′ cos(ωt), where ǫ′ and ω are respectively

the amplitude and angular frequency of the motion. We assume that collisions with the

fixed wall are perfectly elastic in the frame of reference of the wall, but that those with

the fixed wall are inelastic. In a collision with the fixed wall, the particle’s velocity is

inverted but, in addition, it is also reduced by a factor depending on the coefficient of

restitution α which assumes a value in the interval α ∈ [0, 1]: α = 1, corresponding

to perfect elasticity, obviously leads to recovery of all the results of the non-dissipative

case; α = 0 corresponds to the completely inelastic case where a single collision with
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the wall is enough to terminate the particle’s dynamics. Our interest relates to cases

lying between these two limits.

In constructing a map to describe the dynamics of this model, it is convenient to

use dimensionless variables. We define that Vn = vn/(ωl), ǫ = ǫ′/l and measure time in

terms of the number of oscillations of the moving wall, i.e. φn = ωt. Starting with the

initial conditions (Vn, φn), with the particle’s initial position given by xp(φn) = ǫ cos(φn),

the map describing the model dynamics is

T :

{

Vn+1 = V ∗

n − 2ǫ sin(φn+1)

φn+1 = φn +∆Tn mod(2π)

where the expressions to be used for V ∗

n and ∆Tn depend on which kind of collision

occurs. For successive collisions, the expressions are V ∗

n = −Vn and ∆Tn = φc. The

phase φc is obtained as the smallest solution of the equation G(φc) = 0 for φc ∈ (0, 2π].

The physical interpretation of G(φc) = 0 is equivalent to having the condition xp = xw,

i.e. the position of the particle is the same as the position of the moving wall, which

obviously corresponds to a collision. The function G(φ) is given by

G(φ) = ǫ cos(φn + φ)− ǫ cos(φn)− Vnφ . (1)

If the function G(φ) does not have a root in the interval φ ∈ (0, 2π], thus we can conclude

that the particle leaves the collision zone without suffering a successive collision. The

collision zone is defined as the interval x ∈ [−ǫ, ǫ]. The Jacobian matrix for successive

collisions yields a determinant given by

DetJ =
Vn + ǫ sin(φn)

Vn+1 + ǫ sin(φn+1)
.

This result shows that the mapping preserves the measure of phase space dµ =

(V + ǫ sin(φ))dV dφ; it is the same as the measure obtained for the breathing circle

billiard [26]. Note that the results for a diametrical orbit in such a billiard necessarily

recovers the results of the Fermi-Ulam model itself. For the case of non-successive

collisions, the expressions are given by V ∗

n = αVn and ∆Tn = φr + φl + φc where the

auxiliary terms take the form:

φr =
1− ǫ cos(φn)

Vn

, φl =
1− ǫ

αVn

.

The term φr indicates the time spent by the particle in travelling towards the fixed

wall, while φl gives the time the particle spends before reaching the collision zone after

suffering an inelastic collision with the fixed wall. Finally the term φc is obtained

numerically as the smallest solution of the equation F (φc) = 0 where the function F (φ)

is given by

F (φ) = ǫ cos(φn + φr + φl + φ)− ǫ+ αVnφ . (2)

Equation (2) is obtained in the attempt to meet the condition xp = xw. The Jacobian

matrix for this case yields the determinant

DetJ = α2
Vn + ǫ sin(φn)

Vn+1 + ǫ sin(φn+1)
,
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which obviously implies that area preservation is observed only if α = 1.

The expression −2ǫ sin(φn+1) (see the map T ) is obtained by conservation of energy

and momentum in the reference frame of the moving wall at the instant of impact, for

which it is instantaneously at rest.

