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Abstract. For any dg algebra A, not necessarily commutative, and a subset S in H(A), the
homology of A, we construct its derived localisation LS(A) together with a map A → LS(A),
well-defined in the homotopy category of dg algebras, which possesses a universal property,
similar to that of the ordinary localisation, but formulated in homotopy invariant terms. Even
if A is an ordinary ring, LS(A) may have non-trivial homology. Unlike the commutative case,
the localisation functor does not commute, in general, with homology but instead there is a
spectral sequence relating H(LS(A)) and LS(H(A)); this spectral sequence collapses when,
e.g. S is an Ore set or when A is a free ring.

We prove that LS(A) could also be regarded as a Bousfield localisation of A viewed as a
left or right dg module over itself. Combined with the results of Dwyer–Kan on simplicial
localisation, this leads to a simple and conceptual proof of the topological group completion
theorem. Further applications include algebraic K–theory, cyclic and Hochschild homology,
strictification of homotopy unital algebras, idempotent ideals, the stable homology of various
mapping class groups and Kontsevich’s graph homology.
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1. Introduction

Localisation of a commutative ring is among the fundamental tools in commutative algebra
and algebraic geometry; it has been well-understood and documented for a long time. Let us
recall the basic construction.

Given an element s in a commutative ring A, we form its localisation A[s−1] as A[s−1] :=
A ⊗Z[x] Z[x, x−1] where A is viewed as a Z[x]–algebra via the map x 7→ s. Then A[s−1] is an
A–algebra having a universal property: any ring map A→ B taking s to an invertible element
in B, factors uniquely through A[s−1]. This construction, and the universal property, easily
generalise to an arbitrary multiplicatively closed set of elements S ⊂ A to produce an A–algebra
A[S−1]. The latter has many good properties: it is flat over A, its elements could be represented
as fractions with denominators in S and the kernel of the map A→ A[S−1] is easily described in
terms of S.

This story has an equally straightforward analogue for modules: given an A–module M , we
form its localisationMS−1 as A[S−1]⊗AM . Then there is an A–module mapM →MS−1 which
is easily seen to satisfy an appropriate universal property. Since A[S−1] is A–flat, the functor
M 7→MS−1 is exact. Note that (trivially) the localisation of A as an A–module coincides with
its localisation as a ring. The derived category of A[S−1] is a full subcategory of the derived
category of A.

Now suppose that the ring A is not commutative. It is still possible to form A[s−1] by formally
inverting s, in other words setting A[s−1] := A∗Z[x]Z[x, x−1] where ∗Z[x] stands for the coproduct
in the category of associative rings under Z[x]. There is still a ring map A→ A[s−1] satisfying
an appropriate universal property in the category of associative rings. This could be generalised
to the case of an arbitrary multiplicatively closed set of elements S ⊂ A. The localisation of a
(left) A–module M can be defined by the same formula as in the commutative situation and it
will also satisfy the same universal property.

However this is as far as the analogy could be extended. The ring A[S−1] will not, in general,
be flat over A, its elements may not be representable as fractions with denominators in S and
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the functor M 7→MS−1 may not be exact. The derived category of A[S−1] may not be a full
subcategory of that of A.

There is one situation when localisation of a noncommutative ring does have all the good
properties of the commutative localisation: when S is central in A or, more generally, is a (left or
right) Ore set, cf. for example [Coh06] regarding this notion. On the other hand, one wants to
have a good theory of localisation for rings which are not Ore, such as free rings. Cohn’s theory
of localisations of free ideal rings (firs) [Coh06] suggests that this could be possible.

The main idea of the present paper is to ‘derive’ the localisation functor A 7→ A[S−1] described
above to a functor A 7→ LS(A) so that the latter has all the good exactness properties of the
commutative localisation. To do that, we embed the category of rings into the category of
differential graded (dg) rings (or, more generally, dg algebras over a given commutative ring k).
The category of dg algebras is a closed model category in the sense of Quillen and its category of
dg modules is also such. The universal properties described above should then be formulated in
the homotopy categories of dg A–algebras and (left) dg A–modules.

This simple idea indeed works and we can construct the derived algebra localisation of A
(which is now taken to be a dg ring) at its homology class s as Ls(A) = A ∗LZ[x] Z[x, x−1], the
derived coproduct under Z[x]. In this particular case, we will see that the latter could be
computed by replacing just A with a cofibrant dg algebra under Z[x]. This construction can then
be extended to a collection S of homology classes of A. A priori, this construction, although
very natural, is rather intractable in general and difficult to compute.

The main technical theorem of the paper is that the derived localisation LS(A) so defined
turns out to be also the Bousfield localisation of A as a (left) dg module over itself; in contrast
with the non-derived case, this fact is highly non-trivial to prove. The Bousfield localisation of
A as a dg module, being accessible via tools from classical homological algebra, is much more
amenable to computation. Therefore, this theorem constitutes the fundamental ingredient one
needs in order to work with derived localisation in a meaningful way and is the central technical
tool in all our applications. Although this theorem is likely not too surprising for a specialist, it
seems that this result, or rather the lack of it, has been the main roadblock to the development
of a useful theory of derived noncommutative localisation thus far.

One consequence of our main result is that the homotopy category of dg modules over LS(A)
is equivalent to the homotopy category of dg A–modules upon which elements of S act by
quasi-isomorphisms. In other words, the close relationship between the derived categories of A
and that of its derived localisation is restored. One should mention that the notion of a module
localisation over a possibly noncommutative ring was already considered in [Dwy06] and this
work of Dwyer’s served as an inspiration for many constructions in the present paper.

It needs to be emphasised that even for an ordinary (i.e. ungraded) ringA its derived localisation
will not, in general, be concentrated in degree zero (although its degree zero homology will coincide
with its non-derived localisation). This reinforces the intuition that the derived localisation is a
derived functor of the ordinary localisation.

A related phenomenon, which is not seen in the commutative world, is that the homology
of LS(A) is not, generally, the homology of the derived localisation of H(A), but rather, there
is a spectral sequence whose E2 term is H(LS(H(A))) converging to H(LS(A)). The spectral
sequence collapses in some special situations, e.g. if S is an Ore set. We extend the classical
theory of Ore localisation, obtaining a characterisation of derived localisations at countable Ore
sets as the localisations expressible as ‘derived modules of fractions’, a result which appears to
be new even in the non-derived setting.
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Derived localisation appears in a range of situations, both directly and indirectly. Building on
work of Tabuada, Toën [Toë07] has developed in detail the homotopy theory of dg categories
and, as one application of this theory, he showed the existence of a derived localisation of dg
categories which possesses a certain universal property, essentially equivalent to the one we
consider in the case of dg algebras. However, this ‘many object’ derived localisation is, like the
dg algebra localisation, rather inaccessible without first developing our fundamental theorem
in this setting. The techniques and theory developed here are general enough that they can be
extended beyond dg algebras to dg categories and this will be done in a sequel to this paper, in
order to provide the means to work effectively with this dg category localisation.

We have decided to avoid any mention of dg categories in the present paper in order to keep
our exposition elementary and focused. We do, however, discuss briefly the derived version
of Cohn’s (or matrix) localisation which is a sort of a half-way house between the categorical
localisation and the ordinary one treated here. This is because Cohn’s localisation is generally
thought to be part of noncommutative ring theory (as opposed to category theory); it is very
closely related to the notion of a homological epimorphism of dg algebras: we show that the
two notions are the same up to the failure of the telescope conjecture. The theory constructed
here suggests a far-reaching generalisation of the usual applications of Cohn’s localisation, in
particular the theory of embeddings of noncommutative rings into skew-fields, but again we
refrain from developing this theme in the present paper.

It is likely that a similar theory of localisation can be developed with other enriching closed
symmetric monoidal model categories (or symmetric monoidal ∞–categories); simplicial local-
isation of Dwyer–Kan [DK80] is an example of this kind – indeed, we show that the functor of
singular chains carries simplicial localisation to (derived) dg localisation. In this vein, Lurie
has also begun to develop localisation in the context of E1–algebras in symmetric monoidal
∞–categories [Lur, §7.2.4], focusing particularly on the simpler special case of localisation at an
Ore set. It is worth noting that in the context of arbitrary enriching closed symmetric monoidal
model categories, localisations of commutative monoids in the category of associative monoids
need not be commutative, c.f. [HH14, HH16] in the case of equivariant E∞ ring spectra. On the
other hand, one expects that the relationship between module localisation and localisation of
associative monoids should hold in more general situations than dg algebras.

Our tools for working with derived localisation have a wide range of applications. Many
standard theorems involving the ordinary notion of localisation hold only under certain constraints
and we are able to show that these can often be removed when localisation is considered in the
derived framework. For example, it is well-known that localisation at a central set of elements in
an algebra preserves Hochschild homology and cohomology and we show that the corresponding
derived result is true without any centrality assumptions.

Next, one has a localisation long exact sequence in algebraic K–theory of noncommutative
rings under the assumption of stable flatness; again this assumption is shown to be unnecessary in
the derived context. In a similar fashion we show that certain recollements of derived categories
associated to quotients by so-called stratifying idempotent ideals, important in the theory of
quasi-hereditary rings, are valid for all idempotent ideals, as long as quotients are replaced by
‘derived quotients’. Underlying these results is the basic phenomenon, already mentioned, that
the derived category of a derived localised ring is a full subcategory of the derived category of
the original ring; this only holds in the non-derived context under the strong condition of stable
flatness. Furthermore, we show that the derived localisation of a dg ring at an idempotent is a
version of Drinfeld’s quotient of a dg category [Dri04] and construct the corresponding small
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model for it. We also give a a very short proof of a strictification result: any dg algebra that is
unital up to homotopy can be replaced by a strictly unital dg algebra; this replacement is unique
up to homotopy.

One of the most striking applications of the theory of derived localisation is that, by combining
our techniques with the simplicial localisation of Dwyer–Kan, we arrive at a very simple and
conceptual proof of a general form of the well-known group completion theorem. Previously, this
theorem has been regarded as somewhat mysterious ([Til13, Section 3.2]). A number of versions
of this statement have been given, most of which use adaptations of the proof of McDuff–Segal
[MS76]; a proof which is not particularly homotopy theoretic in nature, especially given the
homotopy theoretic nature of the statement. Our proof is completely different and driven
entirely by the engine of homotopical algebra. Indeed, we show that it is really just a topological
statement of a special case of an entirely natural and unmysterious result concerning derived
localisation.

Influenced by this new algebraic perspective on the group completion theorem, we obtain an
interpretation of the Loday–Quillen theorem on cyclic homology as a calculation of the derived
localisation of a certain dg algebra and a similar interpretation of Kontsevich’s theorem on graph
homology. We also consider various monoids arising from mapping class groups of 2–dimensional
surfaces and compute the homology of their partial group completions in terms of the stable
mapping class groups and finally, we compute the derived localisation of the dg algebra of ribbon
graphs.

The authors are grateful to the referee for a careful reading of this paper and a host of useful
suggestions for improvement.

1.1. Notation and conventions. Throughout this paper we work with homologically graded
chain complexes, unless otherwise stated. For a homologically Z–graded chain complex A with
differential d, given n ∈ Z we denote ΣnA the n–fold suspension/desuspension given by (ΣnA)i =
Ai−n with differential (Σnd)i : (ΣnA)i → (ΣnA)i−1 given by (Σnd)i(a) = (−1)ndi−n(a).

We will normally use the abbreviation ‘dg’ for ‘differential graded’. By ‘dg (co)algebra’ we
will mean ‘dg (co)associative (co)algebra’ unless otherwise stated.

Throughout this paper, k will denote a fixed unital commutative ring. Unadorned tensor
products will be assumed to be taken over k.

2. Prerequisites on model categories of dg algebras and modules

Denote by dgAlg the category of unital differential Z–graded associative algebras over k, in
other words the category of unital monoids in the category of Z–graded chain complexes of
k–modules. This has the structure of a cofibrantly generated model category (the model structure
transferred [SS00, Theorem 4.1 (3)] from that of Z–graded chain complexes of k–modules [Hov99,
Theorem 2.3.11]) in which the weak equivalences are quasi-isomorphisms and the fibrations are
surjections. As a technical point note that the domains in the set of generating cofibrations dgAlg
are compact, resulting in what was termed in [MP12] a compactly generated model category. This
results in a minor technical simplification coming from the fact that the small object argument
requires no transfinite induction. Consequently, cell dg algebras are constructing by countably
iterating the procedure of attaching simultaneously (a possibly uncountable) collection of cells.

For a dg algebra A ∈ dgAlg we denote the under category of A by A ↓ dgAlg. Recall that this
is the category with objects being dg algebras C equipped with a map A→ C and morphisms
being commuting triangles. We will refer to the objects of A ↓ dgAlg as dg A–algebras. Note that
if A happens to be commutative, we do not insist that the map A→ C be central. Recall that
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an under category in any model category has a natural model structure with weak equivalences,
cofibrations and fibrations those maps which are weak equivalences, cofibrations and fibrations
in the original model category.

A map of dg algebras f : A→ B induces a Quillen adjunction A ↓ dgAlg � B ↓ dgAlg given by
restriction or pushout along f . It follows from [Ree74, Theorem B] that if A and B are cofibrant
then this adjunction is a Quillen equivalence whenever f is a quasi-isomorphism. Consequently
we make the following definition.

Definition 2.1. For any A in dgAlg we denote by A ↓L dgAlg the derived under category of A,
which is given by taking the homotopy category of the under category of a cofibrant replacement
k � Q

∼
� A, so that A ↓L dgAlg = Ho(Q ↓ dgAlg).

This is well-defined up to natural equivalence of categories. More precisely, different choices
of cofibrant replacement functors give rise to different functors A 7→ A ↓L dgAlg, but they are
naturally equivalent, since quasi-isomorphic cofibrant dg algebras have Quillen equivalent under
categories.

Given A ∈ dgAlg, denote by A-Mod the category of differential Z–graded A–modules. This
has the structure of a cofibrantly generated model category in which the weak equivalences are
quasi-isomorphisms and the fibrations are surjections [SS00, Theorem 4.1 (1)].

Convention 2.2. We will refer to the objects of A-Mod as A–modules, in particular they will
always be assumed to be differential graded unless explicitly stated.

The category A-Mod is left proper, i.e. weak equivalences are preserved by pushouts along
cofibrations. This can be seen as follows. Cofibrations of k–modules are, in particular, degreewise
split injections [Hov99, Proposition 2.3.9] and it follows that the same is true for the generating
cofibrations in A-Mod (which is given the transferred model structure). But pushouts in
A-Mod are created in k–modules and pushouts of chain complexes along injections preserve
quasi-isomorphisms.

Let M,N ∈ A-Mod and denote by HomA(M,N) the chain complex of A–linear maps from
M to N . If M is cofibrant then Hn(HomA(M,N)) is the set of maps from ΣnM to N in the
homotopy category. We write RHomA(M,N) for the corresponding derived functor obtained by
replacing M with a cofibrant replacement if necessary.

2.1. Derived free products of dg algebras. In dgAlg, the pushout will be called the free
product.

Definition 2.3. The free product, denoted B ∗A C, of dg algebras is the pushout in dg algebras:

A //

��

B

��

C // B ∗A C

This will often be viewed as the left adjoint A ↓ dgAlg→ B ↓ dgAlg given by C 7→ B ∗A C, with
right adjoint given by restriction along the map A→ B.

Of particular importance to us is a corresponding derived construction.

Definition 2.4. Let k � Q
∼
� A and Q� P

∼
� B be cofibrant replacements for A and B. The

functor Q ↓ dgAlg→ P ↓ dgAlg given by C 7→ P ∗Q C is a left Quillen functor with right adjoint
given by restriction.



DERIVED LOCALISATION OF ALGEBRAS AND MODULES 7

The total derived functors give an adjunction A ↓L dgAlg � B ↓L dgAlg, well-defined up to
natural equivalence. The left adjoint will be denoted by C 7→ B ∗LA C and called the derived free
product.

As an object of the homotopy category of dgAlg, B ∗LA C is simply the homotopy pushout in
dg algebras.

We need some basic facts about the homotopical properties of derived free products of dg
algebras. In particular we will see that the derived free product can often be computed more
simply, without needing to cofibrantly replace all the dg algebras involved.

Definition 2.5. An object A ∈ dgAlg will be called left proper if for any cofibrant replacement
P
∼
� A and any cofibration P � X, the map g in the pushout diagram

P
∼ // //

��

��

A

��

X
g
// A ∗P X

is a quasi-isomorphism.

Cofibrant dg algebras are left proper [Ree74, Theorem B]. Left proper objects are of interest
to us because they have homotopically correct under categories, in the following sense.

Proposition 2.6. A dg algebra A is left proper if and only if the adjunction

A ↓L dgAlg � Ho(A ↓ dgAlg)

given by the total derived functors pushout and restriction is an equivalence.

Proof. This follows directly from the definition of left properness. �

Remark 2.7. Since the adjunction in the proposition above comes from choosing any cofibrant
replacement k � Q

∼
� A and considering the Quillen adjunction Q ↓ dgAlg � A ↓ dgAlg the

proposition above could also be restated as follows: A dg algebra A is left proper if and only if
for any such cofibrant replacement this Quillen adjunction is a Quillen equivalence.

Given a map A→ B the following diagram of functors commutes (up to natural isomorphism)

A ↓L dgAlg //

��

Ho(A ↓ dgAlg)

��

B ↓L dgAlg // Ho(B ↓ dgAlg)

where the arrows are all induced by (total derived functors of) pushouts. If A and B are left
proper then the horizontal arrows are equivalences of categories. In this case, the derived pushout
between derived under categories of left proper objects is therefore equivalent to the total left
derived functor of the usual pushout between the normal under categories.

Remark 2.8. This means that, when dealing with left proper dg algebras, the derived under
category and derived free product are modelled correctly, in a homotopical sense, by the usual
under category and the usual free product. This connection between left properness and under
categories was observed in [Rez02].

In particular, when all dg algebras involved are left proper, one can compute the derived free
product by cofibrantly replacing either dg algebra:
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Corollary 2.9 (Balancing for the derived free product). If B and C are dg A–algebras and
A,B,C are all left proper then the derived free product B ∗LA C can be computed by cofibrantly
replacing just one of either B or C in A ↓ dgAlg. �

Remark 2.10. The corollary above also implies that, since cofibrant dg algebras are left proper,
provided A and C are left proper (but perhaps B is not) then to compute B ∗LA C it is sufficient
to just cofibrantly replace B. In more detail, if A and C are left proper and B′ is a cofibrant
replacement for B under A then B′ ∗LA C is quasi-isomorphic to B ∗LA C. Since A,B′, C are now
all left proper we can compute the former derived free product by cofibrantly replacing just B′
in A ↓ dgAlg. But B′ is already cofibrant under A.

Remark 2.11. The definitions and results above are, of course, valid for any model category.
In particular, a model category is left proper (meaning that weak equivalences are preserved
under pushout along cofibrations) if and only if all the objects are left proper.

Definition 2.12. A left A–module M is flat over A if for any right A–module N , it holds that
N ⊗L

AM → N ⊗AM is a quasi-isomorphism.
We will call a dg algebra A flat if the underlying k–module of A is flat over k. In particular, if

A is a cofibrant dg algebra then it is flat.

