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Tchebycheff norms for finitely many criteria, we show that these results are generally false for infinitely many
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1. Introduction Optimization under uncertainty has been studied since the foundational
work by Beale [3], Charnes and Cooper [12] and Dantzig [15] and remains one of the most active
research areas in optimization and operations research in general. It traditionally includes methods
from stochastic programming which assume that uncertainties are probabilistic and can be quan-
tified using probability distributions or other statistical techniques [7, 35, 61], the more recent but
already similarly well-established paradigm of robust optimization which considers general uncer-
tainty sets without such assumption [4, 6, 25, 45], and a growing number of contributions to fuzzy
optimization which is based on the membership concept for fuzzy sets and further generalized
notions of uncertainty [47]. Despite their significant differences in formulation and solution con-
cepts, many of these approaches have in common that an original stochastic problem is eventually
replaced by some (in a certain sense equivalent) deterministic counterpart which can be solved and
analyzed using one of the many methods from deterministic optimization or decision making.

Recently, there also has been increased interest in using the theory and methodology of multiple
criteria optimization (MCO) for decision making under uncertainty and robust optimization in
particular. Based on the scenario-interpretation of random realizations in a discrete uncertainty
set by Kouvelis and Yu [45], Kouvelis and Sayın [43, 44] use an equivalent minimax formulation for
MCO to develop a new two-stage, robust optimization algorithm. Hu and Mehrotra [32] also propose
a minimax approach for risk-averse MCO that leads to the new concepts of a robust value, robust
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Pareto optimality and robust stochastic Pareto optimality. A different notion of Pareto robustness is
proposed by Iancu and Trichakis [33] who use the standard concept of Pareto optimality to further
distinguish between solutions that are equally robust in a worst-case scenario but still allow for
significant tradeoffs in other scenarios, which is usually ignored by the classical robust formulation.
Bonnel and Collonge [8] use a sample average approximation method to minimize the expected value
of a real-valued random function which is defined over the Pareto set of a general stochastic MCO.
Schöbel [60] also uses Pareto solutions for a generalization of the concept of light robustness which
was originally introduced by Fischetti and Monaci [23] to relax strict robustness in the context
of railway timetabling. To illustrate these new methodological contributions, some of the other
papers also discuss relevant practical applications to project selection, revenue management and
crop planting [32] or portfolio optimization, inventory management and project management [33].
Some other recent applications of robust MCO include the optimal power flow and dispatch of
distributed energy resources in microgrids [16], internet routing in telecommunications [17], robust
data classification in supervised learning [21], logistics and supply chain management in exploration
and production [22], and the optimal design of water distribution networks [54].

From an alternative theoretical perspective, few other authors have addressed the more funda-
mental similarities between MCO and stochastic or robust optimization. The strong link between
the mathematics of MCO and the theory of decisions under uncertainty as developed by Fish-
burn [24] and Keeney and Raiffa [40] is pointed out clearly by Ogryczak [52] who states that
“most of the classical solution concepts commonly used in MCO have their roots (or equivalents)
in some approaches to handle uncertainty in the decision analysis.” He then continues to raise the
rhetorical question whether new advances in MCO may in response provide insightful feedback to
support decision-making under risk and shows affirmatively how certain symmetric and equitable
risk aversion preferences can be modeled successfully with new MCO methodology. Restricted to
the case of finitely many criteria, he also mentions the mathematical equivalence between expected
values and maximum regrets in relation to weighted sums and achievement functions respectively.
Following his observation, more recent concepts of robustness and stochastic programming have
been shown to be special cases of certain other linear or generally nonlinear scalarization functions
by Klamroth et al. [42], and to be related also to the more general framework of set-valued opti-
mization by Ide et al. [34]. Again under the assumption that the set of criteria or scenarios is finite,
especially the first of these two related papers shows that each of the considered uncertain opti-
mization problems still has a deterministic multicriteria counterpart whose solutions can provide
relevant tradeoff information to facilitate the choice of a most preferred decision.

Despite these recognized similarities in problem formulation in addition to the central role played
by a decision maker due to the inadequacy of a unique solution concept besides the natural domi-
nance relation, other authors have questioned the applicability of multiple criteria decision analysis
and optimization for decisions under risk [31] and robustness in general [57]. In their qualitative
critiques, these authors argue that significant conceptual differences remain and thus promote a
more careful distinction between these different problems. Among these differences, Hites et al. [31]
remark that while many multicriteria methods assign weights and an associated notion of impor-
tance to different criteria, a corresponding concept in robustness is not well-defined. Arguably, this
concern does not apply for stochastic optimization in which uncertainty is modeled using probabil-
ity distributions so that such weights are provided in a very natural way. Another existing criticism
states that these weights were absolutely given probabilities and thus nonnegotiable so that any
consideration of alternative weights or tradeoffs was unnecessary, but this seems to ignore that in
all but the simplest cases the statistical inference of a suitable probability distribution is far from
trivial and subject to data errors and general inaccuracies itself. In consequence, the consideration
of different distributions including weights or densities with their own inherent tradeoffs is often
especially important due to significant effects on a decision’s overall stability and sensitivity also in
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practice [1, 53, 56]. More substantially, Hites et al. [31] also highlight that the number of scenarios
in both robust and stochastic optimization may be very large or even infinite whereas multicriteria
methods typically require that the number of criteria is reasonably small and finite in particular.
Indeed, the possibility of continuous uncertainty sets goes back to the early work on inexact linear
and convex programming by Soyster [62] and is very common both for robust optimization [4, 6] as
well as for stochastic programs involving random variables with continuous or discrete probability
distributions over compact or unbounded supports respectively. Thus motivated, to address and
further explore this current limitation is one of the main objectives in this present paper.

1.1. Motivation and Scope of Paper Based on the mathematical equivalence between
weighted sums and expected values in multiple criteria and stochastic optimization respectively, in
this paper we make use of this analogy specifically to investigate the role of proper efficiency and
its implications to solution or scenario tradeoffs. The definition and characterization of these two
general concepts are of significant theoretical and computational interest in optimization, decision
making and economics to prevent solutions with unbounded marginal rates of substitution. The
notion of proper efficiency was first defined by Kuhn and Tucker [46] for a vector-valued criterion
function f(x) = (f1(x), . . . , fp(x)) from a subset X ⊆ Rn to Rp under the assumption that all
component functions are continuously differentiable, and later refined by Geoffrion [26] without
this condition. In each case, the authors show that solutions that maximize linear scalarizations of
the form

∑p

i=1wifi(x) with strictly positive parameters (“weights”) wi > 0 are properly efficient so
that all their remaining tradeoffs are bounded, and that the reverse statement remains true under
suitable convexity conditions on the criterion functions and the underlying feasible set.

