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Abstract 

High-frequency jump tests are applied to the prices of both futures contracts and their options, 

to infer the properties of jumps in the price and volatility of the underlying asset. Empirical 

results for FTSE 100 contracts detect frequent jumps in futures, call and put prices. Jumps in 

futures prices are more important than any jumps in volatility when the market determines 

option prices. The empirical evidence is consistent with futures prices following affine jump-

diffusion processes, containing either futures price jumps or contemporaneous futures price 

and volatility jumps, providing jump risk premia are included in the price dynamics.  
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1 INTRODUCTION 

 

Over recent decades, stock market jumps have posed a great challenge to financial research 

and options pricing models. Two types of empirical evidence have clearly shown that stock 

market prices jump. Firstly, studies of daily (i.e. low-frequency) prices using stochastic 

volatility models have found strong evidence of jumps in both price and volatility (Chernov, 

Gallant, Ghysels, & Tauchen, 2003; Eraker, Johannes, & Polson, 2003). Secondly, 

nonparametric studies of intraday (i.e. high-frequency) prices find conclusive evidence that 

there are jumps during intervals of a few minutes for stocks and stock index futures (Andersen, 

Bollerslev, & Dobrev, 2007; Bollerslev, Law, & Tauchen, 2008).  

 

We innovate by expanding the high-frequency, jump literature to include tests for jumps 

in option prices and thereby provide original evidence concerning jumps in volatility.1 We also 

explore how necessary jump risk premia are when explaining the frequencies of observed 

jumps in futures prices and options prices. 

 

Duffie, Pan, and Singleton (2000) showed how to price options for a general affine jump-

diffusion (AJD) process. They illustrated the result that simultaneous jumps in price and 

volatility can describe the smirk observed in implied volatilities. Jump risk premia are 

important for AJD valuation of options, because price and volatility jumps cannot be hedged 

like diffusive risks. Pan (2002) used the generalized method of moments to estimate AJD 

parameters and a price jump risk premium. Broadie, Chernov, and Johannes (2007) showed 

that consideration of several risk premia associated with jumps may improve AJD option 

pricing models. High-frequency research has shown that there exist cojumps across stocks for 

which risk is non-diversifiable (Bollerslev, Law, & Tauchen, 2008).  

 

Carr and Wu (2009) used the difference between the realised variance and the variance 

swap rate to determine the variance risk premium. They found a negative variance risk 

premium for U.S. equities, indicating that investors were averse to an increase in volatility, and 

were willing to pay a premium to hedge against it. Furthermore, Bollerslev and Todorov (2011) 

proposed new extreme value methods to estimate the jump tails for real-world and risk-neutral 

measures. Their findings suggested that a substantial part of the historical equity and variance 
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risk premia may be explained by compensation for tail risk associated with large, negative, 

price jumps. Also see Todorov (2010) for more analysis of the interaction between jumps and 

the variance risk premium. 

 

Thus far, affine models with compound Poisson jumps have been widely used for 

describing the return and volatility processes in financial markets. Todorov and Tauchen (2011) 

concluded that a jump diffusion was a suitable process for high-frequency, S&P 500 index 

levels, whereas the VIX index required a pure-jump process to capture frequent jumps. An 

alternative methodology, which we follow, is to use options prices directly to investigate price 

jumps, volatility jumps and the associated risk premia.  

 

We use a high-frequency jump test, outlined in Section 2, to detect jumps in futures and 

options prices. The main idea is that, when there is no contemporaneous volatility jump, a jump 

in the (underlying asset) price induces jumps in call prices in the same direction as the 

underlying asset price and jumps in put prices in the opposite direction. In contrast, a jump in 

volatility induces jumps in call prices and jumps in put prices in the same direction, when there 

is no contemporaneous price jump. Therefore, if there are contemporaneous call jumps and put 

jumps in the same direction then we regard this as evidence in favour of jumps in volatility. 

We argue that the Andersen, Bollerslev, and Dobrev (2007) jump test is equally applicable to 

futures and options prices. Monte Carlo evidence, presented in Section 3, confirms that the test 

provides reliable evidence for AJD processes.  

 

The empirical results presented in Section 4 are for FTSE contracts, from January 2005 to 

December 2009. We confirm prior results that jumps exist in futures prices and also detect 

more jumps in option prices than in futures prices. However, we fail to find strong evidence 

for jumps in volatility. Jumps in the same direction are observed for less than 2% of the 

occasions when jumps are detected in both the call price and the put price. In addition, it is 

possible that the rare large price changes in the same direction may have resulted from 

microstructure effects or other types of noise in the price data. 

 

The negative result about the directions of the call and put jumps leads to two possible 

explanations. It may be that some jumps in futures prices occur contemporaneously with jumps 

in volatility, and that jumps in futures prices have a greater impact on option prices than the 
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matching volatility jumps. Alternatively, there are simply no jumps in volatility. To compare 

the plausibility of these explanations, further simulations of the jump test applied to AJD 

processes are evaluated in Section 5 for three scenarios: only price jumps; independent price 

jumps and volatility jumps; and contemporaneous price jumps and volatility jumps. From a 

comparison between the empirical and simulation results, we find there are price jumps and 

priced jump risk premia, and that any jumps in volatility occur when the futures price jumps. 

The critical jump risk premia appear to be the differences between the real-world and risk-

neutral moments of the futures price jumps and not necessarily those of the volatility 

jumps[WM1]. 

 

2 DETECTING JUMPS 

 

2.1 Price variation 

 

We assume in our theoretical analysis that the price of an asset follows a semi-martingale 

process in continuous time, so microstructure noise is ignored. The logarithm of the asset price, 

denoted ௧, then follows a standard jump-diffusion process, which can be represented by the 

stochastic differential equation 

݀ ൌ ݐ݀ߤ  ܹ݀ߪ  	ܰ݀ܬ ,                       (1) 

where the drift rate ߤ௧ has locally bounded variation, the volatility process ߪ௧ is positive, ௧ܹ 

is a standard Wiener process, ௧ܰ counts price jumps and ܬ௧ represents the size of any jump 

at timet. The return during an interval of ∆ time units, from time ݐ െ ∆ until time t equals 

௧ െ   .∆௧ି

 

We let one time unit equal the duration of trading at a market for one day, from the open 

until the close, and divide it into m time steps. We define a set of m intraday returns for day d 

by ݎௗ, ൌ ௗା/ െ  ௗାሺିଵሻ/. The realized variance and the realized bipower variation for

day d are respectively defined by 

ܴ ௗܸ ൌ ∑ ௗ,ݎ
ଶ

ୀଵ                             (2) 

and 

ܤ ௗܸ ൌ
గ

ଶሺିଵሻ
∑ หݎௗ,หหݎௗ,ିଵห

ୀଶ .                     (3) 
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Andersen and Bollerslev (1998), Comte and Renault (1998), and Barndorff-Nielsen and 

Shephard (2001, 2004) showed that these quantities converge as ݉ → ∞ . The realized 

bipower variation converges to the integrated variance, 

ܤ ௗܸ →  ݏ௦ଶ݀ߪ
ௗାଵ
ௗ ,                           (4) 

while the realized variance converges to the quadratic variation, which equals the integrated 

variance plus the sum of the squared jumps: 

ܴ ௗܸ →  ݏ௦ଶ݀ߪ
ௗାଵ
ௗ  ∑ ௦ଶௗழ௦ஸௗାଵܬ .                       (5) 

  

2.2 Detecting index jumps 

 

Intuitively, a return contains a jump if the return is large compared with the variation expected 

when the price follows a diffusion process. A simple implementation of the test methodology 

developed by Andersen, Bollerslev, and Dobrev (2007) identifies an index return as containing 

a jump whenever 

หݎௗ,ห  ܤඥݖ ௗܸ/݉,                                 (6) 

with mz  determined by the significance level of the hypothesis test and the standard normal 

distribution. The test criterion in (6) assumes it is appropriate to estimate the integrated variance 

of an intraday return as the daily variation divided by m , i.e. it is assumed that intraday 

volatility changes are not important. ABD ensure their evidence for jumps is conclusive by 

selecting a very low significance level. Let   be the daily Type I error rate, which is the 

proportion of days without jumps for which the test procedure claims one or more jumps. Then 

each of the m intraday returns should be tested with a significance level ߙ  satisfying 

ሺ1 െ ሻߙ ൌ 1 െ ABD choose α .ߙ ൌ 10ିହ and test 195 two-minute returns each day, and 

then ݖ ൌ5.45. 

 

As there are well-documented intraday patterns in volatility, it is natural to modify (6) to 

identify a jump within a return whenever 

หݎௗ,ห  ඥݖ ݂ܤ ௗܸ,                                  (7) 

with ݂ an estimate of the proportion of the day’s variance which occurs during intraday period 

j. The ABD test will detect jumps which are sufficiently large. The test will, however, fail to 
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detect relatively small jumps and thus it may detect only a small fraction of the jumps in a price 

process (Taylor, 2010).  

 

2.3 Detecting jumps in options prices 

 

The price of an option follows a semi-martingale process whenever the price of the underlying 

asset has the semi-martingale property. Consequently, it is tempting to detect jumps in options 

prices using the methods which have already been successfully applied to index levels. 