Remark 2.13. The above notion of flatness for dg modules is also called homotopically flat
[Dri04] or K–flat [Spa88].

Theorem 2.14. Any flat dg algebra is left proper.

Proof. Let Sn−1 = k[x] denote the free dg algebra generated by a single element x of degree
n− 1 with d(x) = 0. Let Dn = k〈z, dz〉 denote the free dg algebra generated by two elements
z and dz of degrees n and n − 1 with d(z) = dz. Note that H(Dn) ∼= k. There is a natural
inclusion Sn−1 ↪→ Dn given by sending x to dz. Recall [SS00] that the model category dgAlg
is cofibrantly generated, with generating cofibrations given by I = {Sn−1 � Dn : n ∈ Z } and
generating acyclic cofibrations given by J = { k

∼
� Dn : n ∈ Z }.

Let A be a flat dg algebra, let f : P
∼
� A be a cofibrant replacement for A and let i : P � X

be a cofibration.
First assume that i : P � X is obtained as some pushout of a generating cofibration in I

along a map Sn−1 → P so that X ∼= P ∗Sn−1 Dn and consider the commutative diagram:

Sn−1 //
��

��

P
∼
f

// //
��

i

��

A

��

Dn // P ∗Sn−1 Dn
g
// A ∗P (P ∗Sn−1 Dn)

We want to show g is a quasi-isomorphism. Since the two inner squares are pushouts so is the
outer square, by the pasting property of pushouts, so A ∗P (P ∗Sn−1 Dn) ∼= A ∗Sn−1 Dn and the
map g : P ∗Sn−1 Dn → A ∗Sn−1 Dn is the obvious map induced by f . Elements of P ∗Sn−1 Dn

are all sums of the form a1z
j1a2z

j2 . . . akz
jkak+1 where ai ∈ P and z is the degree n element

in Dn. In particular, forgetting the differential, this means that the underlying k–module of
P ∗Sn−1 Dn is isomorphic to a direct sum of iterated tensor products over k of P (again, forgetting
the differential). Consider the filtration on P ∗Sn−1 Dn given by setting Fi to be the subspace
generated by elements of this form which have j1 + j2 + · · ·+ jk ≤ i. Then the filtration of chain
complexes 0 ⊂ F0 ⊂ F1 ⊂ · · · ⊂ P ∗Sn−1 Dn is bounded below and exhaustive. The quotient
Fi/Fi−1 of chain complexes is isomorphic, as a chain complex, to a direct sum of iterated tensor
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products of P with itself over k since the part of the differential coming from that on Dn decreases
filtration degree so only the contribution from the differential on P survives. Similarly we get
a filtration 0 ⊂ F ′0 ⊂ F ′1 ⊂ · · · ⊂ A ∗Sn−1 Dn with the same property. Furthermore, P , being
cofibrant, is in particular flat over k and since A is also flat over k, the quasi-isomorphism f

induces a quasi-isomorphism between the chain complexes Fi/Fi−1 and F ′i/F ′i−1 (since they are
both just a direct sum of iterated tensor products of quasi-isomorphic flat k–modules) and so
the E1 terms of the associated convergent spectral sequences are isomorphic and therefore g is a
quasi-isomorphism.

The result now follows by a general argument for cofibrantly generated model categories.
In particular if i : P � X is obtained as a transfinite composition of pushouts of generating
cofibrations (in other words, i is a relative cell complex) then by transfinite induction it follows
that pushouts of quasi-isomorphisms along relative cell complexes are quasi-isomorphisms (since a
filtered colimit of quasi-isomorphisms is a quasi-isomorphism). Finally, since the set of generating
cofibrations admits the small object argument then any cofibration i : P � X can be factored
as P

j
� Y

p
� X with j a relative cell complex and p an acyclic fibration. But then i satisfies

the left lifting property with respect to p so, by the retract lemma, i is a retract in P ↓ dgAlg
of j. In particular it follows that pushouts along i are retracts of pushouts of along j. But j
is a relative cell complex so pushouts of quasi-isomorphisms along j are quasi-isomorphisms.
Retracts of quasi-isomorphisms are quasi-isomorphisms so this is true for i as well. �

Remark 2.15. If k is a field then every dg algebra is of course flat and hence Theorem 2.14
shows that, in this case, dgAlg is left proper. On the other hand, if k is not a field, then dgAlg is
not left proper, in general. The following construction is a slight variation of [Rez02, Example
2.11]. Let k = Z and consider a Z–algebra A (with vanishing differential). Let

A〈x〉 := A ∗Z Z[x] ∼= A⊕A⊗Z A⊕A⊗Z3 ⊕ . . . ,

the algebra obtained from A by adjoining freely a generator x in degree zero. Note that A〈x〉 is a
free product where one of the factors, namely Z[x], is cofibrant, but the other, A, need not be. If
A is Z–flat, i.e. it has no torsion, then A〈x〉 has the correct homotopy type by Corollary 2.9 and
Theorem 2.14. Suppose that A does have torsion and let Ã be its cofibrant (hence torsion-free)
replacement. Then the homology of the dg algebra

Ã ∗LZ Z[x] ' Ã〈x〉 = Ã ∗Z Z[x] ∼= Ã⊕ Ã⊗Z Ã⊕ Ã⊗Z3 ⊕ . . .

has TorZ(A,A) as a summand and so it will definitely be different from the homology of A〈x〉.
We conclude that an algebra over Z is left proper if and only if it has no torsion.

2.2. Bigraded resolutions of algebras. It is a well-known fact that if A is a graded algebra
and M , N are graded A–modules (all with vanishing differentials) then TorA(M,N) is bigraded.
The reason is that one can choose bigraded A–projective resolutions of M and N . An analogous
result holds for derived free products of algebras.

Proposition 2.16. Let A, B be k–algebras with vanishing differentials and assume that B is
an A–algebra through an algebra map A→ B. Then there is a differential bigraded A–cofibrant
algebra B̃ = {B̃i,j}, i ∈ Z, j ∈ N supplied with a differential d : B̃i,j → B̃i,j−1. There is a
quasi-isomorphism of differential bigraded A–algebras B̃ → B where B is viewed as trivially
bigraded: B = {Bi,0, i ∈ Z}.

Proof. Let us consider the free A–algebra B̃0 := A〈{xα0}〉, α0 ∈ B with one generator xα0 for
every homogeneous element α0 ∈ B. Clearly there is a surjective map of A–algebras i0 : B̃0 → B.
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Next, for every element α1 ∈ ker i0 consider a generator xα1 and a dg algebra B̃1 :=
A〈{xα0}, {xα1}〉 with the differential d(xα1) = α1. We extend the map i0 to a map i1 : B̃1 → B

by setting i1(xα1) = 0.
Proceeding by induction we construct a sequence of dg A–algebras and dg A–algebra maps

B̃0 //

i0

��

B̃1

i1
~~

// . . . // B̃n

in
ttB

such that B̃n := A〈{xα0}, {xα1}, . . . , {xαn}〉. Assigning the generators xαj the second (weight)
grading j, we can view B̃n as bigraded. We construct B̃n+1 by adjoining to B̃n one generator
xαn+1 for every homogeneous element αn+1 ∈ kerH(in) : H(B̃n) → B of weight grading n.
Choosing a representative α̃n+1 ∈ B̃n of the corresponding cohomology class, we define the
differential on B̃n+1 by d(xαn+1) = α̃n+1. Furthermore, the map in extends to in+1 : B̃n+1 → B

by setting in+1(xαn+1) = 0. It is clear that the resulting dg A–algebra map ĩ : B̃ := limn B̃n → B

is a quasi-isomorphism and the differential on B̃ is compatible with the bigrading as required. �

Remark 2.17. Given another bigraded resolution B̂ = {B̂ij} of the A–algebra B, not necessarily
cofibrant, it is easy to see that there is a bigraded quasi-isomorphism B̃ → B̂ such that the
diagram of dg A–algebras

B̃ //

��

B̂

��

B

is homotopy commutative.

Corollary 2.18. Let A, B and C be graded algebras with vanishing differentials and let B and
C be also A–algebras via maps A → B and A → C. Assume also that A is left proper. Then
H(B ∗LA C) is a naturally differential bigraded k–algebra.

Proof. By Corollary 2.9, the k–algebra H(B ∗LA C) can be computed as the homology of B̃ ∗A C̃
where B̃ and C̃ are A–cofibrant differential bigraded resolutions of B and C constructed above.
It follows that B̃ ∗A C̃ possesses a total bigrading that is compatible with the differential and
the conclusion follows. �

Remark 2.19.

• If the algebras A, B and C as above are ungraded (or concentrated in degree 0) then
clearly the bigrading on H(B ∗LA C) reduces to a single grading (which coincides with
the weight, or resolution, grading).

• We have Hi,0(B ∗LA C) ∼= B ∗A C.

2.3. Derived endomorphism dg algebras of bimodules. Let A,B be dg algebras and let
M be an (A,B)–bimodule (in other words M ∈ A ⊗ Bop-Mod). Then HomB(M,M) is a
dg A–algebra with the map A → HomB(M,M) given by a 7→ la with la : M → M the left
multiplication by A. We will now show that this construction can be derived in an appropriate
sense.

Note that this is only a slight generalisation of the standard construction of the derived
endomorphism dg algebra of a module. However, since we start with a bimodule, we are
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obtaining not just a dg algebra but a dg A–algebra and as such we must show that quasi-
isomorphic bimodules give not just quasi-isomorphic dg algebras, but quasi-isomorphic dg
A–algebras.

We will make use of the following almost obvious lemma.

Lemma 2.20. If A,B are dg algebras and A is cofibrant as a k–module and P is a cofibrant
(A,B)–bimodule then P is also cofibrant when regarded as a right B–module.

Proof. It is enough to show that the forgetful functor from (A,B)–bimodules to right B–modules
preserves cofibrations. Since it preserves colimits, it suffices to show that it preserves generating
cofibrations. The image of a generating cofibration is just a generating cofibration of right
B-modules tensored with A (which now is regarded just as a dg k–module). This is a cofibration
since, because A is a cofibrant k–module, tensoring with A is a left Quillen functor on the
category of B–modules. �

Remark 2.21. The condition that A is cofibrant as a k–module would hold, for example, if A
were a cofibrant dg algebra [SS00, Theorem 4.1 (3)].

Lemma 2.22. Let A,B be dg algebras, with A cofibrant as a k–module and let P,Q be cofibrant
quasi-isomorphic (A,B)–bimodules. Then HomB(P, P ) ' HomB(Q,Q) as dg A–algebras.

Proof. Since P andQ are cofibrant (A,B)–bimodules and quasi-isomorphic, this quasi-isomorphism
is represented by an actual map f : P ∼−→ Q of (A,B)–modules (recall that all objects are fibrant
here). Factor this map as p ◦ i : P

∼
� R

∼
� Q. The maps i and p have a left inverse and a right

inverse respectively by standard model category arguments, namely applying the left lifting
property and right lifting property to the following diagrams:

0��

��

// R

p
����

Q
id //

??

Q

P��

i

��

id // P

����

R //

??

0

Therefore it is sufficient to prove the special cases when f has a left inverse and when f has
a right inverse. Furthermore if f has a right inverse then the right inverse is, of course, a
quasi-isomorphism with left inverse f , so it is in fact sufficient to just prove the case when f has
a left inverse.

Denote the left inverse by f l : Q � P and denote the kernel of f l by L. Since f l is split,
so is L ↪→ Q therefore L is a retract of Q and hence is also a cofibrant (A,B)–bimodule.
Since A is a cofibrant k–module, P,Q and L are cofibrant as right B–modules. Therefore,
HomB(L,L) ' 0 and the map of complexes HomB(P, P )→ HomB(Q,Q) given by g 7→ f ◦ g ◦ f l
is a quasi-isomorphism.

Since Q ∼= P ⊕ L then there is a map HomB(L,L)×HomB(P, P )→ HomB(Q,Q). This is a
map of dg A–algebras, which, by the arguments above, is also a quasi-isomorphism. Similarly,
the projection map HomB(L,L)×HomB(P, P )→ HomB(P, P ) is also a quasi-isomorphism of
dg A–algebras.

Therefore there is a zig-zag of quasi-isomorphisms of dg A–algebras between HomB(Q,Q) and
HomB(P, P ) so they are in the same quasi-isomorphism class of dg A–algebras as required. �

Remark 2.23. Although there appears to be direct map of dg algebras HomB(Q,Q) →
HomB(P, P ), this not a map of unital dg algebras and so is not sufficient to prove the preceding
lemma.
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Definition 2.24. Let A,B be dg algebras with A cofibrant as a k–module and let M be
an (A,B)–bimodule, then we define the derived endomorphism dg A–algebra of M , denoted
REndB(M), to be the dg A–algebra HomB(P, P ), where P is a cofibrant replacement for M as
an (A,B)–bimodule.

The following theorem tells us that the derived endomorphism algebra is well-defined up to
quasi-isomorphism and is quasi-isomorphism invariant.

Theorem 2.25. Let M be an (A,B)–bimodule. Then REndB(M) is well-defined up to quasi-
isomorphism of dg A–algebras, i.e. it does not depend on the choice of cofibrant replacement forM .
Furthermore if N is an (A,B)–bimodule and M ' N as (A,B)–bimodules then REndB(M) '
REndB(N) as dg A–algebras.

Proof. In both cases it is sufficient to prove that if P and Q are quasi-isomorphic cofibrant
(A,B)–modules then HomB(Q,Q) and HomB(P, P ) are quasi-isomorphic as dg A–algebras,
which is just Lemma 2.22. �

Remark 2.26. Let A be a dg algebra which is cofibrant as a k–module and let f : A′
∼
� A be

a cofibrant replacement for A as an (A,A)–bimodule. Since A is a cofibrant k–module, A′ is
cofibrant as a right A–module. We have the following commutative diagram

HomA(A′, A′)
f∗

'
// HomA(A′, A)

A

OO

∼=
// HomA(A,A)

f∗ '

OO

where the left vertical map is the map making REndA(A) ' HomA(A′, A′) into a dg A–algebra.
The maps f∗ and f∗ are quasi-isomorphisms since f is a quasi-isomorphism between cofibrant–
fibrant right A–modules. It follows that the left vertical map is a quasi-isomorphism, in other
words REndA(A) ' A as dg A–algebras.

3. Derived localisation of dg algebras

Let A be a dg algebra and let S ⊂ H(A) be an arbitrary subset of homogeneous homology
classes.

Definition 3.1. A dg A–algebra f : A → Y will be called S–inverting if for all s ∈ S the
homology class f∗(s) ∈ H(Y ) is invertible in the algebra H(Y ).

Let p : A′
∼
� A be a cofibrant replacement for A, so that p∗ : H(A′)→ H(A) is an isomorphism.

A dg algebra Y ∈ A ↓L dgAlg ' Ho(A′ ↓ dgAlg) will be called S–inverting if it is S–inverting as
a dg A′–algebra. Furthermore, for a dg algebra map f : A→ B, we will refer to f∗(S)–inverting
dg B–algebras as simply S–inverting dg B–algebras.

Proposition 3.2. Given a map A → B between cofibrant dg algebras, the adjunction A ↓L
dgAlg � B ↓L dgAlg restricts to an adjunction between the full subcategories of S–inverting dg
algebras.

Proof. Restriction clearly preserves the property of being S–inverting. Given C ∈ A ↓L dgAlg
then there is a map C → B ∗LA C in the derived under category of A which is S–inverting if and
only if the map B → B ∗LA C is S-inverting, since both maps agree upon precomposition with the
maps from A. Therefore B ∗LA C is S–inverting if C is. Thus the derived free product preserves
the property of being S–inverting. �
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Definition 3.3. The derived localisation of A, denoted LdgAlg
S (A), is the initial object in the full

subcategory on S–inverting dg algebras of A ↓L dgAlg.

Remark 3.4. Clearly, a localisation of A, if it exists, is unique up to a unique isomorphism in
the derived under category of A. Because of that, we will refer to it as the localisation of A. The
existence will be established later on but in the mean time, it will simply be assumed; of course
care will be taken to avoid circularity of arguments.

Any quasi-isomorphism of dg algebras A → A′ induces an equivalence A ↓L dgAlg � A′ ↓L
dgAlg and this restricts to an equivalence between the full subcategories on S–inverting dg
algebras. This means that the definition of localisation above is well-defined in the sense that the
subcategory of S–inverting dg algebras, up to natural equivalence, is independent of the choice
of cofibrant replacement. Moreover, it implies that localisation is a quasi-isomorphism invariant:

Proposition 3.5. Let A ∼→ A′ be a quasi-isomorphism. Then this induces a quasi-isomorphism
LdgAlg
S (A) ∼→ LdgAlg

S (A′) as dg algebras.

Proof. The dg A′–algebra LdgAlg
S (A′) and the dg A–algebra LdgAlg

S (A) are initial S–inverting
objects in the corresponding derived under categories. Since the restriction functor is an
equivalence between these under categories, it sends LdgAlg

S (A′) into LdgAlg
S (A). �

Remark 3.6. It is clear that in order to study the localisation of A we may assume, without
loss of generality, that A is cofibrant. However if A is flat, or more generally, left proper, from
the practical point of view it is not necessary to cofibrantly replace it.

If A is cofibrant (or more generally, left proper) the localisation of A is represented by an S–
inverting cofibrant dg A–algebra A→ LdgAlg

S (A) with the property that for any other S–inverting
dg A–algebra A → Y there is a map of dg A–algebras LdgAlg

S (A) → Y which is unique up to
homotopy of dg A–algebra maps.

Lemma 3.7. Let B be a dg A–algebra. Then B ∗LA L
dgAlg
S (A) is the localisation of B.

Proof. This follows directly from Proposition 3.2.
�

Remark 3.8. Let Y be an arbitrary dg algebra. Given any homotopy class of maps from
LdgAlg
S (A) to Y we obtain a homotopy class of maps from A to Y which is S–inverting. The

universal property of localisation implies that this map is surjective. It is also injective since a
right homotopy of S–inverting maps from (a cofibrant replacement of) A to Y is also S–inverting
and hence, again by the universal property, factors through a right homotopy of maps from
LdgAlg
S (A) to Y . This gives an equivalent definition for the localisation of A as a representing

object of the functor which takes a dg algebra Y to the set of homotopy classes of maps from A

to Y which are S–inverting.

Let k〈S〉 denote the free graded algebra over k generated by the set S, where s ∈ S has the
same degree in k〈S〉 as it does in H(A). Denote k〈S, S−1〉 the graded algebra generated by the
symbols {s, s−1}s∈S , with s−1 having degree the negative of the degree of s, modulo the ideal
generated by the relations ss−1 = s−1s = 1. We will prove the following lemma later but we
state it here since, in combination with the previous lemma, it allows us to identify explicitly the
localisation of a dg algebra and, in particular, show that it always exists.