In view of our previous discussion and review of the literature, such results are of high interest
and bear immediate relevance also for applications in stochastic optimization and decision-making
under uncertainty where a single real-valued criterion function f(x, τ) depends on both a decision
vector x and a random vector τ . If this random vector has a discrete probability distribution
with a finite number of possible scenario realizations ti and nonzero probability masses wi > 0
for all i = 1, . . . , p, then we may set fi(x) = f(x, ti) and replace the criterion vector of possible
outcomes (f1(x), . . . , fp(x)) with its expectation E(x) =

∑p

i=1wifi(x). Hence, in this case it follows
that a solution that maximizes an expected value is properly efficient also in a stochastic sense,
namely that there is no other feasible decision whose gain-to-loss ratio from one possible outcome
or scenario to another outcome or scenario is still infinitely large.

It now seems natural to ask whether this property is also satisfied if τ has a general discrete
or continuous probability distribution whose support T of realizations of τ , or analogously, whose
number of associated criterion functions f(x, t) is either countably or uncountably infinite respec-
tively. Mathematically, this is equivalent to the question whether the definition and characterization
of properly efficient solutions can be generalized from weighted sums

∑p

i=1wifi(x) to weighted
infinite series

∑∞
i=1wifi(x) and to proper or improper integrals of the form

∫
T
w(t)y(t)d t, where

the strictly positive probability mass or weight vector w > 0 is replaced by a probability density
function w(t) and each scenario outcome y(t) = f(x, t) now corresponds to a real-valued function.
An affirmative answer to this question would give further theoretical support for expected-value
optimization in stochastic programming to yield optimal solutions that are always guaranteed to
also be properly efficient in the sense of bounded scenario tradeoffs.

Maybe surprisingly but complementary to the recent observation that classical robust solutions
also are not necessarily efficient in the sense of Pareto optimality [33], it turns out that the similarly
desirable result of properly efficient outcomes in stochastic optimization cannot be guaranteed in
general. To the best of the author’s knowledge, a related finding for general vector optimization was
first made by Winkler [66] who notes that in the context of continuous real-valued functions, “a
point received by positive linear scalarization need not be proper efficient in the sense of Geoffrion.”
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Independent of this earlier paper, we had made a similar observation for the `∞ sequence space [20]
but could still prove that for multiobjective programs with countably many criteria, or analogously,
for stochastic programs with discrete random variables, we can maintain existing characterizations
of proper efficiency after a slight modification to Geoffrion’s original definition [26].

The comparison of these definitions in the sense of Geoffrion [20, 26, 66] to several other notions
of proper efficiency including those by Benson [5], Borwein [9], Borwein and Zhuang [10], Hart-
ley [28] and Henig [30] is discussed in these former papers and several other review articles or
monographs [27, 37, 39, 59] that are also included in the author’s previous bibliographic survey [18].
In addition, the interesting relationships between existence and density results for proper efficiency
based on the Arrow-Barankin-Blackwell theorem [2] and related more recent results [14] has also
already been analyzed in some detail by Truong [65]. Moreover, it has been shown that the defini-
tion and characterization of some of these other concepts that are based on more general ordering
cones are often rather straightforward to extend or generalize regardless of whether the number
of criteria is finite or infinite [20]. Hence, and in contrast, our new results based on Geoffrion’s
pairwise definition are particularly interesting due to (a) their surprising negation of expected
results and some natural conjecture by Winkler [66], and (b) their specific insights into the more
common economic interpretation of pairwise rates of substitution (“ceteris paribus”) rather than
alternative cone-based tradeoff directions [48, 49, 50, 51] that have clear theoretical meaning but
remain without a similarly practical implication for (infinite-dimensional) applications in practice.

1.2. Main Contributions and Outline The new results and their consequences that are
summarized in this present paper make several contributions to the existing theory and methodol-
ogy of both multiple criteria optimization and decision-making under uncertainty. While the strong
link between these two areas has been well recognized and is now subject both to increasingly
active research [8, 32, 33, 34, 42, 60] and ongoing discussion [31, 57], a substantial criticism remains
concerning the frequent limitation of methods from multiobjective programming and decision mak-
ing to only finitely many criteria. Using the more general framework of vector optimization which
is well-established also over infinite-dimensional spaces [37], however, we can show that concep-
tual analogies can be established in a much broader context and thereby provide valuable insight
specifically for the further characterization of those solution and scenario tradeoffs that may result
from stochastic expected-value optimization and related approaches in robust optimization.

In particular, in this paper we provide a first comprehensive analysis of such tradeoffs based
on the notion of proper efficiency and its relationship to marginal rates of substitutions both of
which have received significant attention in optimization, decision-making and economics but so
far seem without corresponding analog in the study of optimization problems under uncertainty.
In fact, whereas the proper efficiency of solutions that maximize expected values of finitely discrete
random variables is an immediate consequence of a standard result in multiobjective programming,
corresponding results for generally discrete or continuous random variables require a more careful
analysis and turn out to be false in general. The mathematical “proofs” of these negative results
are naturally presented in the form of counterexamples for which we have chosen simplicity over
alternative but much more complex practical applications to keep this paper relatively shorter in
length and focused primarily on its theoretical contribution. However, we suspect that the existence
and generation of improperly efficient solutions with remaining unbounded tradeoffs are equally
present or even more likely especially in realistic and more complicated settings in practice.

Moreover, and although these generalized characterizations of proper efficiency from finitely
to countably and uncountably many criteria do not continue to hold anymore using weighting
methods and augmented Tchebycheff norms, we can prove that optimal solutions to these scalar
maximum problems are still properly efficient almost everywhere. These new results are based on
suitable modifications of the original formulation of proper efficiency by Geoffrion [26] and its later
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reformulation in the context of real-valued continuous functions by Winkler [66]. In addition, we are
able to show that the latter’s conjecture that all properly efficient solutions can still be computed
as solutions using weighting methods is false for the standard weighting method that we consider
in this paper, even under the usual and otherwise sufficient convexity assumptions. Nevertheless,
and despite these rather surprising and unexpected findings, our remaining results are somewhat
relieving at least from a decision-theoretic point of view by confirming that the typical solutions
to stochastic programming approaches may not prevent the existence of unbounded tradeoffs in
general but can reduce their likelihood to be of probability zero.

The remaining paper is structured as follows. Section 2 reviews the vector maximum problem
together with the standard definition and characterization of proper efficiency for finitely many
criteria by Geoffrion [26] and their extension to countably many criteria from our earlier paper [20].
Together, these results provide a complete analysis of tradeoffs for stochastic expected-value opti-
mization with finite or infinite discrete random variables. In addition, based on these former results
we can now offer some further insight into the possible advantages to combine or relax stochastic
programming by an additional contribution based on robustness or maximum regret. Section 3
gives the analogous problem formulation in the context discussed by Winkler [66] that we can
associate with continuous random variables over compact supports. Our main contributions in this
section are several new results that demonstrate by proof or counterexample which characteriza-
tions of proper efficiency remain valid or become invalid for uncountably many criteria in general.
The other main contributions of this paper are given in Section 4 and includes our new defini-
tion and two theorems with sufficient conditions for properly efficient solutions almost everywhere
using weighting methods and augmented weighted Tchebycheff norms respectively. This section
also offers a brief discussion to extend this definition and our results to continuous random variables
over other and generally unbounded supports. Finally, a few other consequences and interesting
implications of our results as well as avenues for further work are summarized in Section 5.