 

A simple example shows, however, that extra care may be required if the ABD test is 

applied to options prices. When the underlying asset price ܵ follows a geometric Brownian 

process, 

ௗௌ

ௌ
ൌ ݐ݀ߤ   (8)                           ,ܹ݀ߪ

by Ito’s lemma the call price ܥ follows the diffusion process 

ௗ


ൌ ଵ


ቀడ
డ௧
 డ

డௌ
ܵߤ  ଵ

ଶ
ଶܵଶߪ డ

మ

డௌమ
ቁ ݐ݀  ߪ ௌ



డ

డௌ
ܹ݀.              (9) 

 

There will then be intraday variation in the volatility of call returns, because of the 

multiplicative termሺܵ/ܥሻሺ߲ܥ/߲ܵሻ. We therefore expect that there will always be more intraday 

volatility variation for changes in options prices than for changes in the underlying asset prices. 

To verify this we use Monte Carlo simulations in Section 3 to determine if the ABD 

methodology remains viable when it is applied to options prices.[WM2] 

 

2.4 Detecting jumps in volatility 

 

The general jump-diffusion specification given by (1) permits jumps in both prices and the 

volatility component ߪ௧. Our empirical results are for an underlying asset which is a futures 

contract on a stock index. Assuming efficient markets, a jump in the futures price (without a 

contemporaneous volatility jump) will induce all call prices to jump in the same direction as 

the futures price and all put prices to jump in the opposite direction. In contrast, a jump in the 

volatility (without a contemporaneous futures price jump) will induce all call and all put prices 
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to jump in the same direction. Although theoretical predictions are less precise when both the 

futures price and the volatility jump at the same time, call and put prices will only move in the 

same direction when the volatility jump is large relative to the jump in the futures price. 

 

Whenever the ABD test detects contemporaneous jumps in call and put prices in the same 

direction we will regard this as evidence in favour of a volatility jump. Such evidence may be 

elusive, however, because contemporaneous jumps in the futures price may hide the impact of 

volatility jumps. 

 

3 MONTE CARLO RESULTS 

 

We first use Monte Carlo methods to assess the size and power of the ABD test applied to asset 

and option prices for a selection of stochastic processes. The processes are defined in Sections 

3.1 and 3.2, and the results are discussed in Sections 3.3. 

 

Size is defined as the proportion of simulated periods containing no price jumps for which 

the test falsely claims a price jump has occurred. Power is the proportion containing a price 

jump for which the test correctly asserts a jump has occurred. A jump in volatility (denoted 

J.V.) and/or a jump in the underlying asset price (denoted J.P.) should cause a jump in all option 

prices. The intraday size, ߙ, and power, 1 െ  of the ABD test for asset prices and option ,ߚ

prices are listed as follows:      

 

 (underlying asset) Prices Options 

	 numberߙ of	 detected	 J. P. ് 0│true	 J. P. ൌ
number	 of	 true	 J. P. ൌ 0

number	 of	 detected	 J. Options ് 0│true	 J. P. ൌ 0	 &	 .ܬ ܸ. ൌ 0

number	 of	 true	 J. P. ൌ 0	 &	 .ܬ ܸ. ൌ 0
 

1 െ 	number ߚ of	 detected	 .ܬ ܲ. ് 0│true	 J. P. ്
number	 of	 true	 J. P. ് 0

number	 of	 detected	 J. Options ് 0│true	 J. P. ് 0	 	ݎ/& 	 .ܬ ܸ. ്

number	 of	 true	 J. P. ് 0	 	ݎ/& .ܬ ܸ.് 0

 

When m prices a day are simulated, the estimated intraday size ߙො  is converted to the 

equivalent daily figure ߙො given by ሺ1 െ ොሻߙ ൌ 1 െ   .ොߙ
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3.1 Affine stochastic processes 

 

The general form of the simulated affine stochastic processes for the logarithms of prices is as 

follows: 

݀ ൌ ሺݎ  ߛ െ 0.5ܸሻ݀ݐ  √ܸܹ݀  ݀ܰܬ െ  (10)            ,ݐ݀ߤ̅ߣ

ܸ݀ ൌ ߠሺߢ െ ܸሻ݀ݐ  ܼܸ݀√ߦ   ݀ܰ                  (11)ܬ

 

with correlation ߩ between the Wiener processes ௧ܹ and ܼ௧. The two jump processes, ௧ܰ
 

and ௧ܰ
 , are Poisson processes which are independent of the Wiener processes. The four 

constants in (10) are the risk-free rate r, the equity risk premium ߛ, the price jump intensity 

ߤ̅  and the drift compensatorߣ ൌ ௧ܬexp൫ൣܧ
൯ െ 1൧ for which ሺ∑ exp൫ܬ௦

൯ െ 1ሻ െ ௦ஸ௧ݐߤ̅ߣ  

is a martingale process. 

 

We consider five special cases of the general specification above: 

1. Geometric Brownian motion, when ௧ܸ  is constant and the jump components are 

removed. 

2. The stochastic volatility model of Heston (1993), defined by removing both jump 

components. The variance ௧ܸ of this SV model mean-reverts towards the level ߠ at a 

rate determined by ߢ. This and the following cases are all special cases of a general 

affine specification in Duffie, Pan, and Singleton (2000).  

3. The SVJP model which includes jumps in prices alone, as in Bates (1996). The jumps 

are normally distributed, with mean ߤ and variance ߪଶ. 

4. The SVIJ model containing stochastically independent jump processes. The price 

jumps are again normal with mean ߤ and variance ߪଶ. The jumps in volatility have 

intensity ߣ and their sizes are exponentially distributed with mean ߤ. 

5. The SVCJ model having contemporaneous jumps in price and volatility, so ௧ܰ
 ൌ ௧ܰ

. 

The volatility jump properties remain as for Case 4, but the conditional means of the 

price jumps are now a linear function of the volatility jumps; the conditional 

distributions are defined by ܬ௧


௧ܬ│
~ܰሺߤ  ௧ܬߚ

,  .ଶሻߪ

The drift compensator is ̅ߤ ൌ expሺߤ	  ଶሻߪ0.5 െ 1 for Cases 3 and 4, and it equals 

ߤ̅ ൌ ሺexpሺߤ	  ଶሻߪ0.5 െ 1ሻ/ሺ1 െ  .ሻ for Case 5ߤߚ
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3.2 Risk-neutral affine processes 

 

The simulated prices of options are obtained by assuming the risk-neutral dynamics of the 

underlying asset have the same affine structure as the real-world processes defined above. 

Following Broadie, Chernov, and Johannes (2007) and Branger, Hansis, and Schlag (2010), 

five risk premia terms are created by changing the real-world parameters ߤ, ,ߪ ,ߤ ,ߢ ߣ  to 

risk-neutral parameters ߤ, ,ߪ ,ߤ ,ߢ̃ ߤ ሚ. The differencesߣ െ ߪ ,ߤ െ ߤ ,ߪ െ ߢ̃ ,ߤ െ ,ߢ ሚߣ െ

 , are respectively labelled the risk premia for the mean price jump, the volatility of priceߣ

jumps, the mean volatility jump, the diffusive volatility and the jump intensity2. The first two 

differences are together referred to as price jump risk premia. We suppose ߣ equals ߣ for 

the SVIJ model, and likewise for the risk-neutral process. All the remaining parameters, namely 

  .are identical for the real-world and risk-neutral specifications ,ߚ and ߩ ,ߦ ,ߠ

 

Exact options prices can be obtained by inverting characteristic functions. We use the 

Duffie, Pan, and Singleton (2000) pricing formula to calculate all options prices. 

 

3.3 Results 

 

This section determines when it is reasonable to apply the ABD jump detection test on index 

and options prices for affine stochastic processes. We find that the true size of the test is often 

higher than the nominal significance level, hence small significance levels are essential for 

empirical tests. We also find that the test is capable of finding some jumps when they are 

present, but only finds a small proportion when jumps occur frequently. 

 

In all of the simulations, we set m=144; for a trading day of 504 minutes, this value corresponds 

to the calculation of returns once every 3.5 minutes. 

 

3.3.1 Constant volatility, no jumps 

 

The simulated sizes for the jump test obtained from a simulation of geometric Brownian motion 

for 200,000 days are listed in Table 1. When the annual volatility   is set to 10%, 14%, and 
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22%, representing levels for low, average and high volatility respectively, the daily sizes of the 

test applied to options returns are approximately 1.6%, 0.2%, 0.03% and 0.006% at the 1%, 

0.1%, 0.01% and 0.001% nominal significance levels, respectively. The sizes of the ABD test 

applied to futures returns are lower, but slightly larger than the nominal levels. This is 

consistent with the estimates presented by Andersen, Bollerslev, and Dobrev (2007). The size 

of the call option test does not increase when the diffusion coefficient of the call return 

increases and the call prices become more volatile. Specifically, the size does not increase for 

more volatile, out-of-the-money options prices. The nominal values of the ABD test are 

approximately valid and very few jumps will be falsely identified when the significance level 

is 0.1% or less. 