Lemma 3.9. The localisation of k〈S〉 is given by k〈S, S−1〉.
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By choosing a cycle representing each homology class s ∈ S ⊂ H(A) we obtain a map
k〈S〉 → A. We obtain the following theorem immediately from the previous lemmata:

Theorem 3.10. The localisation of A is given by LdgAlg
S (A) ' A ∗Lk〈S〉 k〈S, S−1〉. �

Remark 3.11.
• Since k〈S〉 and k〈S, S−1〉 are free, and thus flat, over k, it is only necessary to cofibrantly
replace A under k〈S〉 when computing the derived free product A ∗Lk〈S〉 k〈S, S−1〉, by
Remark 2.10 and Theorem 2.14. On the other hand, if A is flat over k, or more generally
left proper, then instead just cofibrantly replacing k〈S, S−1〉 under k〈S〉 does the job; an
explicit replacement is given in subsection 3.3 below.

• The above result implies that the derived localisation of a dg algebra can be represented
both as a derived pushout and a strict pushout in the homotopy category. This is a
surprising phenomenon since one normally does not expect the existence of strict colimits
in homotopy categories. Related to this is the non-existence of ‘higher’ localisations,
cf. below.

3.1. Non-derived localisation. Recall the standard definition of the (non-derived) localisation.
Let A be a dg algebra and let S ⊂ Z(A) be an arbitrary subset of homogeneous cycles in A.

Definition 3.12. A dg A–algebra f : A→ Y will be called strictly S–inverting if for all s ∈ S
the cycle f(s) ∈ Y is invertible in the dg algebra Y .

Definition 3.13. The non-derived localisation of A, denoted A[S−1], is the initial object in the
full subcategory on strictly S–inverting dg algebras of A ↓ dgAlg.

Remark 3.14. Normally one would define non-derived localisation for ungraded algebras without
a differential. The definition above, of course, reduces to the same thing in that case by regarding
such algebras as concentrated in degree 0.

Note, therefore, that the definition of the derived localisation is essentially the same, but
formulated in the derived under category of A in order to be a quasi-isomorphism invariant
notion. However, this makes derived localisation a good deal less trivial. In particular, the
following non-derived analogue of Theorem 3.10 is obvious, whereas the proof of Theorem 3.10 is
much more involved.

Proposition 3.15. The non-derived localisation of A is given by A[S−1] ∼= A ∗k〈S〉 k〈S, S−1〉.

Proof. It is clear that any strictly S–inverting dg A–algebra admits a unique map from k〈S, S−1〉
extending the map from k〈S〉. By the universal property of pushouts the result follows. �

3.2. Homotopy coherence. Our definition of localisation is as a universal S–inverting object
in a certain homotopy category (‘initial S–inverting dg algebra up to homotopy’). One could
also demand a stronger property be satisfied: to be the universal S–inverting object in a certain
∞–category (‘initial S–inverting dg algebra up to coherent higher homotopy’), as opposed to just
in the underlying homotopy category. We will now show that this higher homotopy coherence is,
in fact, automatically satisfied.

Recall that the derived mapping space Map(X,Y ) between objects X and Y in a category
with weak equivalences is (the homotopy type of) the space of morphisms in the Dwyer–Kan
simplicial localisation [DK80]. In particular, the set of connected components of the derived
mapping space is the set of morphisms in the homotopy category.

Recall also the notion of a homotopy epimorphism of [Mur16].
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Definition 3.16. A morphism f : X → Y in a model category is said to be a homotopy
epimorphism if for any object Z, the induced morphism on (derived) mapping spaces

Map(Y,Z)→ Map(X,Z)

gives an injection on connected components of the corresponding simplicial sets and an isomorph-
ism on homotopy groups for any choice of a base point.

Proposition 3.17. For a dg algebra A, the localisation map A → LdgAlg
S (A) is a homotopy

epimorphism.

Proof. The map LdgAlg
S (A)→ LdgAlg

S (A) ∗LA L
dgAlg
S (A) given by the inclusion of the right factor is

the localisation of LdgAlg
S (A) by Lemma 3.7. Since the latter is already S–inverting, this map is a

quasi-isomorphism. Now the claim follows from the characterisation of homotopy epimorphisms
given in [Mur16, Proposition 2.1]. �

Let A be a dg algebra and let A′ be a cofibrant replacement for A. For X,Y ∈ A′ ↓ dgAlg we
denote by MapA(X,Y ) the derived mapping space from X to Y in the model category A′ ↓ dgAlg.
This does not depend, up to weak equivalence, on the choice of cofibrant replacement for A. The
set of connected components of MapA(X,Y ) is the set of maps from X to Y in A ↓L dgAlg.

Theorem 3.18. Let LdgAlg
S (A) ∈ A ↓L dgAlg be the localisation of A. Then for any B ∈ A ↓L

dgAlg which is S–inverting, MapA(LdgAlg
S (A), B) ' ∗. If B is not S–inverting then the derived

mapping space is empty.

Proof. Without loss of generality, assume A is cofibrant and assume that the localisation
A � LdgAlg

S (A) is a cofibrant dg A–algebra. Since the localisation map A → LdgAlg
S (A) is a

homotopy epimorphism (Proposition 3.17), the homotopy fibre of the map

Map(LdgAlg
S (A), B)→ Map(A,B)

is empty or contractible. If B is S–inverting, then it is contractible, otherwise it is empty. But
this homotopy fibre is precisely MapA(LdgAlg

S (A), B). �

Remark 3.19. Combining the result above with Lemma 3.9 it follows that the localisation
of A at S is a fibrant replacement in the Bousfield localisation of the model category of dg
k〈S〉–algebras with respect to the map of k〈S〉–algebras f : k〈S〉 → k〈S, S−1〉.

Indeed, Lemma 3.9 and the result above implies that a k〈S〉–algebra is f–local if and only if
it is S–inverting. Then the above result implies that A→ LdgAlg

S (A) is an f–local equivalence.

3.3. An explicit model for localisation. If A is a left proper dg algebra, then the localisation
LdgAlg
S (A) ' A ∗Lk〈S〉 k〈S, S−1〉 may be computed by cofibrantly replacing k〈S, S−1〉 in the under

category k〈S〉 ↓ dgAlg and without having to replace A, cf. Corollary 2.9. The condition on A
holds, for example, when A is flat over k, by Theorem 2.14.

In the case of S = {s}, in other words inverting a single homogeneous element s, we can easily
obtain a simple and explicit cofibrant replacement for k〈s, s−1〉 = k[s, s−1]. We will denote this
replacement by Q, which we now describe for completeness.

For the case of an arbitrary set S a cofibrant replacement for k〈S, S−1〉 is then given by a free
product of multiple copies of Q, one for each s ∈ S. Indeed, using Corollary 2.9 and Theorem 2.14
we can reduce this, by induction, to showing that k〈S \ {s}, S−1 \ {s−1}〉 ∗k Q→ k〈S, S−1〉 is a
quasi-isomorphism. But this is true since both sides are seen to compute the derived localisation
LdgAlg
S (k〈S〉).
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Let Q be the dg algebra

Q = k〈s = h0
0, t = h0

1, h
1
0, h

1
1, h

2
0, h

2
1, . . . 〉

with

|hnm| =


n+ |s| if n and m are even
n− |s| if n is even and m is odd
n if n is odd

and differential defined by d(t) = d(s) = 0, d(h1
0) = st− 1, d(h1

1) = ts− 1 and for n ≥ 2

d(hnm) =
n−1∑
i=0

(−1)|h
i
m|+1himh

n−1−i
m−1−i

where the lower index of an element hnm is of course understood as an element in Z2.

Proposition 3.20. The dg algebra Q is a cofibrant replacement for k〈s, s−1〉 as a dg k〈s〉–algebra.

Proof. The dg algebra Q is clearly cofibrant. Note that Q is a bigraded complex, with hnm in
bidegree (|hnm|, n) for n = 0, 1, . . . . Denote by C the bicomplex defined by the exact sequence
0→ k→ Q→ C → 0 of chain bicomplexes. Then C is the cobar construction of the non-unital
associative algebra k〈s, t〉/(s2 = t2 = 0). Since the ideal of relations is generated by monomials,
this algebra is Koszul [Pri70] and so H(C) is concentrated in bidegrees (i, 0), i ∈ Z and it
follows that H(Q) is also concentrated in bidegrees (i, 0). Clearly, the space of cycles in Q of
bidegrees (i, 0), i ∈ Z is just k〈s, t〉 and the space of boundaries is the ideal (st− 1, ts− 1), so
H(Q) ∼= k〈s, s−1〉. �

Remark 3.21. The dg algebra Q is the cobar construction of a certain curved algebra: the
curved algebra k̃〈σ, τ〉/(σ2 = τ2 = 0, στ + τσ = Ω), where here k̃〈σ, τ〉 is the free curved algebra
on two generators, with curvature denoted by Ω. Proposition 3.20 therefore says that this is the
Koszul dual of k〈s, s−1〉 (cf. [Pos11, Section 6] for Koszul duality of unital/curved algebras).

3.4. Homology of localisations. In general, it appears that little can be said about the
homology of the derived localisation of a dg algebra A. For example, it is not true that the
homology of the derived localisation is necessarily isomorphic to the derived localisation of the
homology. In fact, we have a spectral sequence relating the two, that does not always collapse
as we show later on. Note, first of all, that if B is a graded algebra with vanishing differential
and S ⊂ B then H(LdgAlg

S (B)) ∼= H(B ∗Lk〈S〉 k〈S, S−1〉) is bigraded (cf. Corollary 2.18) and so we
could write Hij(LdgAlg

S (B)) for its bigraded component (i, j).

Theorem 3.22. There exists a spectral sequence converging to Hi+j(LdgAlg
S (A)) whose E2 term

is isomorphic to Hi,j(LdgAlg
S (H(A))), i ∈ Z, j ∈ N.

Proof. According to [Sag10, Theorem 3.4] there exists a k–projective (and hence proper) dg
algebra resolution Â of A that is N× Z-graded and E2-quasi-isomorphic to A. That means, in
particular, that it is filtered: 0 = F−1(Â) ⊂ F0(Â) ⊂ . . . with

⋃
i Fi(Â) = Â and that associated

graded is also a k–projective resolution of H(A). It follows that any homology class in H(A)
has a representative cocycle in Â having filtration degree 0. In particular, considering k〈S〉 to
be trivially filtered, the map k〈S〉 → Â corresponding to choosing representatives of homology
classes of S ⊂ H(A), respects the filtration, i.e. its image lies in F0(Â).

Now choose a cofibrant bigraded resolution of k〈S, S−1〉 in the under category of k〈S〉; denote
it by ˜k〈S, S−1〉. Then LdgAlg

S (A) ' Â ∗k〈S〉 ˜k〈S, S−1〉 := Ã. Moreover, since ˜k〈S, S−1〉 is obtained
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from k〈S〉 by adjoining cells {xαn} (as in the proof of Proposition 2.16), we have an isomorphism
of k〈S〉-modules (disregarding the differential):

Ã = Â ∗k〈S〉 ˜k〈S, S−1〉 ∼= Â〈{xα0}, {xα1}, . . .〉

Under this isomorphism the differential on Â is the given one while d(xαn) ⊂ Â〈{xα0}, . . . , {xαn−1}〉.
Let us say that xαn has weight n; this gives Ã an increasing weight filtration W0 ⊂ W1 ⊂ . . .

where Wn is spanned by those monomials whose weight is ≤ n. Thus, Ã has two filtrations: by
weight and the one coming from Â. We consider the diagonal filtration and the corresponding
spectral sequence.

Since the differential on every generator xαn lowers the weight degree, all these generators
survive to the E1 term. Remembering that H̃(A) is k-projective, we conclude that the E1 term
of the associated spectral sequence is isomorphic to Ĥ(A)〈{xα0}, {xα1}, . . .〉 and it follows that
the E2-term is as claimed. �

When the derived localisation of H(A) is the same as the non-derived localisation of H(A),
the situation simplifies.

Theorem 3.23. Let A be a dg algebra. If LdgAlg
S (H(A)) ' H(A)[S−1] ∼= H(A) ∗k〈S〉 k〈S, S−1〉

then H(LdgAlg
S (A)) ∼= H(A)[S−1].

Proof. Applying the spectral sequence in Theorem 3.22 we see that its E2 term vanishes for
values of j > 0 from which the conclusion follows. �

Corollary 3.24. If H(A) is a cofibrant dg k〈S〉–algebra, then H(LdgAlg
S (A)) ∼= H(A)[S−1] '

LdgAlg
S (H(A)).

Proof. Since H(A) is cofibrant, by Corollary 2.9 the derived localisation of the homology is
H(A) ∗k〈S〉 k〈S, S−1〉 ∼= H(A)[S−1]. �

The condition that H(A) is cofibrant over k〈S〉 means that H(A) is a free algebra, or a retract
of such. Later on, we will also see that we can compute the homology of the localisation of A at
the other extreme, when S satisfies some centrality condition (such as being an Ore set) in H(A).

4. Derived localisation of modules

Let A be a dg algebra and let S ⊂ H(A) be an arbitrary subset of homogeneous homology
classes.

Remark 4.1. In this section we will choose to work with localisations in the category of left
A–modules. Of course, the same theory holds, with obvious modifications, for right A–modules.

Definition 4.2. A left A–module M will be called S–local if for all s ∈ S the map ls : H(M)→
H(M) given by ls(m) = sm is an isomorphism.

A dg A–algebra is in particular an A–module. The notions of S–inverting and S–local are
equivalent:

Proposition 4.3. Let Y be a dg A–algebra. Then Y is S–inverting if and only if it is S–local.

Proof. Note that since Y is a dg algebra, for any s ∈ S the map ls is just left multiplication
by the homology class of s in H(Y ). Assume Y is S–inverting. Then left multiplication by the
multiplicative inverse of the homology class of s is an inverse to the map ls.
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Conversely, assume Y is S–local as a left A–module so that for any s ∈ S the map ls has
an inverse fs : H(Y )→ H(Y ). Then sfs(1) = (ls ◦ fs)(1) = 1 so fs(1) is a right multiplicative
inverse for s. Since ls is a map of right H(Y )–modules so is its inverse fs and therefore
fs(1)s = fs(s) = (fs ◦ ls)(1) = 1 so fs(1) is also a left multiplicative inverse for s, hence s is
invertible in H(Y ). �

Definition 4.4. A localisation of a moduleM is an S–local A–module Y with a map f : M → Y

such that for any S–local module N , the map f∗ : RHomA(Y,N)→ RHomA(M,N) is a quasi-
isomorphism.

Two localisations are clearly quasi-isomorphic as A–modules.

Proposition 4.5. An A–module Y with a map f : M → Y is a localisation of M if and only it
it is the initial S–local object in the homotopy category of M ↓ A-Mod.

Proof. Let N be an arbitrary S–local A–module with a map f ′ : M → N . There is a homotopy
pullback of simplicial sets

MapM↓A-Mod(Y,N) //

��

∗

��

MapA-Mod(Y,N)
f∗
// MapA-Mod(M,N)

where the right vertical map is given by ∗ 7→ f ′. But then Y is a localisation ofM if and only if the
bottom horizontal map is a quasi-isomorphism which holds if and only if MapM↓A-Mod(Y,N) ' ∗,
which is true if and only if Y is the initial S–local object in the homotopy category ofM ↓ A-Mod
(since suspension/desuspension preserves the notion of being S–local). �

Remark 4.6. Proposition 4.5 should be compared to the definition of localisation for dg algebras.
Note that left properness of A-Mod is only required in order that we may consider the usual
under category of M , instead of the derived under category.

It follows that two localisations are not only quasi-isomorphic as A–modules, but also as
A–modules under M :

Corollary 4.7. Any two localisations of M are isomorphic in the homotopy category of M ↓
A-Mod. �

Proposition 4.5 makes the following definition sensible.

Definition 4.8. We denote by LA-Mod
S (M) the initial S–local A–module in the homotopy

category of M ↓ A-Mod. We will refer to it as the localisation of M .

Remark 4.9.
• In light of Proposition 4.5 we will often abuse terminology and not distinguish between

the different, but equivalent, notions of localisation of a module.
• The reader may recognise that the localisation of a module is precisely a fibrant replace-

ment in the Bousfield localisation of the model category of A–modules at the morphisms
{rs : Σ|s|A→ A}s∈S given by right multiplications by the elements of S. Consequently,
we can deduce existence of the localisation of a module from the general existence
theorems for Bousfield localisation [Hir03, Chapter 4].
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Remark 4.10. Non-derived module localisations may be defined in analogy to non-derived
algebra localisations, cf. subsection 3.1. Let A be a dg algebra and S ⊂ Z(A) an arbitrary set of
homogeneous cycles in A. An A–module is strictly S–local if any s ∈ S acts strictly invertibly on
it. The non-derived localisation of an A–module M is the initial strictly S–local A–module in
M ↓ A-Mod.

Convention 4.11. Let A′
∼
� A be a cofibrant replacement for A. Since restriction and extension

of scalars along the quasi-isomorphism A′
∼
� A induces a Quillen equivalence between the category

of A′–modules and A–modules, then LA-Mod
S (A) is also the localisation of A′ as an A′–module.

Therefore, without loss of any generality, we will from now on assume A is always first cofibrantly
replaced as a differential graded algebra, whenever it is necessary.

The following theorem, essentially due to Dwyer [Dwy06], says that the localisation of A in
the category of A–modules is, up to quasi-isomorphism, a dg algebra.

Theorem 4.12 ([Dwy06, Proposition 2.5]). There is a dg algebra X ∈ A ↓L dgAlg such that as
A–modules X ' LA-Mod

S (A).

We give here a slightly different proof to Dwyer’s, although the main idea is the same.

Proof. Denote by S ⊗ 1 the subset of H(A⊗Aop) of elements of the form s⊗ 1 with s ∈ S and
let Y = LA⊗A

op-Mod
S⊗1 (A) be the localisation of A as an A ⊗ Aop–module (i.e. an A–bimodule).

Let N be an S–local A–module. Then, observing that RHomk(A,N) is (S ⊗ 1)–local,

RHomA(Y,N) ' RHomA⊗Aop(Y,RHomk(A,N))
' RHomA⊗Aop(A,RHomk(A,N)) ' RHomA(A,N)

and so Y is also a localisation of A as an A–module. SetX to be the dg algebra REndAop(Y ). Then
we have a string of quasi-isomorphisms of A-modules: X ' RHomAop(Y, Y ) ' RHomAop(A, Y ) '
Y as required. �

Remark 4.13. The ability to cofibrantly replace A in the above proof was used where it was
understood that A⊗Aop computes the derived tensor product and that a cofibrant A⊗Aop–
module is also a cofibrant right A–module by restriction. If A is not cofibrant, or at least
left proper, we cannot conclude that there is a dg algebra map from A itself into its module
localisation.

From now on, when we write LA-Mod
S (A) it will be assumed to be a dg algebra model for

the localisation of A as an A–module. We know there is at least one such model; soon we will
show that it is unique in A ↓L dgAlg. The following proposition says that this is a smashing
localisation.

Proposition 4.14. Let M be an A–module. Then M ' A ⊗L
A M → LA-Mod

S (A) ⊗L
A M is the

localisation LA-Mod
S (M) of M .