2. Proper Efficiency for Countably Many Criteria We begin to consider the original
problem statement by Geoffrion [26] in a slightly generalized form. Given a finite or countably
infinite index set I, an associated criterion function f(x) = (fi(x) : i∈ I) and a set of feasible points
X ⊆Rn, the vector maximum problem

maxf(x) subject to x∈X (VMP)

is the problem of finding all points that are efficient: a point x̄ is said to be efficient if x̄ ∈X is
feasible and if there exists no other feasible point x ∈X such that fi(x)≥ fi(x̄) for all i ∈ I and
fi0(x)> fi0(x̄) for some i0 ∈ I. Because this notion of efficiency uses the natural ordering cone which
corresponds to the (finite or infinite-dimensional closed convex pointed) nonnegative orthant, the
idea of bounded tradeoffs leads naturally to the following componentwise definition.
Definition 1 (Geoffrion [26]). A point x̄ ∈ X is said to be a properly efficient solution

in (VMP) if it is efficient and if there exists a scalar M > 0 such that, for each i∈ I, we have

fi(x)− fi(x̄)

fj(x̄)− fj(x)
≤M

for some j ∈ I such that fj(x)< fj(x̄) whenever x∈X and fi(x)> fi(x̄).
In addition, Geoffrion calls a point x̄ improperly efficient if it is efficient but not properly efficient,

thus meaning that to every scalar M > 0 (no matter how large) there is a point x ∈ X and
an index i ∈ I such that fi(x) − fi(x̄) >M (fj(x̄)− fj(x)) for all j ∈ J such that fj(x) < fj(x̄).
Under the assumption that I is finite, Geoffrion continues to remark that because “there is but
a finite number of criteria we see that for some criterion i0, the marginal gain in fi0 can be
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made arbitrarily large relative to each of the marginal losses in other criteria” and further, that x̄
“certainly seems undesirable.” This intention that proper efficiency shall prevent the existence of
unbounded tradeoffs is maintained for a general countable set I by a slightly reworded definition.
Definition 2 (Engau [20]). A point x̄ ∈ X is said to be properly efficient in the sense of

Geoffrion if it is efficient and if, for each i∈ I, there exists a scalar Mi > 0 such that

fi(x)− fi(x̄)

fj(x̄)− fj(x)
≤Mi

for some j ∈ I such that fj(x)< fj(x̄) whenever x∈X and fi(x)> fi(x̄).
It is clear that for the special case that I is finite, Definitions 1 and 2 are equivalent by choosing

M = max{Mi : i ∈ I} or Mi = M for all i ∈ I. Similarly, if I is infinite and a point x̄ satisfies
Definition 1 with a scalar M > 0, then it is also properly efficient by Definition 2 with Mi =M for
all i∈ I. These observations are summarized in the following proposition.

Proposition 1. Geoffrion proper efficiency by Definition 1 is sufficient for proper efficiency
in the sense of Geoffrion by Definition 2 and necessary if the number of criteria is finite.

Definition 2 is less restrictive in general, however, and seems to better agree with the original
intention by Geoffrion to “propose a slightly restricted definition of efficiency that (a) eliminates
efficient points of a certain anomalous type; and (b) lends itself to more satisfactory characteri-
zation” also if I is infinite. In particular, together with the result in Proposition 1 the following
Example 1 suggests that Geoffrion’s original definition may be too strong for infinitely many crite-
ria and eliminate too many efficient points despite any clear anomalies. Similarly, the investigation
of a satisfactory theoretical characterizations is addressed by Proposition 2 and Example 2 in the
following Section 2.1 and will then be discussed throughout the rest of this paper.
Example 1. Let I = {0,1,2, . . .} and consider the linear functions f0(x) = x and fi(x) = 1−2ix

for all i≥ 1 on X = [0,1]. Because f0 is strictly increasing whereas all other fi are strictly decreasing,
all x ∈ X are efficient but arguably do not exhibit any anomalous behavior. However, it is not
difficult to see that only x= 0 is properly efficient with respect to Definition 1 whereas all x are
still properly efficient only with respect to Definition 2. ♦
In addition, this example also demonstrates that a related corollary statement by Isermann [36],
“that each efficient solution of a linear vector maximum problem is also properly efficient” is
generally false with respect to Definition 1 if the number of criteria is infinite but remains true using
Definition 2. Other implications of this improved definition for countably many criteria are briefly
summarized in the two following sections which at the same time provide further preliminaries for
our new results in Sections 3 and 4.

2.1. Characterization Using Weighting Methods Let w= (wi : i∈ I) be a vector (if I is
finite) or sequence (if I is countable) of nonnegative parameters (“weights”) normalized according
to
∑

i∈I wi = 1 and consider the following scalar maximum problem:

max
∑
i∈I

wifi(x) subject to x∈X. (Pw)

Note that this normalization is without loss of generality if I is finite but restricts the possible choice
of w if I is infinite. The fundamental results characterizing properly efficient solutions in (VMP)
in terms of the optimal solutions in (Pw) are given in the following theorem [26].

Theorem 1. Consider the vector maximum problem with a finite index set I.
(i) Let wi > 0 for all i∈ I. If x̄ is optimal in (Pw), then x̄ is properly efficient in (VMP).
(ii) Let X be a convex set and let each fi be concave on X. Then x̄ is properly efficient in (VMP)

if and only if x̄ is optimal in (Pw) for some w with strictly positive components.
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Based on the equivalence in definition if the index set I is finite, it is clear that Theorem 1 holds
both for proper efficiency with respect to Definition 1 and with respect to Definition 2. Moreover,
for the case that I is infinite, we have proven the following result [20].

Proposition 2. If the index set I is countably infinite, then the statements in Theorem 1
remain true for proper efficiency in the sense of Geoffrion by Definition 2.

The following example shows that the results in Theorem 1 are generally false for Geoffrion proper
efficiency by Definition 1, however, using the same linear functions already defined in Example 1.
Example 2. In Example 1, let wi = 3/4i+1 > 0 for all i≥ 0 so that

∞∑
i=0

wi =
3

4

(
∞∑
i=0

1

4i

)
=

3

4

(
1

1− 1/4

)
= 1.

For this particular choice of w, it follows that

∞∑
i=0

wifi(x) =
3

4

(
x+

∞∑
i=1

4−i(1− 2ix)

)
=

3

4

(
x+

(
1

1− 1/4
− 1

)
−
(

1

1− 1/2
− 1

)
x

)
=

3

4

(
x+

1

3
−x
)

=
1

4

so that each x that is feasible is also optimal in (Pw) with strictly positive wi > 0 for all i ∈ I.
However, from Example 1, only x= 0 is properly efficient with respect to Definition 1 whereas all
x are still properly efficient with respect to Definition 2. ♦

Hence, Proposition 2 and Example 2 demonstrate that Definition 2 is a quite natural modification
of proper efficiency and improves Geoffrion’s original definition also with respect to intention (b).