 

3.3.2 Stochastic volatility models 

 

We next discuss simulation results for jump tests applied to affine jump-diffusion models. The 

parameters settings are shown in Panel A of Table 6, which are estimates obtained from our 

FTSE prices using methods described in Section 5. Panel A of Table 2 presents the sizes of the 

jump test for the SV model for futures, and for options across three moneyness levels. All the 

sizes are slightly greater than those for constant volatility (Table 1) and the maximum value is 

0.25% when the significance level is 0.1%. 

 

Panel B of Table 2 shows our first results when there are jumps in prices. We select a high 

annual jump intensity, namely ߣ ൌ	 2,300 (about 10 on an average trading day). This ensures 

the rate of detected jumps in futures prices is similar for the SVJP model, at one every fourteen 

days, to the rate detected for two-minute returns from S&P 500 futures by Andersen, Bollerslev, 

and Dobrev (2007) with a daily significance level of 0.001% level;  the power of the test is 

then approximately 0.8%. The sizes for the SVJP model are often less than the set significance 

levels. The powers of the index tests and the options tests are low, implying that only a small 

fraction of the jumps are identified. As jumps occur contemporaneously in all prices for the 

SVJP model, the number of correctly identified jumps in the index is of a similar magnitude to 

the number of detected jumps in the options. All power estimates in Panel B are between 4.32% 

and 6.98% when the daily significance level is 1%. It is, however, seen that more option jumps 

are detected than futures jumps for reasons we discussed in Section 2.3. 
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Next we consider jumps in both prices and volatility. Panel C of Table 2 shows results 

when the two types of jump occur independently (the SVIJ model). The estimated test sizes are 

similar to the SVJP values, while test power is now reduced for option prices but not for the 

futures prices. A comparison of Panel A of Table 3, for contemporaneous price and volatility 

jumps (the SVCJ model), with Panel C of Table 2 shows that the ABD jump test has similar 

size and more power for the SVCJ model compared with the results for the SVIJ model. The 

contemporaneous jumps magnify spikes in futures returns, and increase the magnitudes of 

options returns. Consequently, the ABD test can detect contemporaneous jumps. From Table 

3, it is again seen that more option jumps are detected than futures jumps. It is also noted that 

the test size for the SVCJ model is inaccurate when volatility is low, option prices are out-of-

the-money and the significance level is very low.  

 

4 EMPIRICAL RESULTS 

 

4.1 Data and sampling frequency 

 

The data consists of FTSE 100 high-frequency futures and option prices, collected from 

Euronext. The maturity date of the futures contracts is the third Friday of each quarter, while 

the options expire on the third Friday of each month. The sample period is from January 4, 

2005 to December 31, 2009, a total of 1,262 trading days. During this period, futures were 

traded from 8:00 to 17:30 and options from 8:00 to 16:30. For reasons given later, we study 

prices from 8:06 to 16:30 inclusive. All times are for London, which is usually five hours ahead 

of New York. 

 

The prices studied are midquotes defined as the averages of the most competitive bid and 

ask prices. Quotation times are recorded to an accuracy of one second. There are fixed times 

during the day when prices are required (e.g. 8:06:00 and 8:09:30) and we use the latest prices 

recorded at or before these times. 

 

Three time series of options prices are studied: 

1) Matm: At-the-money options with a monthly cycle of expiration dates,  
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2) Motm: Out-of-the-money options with a monthly cycle of expiration dates,  

3) Qatm- At-the-money options with a quarterly cycle of expiration dates.  

At-the-money is defined by a daily fixed strike price which is the closest to the midpoint of the 

day’s range for the underlying futures prices. The out-of-the-money call (put) strike price is 

selected to be the at-the-money strike price plus (minus) 50.3 The option and futures expiry 

dates are the nearest to expiry for which the remaining time is at least five trading days. 

 

The days with missing data are deleted, defined as those days for which there is at least 

one twenty-minute period which has no recorded prices. A few days containing either large 

price spikes at the open or close of trading or serious violations of put-call parity4 are also 

deleted. For example, the call prices are highly volatile within one hour around the London 

terrorist incident on July 7, 2005. For each series of options prices, there are 808 daily samples 

available. The sample period is divided into the low volatility period from January 2005 to June 

2007 and the high volatility period from July 2007 to December 2009. There are 369 and 439 

sample days in the low and high volatility periods, respectively. 

 

To choose the sample period and the data frequency, we take into account the following 

principles: 

1. To obtain more information, we extract the data from as wide a period of trading time as 

possible.  

2. The futures and options prices are studied for the same period of time. 

3. For options data, we avoid time intervals which end when major U.S. macroeconomic 

announcements are made, specifically at 13:30 and 15:00. Doing so reduces noise and 

realized variance, and thus we can more accurately detect jumps.  

 

After considering the above principles, we extract price data during the intraday period 

between 8:06 and 16:30 inclusive, a total of 504 minutes. To illustrate why we avoid price 

records at 13:30 and 15:00, Figure 1A presents the monthly out-of-the-money options prices at 

the 15-second frequency on January 13, 2006. It is obvious that the spikes in put prices at 13:30 

and 15:00 violate put-call parity. Figure 1D restricts the options prices to the 5-minute 

frequency from 8:10 to 16:30 and shows that the spikes are then selected. In contrast, Figure 

1C presents the options prices at the 3.5-minute frequency, starting at 8:06; none of the time 

intervals then ends at exactly 13:30 or 15:00 and there are no spikes shown. By using a 3.5-
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minute frequency, instead of the popular 5-minute frequency, we can reduce the number of 

unsatisfactory days containing unusual price spikes within the selected data from 54 to 15 out 

of the 808 sample days. 

 

Figure 2 contains four signature plots5, which illustrate the relationship between frequency 

and the mean realized variance6, when the first price each day is at 8:06. The selected times for 

the first three frequencies (namely 15 seconds, 30 seconds and 1 minute) include 13:30 and 

15:00, while the times for the lower frequencies do not include these specific times. The mean 

realized variances across various frequencies are used to seek the best trade-off point which 

ideally maximises the benefit from obtaining additional information through more frequent 

sampling while avoiding measurement errors from microstructure noise and bid-ask bounce 

effects. It is seen from Figure 2 that, as the time between price measurements decreases, the 

mean realized variances of calls and puts decrease slightly  and reach a stable value generally 

at the 3.5-minute frequency.  The mean realized variances of OTM calls and puts with 3.5-

minute frequency during the periods commencing at 8:06 are 0.0964 and 0.0797. These 

averages are less than their counterparties during the periods starting at 8:10; Figure 3A shows 

averages of 0.1174 and 0.0872 for OTM calls and puts with a 2-minute frequency, similar to 

0.1118 and 0.0868 for the 5-minute frequency. These observations support the claim that 

choosing the 3.5-minute frequency is an optimal choice for our options data. Figure 2D shows 

the futures mean realized variances are similar across frequencies and thus selecting the 3.5-

minute frequency is also appropriate for the futures data. 

 

The variance proportion ݂ is the average proportion of realized variance associated with 

intraday period j. Figure 4 shows and defines estimated proportions for the 3.5-minute 

frequency, for futures, call and put prices. The timings of spikes in these proportions are similar 

across futures and options. There are spikes at the beginning and end of the trading period. 

There are also high values around 12:30, 13:30, 14:00 and 15:00 reflecting US macro news. 

The variance proportions are generally higher after the US markets open at 14:30. These results 

are consistent with the findings of Areal and Taylor (2002) for FTSE 100 futures returns.  

 

4.2 Detected jumps 
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To ensure that the evidence for the existence of jumps is convincing, we chose four low daily 

significance levels (ߙ), decreasing from 1% to 0.001%. Panel A of Table 4 shows the numbers 

of detected jumps in the futures prices and the OTM options prices, with monthly expirations. 

The counts of detected jumps in the futures prices approximately double when the significance 

level is multiplied by 10. Section 5.2.2 shows that this doubling effect occurs when futures 

prices are simulated with stochastic volatility and jumps in price. For the 0.1% level, we expect 

0.8 detected jumps across the entire dataset when the true test size equals the significance level 

and the price process is continuous. This expectation is at most 2 detected jumps from the 

Monte Carlo results in Tables 1, 2 and 3. As we observe 150 detected futures jumps at the 0.1% 

level, this is indeed compelling evidence for jumps in the futures prices; the rate of detected 

jumps is then approximately one a week and 46% of these detected jumps are positive. 

 

Moreover, the number of detected jumps in options prices is greater than that in futures 

prices, which is consistent with the Monte Carlo evidence in Tables 2 and 3. At the 0.1% level, 

there are 217 detected jumps in call prices and 228 in put prices which is very strong evidence 

for jumps in options prices; 47% of the call jumps and 51% of the put jumps are positive. The 

counts approximately halve when the significance level is divided by ten and the call counts 

are near the put counts, except for the tiny level of 0.001% when there are notably more put 

jumps than call jumps. 

 

    We next consider the types of price jumps occurring concurrently. We allocate the jumps 

to eight combinations, which list which jumps are detected during the same 3.5-minute period. 

Panel A of Table 4 shows that the most common combination at the 1%, 0.1% and 0.01% levels 

is FCP, which represents contemporaneous detected jumps in futures, call and put prices, and 

it then accounts for about 26% of the combinations. Combination C occurs when a jump is 

detected in the call price but no jump is found in either the futures or the put price at the same 

time. Each of combination C and combination P account for 22% to 24% of the combinations 

for the three higher significance levels. In contrast, the frequency of the CP jump combination 

is only 11%; this combination occurs when contemporaneous jumps are detected in both the 

call and the put, without a futures jump. Combinations F, FC and FP all have low frequencies. 