Proof. Let N be an S–local A–module. Since

RHomA(LA-Mod
S (A)⊗L

AM,N) ' RHomA(M,RHomA(LA-Mod
S (A), N))

' RHomA(M,RHomA(A,N)) ' RHomA(M,N)

it is sufficient to prove that LA-Mod
S (A)⊗L

AM is S–local. Left multiplication by any cycle repres-
enting a homology class s ∈ S gives a (graded) quasi-isomorphism ls : LA-Mod

S (A)→ LA-Mod
S (A)

of right A–modules and the derived tensor product with M preserves quasi-isomorphisms, so
LA-Mod
S (A)⊗L

AM is indeed S–local. �
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Corollary 4.15. The Quillen adjunction A-Mod � LA-Mod
S (A)-Mod with left adjoint given

by extension of scalars M 7→ LA-Mod
S (A) ⊗A M and right adjoint given by restriction along

A→ LA-Mod
S (A) induces an equivalence between Ho(LA-Mod

S (A)-Mod) and the full subcategory of
Ho(A-Mod) of S–local modules. �

Proof. In the previous proposition we saw that LA-Mod
S (A) ⊗L

A M is the localisation of any
A–module M and so if M is an S–local A–module then M → LA-Mod

S (A) ⊗L
A M is a quasi-

isomorphism. Moreover, an LA-Mod
S (A)–module is indeed an S–local A–module since its homology

is anH(LA-Mod
S (A))–module and any s ∈ S ⊂ H(LA-Mod

S (A)) has an inverse. Then the proposition
above implies that LA-Mod

S (A)⊗L
AM →M is a quasi-isomorphism (it has a right inverse which

is a quasi-isomorphism) for any LA-Mod
S (A)–module M . �

Remark 4.16. The corollary above identifies LA-Mod
S (A)-Mod as (Quillen equivalent to) the

Bousfield localisation of A-Mod.

We can in fact elevate Theorem 4.12 further to show that not only is the localisation of A in
A–modules a dg algebra up to quasi-isomorphism, but the universal map from this localisation
to an S–inverting dg algebra, which is a priori only a map of modules, is up to homotopy a map
of dg algebras, in a precise sense.

Lemma 4.17. Let C ∈ A ↓L dgAlg be S–inverting. Then there exists a map LA-Mod
S (A)→ C in

A ↓L dgAlg.

Proof. We may assume A� LA-Mod
S (A) is a cofibrant, in fact cell, dg A–algebra by replacing if

necessary. Since A is assumed to be cofibrant, then we may also assume that LA-Mod
S (A) is also

cofibrant as a right A–module. To see this note that it can be seen directly, using the fact that A
is a cofibrant k–module, that a cell dg A–algebra can be built as a right A–module by attaching
cells in Aop-Mod; indeed the k–cofibrancy of A means that the underlying right A–module of a
cell dg A–algebra is free.

Let C be an S–inverting dg A–algebra which again, without loss of generality, we assume is
cofibrant.

The map A → LA-Mod
S (A) is a map of (A,A)–bimodules and so consider the map C →

LA-Mod
S (A)⊗A C of (A,C)–bimodules given by tensoring on the right with the (A,C)–bimodule

C. It is a quasi-isomorphism since LA-Mod
s (A) is cofibrant as a right A–module and so by

Proposition 4.14 LA-Mod
S (A) ⊗A C is the localisation of C, yet C is already S–local. Now set

C ′ = REndC(LA-Mod
S (A)⊗A C). By Theorem 2.25 C ′ is a dg LA-Mod

S (A)–algebra. Moreover, C ′
is a dg A–algebra by restricting along the map A→ LA-Mod

S (A) and since C ' LA-Mod
S (A)⊗A C

as (A,C)–bimodules then, again by Theorem 2.25, C ' REndC(C) ' C ′ as dg A–algebras. �

Note that this lemma does not show that this map is unique in the derived under category of
A, although it is of course unique in the homotopy category of left A–modules under A. It turns
out that this map is indeed unique, and hence the localisation of A in A–modules is also the
localisation of A as a dg algebra, but this is a more difficult fact to show, the proof of which is
essentially the purpose of the remainder of this section.

A version of the following theorem was proved in the case of an ungraded ring in [Dwy06].

Theorem 4.18. Let A be a graded algebra with zero differential. The following are equivalent:
(1) A[S−1]⊗L

A A[S−1] ∼→ A[S−1]⊗A A[S−1]
(2) A[S−1]⊗L

A A[S−1] ∼→ A[S−1]
(3) LA-Mod

S (A) ∼→ A[S−1].
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Here, these maps are maps of (left) A–modules. The first and third maps are induced by the map
from a cofibrant replacement of A to A, and the second one is the composition of the first and
the canonical isomorphism A[S−1]⊗A A[S−1] ∼= A[S−1].

Proof. Since A[S−1] is the non-derived localisation, by the non-derived analogue of Proposi-
tion 4.14 it always holds that A[S−1]⊗A A[S−1] ∼= A[S−1]. Therefore (1) and (2) are equivalent.
By Proposition 4.14, (3) clearly implies (2).

To see (2) implies (3), let M be a right A[S−1]–module. Then

M ⊗L
A A[S−1] '

(
M ⊗L

A[S−1] A[S−1]
)
⊗L
A A[S−1] 'M ⊗L

A[S−1] A[S−1] 'M.

By Proposition 4.14, LA-Mod
S (A) ⊗L

A A[S−1] ' A[S−1]. Consider now the Künneth spectral
sequence associated to this derived tensor product: the E2 term is given by the homology
of H(LA-Mod

S (A)) ⊗L
A A[S−1]. Observing that H(LA-Mod

S (A)) is a right A[S−1]–module we see
that the spectral sequence collapses and the homology is H(LA-Mod

S (A)) from which the result
follows. �

Remark 4.19. Recall that a dg algebra map A→ B is a homological epimorphism if and only
if the map B ⊗L

A B → B, induced by the multiplication on B, is a quasi-isomorphism. If we only
have B ⊗L

A B → B ⊗A B a quasi-isomorphism then the map A → B is called stably flat; the
latter notion is mostly used in the non-differential case. Then Theorem 4.18 can be understood
as saying that if A is a graded algebra with zero differential then for the map A→ A[S−1] the
notions of homological epimorphism and stable flatness coincide and moreover A→ A[S−1] is
the localisation of A as an A–module if and only if it is a homological epimorphism/stably flat.

Suppose now that A is a graded algebra with vanishing differential that is hereditary, i.e. whose
global dimension is 0 or 1. For example, such is a free algebra over a field. Then the conditions
of Theorem 4.18 are always satisfied:

Corollary 4.20. For a hereditary graded algebra A the map A → A[S−1] is a homological
epimorphism. Therefore, there is a natural equivalence of dg algebras LA-Mod

S (A) ' A[S−1] in
A ↓L dgAlg.

Proof. We need to show that TorAi (A[S−1], A[S−1]) = 0 for i = 1, 2, . . . . The vanishing of
TorA1 (A[S−1], A[S−1]) is a general result on non-derived localisation, cf. [Sch85, Theorem 4.7,
Theorem 4.8]; the proof in op. cit is given for ungraded rings but applies verbatim for graded
ones. Since A is hereditary, all higher torsion products automatically vanish. �

4.1. Localisations of free algebras. We will now compute the localisations of free algebras.
In particular, we will prove Lemma 3.9. Recall that we denote the non-derived localisation by
A[S−1], which is given explicitly by A ∗k〈S〉 k〈S, S−1〉. We start by proving that dg modules over
cell algebras have a particularly simple cofibrant replacement. Let A be a cell dg k-algebra; that
means that

• forgetting the differential, A is a free graded algebra k〈T 〉 on a set T of homogeneous
generators;

• the set T is a union of a nested system ∅ = T0 ⊂ . . . ⊂ Tn ⊂ . . ., and d(Tn) ⊂ k〈Tn−1〉.
Note that for every n the set Tn is not necessarily countable and so T can likewise be uncountable.
Denoting by An the subalgebra in A generated by Tn, we see that An is closed with respect to
the differential and that A =

⋃∞
n=0An. The dg algebra An plays the role of an n-skeleton of A

(even though, of course, it contains cells of arbitrary dimension).
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Lemma 4.21. Let A = k〈T 〉 be a cell dg algebra as above and M be a dg A-module that is
cofibrant as a k-module. Then M has a cofibrant replacement as the totalisation of the double
complex with two columns having the following form; here 〈T 〉 stands for the free k–module
generated by T .

(1) k〈T 〉 ⊗ 〈T 〉 ⊗M → k〈T 〉 ⊗M.

Proof. Consider the standard two-term free resolution of k〈T 〉 as a bimodule over itself:

(2) k〈T 〉 ⊗ 〈T 〉 ⊗ k〈T 〉 → k〈T 〉 ⊗ k〈T 〉 → k〈T 〉.

Here the map k〈T 〉 ⊗ k〈T 〉 → k〈T 〉 is the multiplication map and the other arrow is the map
that takes t ∈ T to t ⊗ 1 − 1 ⊗ t ∈ k〈T 〉 ⊗ k〈T 〉. Remembering that A = k〈T 〉 has its own
differential, we can view this resolution as a double complex with three columns. The vertical
differential on the A-bimodule k〈T 〉 ⊗ 〈T 〉 ⊗ k〈T 〉 is the one making this bimodule the kernel of
the multiplication map of A. Consider a generator 1⊗ t⊗ 1 ∈ k〈T 〉 ⊗ 〈Tn〉 ⊗ k〈T 〉. Because of
the cellular nature of the differential in k〈T 〉 it holds, inside k〈T 〉 ⊗ k〈T 〉:

d(t⊗ 1− 1⊗ t) ⊂ k〈Tn−1〉 ⊗ k〈Tn−1〉.

Therefore, it holds, inside k〈T 〉 ⊗ 〈T 〉 ⊗ k〈T 〉:

d(1⊗ t⊗ 1) ⊂ k〈Tn−1〉 ⊗ 〈Tn−1〉 ⊗ k〈Tn−1〉 ⊂ k〈T 〉 ⊗ 〈Tn−1〉 ⊗ k〈T 〉.

Thus, the dg A-bimodule k〈T 〉 ⊗ 〈T 〉 ⊗ k〈T 〉 is cellular and so is the totalisation of the double
complex k〈T 〉 ⊗ 〈T 〉 ⊗ k〈T 〉 → k〈T 〉 ⊗ k〈T 〉.

Tensoring Equation (2) with M we obtain the following double complex:

(3) k〈T 〉 ⊗ 〈T 〉 ⊗M → k〈T 〉 ⊗M →M.

The horizontal differential in it is clearly exact since its homology in degrees i > 0 is simply
TorAi (A,M) = 0. Therefore the total complex of k〈T 〉⊗〈T 〉⊗M → k〈T 〉⊗M is quasi-isomorphic
to M ; it is also clearly a cofibrant (left) A-module as a tensor product over A of a cofibrant
A-bimodule and a cofibrant k-module M . �

Proposition 4.22. Let S ⊂ T . Then Lk〈T 〉-Mod
S (k〈T 〉) ' k〈T 〉[S−1] ∼= k〈T, S−1〉.

Proof. We will use Theorem 4.18, applied to A = k〈T 〉. It follows from (the graded version
of) [Sch85, Theorem 4.7, Theorem 4.8] that TorA1 (A[S−1], A[S−1]) ∼= 0. By Lemma 4.21, the
A–module A[S−1] ∼= k〈T, S−1〉, being k-free, thus k-cofibrant, admits a two term free resolution
over k〈T 〉. Therefore, there are no higher Tor terms. �

Lemma 4.23. Let k〈S〉� A be a relative cell dg algebra (so that the underlying graded algebra of
A is free over k〈S〉). Then the map induced by the multiplication map A[S−1]⊗L

AA[S−1]→ A[S−1]
is a quasi-isomorphism.

Proof. Consider the cofibrant standard replacement of the A-module A[S−1] constructed in
Lemma 4.21:

k〈T 〉 ⊗ 〈T 〉 ⊗ k〈T 〉[S−1]→ k〈T 〉 ⊗ k〈T 〉[S−1]
Tensoring it on the left with k〈T 〉[S−1] over A we obtain the following (double) complex C

computing A[S−1]⊗L
A A[S−1]:

C : k〈T 〉[S−1]⊗ 〈T 〉 ⊗ k〈T 〉[S−1]→ k〈T 〉[S−1]⊗ k〈T 〉[S−1]

(formally C is the cofibre of the above map). Let us disregard the differential in A for a
moment; in other words, assume that C has vanishing vertical differential. Then it follows from
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Proposition 4.22 and Theorem 4.18 that it is quasi-isomorphic to A[S−1]⊗A A[S−1] ∼= A[S−1].
In other words, the following is a short exact sequence:

(4) 0→ k〈T 〉[S−1]⊗ 〈T 〉 ⊗ k〈T 〉[S−1]→ k〈T 〉[S−1]⊗ k〈T 〉[S−1]→ A[S−1]→ 0.

Remembering that A has a nontrivial differential, we still have (4), except viewed as a short
exact sequence of complexes. It follows that C is quasi-isomorphic to A[S−1] as required. �

Lemma 4.24. Let k〈S〉 � A be a relative cell dg algebra which is S–inverting. Then the
localisation map A→ A[S−1] admits a splitting in the homotopy category of dg A–algebras.

Proof. Since A is cofibrant under k〈S〉, then A[S−1] ∼= A ∗k〈S〉 k〈S, S−1〉 ' A ∗Lk〈S〉 k〈S, S−1〉 as
dg A–algebras. It is sufficient to construct a map in the homotopy category of dg k〈S〉–algebras
from k〈S, S−1〉 to A since taking the derived free product over k〈S〉 of this map with the identity
map on A will yield the desired splitting.

But since k〈S, S−1〉 ' Lk〈S〉-Mod
S (k〈S〉) (Proposition 4.22) such a map exists by Lemma 4.17. �

We will use the following lemma which characterises the localisation of a dg algebra in terms
of derived free products with S–inverting dg algebras.

Lemma 4.25. Let B ∈ A ↓L dgAlg be an S–inverting dg algebra such that for any other
S–inverting dg algebra C ∈ A ↓L dgAlg it holds that C → C ∗LA B is a quasi-isomorphism in
A ↓L dgAlg. Then B ' LdgAlg

S (A), in other words B is the localisation of A.

Proof. Since B itself is S–inverting, its localisation as a dg algebra is itself and so B ' B ∗LA B
by Lemma 3.7. Let C ∈ A ↓L dgAlg be an S–inverting dg algebra. Using the adjunction
A ↓L dgAlg � B ↓L dgAlg we have:

HomB↓LdgAlg(B,B ∗LA C) ∼= HomB↓LdgAlg(B ∗LA B,B ∗LA C)
∼= HomA↓LdgAlg(B,B ∗LA C) ∼= HomA↓LdgAlg(B,C)

But now the result follows since B is initial in B ↓L dgAlg. �

Theorem (Lemma 3.9). The localisation of k〈S〉 is LdgAlg
S (k〈S〉) ' k〈S, S−1〉.

Proof. Let k〈S〉� A be a relative cell dg algebra which is S–inverting. By Lemma 4.25, it is
sufficient to prove that A ∗Lk〈S〉 k〈S, S−1〉 is quasi-isomorphic to A. Note that by Theorem 2.14,
k〈S〉 and k〈S, S−1〉 are left proper and since A is cofibrant, by Corollary 2.9, A ∗Lk〈S〉 k〈S, S−1〉 is
quasi-isomorphic to A[S−1]. By Lemma 4.24 above, which says A→ A[S−1] admits a splitting in
the homotopy category of dg A–algebras and hence in particular in the homotopy category of A–
bimodules, we have a quasi-isomorphism of A–bimodules A[S−1] ' A⊕M for some A–bimodule
M , so it suffices to prove that M is quasi-isomorphic to zero. By Lemma 4.23, the multiplication
map A[S−1] ⊗L

A A[S−1] ' (A ⊕M ⊕M ⊕M ⊗L
A M) → A ⊕M is a quasi-isomorphism. This

map is defined by the identity on M on the two copies of M in the source and so can only be a
quasi-isomorphism if M ' 0. �

4.2. Comparison of localisations. The following central theorem, upon which most of our
results rely, shows that LA-Mod

S (A) is in fact also the localisation of A as a dg algebra. One
corollary is that LA-Mod

S (A) is a well-defined object in A ↓L dgAlg (as opposed to just well-defined
up to quasi-isomorphism of modules). More importantly, it implies that the localisation of A as
an A–module and the localisation of A as a dg algebra are really equivalent in a precise sense.

Theorem 4.26. If LA-Mod
S (A) is a dg algebra in A ↓L dgAlg which is the localisation of A as an

A–module then it is also the localisation of A as a dg algebra.
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Proof. By Lemma 4.17, there is a map LA-Mod
S (A) → LdgAlg

S (A) in A ↓L dgAlg. Then by
the universal property of the dg algebra localisation, the composition of maps LdgAlg

S (A) →
LA-Mod
S (A) → LdgAlg

S (A) in A ↓L dgAlg must therefore be the identity. But similarly, the
composition of maps LA-Mod

S (A) → LdgAlg
S (A) → LA-Mod

S (A) must be homotopic (as a map of
modules) to the identity. Therefore, the dg algebra map LA-Mod

S (A) → LdgAlg
S (A) is a quasi-

isomorphism. �

The main computational use of this theorem is the following corollary that allows us to
understand the homotopy type of the localisation of A as a dg algebra by instead calculating
the homotopy type of the localisation of A as an A–module, which is often easier to understand,
being more amenable to elementary techniques from homological algebra.

Corollary 4.27. Let Y be a localisation of A as an A–module. Then as A–modules LdgAlg
S (A) '

Y . �

Remark 4.28. Although LdgAlg
S (A) is, a priori, just an A′–module for some A′

∼
� A a cofibrant

replacement for A, the categories of modules of A and A′ are of course Quillen equivalent (by
restriction and extension of scalars) so it makes sense to say that the equivalence in the corollary
above is an equivalence of A–modules.

Another important consequence (which also takes into account Corollary 4.15) is that the
derived category of local modules is equivalent to the derived category of LdgAlg

S (A)–modules:

Corollary 4.29. The full subcategory in Ho(A-Mod) consisting of S–local A–modules is equi-
valent to Ho(LdgAlg

S (A)-Mod). �

Remark 4.30. All told, Theorem 4.26 can be regarded as showing that the Bousfield localisation
of A-Mod at the maps {rs : Σ|s|A→ A}s∈S is Quillen equivalent to LdgAlg

S (A)-Mod.

Convention 4.31. From now on, where it is not ambiguous, we will omit the notational
difference between LA-Mod

S (A) and LdgAlg
S (A) and just refer instead to the dg algebra LS(A),

which we regard as an object in both Ho(A-Mod) and A ↓L dgAlg and which we call simply the
localisation of A.

4.3. Derived matrix localisation. The main results of our paper can be further generalised to
include (the derived version of) the universal Cohn localisation [Coh06, Sch85]. Here we outline
how this is done; the proofs will be omitted since they are very similar to the ones given for the
ordinary derived localisation and do not involve any new ideas. Let S = {Sα} : Lα → Nα be a
collection of maps in the homotopy category of A–modules.

Definition 4.32. An A–module M is called S–local if all induced maps

RHomA(Nα,M)→ RHomA(Lα,M)

are quasi-isomorphisms.

Remark 4.33. Any collection of elements S ∈ H(A) can be viewed as a collection of homotopy
classes of maps of A–modules A→ A and being S–local in the sense of Definition 4.2 is the same
as being S–local in the sense of Definition 4.32.