2.2. Characterization Using Augmented Tchebycheff Norms Based on the original
definition by Geoffrion [26], several other authors have shown that the characterization of properly
efficient solutions for convex problems can be extended to generally nonconvex problems using
combinations of linear scalarizations and weighted l∞ or Tchebycheff norms [11] including the
modified weighted Tchebycheff norm [13, 38] and the augmented weighted Tchebycheff norm [63,
64]. The definition of these “norms” depends on the existence of a utopia point u with components

ui = sup
x∈X
{fi(x)}+ ε for all i∈ I (1)

where ε is some arbitrarily small positive number. Extending this line of work to the general
countable case, the next result remains valid for proper efficiency in the sense of Geoffrion by
Definition 2 regardless of whether I is finite or countably infinite [20].

Theorem 2. Let wi > 0 and ui be defined as in (1) for all i ∈ I. A feasible point x̄ ∈ X is
properly efficient in (VMP) if and only if there exist scalars α> 0 and vi > 0 for all i∈ I such that
x̄ is optimal for the scalar maximum problem:

max
∑
i∈I

wifi(x)−α sup
i∈I
{vi(ui− fi(x))} subject to x∈X. (P∞)

While the original definitions of modified and augmented Tchebycheff norms take on a slightly
different form [13, 38, 63, 64], the above formulation is particularly interesting in the context of
stochastic and robust optimization for decision-making under uncertainty. Specifically, here note
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that the objective itself has the form of a two-factor weighted sum that combines or relaxes the
standard expected value (to be maximized) by an additional contribution based on robustness or
weighted maximum regret (to be minimized and thus subtracted). While this interpretation of
the second term as worst-case regret is particularly true if u is utopian, however, in the proof of
Theorem 2 this condition on u is only required for the necessary condition of proper efficiency.
In particular, the same proof shows that an optimal solution to (P∞) is still properly efficient
in (VMP) even if u is chosen arbitrarily or non-utopian in which case the terms ui−fi(x) may not
only represent regret, if fi(x)<ui, but a certain level of achievement, if fi(x)>ui [20]. Hence, from
a decision-theoretic point of view, this implies that any properly efficient solution can always com-
promise between its expected value and its worst-case regret and that any solution that augments
expected-value optimization by an arbitrary achievement level criterion will be properly efficient;
in fact, these achievement levels could also be replaced by a suitable utopia point, in principle.

3. Proper Efficiency for Uncountably Many Criteria For uncountably many criteria,
we now consider the following problem formulation that was similarly studied by Winkler [66].
Given a compact subset T of a separable Banach space and a subset Y ⊆ C(T ) of the space of
continuous real-valued functions on T , the problem

maxy(t) subject to y ∈ Y (VMP′)

is the problem of finding all functions that are efficient: a function ȳ is said to be efficient if ȳ ∈ Y
is feasible and if there exists no other feasible function y ∈ Y such that y(t)≥ ȳ(t) for all t∈ T and
y(t0)> ȳ(t0) for some t0 ∈ T . Hence, similar to (VMP) for countable many criteria, here (VMP′)
is again based on the natural ordering cone of nonnegative functions which is closed convex and
pointed and has nonempty interior but in general is neither well-based nor nuclear and does not
imply the Daniell property [41, 66]. The corresponding definition of proper efficiency formulated
by Winkler is rephrased here for maximization analogously to Definition 1.
Definition 3 (Winkler [66]). A function ȳ ∈ Y is said to be a properly efficient solution in

(VMP′) if it is efficient and if there exists a scalar δ > 0 such that, for each t∈ T we have

y(t)− ȳ(t)

ȳ(t0)− y(t0)
≤ δ

for some t0 ∈ T such that y(t0)< ȳ(t0) whenever y ∈ Y and y(t)> ȳ(t).
In particular, because it is clear that this inequality is satisfied for any δ > 0 and any t0 ∈ T such

that y(t0)< ȳ(t0) also if y(t)≤ ȳ(t), an equivalent statement of Definition 3 is that there exists a
scalar δ > 0 such that, for each y ∈ Y , we have

y(t)− ȳ(t)≤ δ (ȳ(t0)− y(t0)) for all t∈ T

for some t0 ∈ T . It follows that this inequality must be satisfied especially for

t0 = t0(y, ȳ) = arg max
t∈T
{ȳ(t)− y(t)}

which is well-defined because all y ∈ Y are continuous and because T is compact, and which satisfies
y(t0)< ȳ(t0) whenever y(t)> ȳ(t) because ȳ is efficient. Hence, under the stated assumptions, we
have the following result.

Proposition 3. An efficient function ȳ is properly efficient in (VMP′) if and only if there
exists a scalar δ > 0 such that, for each y ∈ Y , t∈ T and t0 = arg maxt∈T{ȳ(t)− y(t)} we have

y(t)− ȳ(t)≤ δ (ȳ(t0)− y(t0)) .
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Similar to the limitation of Definition 1 in Examples 1 and 2 for countably many criteria, however,
it turns out that Definition 3 also does not maintain Geoffrion’s original intention to only eliminate
anomalous solutions and still allow for a satisfactory characterization using the generalized scalar
maximum problem:

max

∫
T

w(t)y(t)d t subject to y ∈ Y (P′w)

where analogously to (Pw) we assume that w≥ 0 is finitely integrable or, without loss of generality,
normalized according to

∫
T
w(t)d t= 1.

Example 3. Let T = [0,1] and consider the set Y = {yx ∈ C(T ) : x ≥ 1} of piecewise linear
functions defined by

yx(t) = max{2x(1−xt),0} for all t∈ T.

It is not difficult to see that for each x̄≥ 1, the function yx̄ is efficient but not properly efficient
with respect to Definition 3: for every x> x̄ we have

max
t∈T
{yx̄(t)− yx(t)}= yx̄(1/x)< yx̄(0) = 2x̄

whereas yx(0)−yx̄(0) = 2(x− x̄) can be made arbitrarily large by letting x go to infinity. However,
with w(t) = 1 for all t∈ T we also have∫

T

w(t)yx(t)d t= 2x

∫ 1/x

0

(1−xt)d t= 2x

(
1

2x

)
= 1

so that each yx is optimal in (P′w) with strictly positive w(t)> 0 for all t∈ T . ♦
In further comparison to the countable case in Example 2 and its resolution by Definition 2,

Example 3 also illustrates that an analogous definition of proper efficiency using a criterion-
dependent upper bound δ(t) for each t∈ T will not resolve the above problem at t= 0 and thus not
be sufficient for the uncountable case in general. Before we address this observation in Section 4
in more detail, in the remaining section we first consider the other previous characterizations and
show that only the augmented Tchebycheff norm method still provides a necessary condition for
proper efficiency by Definition 3 if the number of criterion functions is uncountable. Likewise, we
can disprove each of the respective necessary and sufficient conditions using the weighting and
augmented Tchebycheff norm method using proofs by suitably constructed counterexamples.