 

Panel B of Table 4 shows counts of price change direction combinations, for the CP and 

FCP jump combinations. When the futures price jumps up or down, the call price always jumps 
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in the same direction and the put price always jumps in the opposite direction. When the two 

option prices jump, but a futures jump is not detected, we find that the call price jumps in the 

opposite direction to the put price in almost all cases. At the 0.1% significance level there are 

88 FCP combinations and 34 CP combinations, from which there are only 2 occasions when 

the call and put prices jump in the same direction. We conclude that the impact of jumps in 

prices dominates that of any jumps in volatility when the market determines option prices. 

 

In the example shown in Figure 5, the detected call and put price jumps are both negative 

at the 0.1% significance level at 14:52 on September 15, 2006. These changes in the call and 

put prices in the same direction may result from a data issue. For instance, an unusual ask or 

bid price can lead to a large price change, followed by an almost equivalent opposite price 

change within a short period. Therefore, this evidence is not sufficiently strong to show the 

existence of an independent jump in volatility. 

 

We consider three further sets of jump test results to confirm the robustness of the results 

in Table 4. Firstly, we consider at-the-money options with monthly and quarterly maturities, 

secondly we consider prices measured at the popular 5-minute frequency data, and thirdly we 

divide the sample period into low and high volatility periods. Table 5 shows the empirical 

results for the detected jumps for these three situations. Comparing Panels A1 and A2 shows 

that the numbers of detected jumps for the out-of-the-money options are slightly larger than 

those for at-the-money options. This may occur because out-of-the-money options are more 

sensitive to the impact of unexpected events or news announcements.  

 

Compared with the low-volatility period, the high-volatility period has relatively high 

percentages of the CP and FCP jump combinations, and relatively low percentages of the C 

and P jump combinations. The empirical results for the 5-minute frequency data are similar to 

those for the 3.5-minute frequency. As should be expected, we detect more jumps when returns 

are calculated over the shorter time intervals of 3.5 minutes and, consequently, a higher 

percentage of FCP events. 

 

For the FCP jump combinations, the directions of futures jumps and call jumps are always 

the same, whereas the directions of put jumps are always opposite to those of futures jumps. 

There are two possible explanations for this observation. The first is that jumps in the 
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(underlying asset) price exist whereas jumps in volatility do not. The second is that jumps in 

futures prices and in volatility can occur concurrently, with the impact on options prices of 

jumps in futures prices dominating that of jumps in volatility. The results for the CP and FCP 

jump combinations presented in Tables 4 and 5 cannot be interpreted as evidence for the 

existence of jumps in volatility.  

 

5 DETECTED JUMP COMBINATIONS FOR AFFINE PROCESSES 

 

The results obtained from our futures and options prices show no evidence for the existence of 

independent volatility jumps. We now attempt to recreate the observed jump statistics by using 

the affine jump-diffusion processes introduced in Section 3.1. The main objective is to examine 

whether the observed jump patterns can be explained by contemporaneous jumps in price and 

volatility or simply by jumps in prices. 

 

The ABD test is conducted to detect jumps in theoretical futures and options prices 

obtained from simulated affine jump-diffusion processes. Section 5.1 explains the selection of 

the model parameters. Section 5.2 then presents additional insights into price dynamics gleaned 

from a comparison between the empirical FTSE-100 results and the simulated results for affine 

processes. 

 

5.1 Parameter selection 

 

A variety of econometric methods have been used to estimate the parameters of affine jump-

diffusion models (henceforth AJD). Pan (2002) used an implied-state generalized method of 

moments, while Eraker, Johannes, and Polson (2003) performed likelihood-based estimation 

with Markov chain Monte Carlo methods. Chernov et. al. (CGGT) (2003) used an efficient 

method of moments. Broadie, Chernov, and Johannes (2007) minimized the differences 

between model-based and market-based implied volatility. In this study, we aim to minimize 

the differences between AJD results and our empirical results in Table 4 for the detected jump 

numbers and the percentages of jump combinations. A deep out-of-the-money option is used 

to isolate the jump risk and to estimate the parameters of the AJD stochastic volatility models 
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by Bates (2000), Pan (2002), and Eraker (2004). For high liquidity and similarity of empirical 

results with other sets of options, we focus on the results for the out-of-the-money option with 

monthly expiration. Therefore, in the simulations, we allow the expiration time to decrease 

repeatedly from 25 to 6 trading days. 

 

Panel A of Table 6 lists the values of the parameters selected for simulating four AJD 

processes, namely the SV, SVJP, SVIJ and SVCJ processes. We follow a two-step selection 

methodology. First, we estimate risk-neutral parameters by minimizing the sum of the squares 

of the errors between the theoretical prices of Duffie, Pan, and Singleton (2000) and the 7-

minute frequency out-of-the-money option prices during the period between 8:06 and 16:30. 

The medians of monthly estimated parameters are shown in Panel B of Table 6, and can be 

seen to be of similar magnitudes to those obtained by Pan (2002). We use the estimates of ܸ,  ,ߢ̃

	  .but alter the other risk-neutral parameters ,ߦ and ,ߠ

 

Second, we choose the remaining real-world and risk-neutral parameters to try and match 

the simulated statistics for the jump combinations with the empirical estimates, guided when 

possible by parameter estimates from prior literature. In particular, the annual jump intensities 

in our simulations range from 2,000 to 3,000. These high numbers are necessary (1) because 

the high-frequency jump tests detect far more jumps than are estimated in the low-frequency 

literature which models daily prices, (2) because the jump tests have low power as already 

shown in Table 3. 

 

The initial futures prices are set as ܵ=5475 each day. The initial variance levels ( ܸ) are 

0.01, 0.02 and 0.05, corresponding to 10%, 14% and 22% annual volatility for the low-

volatility, full-sample and high-volatility periods. The risk-free rate r is set as 3%.  

 

Our annual equity risk premium is set to approximately 6%, 12% and 18% over the three 

periods, similar to the study by Pan (2002).7 The annualized diffusive volatility risk premium, 

ߢ̃ െ  is set as -0.25, similar to the value obtained by Chernov and Ghysels (2000). In the ,ߢ

SVCJ model for the full sample period, ߢ and ̃ߢ are 7.25 and 7, respectively; these values 

correspond to half-life values of 24.1(=252ൈ lnሺ2ሻ/ߢ) and 25 trading days, respectively. 
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To ensure that the detected numbers of simulated jump combinations are similar for P+ 

and FCP(−−+) to those of P– and FCP(++−), as seen empirically in Table 4, we set ߩ to 

be equal to -0.01, which is different from the values estimated by Eraker (2004) (-0.46) and 

Pan (2002) (approximately -0.5) from daily data. 

 

Panel B of Table 6 comapres our risk-neutral parameters for the SVCJ process with the 

estimates reported by Pan (2002), CGGT (2003), Eraker, Johannes, and Polson (2003), Eraker 

(2004), and Wang (2009). Our means and standard deviations for the jump distributions are 

smaller than the earlier estimates because our high-frequency focus requires us to select high 

values for the jump intensities. 

 

5.2 AJD simulation results 

 

The jump results for simulations are now compared with the empirical results for 808 days of 

prices for the FTSE 100 index, and inferences are made about jumps in prices, jumps in 

volatility, and the related risk premia. 

 

5.2.1 Stochastic volatility without jumps 

 

The SV model has no jump component in either the price or variance processes. Panel A of 

Table 7 shows that the ABD test falsely claims slightly more jumps than predicted by the 

nominal significance level, with approximately 12 futures, 13 call and 13 put jumps detected 

every 808 days at the 1% daily significance level. The small number of jumps observed 

eliminates the SV model as a candidate to describe the much larger number of detected 

empirical jumps. 

 

5.2.2 Stochastic volatility with jumps in prices alone 

 

The SVJP model has a jump component in the stochastic differential equation defining futures 

prices but no jumps in the variance s.d.e. 
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Panel C1 of Table 7 shows that the SVJP results detect numbers of jumps which are similar 

to the numbers for the empirical data shown in Panel B. For example, at the 0.1% significance 

level there are 150 detected empirical futures jumps and 165 detected simulated futures jumps 

(on average), during the same time period, with counts of 217 and 257 for detected call jumps, 

and 228 and 241 for detected put jumps. The percentages of jump combinations are similar for 

C, P, CP, FC and FP. However, the simulated percentages are notably lower for F and notably 

higher for FCP; thus when a futures jump is detected it is more likely in the simulation that call 

and put jumps will also be detected8. For combination CP, the detected simulated call and put 

jumps are always in opposite directions as nearly always occurs for the empirical results. 

 

Panels C2 to C4 provide results when some of the risk premia are set to zero. There are 

only minor changes when the intensity premium is zero (Panel C2). Assuming there are no 

premia for the jumps does have a notable impact: the numbers of detected option jumps fall 

slightly, as do the percentages for the C, P and CP combinations (Panel C3).  