We define a localisation LA-Mod
S (M) of an A–module M precisely as in Definition 4.4. Then

Theorem 4.12 makes sense and its proof extends with obvious modifications to the present
context. It is not true, in general, that the functor M → LA-Mod

S (M) is smashing, i.e. that
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LA-Mod
S (M) ' LA-Mod

S (A)⊗L
AM . It is, however, true if the homotopy cofibres of all the maps Sα

are perfect A–modules, cf. [Dwy06, Proposition 2.10].
The following is an analogue of Definition 3.1.

Definition 4.34. A dg algebra f : A→ Y is called S–inverting if the induced maps

f∗(Sα) : Lα ⊗L
A Y → Nα ⊗L

A Y

are quasi-isomorphisms.

This gives rise to the general notion of S–localisation (Definition 3.3). In other words, the
functor A 7→ LdgAlg

S (A) is the initial S–inverting dg algebra in A ↓L dgAlg.

Definition 4.35. Let S = {Sα : Nα → Lα} be a collection of homotopy classes of maps between
perfect A–modules. Then the LdgAlg

S (A) ∈ A ↓L dgAlg is called the derived localisation of A with
respect to S.

Let us now outline the existence and an explicit form of the derived Cohn localisation,
restricting ourselves to the case when the modules Lα and Nα are A–modules which are free of
finite rank l and n respectively. We will in that case refer to it as (derived) matrix localisation.
We further simplify by assuming that S consists of only one map L→ N ; the general case being
a simple iteration of this construction.

Since the A–modules L and N are free, a homotopy class of maps N → L corresponds to an
n× l matrix (sij) with entries in H(A). A choice of representatives of homology classes then
determines a map k〈(sij)〉 → A from the free k–algebra on the symbols sij to A; this is a map of
dg algebras where k〈(sij)〉 is given the trivial differential.

Denote by k〈(sij), (sij)−1〉 the algebra obtained from k〈(sij)〉 by formally inverting the matrix
(sij). In other words, we introduce an l × n matrix worth of symbols s′ij ; then k〈(sij), (sij)−1〉
has generators {sij} and {s′ij} and relations written in a matrix form as (sij) · (s′ij) = Il and
(s′ij) · (sij) = In where Il and In are the identity matrices of sizes l and n respectively.

We have the following result whose proof is similar to that of Theorem 3.10. As in the case of
the ordinary derived localisation, it reduces to computing the derived localisation of the free
algebra.

Theorem 4.36. The derived matrix localisation LdgAlg
S (A) of A is given by A∗Lk〈(sij)〉k〈(sij), (sij)−1〉.

Example 4.37. Let k be a field and consider A = k〈X〉, the free algebra over k on some set of
generators X. Then for A there exists its universal (skew)-field of fractions k(X), the so-called
free field on X over k, [Coh06]. The skew-field k(X) is obtained from k〈X〉 by inverting all
square full matrices (i.e. such that the endomorphisms of free modules they represent do not
factor through free modules of lower rank). Thus, k(X) is a derived, as well as a non-derived,
localisation of k〈X〉.

We have an analogue of Theorem 4.26 with the same proof:

Theorem 4.38. The derived Cohn localisation LdgAlg
S (A) of A as a dg algebra coincides in the

homotopy category of A–modules with LA-Mod
S (A), the S–localisation of A as an A–module.

From now on we will not distinguish between LdgAlg
S (A) and LA-Mod

S (A) and use the notation
LS(A) for both. As in the case of localising at a set of homology classes in H(A), we have a
localisation map A→ LS(A), well-defined in the homotopy category of dg algebras (which means
that A may have to be cofibrantly replaced for this map to exists on the nose).
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Cohn localisation is closely related to the notion of a homological epimorphism, cf. Remark 4.19.
It is not hard to see that a map A→ B is a homological epimorphism if and only if the functor
M 7→ B⊗L

AM is a smashing localisation on the derived category of (left) A–modules; see [Pau09,
Theorem 3.9 (6)] for an equivalent statement.

On the other hand we know that derived Cohn localisation is also smashing. It is proved
in [KŠ10, Theorem 6.1] that any homological epimorphism from a hereditary ring is actually a
Cohn localisation. Because of that, one may be led to conjecture that a homological epimorphism
and derived Cohn localisation are equivalent notions for any ring, not necessarily hereditary,
as well as for any dg algebra. This turns out not to be true, but the difference is measured by
the failure of the so-called telescope conjecture, originally formulated in the context of stable
homotopy theory [Rav84]. Abstractly, it claims that any smashing localisation of a triangulated
category is finite, i.e. its kernel is generated by compact (or perfect) objects. Then we have the
following result.

Theorem 4.39. Let A be a dg algebra and A → LS(A) be the derived Cohn localisation with
respect to some set of maps S : Lα → Nα between perfect A–modules. Then it is a homological
epimorphism. Conversely, any homological epimorphism A→ B is a derived Cohn localisation
precisely when the telescope conjecture holds in Ho(A-Mod), the derived category of A.

Proof. The first statement is simply a restatement of the fact that a derived Cohn localisation is
smashing.

Next, any Cohn localisation functor M → LS(M) is finite, because its kernel is generated by
homotopy kernels between perfect A–modules and thus, are themselves perfect, i.e. compact.
Conversely, any finite localisation functor F of the derived category Ho(A-Mod) is a suitable
Cohn localisation. Indeed, the kernel of F is a triangulated subcategory in Ho(A-Mod) generated
by some compact objects Aα and then F is the derived Cohn localisation with respect to the
collection of maps Aα → 0. The second claim follows. �

Note that if A is a hereditary ring then the telescope conjecture does hold in Ho(A-Mod), as
proved in [KŠ10].

5. Computing localisations

Combining Theorem 4.26, Theorem 3.23 and Theorem 4.18 we obtain the following answer to
the question of when the homology of the derived localisation is the non-derived localisation of
the homology.

Theorem 5.1. Let A be a dg algebra and let S ⊂ H(A) be an arbitrary subset. Then H(A)[S−1] '
LS(H(A)) if and only if H(A)→ H(A)[S−1] is a homological epimorphism/stably flat. In this
case, H(LS(A)) ∼= H(A)[S−1]. �

Stable flatness is not always so easy to verify. But flatness of course implies stable flatness:

Corollary 5.2. Let A be a dg algebra. If H(A)[S−1] is flat as either a left or right H(A)–module
then H(LS(A)) ∼= H(A)[S−1] ' LS(H(A)). �

In the case that every s ∈ S is in the centre of H(A) we now see that the homology of the
derived localisation of A at S recovers the familiar localisation from commutative algebra.

Theorem 5.3. Let A be a dg algebra. If S is a central subset in H(A) then there is an
isomorphism of graded algebras H(A ∗Lk〈S〉 k〈S, S−1〉) ∼= H(A)[S−1] ∼= H(A)⊗k[S] k[S, S−1].
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Proof. Since S is central in H(A), then H(A)∗k〈S〉 k〈S, S−1〉 ∼= H(A)⊗k[S] k[S, S−1]. Let P
∼
�M

be a H(A)–module cofibrant replacement for a right H(A)–module M . Then

M ⊗L
H(A) H(A)⊗k[S] k[S, S−1] ' P ⊗H(A) H(A)⊗k[S] k[S, S−1] ∼= P ⊗k[S] k[S, S−1]

'M ⊗k[S] k[S, S−1] ∼= M ⊗H(A) H(A)⊗k[S] k[S, S−1]

using the fact that k[S, S−1] is flat over k[S] (since it’s the usual commutative localisation
of k[S] at S) and hence tensoring with it over k[S] preserves quasi-isomorphisms. Therefore
H(A)⊗k[S] k[S, S−1] is a flat left H(A)–module. The result now follows from Corollary 5.2. �

Remark 5.4. If A is a dg commutative algebra then it is not immediate that the derived
localisation of A in the category of dg associative algebras is the same as the derived localisation
of A in the category of dg commutative algebras. The latter is clearly the same as the non-derived
localisation since in the commutative world the free product is just the tensor product and so
A ∗Lk[S] k[S, S−1] = A⊗L

k[S] k[S, S−1] ' A⊗k[S] k[S, S−1]. However, the results above imply that
this is also still the localisation when regarding a dg commutative algebras as an object in the
category of dg associative algebras.

By contrast, derived localisation of equivariant ring spectra need not preserve commutativity,
c.f. [McC96, Theorem 2] and [HH16, Proposition 6.1]. This explains why even though (an
analogue of) Theorem 4.26 may hold for equivariant A∞ ring spectra, it certainly does not for
equivariant E∞ ring spectra, c.f. [HH14].

The results above give conditions for the derived localisation of the homology to be the same
as the non-derived localisation of the homology, which in turn causes the spectral sequence in
Theorem 3.22 to collapse at the E2 term. Of course, in general the derived localisation of the
homology will be different from the non-derived localisation.

Example 5.5 (Higher derived terms). Let k be a field of characteristic zero. Let A be the
associative algebra

A = k〈s, t, u〉/(st, us)
concentrated in degree zero. Let C be the dg algebra

C = k〈s, t, u, z, w, a〉

with |s| = |t| = |u| = 0, |z| = |w| = 1, |a| = 2 and differential defined by dz = st, dw = us and
da = uz − wt. Then C is a cofibrant dg k〈s〉–algebra and is a cofibrant replacement for A (as
above, A is Koszul and C is the cobar construction of A!).

The derived localisation C ∗k〈s〉 k〈s, s−1〉 ' A ∗Lk〈s〉 k〈s, s−1〉 is freely generated over k〈s, s−1〉
by the degree 0 elements t and u, the degree 1 elements z̃ = s−1z and w̃ = ws−1 and the degree
2 element ã = a−ws−1z. The differential on the modified generators is given by dz̃ = t, dw̃ = u

and dã = 0. Therefore A ∗Lk〈s〉 k〈s, s−1〉 may be realised as the graded algebra k〈ã, s, s−1〉 with
|s| = 0, |ã| = 2 and vanishing differential.

In the above example it is still the case that the homology of the derived localisation is the
same as that of the derived localisation of the homology, albeit tautologically. The next example
shows that, in general, the derived localisation of a dg algebra may be quite different from the
derived localisation of the homology. In particular, the spectral sequence in Theorem 3.22 may
not stabilise at the E2 term.

Example 5.6 (Spectral sequence does not stabilise at the E2 term). Let A be the dg algebra

A = k〈s, t, u, z, w〉
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with |s| = |t| = |u| = 0, |z| = |w| = 1 and differential defined by dz = st and dw = us. Then
A is a cofibrant dg k〈s〉–algebra. It is not hard to see that the space of degree 1 cycles in A
is generated, as a module over A0, by cycles of the form usnz − wsnt. But since d(wsnz) =
usn+1z−wsn+1t then the only non-exact of these generating cycles is uz−wt. However, as a cycle
in A ∗Lk〈s〉 k〈s, s−1〉 ' A ∗k〈s〉 k〈s, s−1〉 it is exact. Therefore, we see that H1(A ∗Lk〈s〉 k〈s, s−1〉) = 0.

On the other hand, the non-trivial homology class [uz − wt] ∈ H(A) is still non-zero in
H(A) ∗k〈s〉 k〈s, s−1〉. Indeed it would only become zero after inverting s if either sn(uz − wt) or
(uz−wt)sn were exact in A for some n ∈ N, which, it is not hard to see, is not the case. Therefore,
the non-derived localisation of H(A) has a non-trivial degree 1 element. But this means the same
is true for the derived localisation. Indeed, compute H(A) ∗Lk〈s〉 k〈s, s−1〉 by cofibrantly replacing
k〈s, s−1〉 and consider the grading with respect to the grading on the cofibrant replacement of
k〈s, s−1〉. Then, as one would expect, the degree 0 part with respect to this grading is just the
non-derived localisation of H(A).

Therefore, we conclude that H(Ls(A)) � H(Ls(H(A))).

Remark 5.7. These examples highlight the stark contrast with the more familiar localisation of
dg commutative algebras. In the commutative case, the derived localisation never has non-trivial
higher derived terms and is therefore obtained by simply adjoining an inverse. In addition, the
homology of the localisation of a dg commutative algebra is always just the localisation of the
homology. On the other hand, the localisation of an arbitrary dg associative algebra seems to be
rather less accessible.

5.1. Localisation of degree zero homology. If A is non-negatively graded and we are
localising at degree zero homology classes then the degree zero homology of the localisation
behaves as one would expect of a derived functor.

Theorem 5.8. Let A be a differential non-negatively graded algebra with S ⊂ H0(A). Then
H0(LS(A)) ∼= H0(A)[S−1] ∼= H0(A) ∗k〈S〉 k〈S, S−1〉.

Proof. Write dgAlg≥0 and Alg for the categories of differential non-negatively graded algebras
and algebras concentrated in degree 0 respectively. The functor A 7→ H0(A) is a left adjoint
dgAlg≥0 → Alg. Moreover, this is a left Quillen functor when equipping Alg with the trivial
model structure and it obviously preserves the property of being S–inverting, as does the right
adjoint. It follows that the localisation of A in dgAlg≥0, being the initial S–inverting object in
A ↓L dgAlg≥0, is sent via this functor to the initial S–inverting object in H0(A) ↓ Alg, which is
H0(A)[S−1].

Note that the localisation of A in dgAlg≥0 coincides with the localisation of A in dgAlg by
a similar argument: the functor dgAlg≥0 → dgAlg is the left adjoint of a Quillen adjunction
preserving the property of being S–inverting. �

However, in general, this theorem does not quite hold as the following example illustrates.

Example 5.9. Let A be the cofibrant dg algebra

A = k〈t, u, s, z, w, h〉

where s, z, w have degree 0, t, u have degree −1 and h has degree 1. The differential on A is
defined by d(s) = d(h) = d(t) = d(u) = 0, d(z) = st and d(w) = us.

The degree 0 cycle h(uz+wt) gives a non-trivial homology class in H0(A) and is also non-trivial
in H0(A) ∗k〈s〉 k〈s, s−1〉. However in Ls(A) ' A ∗k〈s〉 k〈s, s−1〉 it is the boundary of hws−1z.
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5.2. Ore localisation. Let A be a dg algebra and let S ⊂ H(A) be an arbitrary set of
homogeneous homology classes of A. Corollary 5.2 states that the homology H(LS(A)) of the
localisation of A is isomorphic to H(A)[S−1], the non-derived localisation of the homology of A,
if the latter is flat as a left or right H(A)–module. It is well known that if S is a so-called Ore set
in H(A), the flatness condition holds and further that H(LS(A)) ∼= H(A)[S−1] may be realised
as an Ore localisation, i.e. as an algebra of fractions. In this situation the derived localisation
LS(A) itself cannot, in general, be constructed as a dg algebra of fractions in a directly analogous
fashion. We will show in this subsection that it is nevertheless possible to identify LS(A) in
Ho(A-Mod) as a homotopy module of fractions.

We remark that a version of the main result of this paper, Theorem 4.26, in the context of
E1–algebras, is proved in [Lur, §7.2.4] under the assumption that S is an Ore set. Our approach,
by contrast, is to establish Theorem 4.26 in full generality, without any restrictions on S, and
then appeal to the theorem in developing the theory of Ore localisation in case S is an Ore set.

We begin with an account of Ore localisation in the non-differential context. We follow the
approach of Quillen [FM94, Appendix Q.1], which makes a clear (initial) distinction between
algebras and modules of fractions, much in keeping with our overall point of view. Let B be a
graded algebra (with zero differential), and let S be a set of homogeneous elements of B. We
assume that S is multiplicatively closed, i.e. 1 ∈ S and s, t ∈ S =⇒ st ∈ S. We form the
left B–module B|S of right fractions of B with denominators in S. It is defined as the free
graded B–module on symbols |s, one for each s ∈ S, with the degree of |s being the same as s,
modulo the B–submodule generated by x|sx− 1|x, for s ∈ S and homogeneous x ∈ B such that
sx ∈ S. We may understand B|S as a colimit as follows. Let S be the category with objects
s ∈ S, a morphism s

x−→ t for every s, t ∈ S and homogeneous x ∈ B such that sx = t, and
composition given by

(
t
y−→ u

)
◦
(
s
x−→ t
)

= s
xy−→ u. Then B|S is the colimit of the functor

S → B-Mod sending s to the shifted free module B|s := Σ−|s|B of rank one, and s x−→ sx to right
multiplication B|s ·x−→ B|sx by x. There is a canonical B–module homomorphism f : B → B|S
sending b to b|1.

Lemma 5.10. Let B be a graded algebra, and let S be a multiplicatively closed subset of B.
Then f : B → B|S is the non-derived module localisation of B if and only if B|S is S–local.

Proof. It suffices to show that f∗ : HomB(B|S,N)→ HomB(B,N) ∼= N is an isomorphism for
any S–local graded B–module N . Fix y ∈ N0, and let fy : B → N be the B–module homo-
morphism such that fy(1) = y. We must show that there is a unique B–module homomorphism
g : B|S → N such that g ◦ f = fy, i.e. such that g(1|1) = y. If such a g exists, then for all s ∈ S
and b ∈ B, we have sg(1|s) = g(s|s) = g(1|1) = y and therefore g(b|s) = bl−1

s (y). It is easy to
check that the latter formula indeed determines a well-defined B–module homomorphism from
B|S to N . �

The following lemma gives necessary and sufficient conditions for B|S to be S–local, under
the assumption that S is filtered, i.e.

• for all s, t ∈ S, there exist x, y ∈ B such that sx = ty ∈ S;
• for all s ∈ S and x, y ∈ B such that sx = sy ∈ S, there exists z ∈ B such that xz = yz

and sxz ∈ S.

Lemma 5.11. Assume that S is filtered. Let s ∈ S.

(1) The map ls : B|S → B|S is surjective if and only if for all b ∈ B, we have sB ∩ bS 6= ∅;
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(2) The map ls : B|S → B|S is injective if and only if for all b ∈ B, we have sb = 0 =⇒
0 ∈ bS.

Proof. The assumption that S is filtered implies every element of B|S can be written in the form
b|t for some b ∈ B and t ∈ S, and that b|t = 0 if and only if there exists x ∈ B such that bx = 0
and tx ∈ S.

(1) Suppose the condition holds, and let b|t ∈ B|S. Then there exists c ∈ B and u ∈ S such
that sc = bu, and then b|t = bu|tu = sc|tu = ls(c|tu). Conversely, suppose that ls is
surjective. Given any b ∈ B, we have ls(c|t) = b|1 for some c ∈ B and t ∈ S. Hence
sc|t = bt|t, and therefore scx = btx for some x ∈ B such that tx ∈ S. Thus sB ∩ bS is
nonempty.

(2) Suppose the condition holds, and let b|t ∈ B|S such that ls(b|t) = 0. Then sbx = 0 for
some x ∈ B such that tx ∈ S. So bxu = 0 for some u ∈ S, and since then txu ∈ S, we
deduce b|t = 0. Conversely, suppose that ls is injective. Given b ∈ B such that sb = 0,
we have ls(b|1) = 0. Hence b|1 = 0, and therefore bt = 0 for some t ∈ S.

�

We are thus led to consider the following standard conditions.