3.1. Characterization Using Weighting Methods Unlike the standard result in Theo-
rem 1 and similar to Example 2 for the countable case, Example 3 shows that the weighting method
generally fails to generate only properly efficient solutions if the number of criteria is uncountable,
even if the weighting function is chosen to be strictly positive. To the best of the author’s knowledge
this observation was first made by Winkler [66] who further conjectures that the reverse statement,
however, that weighting methods can still generate all properly efficient solutions remains true
under the usual convexity assumptions on criterion function and its underlying feasible set.

To prove this conjecture following the classical argument used in the proof of Theorem 1 which
relies on the Hahn-Banach Separation Theorem to establish the existence of a supporting hyper-
plane whose normal vector provides the desired parameter w, one may apply an analogous separa-
tion theorem to obtain a linear functional ` : C(T )→R from the corresponding dual space C(T )∗.
The Riesz representation theorem [55] gives a characterization of C(T )∗ as the space of regular
Borel (or Radon) measures [58] which are also used for the weighting method formulated in the
original paper by Winkler [66] but for which an applicable separation theorem is not known in
general. In fact, only if T = [a, b]⊆R is a subset of the real line, then Helly [29] has proven a special
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case of the Hahn-Banach Separation Theorem with the result that a function ` ∈ C([a, b])∗ if and
only if there exists a function ρ : [a, b]→R of bounded variation (BV) such that

`(y) =

∫ b

a

y(t)dρ(t) for all y ∈ C([a, b]).

While BV functions have only jump-discontinuities and thus are continuous except on at most a
countable set with derivatives almost everywhere, they are typically not absolutely continuous and
thus may not admit a Radon-Nikodym derivative w(t) = dρ(t)/d t that would allow us to write∫ b

a

y(t)dρ(t) =

∫ b

a

w(t)y(t)d t for all t∈ T.

The fact that we cannot expect a necessary condition for properly efficient solutions in (VMP′)
using problem (P′w) even in the convex case is also demonstrated by the following example.
Example 4. Let T = [0,1] and consider the set Y ⊆C(T ) of nondecreasing continuous functions

y : T →R with y(0)+y(1) = 0. This set Y is convex because convex combinations of nondecreasing
continuous functions are still continuous and nondecreasing and clearly

λ(y1(0) + y1(1)) + (1−λ)(y2(0) + y2(1)) = 0 for all y1, y2 ∈ Y and (any) λ.

In particular, the function ȳ= 0 is in Y and properly efficient: it is clear that it is efficient and, for
every y 6= 0 with δ= 1 and t0 = 0, that

y(t)− ȳ(t) = y(t)≤ y(1) = 0− y(0) = δ(ȳ(t0)− y(t0)).

Now let w : T →R be any integrable function such that
∫ 1

0
w(t)d t= 1 and w(t)> 0 for all t ∈ T .

Let m ∈ (0,1) such that
∫ m

0
w(t)d t=

∫ 1

m
w(t)d t= 1/2 and consider the nondecreasing continuous

function y(t) = min{2t/m− 1,1} which satisfies y(0) + y(1) =−1 + 1 = 0. It follows that∫ 1

0

w(t)y(t)d t=

∫ m

0

w(t)

(
2t

m
− 1

)
d t+

∫ 1

m

w(t)d t=
2

m

∫ m

0

w(t)td t > 0

and thus ȳ= 0 is never an optimal solution in (P′w) for any finitely integrable w> 0. ♦
Note that in the above example we do not need to make any other assumption on w other

than that it is finitely integrable and strictly positive. Hence, we cannot expect a satisfactory
characterization of Geoffrion proper efficiency using the scalar maximum problem (P′w) in general.

3.2. Characterizations Using Augmented Tchebycheff Norms The significant limita-
tion of the weighting method to neither provide necessary nor sufficient conditions for uncountably
many criteria is at least partially resolved by an augmented Tchebycheff norm method which we
define analogously to Theorem 2.

Theorem 3. Let w : T →R be finitely integrable and u : T →R be a continuous utopia function
such that w(t)> 0 and u(t)> sup{y(t) : y ∈ Y } for all t∈ T . If a function ȳ ∈ Y is properly efficient
in (VMP′), then there exist scalars α> 0 and v(t)> 0 for all t ∈ T such that ȳ is optimal for the
scalar maximum problem:

max

∫
T

w(t)y(t)d t−α sup
t∈T
{v(t)(u(t)− y(t))} subject to y ∈ Y. (P′∞)
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Proof. Let ȳ be properly efficient in (VMP′) with δ > 0 and let

µ= max
t∈T
{u(t)− ȳ(t)}

which is well-defined because u and ȳ are continuous and because T is compact. Let

ω=

∫
T

w(t)d t <∞

and set α≥ δωµ. Because u is also utopia there exists ε > 0 such that u(t)− y(t)≥ ε for all t ∈ T
and y ∈ Y and thus we can define

v(t) = (u(t)− ȳ(t))−1 > 0 (2)

for all t ∈ T . It follows that µ ≥ v(t)−1 and thus α ≥ δωv(t)−1 for all t ∈ T . To show that ȳ
solves (P′∞) now consider any other y ∈ Y \ {ȳ}. Because ȳ is efficient there exists t ∈ T such that
ȳ(t)> y(t) and thus

sup
t∈T
{v(t)(u(t)− ȳ(t))}= 1< sup

t∈T
{v(t)(u(t)− y(t))}. (3)

Also, because ȳ is properly efficient there exists t0 ∈ T such that y(t)− ȳ(t)≤ δ(ȳ(t0)− y(t0)) for
all t∈ T and thus∫

T

w(t)(y(t)− ȳ(t))d t≤
(∫

T

w(t)d t

)
δ(ȳ(t0)− y(t0)) = δω(ȳ(t0)− y(t0)). (4)

Now use (2) and (3) to observe that

ȳ(t0)− y(t0) = (u(t0)− y(t0))− (u(t0)− ȳ(t0))

≤ v(t0)−1

(
sup
t∈T
{v(t)(u(t)− y(t))}− sup

t∈T
{v(t)(u(t)− ȳ(t))}

)
(5)

where we used that v(t0)(u(t0)−y(t0))≤ sup{v(t)(u(t)−y(t)) and v(t)(u(t)− ȳ(t)) = 1 for all t∈ T .
Combining (4) and (5), it follows further that∫

T

w(t)(y(t)− ȳ(t))d t≤ δω(ȳ(t0)− y(t0))

≤ δωv(t0)−1

(
sup
t∈T
{v(t)(u(t)− y(t))}− sup

t∈T
{v(t)(u(t)− ȳ(t))}

)
≤ α

(
sup
t∈T
{v(t)(u(t)− y(t))}− sup

t∈T
{v(t)(u(t)− ȳ(t))}

)
or equivalently, after rearranging terms, that∫

T

w(t)y(t)d t−α sup
t∈T
{v(t)(u(t)− y(t))} ≤

∫
T

w(t)ȳ(t)d t−α sup
t∈T
{v(t)(u(t)− ȳ(t))}.