 

Panel C5 shows the simulation results for the parameters estimated by Pan (2002). The 

low jump intensity and the high magnitude of jump sizes, relative to our preferred parameters, 

explains why (1) many fewer jumps are detected, (2) the numbers of detected jumps do not 

double when the significance level is multiplied by 10, and (3) the percentages of the FCP jump 

combinations are very high. These results support our selection of a high jump intensity. 

 

5.2.3 Stochastic volatility with independent jumps in price and in volatility 

 

Panel D of Table 7 shows similar results to Panel C1. Small and frequent independent jumps 

in volatility are not detected in these simulations, as we do not detect jumps in the call and put 

prices in the same direction.  

 

5.2.4 Stochastic volatility with contemporaneous jumps in price and in 

volatility 

 

The SVCJ simulation results in Table 8 are similar to the SVJP results in Panel C of Table 7. 

There are only minor differences, for the parameters selected in Table 6, because Panel B1 of 
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Table 8 is almost identical to Panel C1 of Table 7. Again, the price jump risk premia and only 

these premia are necessary to match the numbers of detected option jumps, since there is a 

good match in Panel B2 of Table 8 but not in Panels B3, B4 and B5. Thus price jumps and 

price jump risk premia are sufficient to explain our empirical results. Nevertheless, 

contemporaneous volatility jumps can also be part of a successful explanation but they do not 

appear to be necessary. 

 

Panels B6 and B7 of Table 8 show the impact of choosing a low jump intensity, below 2 

per annum, respectively based upon the parameters of CGGT (2003) and our estimates in Panel 

B of Table 6. These parameter choices are clearly not viable, because the numbers of detected 

jumps are very low. Calls and puts often jump in the same direction for our estimates (see Panel 

B7), showing that large jumps in volatility can be detected providing the intensity of the 

contemporaneous jumps is very low. 

 

Finally, Panels B and C of Table 8 compare the empirical and simulated jump results for 

the low and high volatility periods. These comparisons show that our conclusions for the full 

sample period apply to both low and high volatility periods. 

 

6 CONCLUSIONS 

 

By studying prices recorded every three-and-a-half minutes we have found conclusive evidence 

firstly for jumps in futures prices and secondly for jumps in the prices of options written on the 

underlying futures asset. Our methodology also has the potential to detect jumps in the 

volatility of the underlying asset price, providing these are large enough to move call and put 

prices in the same direction regardless of any contemporaneous jump in the futures price. We 

find, however, that the impact of jumps in futures prices dominates that of any jumps in 

volatility when the market determines option prices. It is possible, but not proven, that volatility 

jumps coincide with jumps in futures prices which prevent us seeing call and put prices moving 

in the same direction. There is certainly no evidence for volatility jumps at those times when 

the futures prices do not jump. 
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    More jumps are detected in our option prices than in our futures prices. Simulation of 

affine jump-diffusion processes, containing either price jumps alone (the SVJP model) or 

contemporaneous price and volatility jumps (the SVCJ model), shows that we can explain the 

additional detected option price jumps if we select the model parameters appropriately. To do 

so it is necessary to incorporate jump risk premia, such that the risk-neutral distribution of price 

jumps has a mean and variance different to the real-world distribution. The high-frequency 

tests detect far more jumps than earlier studies reliant on daily and less frequent price 

observations. Consequently, a high jump intensity combined with generally small jumps is 

required to match our empirical results with those obtained from the AJD simulations. 

[WM3] 
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A. 0.25-min frequency 

 

B. Futures 0.25-min frequency 

 

C.  3.5-min frequency 

 

D.  5-min frequency 

 

The prices commence at 8:06 in Panels A, B and C. They commence at 8:10 in Panel D. 

 

FIGURE 1 The out-of-the-money options prices on January 13, 2006 
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A. Monthly ATM Options 

 

B. Monthly OTM Options 

 

C. Quarterly ATM Options D. Futures 

The first price used for each day is at 8:06. The three options series used for Panels A, B and C are defined in 
Section 4.1. The dashed line shows the mean realized variance of call prices. The solid lines show the mean 
realized variance of put and futures prices. Note the frequency scale is not linear. 

 

FIGURE 2 Volatility signature plots: the mean realized variance during the period between 
8:06 and 16:30 
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A. Monthly OTM Options 

 

B. Futures 

 

The first price used for each day is at 8:10. The dashed line shows the mean realized variance of call prices. The 
solid lines show the mean realized variance of put and futures prices. Note the frequency scale is not linear. 

 

FIGURE 3 The mean realized variance during the period between 8:10 and 16:30 
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A.  Monthly ATM 

 

B. Monthly OTM  

 

C. Quarterly ATM 

 

 

The variance proportion ݂ for the j -th intraday period is defined by Taylor and Xu (1997) and calculated from 

intraday returns ݎௗ,as: ݂ ൌ
∑ ,ೕ

మ
సభ

∑ ∑ ,ೕ
మ

ೕసభ

సభ

. The dashed line denotes the variance proportion for futures, the dot-

dashed line denotes that of call prices and the solid line denotes that of put prices. The first price used for each 
day is at 8:06. 
 

FIGURE 4 Estimates of the variance proportions when the data frequency is 3.5-minutes 
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A.

 

B.

 
 

The small circles denote the detected jumps in the call price and the put price at 14:52. 

 

FIGURE 5 Futures and monthly out-of-the-money options prices with 3.5-min frequency on 

September 15, 2006 

  



29 

 

TABLE 1The size of the ABD test applied to futures, call and put prices when futures prices 

are determined by geometric Brownian motion 
 Futures 

 
Call Put 

α(%) 1 .1 .01 .001 ܵ
ܥ
ܥ߲
߲ܵ

 
1 .1 .01 .001 1 .1 .01 .001 

SK /  e.s. 
(%) 

e.s. 
(%) 

e.s. 
(%) 

e.s. 
(%) 
 

 
 

e.s. 
(%) 

e.s. 
(%) 

e.s. 
(%) 

e.s. 
(%) 
 

e.s. 
(%) 

e.s. 
(%) 

e.s. 
(%) 

e.s. 
(%) 
 

A. average volatility level 
 1.27 0.15 0.018 0.0025          

1.02     43 1.54 0.20 0.027 0.0055 1.64 0.23 0.032 0.0075 

1      37 1.59 0.21 0.029 0.0055 1.60 0.22 0.033 0.0065 

0.98      29 1.63 0.22 0.028 0.0055 1.57 0.21 0.030 0.0055 

 
B. low volatility 
 1.27 0.15 0.018 0.0025          

1.02     62 1.53 0.20 0.026 0.0060 1.64 0.23 0.032 0.0075 

1      49 1.60 0.21 0.029 0.0055 1.60 0.22 0.033 0.0060 

0.98      36 1.64 0.22 0.028 0.0060 1.55 0.20 0.029 0.0055 

 
C. high volatility 
 1.27 0.15 0.018 0.0025          

1.02     25 1.56 0.21 0.027 0.0055 1.63 0.23 0.032 0.0075 

1      23 1.59 0.21 0.029 0.0055 1.61 0.22 0.032 0.0065 

0.98      20 1.62 0.22 0.029 0.0050 1.58 0.21 0.032 0.0060 

The tabulated numbers are estimates of the daily size (denoted e.s.) of a test for jumps in asset prices. Annual 
volatility is equal to 14%, 10%, and 22% in Panels A, B and C respectively. K and S respectively denote the strike 
and futures prices. Time to expiry of the options repeatedly decreases from 25 to 6 days, during a simulation 
period of 200,000days. There are 144 time steps per day. The column headedሺܵ ⁄ܥ ሻሺ߲ܥ ߲ܵሻ⁄ lists average values. 
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TABLE 2 The size and power of the ABD test for futures and options prices, for the SV, SVJP, 

and SVIJ processes 

α 1% 0.1% 0.01% 0.001% 
Price  Moneyness 

(K/S) 
size power size power size power size Power 

A. SV model      
Fut.  1.51 - 0.19 - 0.031 - 0.0055 -  

1.02 1.58 - 0.23 - 0.043 - 0.0150 - 
Call 1 1.65 - 0.23 - 0.035 - 0.0040 - 
 0.98 1.75 - 0.24 - 0.035 - 0.0050 -  

1.02 1.73 - 0.25 - 0.038 - 0.0095 - 
Put 1 1.64 - 0.21 - 0.032 - 0.0065 - 
 0.98 1.63 - 0.23 - 0.056 - 0.0195 - 
B. SVJP model      
Fut.  0.63 4.32 0.08 2.36 0.013 1.35 0.0021 0.81  

1.02 0.58 6.51 0.07 3.86 0.006 2.36 0.0005 1.50 
Call 1 0.59 6.86 0.07 4.11 0.007 2.53 0.0005 1.61 
 0.98 0.61 6.98 0.07 4.20 0.012 2.62 0.0011 1.68  

1.02 0.64 6.13 0.07 3.62 0.013 2.22 0.0011 1.42 
Put 1 0.64 5.58 0.07 3.24 0.015 1.96 0.0016 1.24 
 0.98 0.64 4.78 0.07 2.70 0.013 1.61 0.0005 1.00 
C. SVIJ model      
Fut.  0.62 4.18 0.07 2.27 0.009 1.30 0.0011 0.78  