Definition 5.12. Let B be a graded algebra and S a multiplicatively closed subset of homo-
geneous elements of B. We say that S is a right Ore set in B if the following two conditions
hold.

(1) for all b ∈ B and s ∈ S, we have bS ∩ sB 6= ∅;
(2) for all b ∈ B and s ∈ S, we have sb = 0 =⇒ 0 ∈ bS.

We remark that some authors require only the first condition, calling a subset satisfying both
a right denominator set instead. For a subset S satisfying the first condition alone, it is not
necessarily true that B[S−1] is flat as a left B–module, cf. Example 5.18 below, and therefore
such S are not sufficiently well-behaved for our purposes.

Proposition 5.13 (Ore localisation). Let B be a graded algebra, and let S be a multiplicatively
closed subset of B. Then S is a right Ore set in B if and only if S is filtered and B|S is S–local.
If S is a right Ore set in B, then we have an isomorphism B|S ∼= B[S−1] of B–modules given by
b|s 7→ bs−1. The product induced on B|S is given, for b, c ∈ B and s, t ∈ S, by (b|s)(c|t) = ba|tu,
where a ∈ B and u ∈ S are chosen so that cu = sa.

Proof. It is clear that S is filtered when S is a right Ore set in B. The first claim in the theorem
is thus a restatement of Lemma 5.11.

Let S be a right Ore set in B. By Lemma 5.10, B|S is the non-derived module localisation of B.
The isomorphism B|S ∼= B[S−1] is then an immediate consequence of the non-derived analogue
of Theorem 4.26; here we supply a more direct argument. We have B|S ∼= Hom•B(B,B|S) ∼=
Hom•B(B|S,B|S), so B|S is a graded algebra. Tracing through the isomorphisms, we arrive at
the stated formula for the product, and the map B → B|S, b 7→ b|1, makes B|S an S–inverting
graded B–algebra. Given an arbitrary S–inverting graded B–algebra g : B → C, the unique B–
module homomorphism B|S → C over B, given by b|s 7→ bg(s)−1 (see the proof of Lemma 5.10),
is in fact an algebra homomorphism. This means that B|S satisfies the universal property that
defines the non-derived algebra localisation B[S−1]. �

Now we return to our main concern, the derived localisations of dg algebras.
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Proposition 5.14. Let A be a dg algebra, and let S be a right Ore set in H(A).

(1) We have
H(LS(A)) ∼= H(A)[S−1] ' LS(H(A))

as H(A)–algebras.
(2) Let y1, y2, . . . be a sequence of homology classes of A such that

(a) for all n ≥ 1, we have y1y2 · · · yn ∈ S.
(b) for all m ≥ 1 and s ∈ S, there exists n ≥ m such that s is a left factor of

ymym+1 · · · yn in H(A).
Then

LS(A) ' hocolimA
·x1−−→ Σ−|x1|A

·x2−−→ . . .

in Ho(A-Mod), for any cycles x1, x2, . . . in A representing y1, y2, . . . . Moreover, if S is
countable, then such a sequence y1, y2, . . . always exists.

Proof. By Proposition 5.13, H(A)[S−1] ∼= H(A)|S is a filtered colimit of free A–modules, hence
flat, and (1) follows by Corollary 5.2. Let y1, y2, . . . be a sequence of homology classes of A
satisfying (a) and (b). The functor from N to S sending n to y1 · · · yn and n → n + 1 to
y1 · · · yn

·yn+1−−−→ y1 · · · yn+1 is cofinal, and therefore

H(A)|S ∼= colimH(A) ·y1−−→ Σ−|y1|H(A) ·y2−−→ . . . .

Now let
A∞ := hocolimA

·x1−−→ Σ−|x1|A
·x2−−→ . . . ,

where x1, x2, . . . are cycles in A representing y1, y2, . . . . Then H(A∞) ∼= H(A)|S, and in
particular A∞ is an S–local A–module. The induced map LS(A)→ A∞ is a quasi-isomorphism,
by (1).

Finally, suppose S is countable. Fix a sequence s1, s2, . . . in S containing each element
of S at least once. We inductively construct a sequence y1, y2, . . . of homology classes of A
such that, for all r ≥ 1, sr is a left factor in H(A) of the product ymym+1 · · · ym+r−1 of any
r consecutive terms, and the product of the first r terms is in S. We take y1 = s1. Suppose
we are given y1, . . . , yn ∈ H(A) satisfying the desired properties for r ≤ n. Using the Ore
condition sn+1S ∩ y1 · · · ynH(A) 6= ∅, we find homogeneous y ∈ H(A) such that sn+1 is a left
factor of y1 · · · yny in S. Next, since y2 · · · ynyS ∩ snH(A) 6= ∅, there exists t1 ∈ S such that
sn is a left factor of y2 · · · ynyt1. Continuing in this way, we obtain t1, . . . tn−1 ∈ S so that tr
is a left factor of yn−r+2 · · · ynyt1 · · · tn−r+1, for r = 1, . . . , n + 1. Put yn+1 = yt1 · · · tn. Then
y1 · · · yn+1 = (y1 · · · yny)t1 · · · tn ∈ S, and sr is a left factor of yn−r+2 · · · yn+1 for r = 1, . . . , n+1.
Hence the sequence y1, . . . , yn+1 satisfies the desired conditions for r ≤ n+ 1. �

The second part of Proposition 5.14 shows that if S is a right Ore set in H(A), then the module
localisation LS(A) can be realised as a homotopy direct limit of free A–modules, provided S is
countable. We now establish a converse statement, for which the assumption on the cardinality
of S is not required.

Observe that in localising a dg algebra A at an arbitrary set S of homology classes, there is no
harm in replacing S by the larger set Ŝ of homology classes that become invertible in H(LS(A)),
in the sense that LŜ(A) ' LS(A).

Proposition 5.15. Let A be a dg algebra, and let S ⊂ H(A) be an arbitrary set of homology
classes of A. Assume that there exists a sequence y1, y2, . . . in Ŝ with representing cycles x1, x2, . . .
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in A such that the homotopy direct limit

A∞ = hocolimA
·x1−−→ Σ−|x1|A

·x2−−→ . . .

is an S–local A–module. Then LS(A) ' A∞. Moreover any multiplicatively closed subset S′ of Ŝ
containing y1, y1y2, . . . , is a right Ore set in H(A) such that LS′(A) ' LS(A).

Note that the minimal choice for S′, the multiplicatively closed subset generated by y1, y1y2, . . . ,
is countable.

Proof. Let N be an S–local A–module. Then

RHomA(A∞, N) ' holim(. . .
lx2−−→ Σ|x1|N

lx1−−→ N) ' N,

since by assumption each xn acts as a quasi-isomorphism on N ' LS(A)⊗L
A N . Thus A∞ is an

S–local A–module satisfying the universal property defining the module localisation LS(A). The
same argument applies with S replaced by S′, so we have LS(A) ' A∞ ' LS′(A).

Observe that the homology of A∞ is isomorphic to the direct limit

H(A)∞ := colimH(A) ·y1−−→ Σ−|y1|H(A) ·y2−−→ . . . ,

which can be realised as the free H(A)–module generated by symbols |y1y2 · · · yn of the same
degree as y1y2 · · · yn, modulo the H(A)–submodule generated by yn+1|y1y2 · · · yn+1−1|y1y2 · · · yn.

We will use the fact that H(A)∞ ∼= H(LS′(A)) is an S′–local H(A)–module to establish
that S′ is a right Ore set in H(A). Let b ∈ H(A) and s ∈ S′. Since ls : H(A)∞ → H(A)∞
is surjective, we have sc|y1y2 · · · yn = b|1 in H(A)∞ for some c ∈ H(A) and some n. Hence
scyn+1yn+2 · · · ym = by1y2 · · · ym for some m, and therefore sH(A) ∩ bS 6= ∅. Next, suppose
that sb = 0 for some s ∈ S′ and b ∈ H(A). Then sb|1 = 0 in H(A)∞. By the injectivity of
ls : H(A)∞ → H(A)∞, we deduce that b|1 = 0 in H(A)∞, and therefore that by1y2 · · · yn = 0
for some n. Hence 0 ∈ bS, as required. �

When S = {s} contains a single homology class, we can take s = y1 = y2 = . . . in
Proposition 5.14 and Proposition 5.15 to arrive at the following result.

Corollary 5.16. Let A be a dg algebra, and let s ∈ H(A) be a homology class in A. The
following statements are equivalent.

(1) A⊗k〈s〉 k〈s, s−1〉 is an s–local A–module.
(2) Ls(A) ' A⊗k〈s〉 k〈s, s−1〉 as A–modules.
(3) H(A)[s−1] ∼= H(A)⊗k〈s〉 k〈s, s−1〉 as H(A)–modules
(4) {1, s, s2, . . . } is a right Ore set in H(A).

If any of these statements holds, then H(Ls(A)) ∼= H(A)[s−1] ' Ls(H(A)) as H(A)–algebras.

Remark 5.17. It is of course possible to define what it means for a subset S of homogeneous
elements of a graded algebra B to be a left Ore set and to relate the property to certain right
modules of fractions. All of the definitions and results above go through with the obvious
modifications.

Example 5.18. Let k be a field, and consider the algebra B = k〈s, t〉|(st− 1), with s and t in
degree 0. The set S = {1, s, s2, . . .} is not a right Ore set in H(B) = B, since s(1− ts) = 0 but
(1− ts)sn 6= 0 for all n. On the other hand, the element t clearly becomes invertible in LS(A),
and S′ = {1, t, t2, . . .} is a right Ore set in B. We have LS(B) ' LS′(B) ' B[S′−1] ∼= B[S−1] ∼=
k〈s, s−1〉.
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Next, let A = k〈s, t, y〉|(st − 1) ∼= B ∗k k〈y〉. The set S = {1, s, s2, . . .} is not a right Ore
set in H(A) = A; as in the previous example, it satisfies the first Ore condition but not the
second. This time we cannot replace S by an Ore set S′ such that LS(A) ' LS′(A), because
A[S−1] ∼= k〈s, s−1, y〉 is not flat as a leftA–module. Indeed the map lx : A→ A of rightA–modules
given by left multiplication by x = (1− ts)y is injective, but lx ⊗A A[S−1] : A[S−1]→ A[S−1],
being left multiplication by 0, the image of x in A[S−1], is not. Incidentally, a similar argument
interchanging the roles of s and t shows that A[S−1] is not flat as a right A–module either. On
the other hand, LS(A) ' LS(B) ∗k k〈y〉 ∼= B[S−1] ∗k k〈y〉 ∼= k〈s, s−1, y〉 ∼= A[S−1], and therefore
A[S−1] is stably flat over A, by Theorem 5.1.

6. Hochschild homology and cohomology

In this section we will show that derived localisation preserves Hochschild homology and
cohomology. This can be seen as generalising analogous results [Bry89] about of the Hochschild
homology/cohomology of the non-derived localisation under the assumption that the localising
set S is central.

Without loss of generality, we may assume A and B are cofibrant dg algebras throughout
this section. Moreover, we may also assume LS(A) and LS(B) are cofibrant over A and
B respectively. Given subsets S ⊂ H0(A) and S′ ⊂ H0(B) denote by S ⊗ S′ the subset
{ s⊗ 1 : s ∈ S } ∪ { 1⊗ s′ : s ∈ S′ } ⊂ H0(A⊗B).

Proposition 6.1. For any S ⊂ H0(A), S′ ⊂ H0(B) then LS⊗S′(A⊗B) ' LS(A)⊗ LS′(B).

Proof. It is sufficient to show LS(A)⊗ LS′(B) is the localisation of A⊗B as an A⊗B–module.
But this is clear since for N any S ⊗ S′–local module:

RHomA⊗B(LS(A)⊗ LS′(B), N) ' RHomA(LS(A),RHomB(LS′(B), N))
' RHomA(LS(A), N) ' N

�

Theorem 6.2. Let A be a dg algebra and let M be an LS(A)–bimodule. Then HH∗(LS(A),M) '
HH∗(A,M) and HH∗(LS(A),M) ' HH∗(A,M).

Proof. Since M is S ⊗ S–local as an A ⊗ Aop–module then, since LS⊗S(A ⊗ Aop) ' LS(A) ⊗
LS(A)op, by Proposition 4.14 M ' (LS(A)⊗ LS(A)op)⊗L

A⊗Aop M . The Hochschild homology
HH∗(LS(A),M) is the homology of

LS(A)⊗L
LS(A)⊗LS(A)op M ' LS(A)⊗L

LS(A)⊗LS(A)op (LS(A)⊗ LS(A)op)⊗L
A⊗Aop M

' LS(A)⊗L
A⊗Aop M

Similarly, M is S ⊗ 1–local so we also have M ' (LS(A) ⊗ Aop) ⊗L
A⊗Aop M . The Hochschild

homology HH∗(A,M) is the homology of:

A⊗L
A⊗Aop M ' A⊗L

A⊗Aop (LS(A)⊗Aop)⊗L
A⊗Aop M

' LA⊗A
op-Mod

S⊗1 (A)⊗L
A⊗Aop M ' LS(A)⊗L

A⊗Aop M

using the fact that LA⊗A
op-Mod

S⊗1 (A) ' LS(A) as an A–bimodule (see the proof of Theorem 4.12).
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The corresponding statement for Hochschild cohomology is similar. Indeed:

RHomLS(A)⊗LS(A)op(LS(A),M) ' RHomLS(A)⊗LS(A)op(LS(A)⊗L
A⊗Aop (LS(A)⊗ LS(A)op),M)

' RHomA⊗Aop(LS(A),RHomLS(A)⊗LS(A)op(LS(A)⊗ LS(A)op,M))
' RHomA⊗Aop(LS(A),M)

' RHomA⊗Aop(LA⊗A
op-Mod

S⊗1 (A),M)
' RHomA⊗Aop(A,M) �

7. Torsion modules and the localisation exact sequence

There is also the corresponding theory of (derived) colocalisation.

Definition 7.1. An A–module M is called S–torsion, or S–colocal if RHomA(M,N) = 0 for
any S–local module N . A colocalisation of a module M is an S–colocal module LS(M) with a
map f : LS(M)→M such that for any S–colocal A–module N and any map f ′ : N →M there
is a map g : N → LS(M) such that f ◦ g = f ′ and furthermore g is unique in the homotopy
category of A-Mod. The category of S–colocal A–modules will be denoted by (A-Mod)S

Thus, a colocalisation functor is right adjoint (in the homotopy category) to the inclusion
of colocal A–modules into all A–modules (just as the localisation functor is left adjoint to the
inclusion of local A–modules into A–modules). Note that the categories of S–local and S–colocal
A–modules are naturally pretriangulated (so that their homotopy categories are triangulated).

The following result is standard and easy, cf. for example [HPS97] regarding such statements.

Proposition 7.2. An S–colocalisation functor exists. Moreover, for any A–module M there is
a homotopy fibre sequence of A–modules

LS(M)→M → LS(M).

Proof. Given an A–module M define LS(M) to be the homotopy fibre of the localisation map
M → LS(M) = LS(A)⊗AM where LS(A) is a cofibrant model for a derived localisation of A.
Given an S–local module N we have a cofibre sequence in the derived category of k–modules:

RHomA(LS(M), N)→ RHomA(M,N)→ RHomA(LS(M), N),

and since LS(M) is a localisation of M , the k–modules RHomA(M,N) and RHomA(LS(M), N)
are quasi-isomorphic, so RHomA(LS(M), N) is quasi-isomorphic to zero, so LS(M) is S–torsion.
A similar argument shows that for any S–torsion module L there is a quasi-isomorphism

RHomA(L,M) ∼= RHomA(L,LS(M)).

�

Recall [Kel06, Tab05] that the 2–category of dg categories admits the structure of a closed
model category in which a weak equivalence between two dg categories C and B is a dg functor
F : A → B such that the induced triangulated functor on the corresponding derived categories
LF! : Ho(A-Mod) 7→ Ho(B-Mod) is an equivalence. The corresponding homotopy category will
be denoted by Hmo.

A sequence

(5) A F // B G // C

of triangulated categories is exact [Nee92] if F is is full and faithful, the composition G ◦ F is
zero and the induced functor B/A 7→ C is cofinal, i.e. it is induces an equivalence on idempotent
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completions of B/A and C. If (5) is a diagram of dg categories then it is called exact in Hmo if
the corresponding sequence of derived categories is exact.

Furthermore, a dg category A is pretriangulated if it contains shifts and cones of objects. For
example, the categories A-Mod, A-ModS and A-ModS are pretriangulated. For a pretriangulated
category A we denote by [A]c its full subcategory consisting of those objects whose images in
the homotopy category H0(A) are compact. For example if A is an ungraded algebra then the
category [A-Mod]c consists of bounded complexes of finitely generated projective A–modules
(and complexes quasi-isomorphic to such things).

The following result is a straightforward corollary of Theorem 4.26.

Theorem 7.3. The sequence of dg categories and functors

[A-ModS ]c 7→ [A-Mod]c 7→ [LS(A)-Mod]c

is exact in Hmo.

Proof. Using Proposition 7.2 and Corollary 4.29 we conclude that there is an exact sequence in
Hmo:

A-ModS 7→ A-Mod 7→ LS(A)-Mod
Now the result follows from the Neeman–Thomason localisation theorem [Nee92, Theorem
2.1]. �

Remark 7.4. Since for a dg algebra A the dg category [A-Mod]c is Morita equivalent to A, the
above result could be viewed as the identification of the homotopy fibre of the localisation map
A→ LS(A) in Hmo.

Corollary 7.5. There is a cofibre sequence of K–theory spectra

IK([A-ModS ]c)→ IK(A)→ IK(LS(A))

where IK(?) stands for the non-connective K–theory spectrum [Sch11].

The last corollary is a generalisation of the result of Neeman–Ranicki [NR04] obtained under
the assumption of stable flatness. Similar results hold for other localising invariants, such as
the Hochschild and cyclic homology [Kel99, Kel98], topological Hochschild and cyclic homology
[BM12].

It is natural to ask whether the homotopy category of A-ModS is a derived category of some
dg algebra. This turns out to be true, at least when the set S is finite. For s ∈ S denote by A/s
the cofibre of the right multiplication by s so there is a homotopy cofibre sequence of A–modules:
A

·s // A // A/s . Next, set A/S :=
⊕

s∈S A/s; it is a compact A–module since each A/s
is. Then we have the following result.

Proposition 7.6. If the set S is finite, then the category Ho(A-ModS) is equivalent to the
derived category Ho(REndA(A/S)-Mod).

Proof. Let us say that A–module M is A/S–trivial if RHomA(A/S,M) = 0. Then M is A/S–
trivial if an only if RHomA(A/s,M) = 0 for all s ∈ S and this is, in turn, equivalent to the
condition that M is s–local for all s ∈ S or that M is S–local. Thus, being A/S–trivial is the
same as being S–local. Therefore, an A–module N is S–colocal if and only if it is A/S–torsion
in the sense of [DG02]. The result now follows from op.cit., Theorem 2.1. �

Remark 7.7. The paper of Dwyer–Greenlees used in the proof of the proposition above was
written in the language of homotopy categories, however it is easy to check that the equivalence of
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homotopy categories proved in it, actually came from a Quillen equivalence of the underlying closed
model categories and the same statement holds for the categories A-ModS and REndA(A/S)-Mod.