Hence, because y ∈ Y \ {ȳ} is chosen arbitrarily this shows that ȳ is optimal in (P′∞). �
Unlike Theorem 2 which provides both necessary and sufficient conditions for a complete charac-

terization of proper efficiency using augmented Tchebycheff norms in the countable case, however,
and similar to the other characterizations using weighting methods in the uncountable case, the
reverse statement of Theorem 3 turns out to be generally false in the uncountable case as well.
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Example 5. Let T = [0,1] and consider the set Y = {yx ∈ C(T ) : x≥ 1}∪ {0} where the piece-
wise linear functions yx : T →R are depicted in Figure 1 and defined by

yx(t) = max

{
1− (x+ 1)2

2x
t,−1

x

}
for all t∈ T.

Let α > 0 be a scalar and define u(t) = 1 + ε for some ε > 0 and v(t) =w(t) = 1 for all t ∈ T . It is
not overly difficult to show that∫

T

w(t)yx(t)d t=

∫ 2/(x+1)

0

(
1− (x+ 1)2

2x
t

)
d t−

∫ 1

2/(x+1)

(
1

x

)
d t= 0

for all x≥ 1 so that (P′∞) can be simplified to the expression

max
y∈Y

inf
t∈T
{y(t)}

for which the function y0 = 0 is the unique optimal solution. However, whereas all yx ∈ Y \ {0} are
properly efficient, the function y0 = 0 is only efficient: for each x ≥ 1, we have yx(0)− y0(0) = 1
whereas y0(t) − yx(t) ≤ 1/x can be kept positive but made arbitrarily small by letting x go to
infinity. This yields the unbounded tradeoff ratio

(yx(0)− y0(0))/ (y0(t)− yx(t))≥ x for all t∈ T such that y0(t)> yx(t)

and shows that optimal solutions in (P′∞) need not be properly efficient in (VMP′) in general. ♦
This example and Figure 1 might suggest that improperness in the uncountable case may be a

consequence of the existence of a sequence of functions that lacks uniform convergence so that a
stronger result may continue to hold under more restrictive assumptions on Y or T , or u, v, w or α
in particular. Based on Example 5 which only uses uniform weights and an arbitrary utopia point,
however, it follows that an analogous result to Theorem 2 can fail in the uncountable case even for
these quite general and rather natural choices. Moreover, the example continues to fail even if u(t)
is non-utopian with the same analysis as before as long as u(t) is chosen to be constant.

Figure 1. Supporting illustration of Example 5: All piecewise linear functions yx(t) = max
{

1− (x+1)2

2x
t,− 1

x

}
are

properly efficient in (VMP′) whereas the function y0 = 0 is only efficient but the unique optimal solution in (P′
∞).
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4. Proper Efficiency Almost Everywhere In view of our results so far, Examples 3, 4
and 5 establish that the standard characterizations of proper efficiency using both weighting and
augmented Tchebycheff norm methods do not continue to hold anymore for uncountably many
criteria and that only the necessary condition using the latter in Theorem 3 remains valid regardless
of whether the number of criteria is finite or countably or uncountably infinite. However, in addition
to our discussion at the beginning of Section 3.1 these examples suggest that those unbounded
tradeoffs that may still be present in weighting or Tchebycheff solutions can only be of a certain
type and occur with respect to a subset U ⊆ T of criteria with (Lebesgue) measure L(U) = 0. The
following statement formulates this idea analogously to the previous Definitions 1, 2 and 3.
Definition 4. A function ȳ ∈ Y is said to be properly efficient almost everywhere in (VMP′)

if it is efficient and if for every ε > 0 there exists a scalar δ > 0 such that, for each t ∈ T \U and
some U ⊆ T with L(U)< ε, we have

y(t)− ȳ(t)

ȳ(t0)− y(t0)
≤ δ

for some t0 ∈ T such that y(t0)< ȳ(t0) whenever y ∈ Y and y(t)> ȳ(t).
Similar to our discussion following Definition 3, an equivalent and arguably more natural state-

ment of Definition 4 under the assumptions that each y ∈ Y is continuous and that T is compact
is that for every ε > 0 there exists δ > 0 such that for each y ∈ Y and t0 = arg maxt∈T{ȳ(t)− y(t)}
we have

y(t)− ȳ(t)≤ δ(ȳ(t0)− y(t0)) for all t∈ T \U

for some subset U ⊆ T of Lebesgue measure L(U)< ε which may generally depend on both ε and
the comparison function y. In particular, if ȳ is properly efficient so that all tradeoffs are bounded,
then U = ∅ satisfies Definition 4 and the following result is immediate.

Proposition 4. Proper efficiency by Definition 3 implies proper efficiency almost everywhere
by Definition 4.

Moreover, based on Example 4 which shows that the set of weighting solutions do not contain
all properly efficient solutions even in the case of convexity it is also clear that solutions that
are properly efficient almost everywhere need not be solutions to weighting methods in general.
However, using Definition 4 we now are able to provide necessary conditions and prove that all
weighting and Tchebycheff solutions are still properly efficient almost everywhere which thereby
provides the satisfactory characterization of their remaining unbounded tradeoffs to be at most a
Lebesgue null set. In particular in view of our previous results, these proofs are somewhat relieving
at least from a decision-theoretic point of view by confirming that the typical solutions to stochastic
programming approaches with or without additional regret criterion may not prevent the existence
of unbounded tradeoffs in general but can reduce their likelihood to be of probability zero.

A schematic overview of all relationships between solutions that are properly efficient or prop-
erly efficient almost everywhere in (VMP′) and optimal weighting or Tchebycheff solutions in (P′w)
or (P′∞) is given in Figure 2. For completeness, this already includes the two results and the coun-
terexample for the case of continuous real-valued functions over compact supports from Section 4.1
whose extensions to other and generally unbounded supports is briefly discussed in Section 4.2.

4.1. Characterization for Compact Criterion Sets To establish the still missing results
in Figure 2, we begin to show that all optimal solutions to strictly positive weighting methods are
still guaranteed to be properly efficient almost everywhere.

Theorem 4. Let w : T →R be finitely integrable such that inf {w(t) : t∈ T}> 0. If ȳ is optimal
in (P′w), then ȳ is properly efficient almost everywhere in (VMP′).
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Properly efficient Properly efficient almost everywhere

Tchebycheff solution

Weighting solution

Proposition 4

Theorem 3

Theorem 4

Theorem 5

Counterexamples 3 and 4
Counterexample 5

Counterexample 6

Figure 2. Schematic overview of the relationships between proper efficiency and proper efficiency almost everywhere
in (VMP′) and solutions to weighting and augmented Tchebycheff norm methods in (P′

w) and (P′
∞) respectively.

Proof. Let ȳ be optimal in (P′w) and without loss of generality assume that
∫
T
w(t)d t = 1. A

standard argument by contradiction suffices to show that ȳ is efficient in (VMP′), so let

µ= inf
t∈T
{w(t)}> 0

and only suppose to the contrary that ȳ is not properly efficient almost everywhere. It follows that
there exists ε > 0 such that

y(t)− ȳ(t)> δ(ȳ(t0)− y(t0)) for all t∈U

for some y ∈ Y and U ⊆ T with L(U)≥ ε whenever δ > 0 and t0 ∈ T . Specifically, choose δ= 1/(µε)
and first integrate this inequality over U to find∫

U

w(t) (y(t)− ȳ(t))d t > µεδ (ȳ(t0)− y(t0)) = ȳ(t0)− y(t0).