1.02 0.54 0.47 0.06 0.26 0.004 0.16 0.0005 0.10 
Call 1 0.55 0.48 0.06 0.27 0.006 0.17 0.0005 0.10 
 0.98 0.55 0.49 0.06 0.28 0.006 0.17 0.0005 0.11  

1.02 0.55 0.48 0.06 0.28 0.005 0.16 0.0000 0.10 
Put 1 0.54 0.47 0.06 0.27 0.005 0.16 0.0000 0.10 
 0.98 0.54 0.45 0.06 0.25 0.004 0.15 0.0000 0.09 

The daily size and power estimates are all percentages. The stochastic processes are defined in Section 3.1. Their 
parameter values are listed in Table 6, Panel A, which are estimates obtained from FTSE contracts for the period 
from 2005 to 2009. There are 200,000 days in each simulation and 144 time steps in each day. K and S respectively 
denote the strike and futures prices. 
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TABLE 3 The size and power of the ABD test for futures and options prices, for the SVCJ 

model 

α 1% 0.1% 0.01% 0.001% 
Price  Moneyness 

 (K/S)  
size power Size power size power size power 

A. full sample parameters        
Index  0.51 7.77 0.05 4.81 0.004 3.07 0.0005 2.02  

1.02 0.47 9.40 0.05 6.05 0.005 4.00 0.0005 2.71 
Call 1 0.48 9.98 0.05 6.49 0.005 4.34 0.0005 2.97 
 0.98 0.52 10.29 0.05 6.74 0.005 4.53 0.0005 3.12  

1.02 0.53 10.10 0.06 6.60 0.009 4.44 0.0005 3.04 
Put 1 0.50 9.69 0.06 6.27 0.007 4.18 0.0005 2.84 
 0.98 0.49 9.00 0.05 5.74 0.007 3.77 0.0016 2.54 
 
B. low volatility parameters        
Index  0.69 7.24 0.08 4.45 0.011 2.82 0.0005 1.84  

1.02 0.60 8.15 0.07 5.06 0.010 3.22 0.0019 2.12 
Call 1 0.56 11.21 0.06 7.47 0.007 5.08 0.0000 3.55 
 0.98 0.57 14.12 0.07 9.81 0.007 6.97 0.0005 5.02  

1.02 0.56 13.86 0.06 9.60 0.008 6.77 0.0016 4.89 
Put 1 0.54 10.74 0.06 7.08 0.008 4.80 0.0005 3.32 
 0.98 0.65 7.49 0.07 4.56 0.015 2.87 0.0044 1.85 
 
C. high volatility parameters        
Index  0.39 5.51 0.05 3.23 0.003 1.97 0.0005 1.25  

1.02 0.40 7.20 0.05 4.46 0.003 2.86 0.0000 1.87 
Call 1 0.41 7.31 0.05 4.53 0.003 2.92 0.0000 1.91 
 0.98 0.42 7.38 0.05 4.59 0.003 2.96 0.0000 1.94  

1.02 0.43 7.30 0.05 4.54 0.008 2.90 0.0005 1.92 
Put 1 0.41 7.22 0.05 4.47 0.008 2.85 0.0005 1.88 
 0.98 0.41 7.08 0.04 4.37 0.008 2.78 0.0005 1.83 

The daily size and power estimates are all percentages. The SVCJ stochastic process is defined in Section 3.1. 
The parameter values are listed in Table 6, Panel A; these are estimates obtained from FTSE contracts for the 
period from 2005 to 2009. There are 200,000 days in each simulation and 144 time steps in each day. K and S 
respectively denote the strike and futures prices.  
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TABLE 4 The detected jumps in futures and monthly out-of-the-money options prices 
Panel A Jumps and combinations 

α 
(%) 

Numbers of jumps 
detected 

Numbers of jump combinations Total jump 
combinations 

F C P C P 
＋ 

P
− 

CP F FC FP FCP 

1 306 431 423 144 70 73 74 65 35 28 178 667 
0.1 150 217 228 74 41 41 36 21 19 22 88 342 

0.01 79 128 127 47 22 24 21 10 9 9 51 193 
0.001 45 65 90 22 21 19 15 6 4 11 24 122 

    Percentages of jump combinations  
1    22 10 11 11 10 5 4 27  

0.1    22 12 12 11 6 6 6 26  
0.01    24 11 12 11 5 5 5 26  

0.001    18 17 16 12 5 3 9 20  

Rows 1 to 4 show the numbers of detected jumps and the numbers of jump combinations across different daily 
significance levels. 

Columns 2 to 4 show the numbers of detected jumps in futures (F), calls (C) and puts (P). Columns 5 to 12 show 
how often jumps are detected for only the named securities, e.g. the heading C in column 5 refers to times when 
a jump is detected in the call but none is detected in the futures or the put, while FCP in column 12 refers to times 
when contemporaneous jumps are detected in the futures, the call and the put. Columns 6 and 7, headed  P+ and 
P-, respectively denote the numbers of positive and negative detected jumps in the put when no jumps are detected 
in the futures and the call.  

Rows 5 to 8 show the percentages of jump combinations which are the numbers of specific jump combinations 
divided by the total numbers of jump combinations.  

 

Panel B The components of the CP and FCP jump combinations 

 Numbers of jump combinations  

α 
(%) 

CP 

＋− 

CP 

−＋ 

Sub- 
total 

CP 

＋＋ 

CP 

−− 
Sub- 
total 

F C P 

＋＋− 

F C P 

−−＋ 
Other
FCP 

Total jump 
combinations 

1 33 38 71 2 1 3 79 99 0 667 
0.1 16 18 34 1 1 2 45 43 0 342 

0.01 11 9 18 0 1 1 24 27 0 193 
0.001 10 5 15 0 0 0 10 14 0 122 

 
 

Percentages of jump combinations  
1 4.9  5.7  10.6 0.3  0.1  0.4 11.8  14.8  0  

0.1 4.7  5.3  9.9 0.3  0.3  0.6 13.2  12.6  0  
0.01 5.7  4.7  9.3 0.0  0.5  0.5 12.4  14.0  0  

0.001 8.2  4.1  12.3 0.0  0.0  0.0 8.2  11.5  0  

Rows 1 to 4 are the numbers of jump combination across different daily significance levels. Rows 5 to 8 are the 
same numbers divided by the total numbers of jump combinations, as percentages. 

The columns show numbers and percentages for when both the call and the put jump. For example, the column 

CP(+−) refers to contemporaneous positive detected jumps in calls and negative detected jumps in puts when no 

jump is detected in futures, while the column FCP(++−) refers to contemporaneous negative detected jumps in 
puts and positive detected jumps in both futures and calls. 
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TABLE 5 Detected jumps in selected datasets of futures and options prices 

α 
(%) 

Detected jumps 
per 808 days 

 

Percentages of jump combinations 
 

F C P C P
+ 

P 

− 

CP F FC FP FCP CP 

+− 

CP 

−+ 

CP 
+ + 

CP 

−− 

Panel A. Full sample period from 2005 to 2009 
A1. 3.5-min frequency, monthly out-of-the-money options prices 

1 306 431 423 22 10 11 11 10 5 4 27 4.9  5.7  0.3 0.1  
0.1 150 217 228 22 12 12 11 6 6 6 26 4.7  5.3  0.3 0.3  

0.01 79 128 127 24 11 12 11 5 5 5 26 5.7  4.7  0.0 0.5  
0.001 45 65 90 18 17 16 12 5 3 9 20 8.2  4.1  0.0 0.0  

A2. 3.5-min frequency, monthly at-the-money options prices 
1 306 402 392 18 8 8 13 10 5 5 33 5.8 7.0 0.2 0.3 

0.1 150 192 194 15 13 6 14 11 6 3 32 7.0 5.9 0.3 0.3 
0.01 79 112 112 17 9 8 16 8 3 4 35 6.4 9.6 0.0 0.0 

0.001 45 71 70 18 8 9 19 4 6 5 31 9.3 9.3 0.0 0.0 
A3. 3.5-min frequency, quarterly at-the-money options prices 

1 306 403 447 17 12 10 14 10 4 6 28 6.0  7.6  0.0 0.2  
0.1 150 206 220 17 14 8 15 10 5 4 28 7.5  7.2  0.0 0.3  

0.01 79 116 131 16 13 12 15 7 4 3 31 6.2  8.4  0.0 0.0  
0.001 45 76 82 18 11 13 18 4 5 5 28 9.0  9.0  0.0 0.0  

A3. 5-min frequency, monthly out-of-the-money options prices 
1 205 364 356 27 11 15 12 7 5 4 20 6.3 5.4 0.3 0.2 

0.1 101 180 184 22 12 15 16 6 7 4 19 6.4 8.1 0.7 0.4 
0.01 50 105 103 28 13 15 14 7 4 2 16 8.9 4.7 0.6 0.0 

0.001 33 74 55 36 9 12 13 8 5 4 13 4.5 7.3 0.9 0.0 
 
Panel B. Low-volatility period from January 2005 to June 2007 
B1. 3.5-min frequency, monthly out-of-the-money options prices 

1 324 528 519 27 13 14 8 6 7 6 19 3.6 4.1 0.3 0.3 
0.1 149 252 250 31 14 15 6 7 5 6 17 2.5 3.0 0.0 0.0 