Remark 7.8. Note that Theorem 7.3, Corollary 7.5 and Proposition 7.6 continue to be valid
for the more general notion of derived Cohn localisation.

Remark 7.9. The restriction functor LS(A)-Mod→ A-Mod has both a left adjoint LS(A)⊗A−
and a right adjoint HomA(LS(A),−). Passing to the homotopy categories, the three functors
induce half of the arrows of a recollement

Ho(LS(A)-Mod) ←−
−→
←− Ho(A-Mod) ←−

−→
←− Ho(A-ModS)

(see, e.g. [Kra10, §5.5]). Hence, to any A–module M is associated two canonical fibre sequences
of A–modules depending on S, that in Proposition 7.2, and another KS(M)→M → KS(M), in
which KS(M) is S–local and KS(M) is S–complete, i.e. RHomA(N,KS(M)) = 0 for any S–local
module N . Note that the functor M 7→ KS(M) could be viewed as a (derived) completion of
M at S. It can also be obtained as a Bousfield localisation with respect to a homology theory
on A–modules given by the A–module RHomA(A/S,A), at least when S is a finite set ([DG02,
Proposition 4.8]).

8. Strictification of homotopy unital dg algebras

Let A be a non-unital dg algebra but such that its homology H(A) is a unital graded algebra.
We say that A is homotopy unital. As a curious application of our derived localisation techniques
we show that A could always be strictified to a unital dg algebra. More precisely:

Theorem 8.1. Let A be a homotopy unital dg algebra. Then there exists a (unital) dg algebra
B and a quasi-isomorphism of non-unital dg algebras A→ B. The dg algebra B is determined
uniquely up to a quasi-isomorphism of (unital) dg algebras.

Proof. Let A+ be the (unital) dg algebra obtained by adjoining a unit to A; thus A+ ∼= A⊕ k · 1;
there is an embedding of non-unital dg algebras A ↪→ A+. Let e be a cycle in A representing
the unit in H(A); we will view it also as a cycle in A+, clearly its homology class is in the
centre of H(A+). It follows, from Theorem 5.3 that the composite map A→ A+ → LeA+ is a
multiplicative quasi-isomorphism and so the existence part of the theorem is proved.

We claim that in the case A is already unital, the dg algebra LeA+ is quasi-isomorphic to A
as a unital dg algebra. Indeed, e could be chosen to be the strict unit; then f(e) is in the centre
of A+ and it follows that LeA+ ' A+[e−1] ∼= A.

Now assume that there is a homotopy unital dg algebra A and two multiplicative quasi-
isomorphisms g : A → B and h : A → C where both B and C are unital. Applying the
above construction to the maps g and h we obtain quasi-isomorphisms of unital dg algebras
LeA+ → Lg(e)B+ and LeA+ → Lh(e)C+. But we have already established that Lg(e)B+ and
Lh(e)C+ are quasi-isomorphic as unital dg algebras to B and C respectively. Therefore B and C
were quasi-isomorphic to begin with, proving uniqueness. �

Remark 8.2. The above result is not difficult to prove in the case k is a field, but it was pointed
out to the authors by F. Muro that the general case is substantially harder; a version of it was
proved in [Lur, §5.4.3], using sophisticated machinery of ∞–categories. The essentially trivial
proof above, of course, relies on the techniques of derived localisation, specifically, Theorem 5.3.
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9. Idempotent ideals and derived quotients

By analogy with derived localisation, one can ask whether there exists a homotopy invariant
way to quotient out an ideal in the homology of a dg algebra and which is characterised by a
suitable universal property. Of course, the answer is negative in general, since the homotopy
category of dg algebras does not have colimits. Nevertheless, there is one interesting special case
when such a construction is possible, and it then reduces to derived localisation.

Let x ∈ H(A). We say that an A–algebra B is x–killing if the image of x in H(B) is zero.

Definition 9.1. The derived quotient of A, by an idempotent e ∈ H0(A), denoted by A/LAeA,
is the initial object in the full subcategory on e–killing dg algebras of A ↓L dgAlg.

It is clear that the derived quotient is unique up to homotopy, if it exists.

Proposition 9.2. For any idempotent e ∈ H0(A) the derived quotient A/LAeA exists and is
quasi-isomorphic as an A–algebra to L1−eA.

Proof. One only has to observe that e–killing A–algebras are precisely (1 − e)–inverting A–
algebras. �

Our notation for the derived quotient is justified by the analogous construction in the non-
derived context: if e is an idempotent 0–cycle in A, then the initial strictly e–killing A–algebra
(equivalently, the non-derived localisation A[(1− e)−1]) is A/AeA. The following result might
look slightly surprising although its proof is very simple.

Lemma 9.3. Let e be an idempotent in H0(A). Then there is a dg algebra A′ quasi-isomorphic to
A such that e has a representative in A′ that is a strict idempotent (i.e. not just up to homotopy).

Proof. Consider the algebra k × k, the direct product of two copies of k and let C be its
cofibrant replacement C := k〈x, y〉 with d(y) = x2 − x. It is then clear that the inclusion
k× k→ H(A) corresponding to the idempotents e, 1− e ∈ H(A) lifts to a map of dg algebras
C → A, and without loss of generality we may assume that A is a cofibrant C–algebra. Then
setting A′ := A ∗C (k× k), we are done, since k× k is left proper, cf. Theorem 2.14. �

Let us investigate what the category of (1− e)–torsion A–modules looks like. If e is a strict
idempotent 0–cycle in A we can form the dg algebra eAe ∼= HomA(Ae,Ae) whose elements are
products eae where a ∈ A. If f is an idempotent homologous to e, then fAf and eAe are
quasi-isomorphic dg algebras, since right multiplication by e and by f give maps Af → Ae and
Ae→ Af inverse to each other in Ho(A-Mod). Now if e is an idempotent in H0(A) we will be
abusing notation and still write eAe for eA′e, where A′ is as in Lemma 9.3. Thus, the dg algebra
eAe is well-defined up to quasi-isomorphism.

We can now give a characterisation of torsion (1− e)–modules.

Proposition 9.4. Let e ∈ H0(A) be an idempotent. Then the full subcategory of the derived
category Ho(A-Mod) of A consisting of the (1− e)–torsion modules is equivalent to the derived
category Ho(eAe-Mod) of eAe.

Proof. An A–module is (1 − e)–torsion if and only if it is A/(1 − e)–torsion, cf. the proof of
Proposition 7.6. We will assume, without loss of generality, that 1− e is a strict idempotent. It
is then clear that the left A–module A/(1− e) (which is, by definition, the homotopy cofibre of
the right multiplication map by 1− e on A) is quasi-isomorphic to Ae⊕ΣAe. Thus, the category
of A/(1 − e)–torsion modules coincides with the category of Ae–torsion modules. Clearly Ae
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is a compact left A–module. By [DG02, Theorem 2.1] the homotopy categories of Ae–torsion
modules and of REndA(Ae,Ae)–modules are equivalent. Since Ae is a cofibrant left A–module,
REndA(Ae,Ae) ' EndA(Ae,Ae) ∼= eAe. �

Remark 9.5. Let A be a dg algebra and e ∈ H0(A) an idempotent. With s = 1 − e, the
recollement of Remark 7.9 is

Ho(A/LAeA-Mod) ←−
−→
←− Ho(A-Mod) ←−

−→
←− Ho(eAe-Mod).

This is a generalisation of a recollement established by Cline, Parshall and Scott which plays
an important role in their theory of quasi-hereditary algebras. Suppose that A has vanishing
differential. Then A/LAeA ' A/AeA if and only if A→ A/AeA is a homological epimorphism,
c.f. Theorem 4.18 and Remark 4.19. In [CPS88, CPS96] it is shown that the latter is indeed
equivalent to the existence of the above recollement with A/AeA in place of A/LAeA, and also
equivalent to AeA being a stratifying ideal of A, i.e. to Ae⊗L

eAe eA ' AeA.

9.1. Drinfeld’s quotient. A derived quotient by an idempotent ideal, as a special case of
derived localisation, may be computed as a certain derived coproduct, c.f. Theorem 3.10. We
will now describe another, more economical way to form a derived quotient. We will call it the
Drinfeld quotient since it is a dg algebra version of Drinfeld’s categorical construction [Dri04].

We will assume that the idempotent e ∈ H0(A) admits a representative in A that is strict; by
Lemma 9.3 this results in no loss of generality. Consider the algebra Ae := A〈h〉/(he = eh = h),
obtained by freely attaching the generator h in homological degree 1 to A and quotienting out
by the relations specified. The differential d in Ae extends that on A and d(h) = e.

Proposition 9.6. Assume that A is left proper. The algebra Ae is quasi-isomorphic to the
derived quotient A/LAeA.

Proof. Consider the algebra k× k spanned by two idempotents e and 1− e; then A is a k× k–
algebra (since we assumed that e is strict in A). Then the dg algebra (k × k)e is easily seen
to be quasi-isomorphic to k ∼= (k × k)[(1 − e)−1] ' L1−e(k × k) as k × k–algebras; here the
derived localisation is quasi-isomorphic to the non-derived one, since k × k is commutative,
c.f. Theorem 5.3. Furthermore the inclusion k× k ↪→ (k× k)e is a cofibration (although not a
cell inclusion), in contrast to the inclusion k〈s〉 ↪→ k〈s, s−1〉, which is not. Then we have the
following string of quasi-isomorphisms of dg algebras

A/LAeA ' L1−eA

' A ∗Lk×k L1−e(k× k)

' A ∗Lk×k k
' A ∗k×k (k× k)e
∼= Ae

as required. We are making use of Lemma 3.7 for the second quasi-isomorphism and Corollary 2.9
for the fourth. �

Remark 9.7. The construction of Ae is indeed a version of Drinfeld’s quotient. Note that a set
e1, . . . , en of strict orthogonal idempotents in a dg algebra A with

∑n
i=1 en = 1 determines a dg

category with n objects (let us call them e1, . . . , en) so that the space of morphisms from ei to ej
is eiAej . Conversely, any dg category with n objects gives rise to a dg algebra, called its category
algebra, whose elements are morphisms and the product corresponds to their composition. Then
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for a single idempotent e, the dg algebra Ae is the category algebra of the Drinfeld quotient of
the corresponding category with two objects e and 1− e by the object e.

10. The group completion theorem

Let M ∈ SMon be a simplicial monoid. Taking the monoid algebra degree-wise, we obtain a
simplicial algebra k[M ] ∈ SAlg. Further, taking the Dold–Kan normalisation functor N , we get
a chain complex C(M) := Nk[M ]. Note that the X 7→ C(X) from the category of simplicial sets
to chain complexes is a lax monoidal functor. In particular, there is a natural transformation
(Eilenberg–Zilber map); C(X) ⊗ C(Y ) → C(X × Y ) satisfying an appropriate associativity
condition; in addition C is a strictly unital functor meaning that the simplicial monoidal unit
(the one-point simplicial set) gets sent to the monoidal unit in k–modules, i.e. k. It follows that
C(M) is a monoid in k–modules, i.e. a dg algebra, so the functor X 7→ C(X) is a functor from
SMon→ dgAlg. We can regard π0(M) as a subset of H0(M) ⊂ H(M) = H(C(M)).

10.1. Simplicial localisation. Recall that the category of simplicial monoids is a closed model
category and the Dwyer–Kan simplicial localisation of M at S ⊂ π0(M), which we denote
LDK
S (M), is constructed in [DK80] by first choosing a zero simplex of M in each connected

component in S to obtain a map S̃ →M from the free monoid S̃ generated by S to M . Then
replace this by a weakly equivalent cofibration S̃ � M̃ and form the pushout along the map
S̃ → S̃[S̃−1], where S̃[S̃−1] is the monoid obtained by freely adjoining inverses to all the zero
simplices of S̃. Note that, since the category of simplicial monoids is left proper, this is a
homotopy pushout.

Theorem 10.1. Let M be a simplicial monoid and let S ⊂ π0(M) be an arbitrary subset. The
dg algebra LS(C(M)) is quasi-isomorphic to C(LDK

S (M)).

Proof. The functor X 7→ C(X) factors as

X 7→ k[X] 7→ Nk[X] 7→ i ◦Nk[X] ' C(X),

where i is the inclusion of non-negatively graded k–modules into Z–graded k–modules.
The functor X 7→ k[X] is a strongly monoidal left Quillen functor (strongly monoidal meaning

that the natural transformation k[X]⊗ k[Y ]→ k[X × Y ] is an isomorphism for all simplicial sets
X and Y ). Therefore it induces a left Quillen functor SMon→ SAlg from simplicial monoids to
monoids in simplicial k–modules, i.e. simplicial k–algebras (recall that the category of simplicial
algebras is a closed model category with weak equivalences being quasi-isomorphisms of the
associated chain complexes and fibrations being level-wise surjective maps). Moreover, the
functor N is part of a Quillen equivalence between SAlg and dgAlg≥0, see [SS03]. Finally the
functor i is a left Quillen functor dgAlg≥0 → dgAlg. Since Quillen equivalences and left Quillen
functors preserve homotopy pushouts up to weak equivalence, the functor X 7→ C(X) from SMon
to dgAlg preserves homotopy pushouts.

Since C(S̃) ' k〈S〉 and C(S̃[S̃−1]) ' k〈S, S−1〉, then C(LDK
S (M)) ' C(M) ∗Lk〈S〉 k〈S, S−1〉 '

LS(C(M)). �

10.2. Group completion. We can use the theory of derived localisation to give a very natural
proof of the group completion theorem. Many variations and proofs of this theorem have been
given (see, for example, [MS76, Jar89, Moe89, Til97, PS04, MP15]). However, in addition to a
new proof, our approach also offers a conceptual explanation of the group completion theorem
by showing it is really just a topological restatement of our results concerning the vanishing of
higher derived terms of the derived localisation.
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Recall the following fact, which says that simplicial localisation at all of π0(M) is the group
completion of M .

Proposition 10.2 ([DK80, 5.5]). Let M be a simplicial monoid. The simplicial localisation
LDK
π0(M)(M) is homotopy equivalent to ΩBM , the based loop space of the classifying space of M .

Combining this fact with Theorem 10.1 above we obtain the following.

Theorem 10.3. The dg algebra Lπ0(M)C(M) is quasi-isomorphic to C(ΩBM). �

Of course, a version of Theorem 10.3 holds for topological monoids; below Ω and B stand for
the topological versions of the loop space and the classifying space respectively and C(X) stands
for the singular chain complex on a topological space X.

Corollary 10.4. Let M be a monoid in topological spaces. Then the dg algebra Lπ0(M)C(M) is
quasi-isomorphic to C(ΩBM).

Proof. The functor Sing associating to a topological space the simplicial set of its singular
simplices is right adjoint (to the geometric realisation functor) and so, it preserves products. It
follows that it transforms topological monoids into simplicial monoids, thus C(M) is indeed a
dg algebra. Additionally, the functor Sing transforms topological loop spaces and classifying
spaces to their simplicial counterparts (up to homotopy). The desired statement now follows
from Theorem 10.3. �

Theorem 10.3 (or Corollary 10.4) could be viewed as a very general form of the group
completion theorem. It is most useful when Lπ0(M)C(M) has no higher derived terms, i.e. when
H(Lπ0(M)C(M)) ∼= H(M)[π0(M)−1]. By Theorem 5.1 this happens if and only H(M)[π0(M)−1]
is stably flat over H(M). Specialising further, and taking into account Proposition 5.14 we have
the following corollary.

Corollary 10.5. If π0(M) ⊂ H(M) is an Ore set, then

H(ΩBM) ∼= H(M)[π0(M)−1].

In the special case that π0(M) is central in H(M), we recover the McDuff–Segal group
completion theorem [MS76].

An alternative formulation of the group completion theorem, which is sometimes more suited
to certain applications, is to consider the action of π0(M) on the homology of a certain homotopy
colimit M∞. More precisely, take any sequence x1, x2, . . . in π0(M) and set

M∞ := hocolimM
·x1−−→M

·x2−−→ . . .

The group completion theorem then becomes the statement that if the (left) action of π0(M)
on H(M∞) is by isomorphisms then H(ΩBM) ∼= H(M∞). This formulation follows almost
immediately from Theorem 10.1 and Theorem 4.26 by noting that the construction of M∞
is such that C(M∞) obviously satisfies the universal property of the localisation of C(M) as
a C(M)–module, excepting the fact that it may not be π0(M)–local, which is precisely the
hypothesis, cf. Proposition 5.15. Note, however, this hypothesis, namely that for such a sequence
x1, x2, . . . the module C(M∞) is π0(M)–local, implies that π0(M) is an Ore set in H(M), by
Proposition 5.15 (under the assumption π0(M) is countable then, by Proposition 5.14, these
hypotheses are in fact equivalent), in which case H(M∞) ∼= H(M)[π0(M)−1]. Therefore, this
version of the group completion theorem is essentially equivalent to the version above.
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11. Localisation of dg bialgebras

It is frequently the case that we wish to localise a dg algebra which has additional structure,
namely that of a dg bialgebra, for example when considering the dg algebra of chains on a
simplicial monoid. Often this dg bialgebra structure will lead to the derived localisation being
more easily understood. In this section we will explain this and we will give examples where one
can identify completely the localisations of some important dg algebras.

As a motivating example, consider the case of A := C(M), the dg algebra of chains on a
simplicial monoid M . The functor X 7→ C(X) is also colax comonoidal. In particular, there is a
natural transformation (the Alexander–Whitney map) C(X × Y )→ C(X)⊗ C(Y ) satisfying an
appropriate associativity condition. It follows that for any simplicial set X its simplicial chain
complex C(X) is a comonoid in k–modules, i.e. a dg coalgebra. Therefore, A is a dg bialgebra.
Note that there is a 1-1 correspondence between π0(M) and the set of grouplike elements in A.
We will model the algebraic part of this situation more abstractly. For simplicity, we will restrict
to modelling the case where π0(M) ∼= N, but more general results can easily be formulated.

Let A be an N–graded monoid in the monoidal category of connected cocommutative dg
coalgebras (connected here means having a unique grouplike element). In other words A is a
dg bialgebra with A =

⊕
i≥0Ai where each Ai is a connected cocommutative dg coalgebra and

the algebra structure is determined by coalgebra maps Ai ⊗Aj → Ai+j . Assume further that
A0 = k. It follows that the unique grouplike element s ∈ A1 freely generates the monoid of
grouplike elements in A.

Denote by A∞ the coalgebra obtained as the direct limit of the directed system

A0
·s−→ A1

·s−→ A2
·s−→ . . .

of coalgebras where ·s is right multiplication by the grouplike element s ∈ A1. The underlying
space of A∞ is the direct limit of the underlying k–modules and the coalgebra structure is induced
by the coalgebra structures on the Ai. Then A∞[s, s−1] := A∞ ⊗ k[s, s−1] is a left A–module
in coalgebras. The coalgebra structure is the tensor product of the coalgebra structure on A∞
with that on k[s, s−1] defined by declaring s, s−1 to be grouplike elements. Then A acts on the
left on A∞ and the corresponding action of A on A∞[s, s−1] is defined by declaring Ai to act on
A∞[s, s−1] by the action on A∞ multiplied by si.