Next, multiply these inequalities for each t0 ∈ T \U with w(t0)> 0 and integrate over V = T \U ,
immediately factoring out the constant on the left-hand side:(∫

V

w(t0)d t0

)(∫
U

w(t) (y(t)− ȳ(t))d t

)
>

∫
V

w(t0)(ȳ(t0)− y(t0))d t0

where
∫
V
w(t0)d t0 = 1−

∫
U
w(t0)d t0 ≤ 1−µε < 1. Hence, we have∫

U

w(t) (y(t)− ȳ(t))d t >

(∫
V

w(t0)d t0

)(∫
U

µ (y(t)− ȳ(t))d t

)
>

∫
V

w(t0)(ȳ(t0))− y(t0))d t0

and thus, using T =U ∪V and rearranging terms, that∫
T

w(t)y(t)d t >

∫
T

w(t)ȳ(t)d t.

This contradicts that ȳ is optimal in (P′w) and thus ȳ is also properly efficient almost everywhere
in (VMP′). �

Without the need of much further discussion we continue to show the analogous result for optimal
solutions with respect to the augmented Tchebycheff norm method. Fully analogous to the situation
in the (finite or infinite) countable case, however, we only highlight that the following statement
and its proof again require no specific assumption regarding the (utopia) function u that for the
sufficient condition does not need to be a utopia function in general.

Theorem 5. Let w : T →R be finitely integrable and u(t) : T →R and v(t) : T →R be arbitrary
such that inf {w(t) : t∈ T} > 0, sup{w(t) : t ∈ T} <∞ and sup{v(t) : t ∈ T} <∞. If ȳ is optimal
in (P′∞), then ȳ is properly efficient almost everywhere in (VMP′).
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Proof. Let ȳ be optimal in (P′∞), without loss of generality assume
∫
T
w(t)d t = 1 and denote

µ= inf{w(t) : t∈ T}> 0, ω= sup{w(t) : t∈ T}<∞ and ν = sup{v(t) : t∈ T}<∞. It follows that∫
T

w(t) (y(t)− ȳ(t))d t≤ α
(

sup
t∈T
{v(t)(u(t)− y(t))}− sup

t∈T
{v(t)(u(t)− ȳ(t))}

)
≤ α

(
sup
t∈T
{v(t)(ȳ(t)− y(t))}

)
≤ αν(ȳ(t0)− y(t0))

(6)

for all y ∈ Y and t0 = t0(y, ȳ) = arg maxt∈T{ȳ(t)−y(t)}, and a standard argument by contradiction
suffices to show that ȳ is again efficient in (VMP′). We also use a contradiction to show that ȳ is
properly efficient almost everywhere, for if it is not there exists ε > 0 such that

y(t)− ȳ(t)> δ(ȳ(t0)− y(t0)) for all t∈U (7)

for some y ∈ Y and U ⊆ T with L(U)≥ ε whenever δ > 0 and t0 ∈ T . Specifically, choose

δ≥ αν+ (1− ε)ω
εµ

and let t0 = arg maxt∈T{ȳ(t)− y(t)}. Partitioning T =U ∪ (T \U) and using (7) it follows that∫
T

w(t) (y(t)− ȳ(t))d t=

∫
U

w(t) (y(t)− ȳ(t))d t−
∫
T\U

w(t) (ȳ(t)− y(t))d t

>

(
δ

∫
U

w(t)d t−
∫
T\U

w(t)d t

)
(ȳ(t0)− y(t0))

≥ (δεµ− (1− ε)ω)(ȳ(t0)− y(t0))≥ αν(ȳ(t0)− y(t0))

in contradiction to (6). Hence, ȳ is also properly efficient almost everywhere in (VMP′). �
Finally, unlike the result in Theorem 3 but similar to the observation already made for the

weighting method after Proposition 4 we can also show that the reverse statement of Theorem 5
is generally false. Our counterexample uses a set of functions that are similar to those that we
defined in Example 5 and whose general behavior was depicted for ease of discussion in Figure 1.
Example 6. Similar to the situation used in Example 5 let T = [0,1] and consider the set

Y = {yx ∈ C(T ) : x≥ 1}∪ {0} where the piecewise linear functions yx : T →R are defined by

yx(t) = max

{
1− (x+ 1)2

2x
t,− 1

x2

}
.

In comparison to Example 5 and Figure 1, however, here note that the second piece of this function
definition is different and for all x > 1 starts the flat stretch earlier so that the new (negative)
“areas under the curve” are generally smaller, or equivalently, that the signed difference in area
remains strictly positive. In particular with w(t) = 1 for all t∈ T we can show that∫

T

w(t)yx(t)d t=

∫ 2(x2+1)/x(x+1)2

0

(
1− (x+ 1)2

2x
t

)
d t−

∫ 1

2(x2+1)/x(x+1)2

(
1

x2

)
d t

=
(x− 1)2(x2 +x+ 1)

x3(x+ 1)2
=
x4−x3−x2 + 1

x5 + 2x4 +x3
≥ 1

2x

for all x≥ 5. Otherwise as before all y ∈ Y \{0} are still properly efficient whereas the zero function
y0 = 0 is only properly efficient almost everywhere: for any 0< ε < 1/2 and U = [0, ε/2) we have
L(U)< ε so that we can exclude a semi-neighborhood around 0 to prevent the unbounded tradeoff
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observed in Example 5 when x goes to infinity. Now let u(t) = µ> 1 be a constant and v(t)> 0 be
arbitrary for all t∈ T such that ν = sup{v(t) : t∈ T}<∞. It follows that

sup
t∈T
{v(t) (u(t)− yx(t))}− sup

t∈T
{v(t) (u(t)− y0(t))} ≤ ν sup

t∈T
{y0(t)− yx(t)}= ν/x2.