0.01 61 136 145 33 17 15 9 3 3 8 12 4.6 4.6 0.0 0.0 
0.001 39 74 94 31 22 15 6 4 1 9 12 4.4 1.5 0.0 0.0 

B2. 5-min frequency, monthly out-of-the-money options prices 
1 206 381 342 31 14 12 8 7 5 3 20 4.4 3.7 0.4 0.0 

0.1 81 208 184 34 13 16 12 1 6 3 15 5.6 5.6 0.7 0.0 
0.01 35 120 107 38 16 16 11 2 2 0 14 3.5 5.9 1.2 0.0 

0.001 20 85 79 40 19 17 10 2 2 0 11 1.6 6.3 1.6 0.0 
 
Panel C. High-volatility period from July 2007 to December 2009 
C1. 3.5-min frequency, monthly out-of-the-money options prices 

1 252 364 396 15 10 9 20 9 2 5 31 8.2 11.3 0.0 0.0 
0.1 123 180 204 15 11 12 17 9 2 3 30 6.6 10.6 0.0 0.0 

0.01 59 92 107 20 19 8 13 8 1 4 25 6.0 7.2 0.0 0.0 
0.001 29 39 70 17 17 20 11 0 0 17 17 2.2 8.7 0.0 0.0 

C2. 5-min frequency, monthly out-of-the-money options prices 
1 166 374 322 29 10 8 21 7 1 2 23 10.1 9.8 0.0 0.7 

0.1 85 193 171 28 13 9 20 6 4 2 19 10.7 9.4 0.0 0.0 
0.01 48 107 105 26 12 11 21 5 2 5 19 10.6 10.6 0.0 0.0 

0.001 28 59 63 21 8 13 27 6 2 6 17 10.4 16.7 0.0 0.0 
Columns 2 to 4 show the number of detected jumps per 808 days. There are 369 and 439 days respectively in 
the low- and high-volatility periods. Actual detections are multiplied by 808/369 in Panel B and by 808/439 in 
Panel C. See Table 4 for information about the column headings.  
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TABLE 6 Estimated and selected parameters of affine jump-diffusion models 
 
Panel A Parameters selected for Monte Carlo simulations 

Period Full sample period Low volatility High volatility 
Parameters SV SVJP SVIJ SVCJ SVCJ SVCJ 

ܸ 0.022 0.02 0.02 0.02 0.01 0.05 
ߛ 0.5% 11.9% 14.3% 11.9% 6.2% 19.1% 
 0.01 0.004 0.004 0.004 0.007 0.020 ߠ
 7.05 7.25 7.25 7.25 6.25 4.65 ߢ
 6.8 7.0 7.0 7.0 6.0 4.4 ߢ̃
 0.46 0.45 0.45 0.45 0.50 0.51 ߦ
 0.01- 0.01- 0.01- 0.01- 0.01- 0.01- ߩ
  - 2300 2300 2300 2000 3000ߣ
 ሚ - 2250 2250 2250 1980 2930ߣ
  - - 2300 2300 2000 3000ߣ
 ሚ - - 2250 2250 1980 2930ߣ
 1- 0.01- 0.6- 0.6- 0.6- - (0.0001*)ߤ
 (*0.0001) - -1.2 -1.2 -1.1 -0.31 -1.6ߤ
 18 9.8 13 13.1 13.1 - (0.0001*)ߪ
 (*0.0001) - 15.35 15.3 15.15 12.5 20.9ߪ
 0.03- 0.06- 0.06- - - - ߚ
 (*0.0001) - - 0.9 0.04 0.01 0.2ߤ
 (*0.0001) - - 1.8 0.06 0.02 0.4ߤ
Annual price jump 
risk premium - 13.7% 13.7% 11.4% 5.9% 17.8% 

The price jump risk premium is ߣ̅ߤ െ  .෨, with the drift compensator defined in Section 3.1ߤሚ̅ߣ
 

Panel B Comparisons of estimated and selected parameters with previous studies 
Time unit Period ෨݇  ߤ ߩ ߦ ߠ 

(*.01) 
 ߪ

(*.01) 
 ߤ

(*.00
01) 

 ߣ ߚ

Pan year  7.1 0.013 0.28 -0.52 -0.3 3.25 - - 27.1 
Wang year  1.6 0.044 0.367 -0.64 -13.3 2.19 680 -0.47 0.25 
CGGT* year  3.6 0.206 0.272 -0.46 -1.52 1.73 181 -0.87 1.7 

Our estimation and simulation:         
Estimation year Full 7.0 0.004 0.45 -0.60 -0.37 1.77 319 -0.11 0.38  

 Low 7.0 0.004 0.45 -0.65 -0.24 2.63 1584 -0.11 0.16 
  High 6.8 0.010 0.46 -0.52 -0.37 1.66 83 -0.08 1.28 
Simulation year Full  7.0 0.004 0.45 -0.01 -0.0110 0.152 0.06 -0.06 2300 
  Low 7.0 0.004 0.45 -0.01 -0.0031 0.125 0.20 -0.06 2000 
  High 6.8 0.010 0.46 -0.01 -0.0160 0.209 0.40 -0.03 3000 
            

EJP* day  0.026 0.54 
e-4 

0.08 
e-2 

-0.48 -1.75 2.89 1.48 -0.60 0.006 

Eraker day  0.023 1.353 
e-4  

0.163 
e-2 

-0.58 -6.1 3.63 1.63 -0.69 0.002 

The parameters are estimated with annual time units by Pan (2002), CGGT (2003) and Wang (2009) and with 
daily time units by Eraker, Johannes, and Polson (EJP) (2003) and Eraker (2004). Our estimation parameters are 
obtained by matching the theoretical prices of Duffie, Pan, and Singleton (2000) with the 7-minute market prices. 
*: The parameters of CGGT (2003) and EJP (2003) are estimated from the real-world measure; the others are 
from the risk-neutral measure. 
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TABLE 7 Detected jumps in futures and options prices when the SV, SVJP, and SVIJ 
models are simulated 

 ߙ
(%) 

Detected jumps 
per 808 days 

Percentages of jump combinations 
 

F C P C P
+ 

P 

− 

CP F FC FP FCP CP 

+− 

CP 

−+ 

CP 
+ + 

CP 

−− 

A. SV model result  
1 12.3 13.0 13.1 28 15 15 0 15 13 10 4 0.0 0.0 0.0 0.0 

0.1 1.6 1.8 1.7 30 16 15 0 17 11 9 2 0.0 0.0 0.0 0.0 
0.01 0.2 0.3 0.3 31 16 14 0 22 6 8 3 0.0 0.0 0.0 0.0 

0.001 0.04 0.02 0.05 17 17 22 0 35 0 4 4 0.0 0.0 0.0 0.0 
B. Empirical result      

1 306 431 423 22 10 11 11 10 5 4 27 4.9  5.7  0.3 0.1  
0.1 150 217 228 22 12 12 11 6 6 6 26 4.7  5.3  0.3 0.3  

0.01 79 128 127 24 11 12 11 5 5 5 26 5.7  4.7  0.0 0.5  
0.001 45 65 90 18 17 16 12 5 3 9 20 8.2  4.1  0.0 0.0  

C1. SVJP model result 
1 310 441 422 20 9 9 8 0.6 5 3 46 3.5 4.2 0.0 0.0 

0.1 165 257 241 22 10 9 9 0.4 4 3 42 4.0 5.0 0.0 0.0 
0.01 95 155 145 24 11 9 9 0.3 4 3 40 4.2 5.0 0.0 0.0 

0.001 58 98 92 24 11 10 10 0.3 3 3 39 5.2 4.9 0.0 0.0 
C2. Constraint: only consider price jump risk premium: ߤ ് ߪ ,ߤ ്  ߪ

1 316 444 425 20 9 9 6 0.5 5 3 47 2.8 3.6 0.0 0.0 
0.1 172 259 241 22 9 9 7 0.5 4 3 44 3.2 4.2 0.0 0.0 

0.01 100 154 147 23 10 9 8 0.4 4 3 42 3.7 4.6 0.0 0.0 
0.001 61 99 93 24 11 10 8 0.3 4 3 40 3.6 4.6 0.0 0.0 

C3. Constraint: only consider intensity risk premium: ߣሚ ്  ߣ
1 309 302 292 10 5 5 1.7 3.2 13 11 51 0.8 0.9 0.0 0.0 

0.1 165 163 155 12 5 5 1.8 3.7 13 11 48 0.8 0.9 0.0 0.0 
0.01 95 93 88 12 6 6 1.9 4.5 14 11 46 1.0 0.9 0.0 0.0 

0.001 57 56 53 13 6 5 2.0 4.7 13 11 44 1.0 0.9 0.0 0.0 
C4. Constraint: no jump risk premium and no intensity risk premium 

1 314 302 289 11 5 5 0.3 3.3 13 11 52 0.1 0.2 0.0 0.0 
0.1 168 160 156 11 6 5 0.4 3.6 13 11 49 0.2 0.2 0.0 0.0 