Figure 1 shows the stable and unstable manifolds for a hyperbolic fixed point (also

called as saddle) given by

V =
2ǫ

α− 1
sin(φ) , φ = −arcos

[

ǫ− β
√
β2 + ǫ2 − 1

ǫ2 + β2

]

(3)

with β = 4πǫα/(α2 − 1) in this version of the dissipative Fermi-Ulam model. Figure

1(a) shows the results for α = 0.93 and ǫ = 0.04. The two branches of the unstable

manifold evolve as follows: the upward branch generates the attracting fixed point while

the downward branch generates the chaotic attractor. The two branches of the stable

manifold establish boundaries for both the chaotic and fixed point attractors (the details

of the corresponding basin boundaries are shown in figure 2(b)). Increasing the value of

the control parameter α, which is equivalent to reducing the strength of the dissipation,

causes a homoclinic orbit to be generated at α ≈ 0.93624 . . .. Since the two branches

of the stable manifold establish the edges of the basin boundaries, the generation of

the homoclinic orbit also results in a collision of the chaotic attractor with the border

of its basin boundary. Such a collision is often called a boundary crisis [24, 25, 27].

Simultaneously, the chaotic attractor and its basin of attraction are destroyed. Figure

1(b) shows the stable and unstable manifolds for the control parameters ǫ = 0.04 and

α = 0.9375 immediately after the boundary crisis. The birth of the homoclinic orbit is

clearly evident.

The chaotic attractor is shown in figure 2(a). The control parameters used in

constructing the figure were ǫ = 0.04, α = 0.93624. The asymptotic positive Lyapunov

exponent, obtained via a triangularisation algorithm [28], is given by λ = 1.7743±0.0005.

We used an ensemble of 10 different initial conditions randomly chosen in the basin

of attraction of the chaotic attractor. Each initial condition was evolved through up

to 108 iterations. The error represents the standard deviation of the ten samples.

It is interesting to note that the lower bound of the chaotic attractor has a simple

physical interpretation. It is, in fact, limited by the velocity of the moving wall, i.e.

Vw = dxw/dφ = −ǫ sin(φ): the line generated by Vw is shown in the figure. The

attracting fixed point is indicated by a × in figure 2(a). The basins of attraction for both

the chaotic and fixed point attractors are shown in figure 2(b) for the same parameters

as used in figure 2(a). We set a range for the initial conditions as V ∈ [−ǫ, 0.6] and

φ ∈ [0, 2π]. We thus divide both windows of V and φ in 200 parts each, leading

then to a total of 4 × 104 initial conditions. Each initial condition was iterated up

to nx = 5 × 105 iterations, which is quite enough to disregard transient effects for

the particular combination of control parameters used. The basins of attraction of

the chaotic and fixed point attractors are shown in black and grey respectively. The

border of the boundary is obtained by iteration of the stable manifolds of the fixed

point given by equation (3). Immediately after the the birth of the homoclinic orbit,
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Figure 1. Stable and unstable manifolds for the dissipative Fermi-Ulam model with

ǫ = 0.04: (a) for α = 0.93, just before the crisis, and (b) for α = 0.9375, just after

the crisis. The saddle is indicated by an S. Note that in (b), unlike (a), the manifolds

cross.

and the destruction of the chaotic attractor and its basin, some initial conditions may

lead to very long transients before the attracting fixed point is reached, even compared

to nx = 5 × 105. For such initial conditions, we therefore extend the simulation to

nx = 1 × 107 or longer in order to guarantee convergence to the attracting fixed point.

Other periodic attracting orbits could in principle also exist in this version of the model.

We therefore stress that for the control parameters used in fig. 2, for the range of V and

φ considered and for the steps used in the basin boundary construction, no such orbits

were observed: if they exist their basins of attraction must be very small.

In summary, we have studied a dissipative version of the well known Fermi-Ulam
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Figure 2. (a) The chaotic attractor and the coexisting attracting fixed point for the

parameters ǫ = 0.04 and α = 0.93624. (b) Their corresponding basin boundaries. The

basin boundary of the chaotic attractor is shown in black, while that of the attracting

fixed point is in grey. The border was obtained as the stable manifolds of the fixed

point given by equation (3).

model. It considers inelastic collisions with the fixed wall while assuming elastic

collisions with the moving wall. We find that, depending on the type of collision,

the mapping may show either area-preservation or area-contraction. We show that

crisis events arise as a function of the magnitude of the coefficient of restitution. Basin

boundaries were obtained for both the chaotic and fixed point attractors.
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