Hence, for any α> 0 we can choose x>max{5,2αν} such that(∫
T

w(t)yx(t)d t−α sup
t∈T
{v(t)(u(t)− yx(t))}

)
−
(∫

T

w(t)y0(t)d t−α sup
t∈T
{v(t)(u(t)− y0(t))}

)
≥ 1

2x
− αν
x2

>
1

2x
− 1

2x
= 0

and thus y0 is never optimal in (P′∞) for any choice of α> 0 and finitely bounded v > 0. ♦

4.2. Extension to General Criterion Sets Following the original problem formulation
(VMP) by Geoffrion [26] in Section 2 and its extension (VMP′) by Winkler [66] in Sections 3 and 4,
all of our results so far consider either the countable case or the uncountable case in which all
criterion functions are real-valued continuous and defined over some compact support. Whereas
both the definition of efficiency and proper efficiency in Definitions 3 and 4 are independent of such
assumptions and similarly apply to an unbounded or more general criterion set that is not compact,
however, some of our former proofs have utilized the compactness to replace certain suprema with
their (finite) maxima. To extend these results to the general case we therefore have two possibilities
and may either make additional assumptions on the finiteness of these suprema or generalize our
definition of proper efficiency almost everywhere in the following suitable way.
Definition 5. Given a set Y of real-valued functions defined on a subset S of a separable

Banach space, a function ȳ ∈ Y is said to be properly efficient almost everywhere if it is efficient
and if, for every ε > 0 and any compact subset T ⊆ S there exists a scalar δ > 0 such that, for each
t∈ T \U and some U ⊆ T with L(U)< ε, we have

y(t)− ȳ(t)

ȳ(t0)− y(t0)
≤ δ

for some t0 ∈ T such that y(t0)< ȳ(t0) whenever y ∈ Y and y(t)> ȳ(t).
Using this reduction from a general criterion set S to compact subsets T ⊆ S for the particular

situation of a subset Y ⊆ C(S) of continuous real-valued functions, it directly follows that all of
our formerly proven results remain true also when these functions are defined over a generally
infinite and possibly unbounded support S. The repeated statements and proofs of these results
can therefore be omitted.

5. Conclusion The solution and analysis of optimization and decision-making problems in the
presence of uncertainty is both conceptually and practically challenging. Due to the lack of a unique
solution concept it lends itself to a variety of different approaches that most prominently include
stochastic programming or robust optimization and, more recently, the theory and methodology
of multiple criteria optimization (MCO) and decision analysis [8, 32, 33, 34, 42, 52, 60]. Among
this work, especially the recent paper by Iancu and Trichakis [33] highlights that solution concepts
from MCO can make a significant difference and offer additional insights and improvements over
the classical stochastic or robust solution paradigm. However, one of several substantial concerns
brought forward earlier by Hites et al. [31] remains regarding the frequent limitation of methods
from MCO to a sufficiently small and typically finite number of criteria which may prevent their
use for continuous and more general uncertainty sets that require to consider an infinite number
of scenarios or criterion functions in its corresponding deterministic multicriteria formulation.
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Thus motivated, in this present paper we build on the mathematical equivalence between lin-
ear scalarizations in MCO and expected value functions in stochastic programming to provide a
first comprehensive analysis of solution tradeoffs based on the notion of proper efficiency and its
relationship to marginal rates of substitution for both finitely and infinitely many criteria. The
respective implications and impact of this analogy and our new results are at least four-fold.

1. We extend one of the most natural solution concepts from MCO, decision-making and eco-
nomics to stochastic programming, namely the concept of proper efficiency with the goal to exclude
anomalous solutions that still permit unbounded tradeoffs from consideration for a final decision.

2. We emphasize the importance to combine standard stochastic programming with an additional
contribution of worst-case regret or some achievement level to prevent the generation of solutions
that are optimal in a stochastic sense but for which unbounded tradeoffs may still be possible.

3. We report and demonstrate a few other shortcomings of stochastic expected-value optimiza-
tion including the somewhat arbitrary exclusion of certain efficient but unsupported solutions using
weighting methods if the problem is not convex and the more subtle consequence of remaining
unbounded tradeoffs in a Lebesgue null set if the number of random realizations is uncountable.

4. We address the former critique of MCO methods to be often limited to finitely many criteria:
although it is conceptually straightforward to extend many methods to an either countably infinite
or uncountable number of criteria, it is correct that such extensions may have additional theoretical
and practical implications that require modifications or further work to maintain standard results
or existing characterization of solutions that are Pareto optimal or properly efficient in general.

Specifically, whereas the generalization of existing characterizations of proper efficiency using
weighting methods and augmented Tchebycheff norms from finitely to countably many criteria
is still possible after a slight modification to the original definition which we briefly reviewed in
Section 2 based on our earlier work [20], almost all standard results turn out to be false for the
more general uncountable case. This bears the consequence that a complete characterization of
properly efficient solutions is possible only for stochastic programs with discrete random variables
but generally not for those involving continuous uncertainty sets. However, based on our analysis
in Sections 3 and 4 whose results and findings are collected and summarized in Figure 2 we can
now conclude that solutions to these scalar problems are still properly efficient almost everywhere
and that especially the augmented Tchebycheff norm method is still capable to compute the full
set of properly efficient solutions in principle. These results are somewhat relieving at least from a
decision-theoretic point of view by confirming that the typical solutions to stochastic programming
approaches may not prevent the existence of unbounded tradeoffs in general but can reduce their
likelihood to be of probability zero. Moreover, it is interesting to observe that this method can be
interpreted to compromise between stochastic and robust optimization by including one contribu-
tion from an expected value and another from a suitably weighted worst case regret or achievement
criterion. This implies that stochastic and robust optimization can be seen as two complementary
extremes of a unified multicriteria framework that uses a more general compromise programming
approach for optimization and decision-making in the presence of uncertainty [19].

This last observation especially opens a plethora of new research questions. On the one hand
and despite the existing debate whether MCO methods are suitable to address such problems at
all, current literature and our own results suggest that their extension provides stronger results,
additional insight and better interpretability than approaches that optimize either expected values
or the worst case alone. Further research may therefore continue to investigate whether similar
approaches or reformulations may be used to handle recourse or uncertainties in the constraints, for
example by converting chance-constrained problems into corresponding goal programs or similar
other approaches. On the other hand, the potential impact of MCO onto stochastic and robust
optimization promotes a more careful study of its methods for more general settings which may
also include infinite dimensions to be applicable for both discrete and continuous random variables
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over finite or generally infinite supports. Hence, in summary, this new research has high potential to
make an equally novel contribution to multiple criteria and stochastic or robust optimization and
thereby provide both theoretical insights and new methodological advantages using a consistent
and unified further mathematical analysis of these two important areas of operations research.
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[34] Ide, J., E. Köbis, D. Kuroiwa, A. Schöbel, C. Tammer. 2014. The relationship between multi-objective
robustness concepts and set-valued optimization. Fixed Point Theory and Applications 83 20p.

[35] Infanger, G., ed. 2011. Stochastic programming . International Series in Operations Research & Man-
agement Science, 150, Springer, New York, NY.

[36] Isermann, H. 1974. Proper efficiency and the linear vector maximum problem. Operations Research 22
189–191.

[37] Jahn, J. 2011. Vector optimization. Second ed. Springer-Verlag, Berlin.

[38] Kaliszewski, I. 1987. A modified weighted Tchebycheff metric for multiple objective programming.
Computers & Operations Research 14(4) 315–323.

[39] Kaliszewski, I. 1994. Quantitative Pareto analysis by cone separation technique. Kluwer Academic
Publishers, Boston, MA.

[40] Keeney, R. L., H. Raiffa. 1976. Decisions with multiple objectives: preferences and value tradeoffs. Wiley
Series in Probability and Mathematical Statistics, John Wiley & Sons, New York, NY.



Engau: Proper Efficiency and Tradeoffs in Multiple Criteria and Stochastic Expected-Value Optimization
20 Article submitted to Mathematics of Operations Research; manuscript no. MOR-2013-340
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