0.01 96 91 90 11 6 6 0.5 3.7 13 11 49 0.2 0.3 0.0 0.0 
0.001 59 56 54 12 5 5 0.5 4.1 13 11 48 0.2 0.3 0.0 0.0 

C5. Estimated parameters from Pan(2002) 
1 91 92 89 5 1.9 1.9 0 1.4 4 2 83 0.0 0.0 0.0 0.0 

0.1 81 82 79 2 0.3 0.3 0 0.4 2 0 95 0.0 0.0 0.0 0.0 
0.01 79 79 77 1 0.1 0.1 0 0.1 2 0 97 0.0 0.0 0.0 0.0 

0.001 78 78 76 1 0.1 0.0 0 0.0 2 0 97 0.0 0.0 0.0 0.0 
D. SVIJ model result 

1 302 443 431 18 8 8 11 0.2 2 2 51 5.0 5.7 0.0 0.0 
0.1 162 255 247 19 9 9 12 0.1 2 1 48 5.6 6.4 0.0 0.0 

0.01 91 153 146 22 10 9 13 0.1 2 1 44 5.5 7.2 0.0 0.0 
0.001 54 94 92 22 11 10 13 0.0 2 1 42 5.3 7.6 0.0 0.0 

Panels A and B4 show the results from 200,000 and 60,000 simulated days; all other Panels are for 30,000 
simulated days. The model parameters are listed in Panel A of Table 6; when premia are zero, the real-world 
parameters are used. 
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TABLE 8 Detected jumps in futures and options prices when the SVCJ model is simulated 
α 

(%) 

Detected jumps 
per 808 days 

Percentages of jump combinations 
 

F C P C P
+ 

P 

− 

CP F FC FP FCP CP 

+− 

CP 

−+ 

CP 
+ + 

CP 

−− 

A1. Empirical result, full sample period     
1 306 431 423 22 10 11 11 10 5 4 27 4.9  5.7  0.3 0.1  

0.1 150 217 228 22 12 12 11 6 6 6 26 4.7  5.3  0.3 0.3  
0.01 79 128 127 24 11 12 11 5 5 5 26 5.7  4.7  0.0 0.5  

0.001 45 65 90 18 17 16 12 5 3 9 20 8.2  4.1  0.0 0.0  
 
B1. SVCJ model result 

1 304 438 422 19 9 8 8 0.4 4 3 48 3.9 4.5 0.0 0.0 
0.1 165 255 244 21 9 9 10 0.2 3 3 44 4.4 5.4 0.0 0.0 

0.01 93 155 145 23 10 9 11 0.1 3 2 41 4.6 6.2 0.0 0.0 
0.001 55 98 91 24 11 9 12 0.2 3 2 38 5.3 6.7 0.0 0.0 

B2. Constraint: only consider price jump risk premium: ߤ ് ߪ ,ߤ ്  ߪ
1 306 432 418 19 9 8 7 0.4 4 3 49 3.2 3.9 0.0 0.0 

0.1 164 250 239 21 10 9 9 0.2 3 3 45 4.1 4.6 0.0 0.0 
0.01 94 151 145 22 10 9 9 0.1 3 2 43 4.4 4.9 0.0 0.0 

0.001 58 96 92 23 11 10 10 0.1 3 2 41 5.0 5.0 0.0 0.0 

B3. Constraint: only consider volatility jump risk premium: ߤܸ ്  ܸߤ
1 306 276 266 10 5 5 0.2 5 15 13 47 0.1 0.1 0.0 0.0 

0.1 164 147 141 10 5 5 0.3 6 15 13 46 0.2 0.1 0.0 0.0 
0.01 94 84 80 10 5 5 0.3 7 16 12 44 0.2 0.1 0.0 0.0 

0.001 57 52 47 12 4 5 0.3 8 16 12 44 0.3 0.1 0.0 0.0 
B4. Constraint: only consider intensity risk premium: ߣሚ ്  ߣ

1 303 279 267 10 4 5 1.4 5.4 15 13 46 0.6 0.9 0.0 0.0 
0.1 162 151 139 11 5 5 1.7 6.5 16 12 44 0.7 0.9 0.0 0.0 

0.01 92 85 79 12 5 5 1.5 6.5 15 13 42 0.7 0.8 0.0 0.0 
0.001 57 51 49 12 5 5 1.4 6.3 15 14 41 0.7 0.7 0.0 0.0 

B5. Constraint: no jump risk premium, volatility jump risk premium, and intensity risk premium 
1 308 280 267 10 4 5 0.2 5.1 15 12 48 0.1 0.1 0.0 0.0 

0.1 167 150 142 10 5 5 0.3 5.7 16 13 45 0.1 0.2 0.0 0.0 
0.01 97 83 80 11 4 5 0.4 7.5 16 14 43 0.2 0.2 0.0 0.0 

0.001 57 51 49 12 6 4 0.3 7.4 15 12 43 0.1 0.2 0.0 0.0 
B6. Estimated parameters from CGGT (2003) 

1 17 19 18 17 8 9 0.3 1.6 12 7 45 0.2 0.0 0.1 0.0 
0.1 7 8 7 10 5 4 0.6 0.3 6 6 69 0.0 0.3 0.3 0.0 

0.01 6 6 6 2 2 1 0.4 0.4 2 4 88 0.0 0.0 0.4 0.0 
0.001 5 5 6 1 3 0 0.5 0.0 0 3 92 0.0 0.0 0.5 0.0 

B7. Our estimated parameters from Panel B of Table 6 
1 13 14 15 26 14 16 1 13 13 11 7 0.0 0.1 0.6 0.0 

0.1 2 3 3 23 14 13 4 13 9 9 15 0.0 0.0 3.6 0.0 
0.01 1 1 1 14 8 3 11 7 8 10 38 0.0 0.0 11.2 0.0 

0.001 1 1 1 4 4 0 18 2 7 14 51 0.0 0.0 18.2 0.0 
C1. Empirical result, low volatility period 

1 324 528 519 27 13 14 8 6 7 6 19 3.6 4.1 0.3 0.3 
0.1 149 252 250 31 14 15 6 7 5 6 17 2.5 3.0 0.0 0.0 

0.01 61 136 145 33 17 15 9 3 3 8 12 4.6 4.6 0.0 0.0 
0.001 39 74 94 31 22 15 6 4 1 9 12 4.4 1.5 0.0 0.0 

C2. SVCJ model result 
1 333 535 505 22 9 9 11 0.7 4 2 42 5.2 5.6 0.0 0.0 

0.1 185 331 306 24 9 10 12 0.3 3 2 38 5.9 6.4 0.0 0.0 
0.01 109 213 192 27 10 10 13 0.2 3 2 35 6.8 6.5 0.0 0.0 
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0.001 67 140 126 28 11 11 14 0.2 3 2 33 6.8 7.2 0.0 0.0 
D1. Empirical result, high volatility period 

1 252 364 396 15 10 9 20 9 2 5 31 8.2 11.3 0.0 0.0 
0.1 123 180 204 15 11 12 17 9 2 3 30 6.6 10.6 0.0 0.0 

0.01 59 92 107 20 19 8 13 8 1 4 25 6.0 7.2 0.0 0.0 
0.001 29 39 70 17 17 20 11 0 0 17 17 2.2 8.7 0.0 0.0 

D2. SVCJ model result 
1 246 382 379 18 9 8 12 0.1 2 2 48 5.5 6.8 0.0 0.0 

0.1 123 206 207 19 10 9 15 0.1 1 1 44 6.6 8.2 0.0 0.0 
0.01 68 120 120 20 11 9 15 0.0 1 1 42 6.6 8.4 0.0 0.0 

0.001 41 75 73 21 11 8 16 0.0 2 1 41 7.7 8.3 0.0 0.0 
The results are for 30,000 simulated days. The model parameters are listed in Table 6, primarily in Panel A; for 
panels A7 and A8 of this Table, parameters are also taken from Panel B of Table 6. 
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1 The only other study known to us which tests for option price jumps using intraday option 

prices is the concurrent work of Kapetanios, Neumann, and Skiadopoulos (2014). They 

investigate S&P 500 Emini futures options from 2005 to 2010. 

2 Yun (2014) investigates a time-varying jump intensity premium, with ߣ a constant and  

 .ሚ proportional to Vߣ

3 The OTM calls (puts) have moneyness, K/S , approximately equal on average to 1.01 (0.99). 

4 A serious violation of put-call parity is defined as an unusual spike in the prices of calls or 

puts, larger than one-third of the daily call or put price range. 

5 For comparison, signature plots for the S&P 500 index are provided by Kapetanios, Neumann, 

and Skiadopoulos (2014) and Audrino and Fengler (2015). 

6 The mean realized variance is the average across days d of the realized variance defined by 

(2). 

7 Our selected price jump risk premia (defined in Table 6) are similar to those of Pan (2002), 

in whose study the price jump risk premia ranged from approximately 13% to 21%. Broadie, 

Chernov, and Johannes (2007) used the S&P 500 futures options from 1987 to 2003. They 

estimated the SVJ mean price jump risk premium to be in the approximate range of 3% to 6%, 

and the SVCJ mean price jump risk premium to range from 2% to 4%. 

8 Note there is no microstructure noise in the simulated prices, while there will be some noise 

in the FTSE prices due to bid/ask spreads etc. 

                                                 