Proposition 11.1. Let A be as above. If left multiplication by s on A∞ is a quasi-isomorphism
then as A–modules, Ls(A) ' A∞[s, s−1].

Proof. It is not difficult to see that A∞[s, s−1] is isomorphic to the direct limit of the direct
system A

·s−→ A
·s−→ . . . . Indeed, this limit splits as a direct sum of Z copies of directed systems

each with limit A∞ so that it is isomorphic to the direct sum of Z copies of A∞ and inspection
shows that this is isomorphic to A∞[s, s−1] as an A–module. But now the statement follows
from Corollary 5.16. �

Remark 11.2. The proposition above can be regarded as an algebraic form of (a version of)
the group completion theorem. Indeed, set A = C(M) for a simplicial monoid M =

∐
i∈NMi.

Then Ls(A) ' C(ΩBM) and so the proposition says that if left multiplication by the generator
s ∈ π0(M1) is a quasi-isomorphism on M∞ := lim→Mi then H(ΩBM) ∼= H(Z×M∞).

From now on, k will always be assumed to be a field of characteristic zero. If the homology
class [s] of s is central in H(A), then H(A∞) has an algebra structure induced by the algebra
structure on A (the centrality of [s] ensures that this structure is well-defined); moreover it is
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compatible with the coalgebra structure so that H(A) is a cocommutative bialgebra. We will
also assume, in fact, that H(A) is (graded) commutative; it is, thus, a commutative bialgebra
with a unique (invertible) grouplike element. Therefore it is a Hopf algebra (see, for example,
[Rad12, Corollary 7.6.11]).

Proposition 11.3. Let A be as above, with H(A) commutative. Then H(Ls(A)) is a Hopf
algebra and as Hopf algebras H(Ls(A)) ∼= H(A∞)[s, s−1].

Proof. Since H(A) is commutative then H(Ls(A)) is simply the non-derived localisation of H(A),
hence it is also commutative and, since s is invertible, it is a Hopf algebra. �

In this situation, H(A∞) is the universal enveloping algebra of its primitive elements, in which
case it is just a polynomial bialgebra S(V ) generated by the space of primitives V . In many
examples we will be able to identify the space of primitives explicitly.

Remark 11.4. If, moreover, A is commutative then there is a quasi-isomorphism of dg algebras
H(Ls(A)) → Ls(A) by choosing representing cycles for the primitive elements. Thus if A
is quasi-isomorphic to a dg commutative algebra then Ls(A) is formal, i.e. it is in the same
quasi-isomorphism class as its homology.

11.1. Cyclic homology. We show how one can interpret the cyclic homology of a dg algebra
as the derived localisation of a suitable noncommutative dg algebra.

Given a dg algebra A define

Agl =
∞⊕
n=0

CE(gln(A))

where CE(gln(A)) stands for the Chevalley–Eilenberg complex of gln(A), the dg Lie algebra of
n × n matrices with entries in A. Recall that for a dg Lie algebra g its Chevalley–Eilenberg
complex has underlying space defined as CE(g) = S(Σg) where S stands for the cofree connected
cocommutative coalgebra on a graded vector space and the differential is induced by the Lie
bracket on g, it is therefore a connected cocommutative dg coalgebra.

The matrix block addition

(6) gln(A)⊕ glm(A)→ gln+m(A)

induces a map of dg vector spaces

CE(gln(A))⊗ CE(glm(A))→ CE(gln+m(A))

and thus, the structure of a dg bialgebra on Agl.
Since the map (6) is commutative up to conjugation action of GLm+n and since the latter

action is trivial on the Chevalley–Eilenberg cohomology, we conclude that H(Agl) is a graded
commutative and cocommutative bialgebra. Moreover, the element s = 1 ∈ k ⊂ HCE(gl1(A)) ⊂
H(Agl) generates the monoid of grouplike elements. There is a nested system of dg Lie algebras
gl0 ⊂ gl1 ⊂ . . . and we denote the direct limit of this system by gl∞.

Therefore we have following result.

Proposition 11.5. There is a quasi-isomorphism of Agl–modules

Ls(Agl) ' CE(gl∞(A))[s, s−1].

�

Moreover, we may identify the space of primitives of the Hopf algebra H(Ls(Agl)) explicitly.
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Theorem 11.6. There is an isomorphism of Hopf algebras

H(Ls(Agl)) ∼= S(Σ−1HC(A))[s, s−1]

where HC(A) is the cyclic homology of A.

Proof. According to Loday–Quillen and Tsygan [Lod92, Chapter 10] there is an isomorphism

HCE(gl∞(A))[s, s−1] ∼= S(Σ−1HC(A))[s, s−1]

where the space of primitive elements is precisely Σ−1HC(A). �

Remark 11.7. Since the conjugation action of GLn is trivial on homology, Agl is actually
quasi-isomorphic to the subalgebra of GL∞–invariants which is a dg commutative algebra. Thus
Ls(Agl) is formal.

11.2. Graph homology. Our next example concerns Kontsevich’s graph homology. There are
many versions of Kontsevich’s graph complex as it is, essentially, the vacuum part of the Feynman
transform of a modular operad [GK98]. Our result can be formulated in this generality but we
shall refrain from doing that and instead, work it out in the simplest case of commutative graph
homology. This is, in some sense, a nonlinear analogue of cyclic homology.

Let ln be the space of polynomial symplectic vector fields in the linear symplectic vector space
k2n vanishing at zero; it is a Lie algebra with respect to the commutator bracket. There is a
nested system of Lie algebras l0 ⊂ l1 ⊂ . . . and we denote the direct limit of this system by l∞.
Note that analogously to the matrix case there is a map ln ⊕ lm → ln+m which is commutative
up to the action of the linear symplectic group. Let us now define:

Al =
∞⊕
n=0

CE(ln)

Just as Agl, the space Al has the structure of an graded monoid in connected cocommutative dg
coalgebras and, since the action of the linear symplectic group is trivial on homology, H(Al) is
a graded commutative and cocommutative bialgebra. The element s = 1 ∈ k ∈ CE(l1) ⊂ (Al)
generates the monoid of grouplike elements. Then we have the following result.

Proposition 11.8. There is a quasi-isomorphism of Al–modules

Ls(Al) ' CE(l∞)[s, s−1].

�

As above, we may identify the space of primitives of the graded Hopf algebra H(Ls(Al))
explicitly; the only difference is that the Loday–Quillen–Tsygan result should be replaced by the
corresponding result of Kontsevich [Kon93, Kon94].

Theorem 11.9. There is an isomorphism of Hopf algebras

H(Ls(Ag)) ∼= S(Σ−1HΓ)[s, s−1]

where HΓ is the (commutative) graph homology. �

Remark 11.10. Similar to Remark 11.7, since the conjugation action of the linear symplectic
group is trivial on homology, Al is quasi-isomorphic to the subalgebra of invariants which is a dg
commutative algebra. Thus Ls(Al) is formal.

11.3. Algebraic K–theory. Let A be an associative algebra and form the topological monoid
M =

∐∞
n=0 BGLn(A). The monoid structure is induced by the block addition of matrices
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GLn(A) × GLm(A) → GLn+m(A). Since the latter is commutative up to conjugation, this
monoid is homotopy commutative.

Consider the cocommutative dg bialgebra A = C(M). Denote by s the element in H0BGL1(A)
corresponding to the base point in BGL1(A). Note that the direct limit of the sequence of
complexes C(BGL0(A)) ·s−→ C(BGL1(A)) ·s−→ . . . can be identified with C(BGL∞)(A). We obtain
the following:

Proposition 11.11. There is a quasi-isomorphism of A–modules

Ls(A) ' C(BGL∞(A))[s, s−1].

�

The K–groups of A are defined as Ki(A) = πi(ΩBM), i = 1, 2, . . . . Denote by KQ
∗ (A) =

π∗(ΩBM) ⊗ Q = ⊕∞i=1ΣiKi(A) ⊗ Q, the direct sum of (appropriately shifted) K–groups of A
tensored with the rationals. Then we have:

Theorem 11.12. There is an isomorphism of Hopf algebras

H(Ls(A))⊗Q ∼= S(KQ
∗ (A))[s, s−1].

�

Similar results can be obtained taking A to be C(
∐
P B Aut(P )), where the coproduct ranges

through isomorphism classes of finitely generated projective A–modules. It can also be extended
to topological K–theory (assuming that A is a Banach C–algebra). The details are standard and
we omit them.

Remark 11.13. It is also easy to see that the dg algebra Ls(A) is rationally formal. Indeed,
we have ΩBM ' (ΩBM)0 × Z where (ΩBM)0 is the connected component of the identity of the
monoid ΩBM . It is known that the monoid (ΩBM)0 is a double loop space (actually an infinite
loop space). Any connected loop space rationally splits as a disjoint union of products of odd
spheres and loop spaces on odd spheres. It follows that the rational chain dg algebra on (ΩBM)0
is formal and thus, so is the rational chain dg algebra on ΩBM .

Remark 11.14. Theorem 11.12 is somewhat circular in the sense that the rational K–groups
of A are more or less by definition the space of primitive elements of the graded Hopf algebra
H(ΩBM) which we know from Theorem 10.3 is precisely H(Ls(A)).

Since H(Ls(Agl)) is a graded Hopf algebra, one could likewise define the cyclic homology of
A as the set of primitive elements in this Hopf algebra, precisely analogously to defining the
algebraic K–groups of A as the homotopy groups of the group completion of the topological
monoid M .

A similar remark applies to Al, so that the graph homology HΓ can be identified with the
space of primitive elements in the Hopf algebra H(Ls(Al)).

Remark 11.15. The computation of the derived localisation of this last example, being the
group completion of a topological monoid, can of course be viewed as an application of the
classical group completion theorem, together with Theorem 10.3. However, the first two examples
do not arise from topology and illustrate our ‘algebraic’ version of the group completion theorem.

12. The stable mapping class group

In this section we will examine examples of monoids arising from mapping class groups of
surfaces and explain how their derived localisations can be computed in terms of the stable
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mapping class group. While some of these examples can be computed using the classical group
completion theorem (although understanding this as computing the derived localisation relies on
Theorem 10.3), we show that one can also compute ‘partial group completions’ using our more
general theory.

12.1. The pair of pants gluing. We begin with an example that follows the same pattern as
the examples in the previous section.

Let Diffg,1 denote the topological category whose objects are compact oriented surfaces
of genus g with one non-empty boundary component equipped with a collar neighbourhood
and whose morphisms are orientation preserving diffeomorphisms which preserve the collar
neighbourhoods pointwise. Denote by Γg,1 = π0 Diffg,1 the corresponding discrete groupoid of
connected components. Note that, for a surface S ∈ Γg,1 the group of automorphisms of S as
an object in the groupoid Γg,1 is the usual mapping class group of S, which we denote Γ(S).
Moreover, the inclusion Γ(S) ↪→ Γg,1 is an equivalence of categories.

Let P be a fixed surface of genus zero with 3 ordered, collared boundary components. There
are functors

(7) Γg,1 × Γg′,1 → Γg+g′,1
which are defined on objects as sending (S, S′) to S#PS

′, where S#PS
′ denotes the surface

obtained by gluing (using the collar neighbourhoods) the boundary of S to the first boundary
component of P and the boundary of S′ to the second boundary component of P . On morphisms
these functors are given by extending the diffeomorphisms from S and S′ to a diffeomorphism
from the surface S#PS

′ by setting it to be the identity on P cf. [Mil86].

Remark 12.1. The categories Diffg,1 and Γg,1 as defined have a proper class of objects. This
technical detail can be easily overcome by choosing fixed surfaces for each genus and considering
the small subcategories whose objects are obtained from all ways of gluing these surfaces via the
operation #P .

This map is well-defined and strictly associative. Taking in (7) g′ = 1 and restricting to a
single object with the identity map in Γ1,1 we obtain an embedding Γg,1 ⊂ Γg+1,1; we denote
Γ∞ = colimg→∞ Γg,1.

Taking classifying spaces we obtain an associative topological monoid M ′1 =
∐∞
g=0BΓg,1. It

is not hard to see that M ′1 is homotopy commutative. Consider the dg algebra A′1 = C(M ′1).
Denote by s the element in H0(BΓ1,1) corresponding to the basepoint in BΓ1,1.

Proposition 12.2. There is a quasi-isomorphism of A′1–modules

Ls(A′1) ' C(BΓ∞)[s, s−1].

We know [MW07] that H(BΓ∞)⊗Q is a Hopf algebra which is isomorphic to Q[κ1, κ2, . . . ]
where κi, i = 1, 2, . . . are the Morita–Mumford–Miller classes. We obtain the following result.

Theorem 12.3. There is an isomorphism of Hopf algebras

H(Ls(A′1))⊗Q ∼= Q[κ1, κ2, . . . ][s, s−1].

Remark 12.4. It is easy to see that the dg algebra Ls(A′1) is formal. The same justification as
in Remark 11.13 applies.

12.2. Punctures. We may generalise the example above to allow surfaces to have punctures.
Let Diff(h)

g,1 denote the topological category whose objects are compact oriented surfaces of genus g
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with one non-empty boundary component equipped with a collar neighbourhood and h unlabelled
punctures and whose morphisms are orientation preserving diffeomorphisms which preserve the
collar neighbourhoods pointwise. Denote by Γ(h)

g,1 = π0 Diff(h)
g,1 . Again, note that for a surface

S ∈ Γg,1 the group of automorphisms of S as an object in the groupoid Γ(h)
g,1 is the usual mapping

class group of a surface with punctures where punctures may be permuted. The gluing along a
pair of pants P defined above extends to these groupoids and we denote by M1 = π∞g=0,h=0BΓ(h)

g,1
the corresponding topological monoid and A1 = C(M1) the corresponding dg algebra. Once
again, it is straightforward to see that M1 is homotopy commutative.

The main difference between A′1 and A1 when it comes to computing the localisation is that
the monoid of grouplike elements in A1 is now k[s, t] where s ∈ H0(BΓ(0)

1,1) and t ∈ H0(BΓ(1)
0,1)

correspond to the basepoints in BΓ(0)
1,1 and BΓ(1)

0,1, illustrated in Figure 1.

(a) Genus one surface
corresponding to s

(b) Genus zero sur-
face with one punc-
ture corresponding to
t

Figure 1. Generators of the monoid of grouplike elements in A1

Denote by D the topological monoid
∐
h≥0B(S1 o Σh) where S1 o Σh is the wreath product of

the circle group with Σh, the symmetric group on h letters. Then C(D) is a dg k[t]–algebra by
sending t to the basepoint of B(S1 o Σ1) ' CP∞. We define S1 o Σ∞ = colimh→∞ S1 o Σh.

Proposition 12.5. There are quasi-isomorphisms of A1–modules:
(1) Ls(A1) ' C(BΓ∞)⊗ C(D)[s, s−1]
(2) Lt,s(A1) ' C(BΓ∞)⊗ C(B(S1 o Σ∞))[t, t−1, s, s−1]

Proof. Since the homology of A1 is commutative then

Ls(A1) ' A1 ⊗k[s] k[s, s−1] ' colim(A1
·s−→ A1 . . . ).

But colim(A1
·s−→ A1 . . . ) decomposes as

∞⊕
h=0

colim
(
C(BΓ(h)

0,1) ·s−→ C(BΓ(h)
1,1) ·s−→ . . .

)
[s, s−1]

and by Bödigheimer–Tillmann [BT01, Theorem 1.1]

colim
(
C(BΓ(h)

0,1) ·s−→ C(BΓ(h)
1,1) ·s−→ . . .

)
' C(BΓ∞)⊗ C(B(S1 o Σh)),

part (1) of the Proposition now follows.
For part (2) observe that Lt,s(A1) ' Lt(Ls(A1)) ' Ls(A1)⊗k[t] k[t, t−1] and then unwrap the

corresponding colimit similarly. �

Note that H(Lt,s(A1)) is a commutative and cocommutative Hopf algebra, so we can easily
identify the algebra structure. However, H(Ls(A1)) is not a Hopf algebra, the grouplike element
t not being invertible.

Theorem 12.6.
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(1) There is an isomorphism of bialgebras

H(Ls(A1))⊗Q ∼= Q[κ1, κ2, . . . ]⊗D[s, s−1],

where D ⊂ Q[ν, t] is the subalgebra of elements of the form λ+ tx with λ ∈ Q, x ∈ Q[ν, t].
(2) There is an isomorphism of Hopf algebras

H(Lt,s(A1))⊗Q ∼= Q[ν, κ1, κ2, . . . ][t, t−1, s, s−1].

Here the element ν has degree 2.

Proof. Observe that we are working rationally, Σh is a finite group and H(S1 o Σh,Q) ∼=
H(Σh,Q[x1, . . . , xh]) ∼= Q[ν] for h > 0, where ν, xi have degree 2. Thus H(D)⊗Q ∼= D ⊂ Q[ν, t])
is the subalgebra of elements of the form λ+ tx with λ ∈ Q, x ∈ Q[ν, t] and H(S1 oΣ∞,Q) ∼= Q[ν].

Since H(Lt,s(A1)) is a commutative and cocommutative Hopf algebra part (2) is now clear.
For part (1) observe that homotopy commutativity implies that H(Lt,s(A1)) ∼= Lt(H(Ls(A1)))
and therefore H(Ls(A1)) is the obvious subalgebra of H(Lt,s(A1)) and so the algebra structure
is as described. �

12.3. Open gluing. We now discuss a monoid which uses open gluing of surfaces and generalises
the examples above even further.

Let Diff(h)
g,∗ denote the topological category whose objects are compact oriented surfaces of genus

g with non-empty boundary and 2 ordered parametrised intervals embedded in the boundary,
with h boundary components which do not contain embedded intervals. The embedded intervals
will be called open boundaries and the h boundary components not containing open boundaries
will be called free boundaries. The morphisms are orientation preserving diffeomorphisms which
preserve the open boundaries pointwise. Let Γ(h)

g,∗ = π0 Diff(h)
g,∗ be the corresponding discrete

groupoid. Abusing notation slightly, we denote by Γ(h)
g,1 and Γ(h)

g,2 the full subcategories on surfaces
with h+ 1 or h+ 2 boundary components respectively.

Remark 12.7. The objects of Diff(h)
g,∗ should, of course, be two dimensional manifolds with

corners compatible with the embedded intervals and equipped with appropriate collar neighbour-
hoods of the intervals in order for gluing to be well-defined, but we skip the details here.

Given surfaces S ∈ Diff(h)
g,∗ and S′ ∈ Diff(h)

g,∗ the surface S#IS
′ is defined by gluing the first

interval in the boundary of S′ to the second interval in the boundary of S. Applying the
classifying space functor we obtain by this gluing a topological monoid M∗ =

∐∞
g=0,h=0BΓ(h)

g,∗.
It is not hard to see that the monoid M1 considered above is equivalent to the submonoid of
M∗ corresponding to surfaces having precisely one non-free boundary component, cf. [Til97,
Section 4].

Lemma 12.8. The commutative monoid π0(M∗) has three generators s, t and u subject to the
relation u2 = ut.

Proof. The generator s corresponds to the surface of genus one with two boundary components
one of which is a free boundary, the generator t corresponds to the surface of genus zero with a
single boundary component and the generator u corresponds to the surface of genus zero having
two boundary components and no free boundary, as shown in Figure 2. The relation u2 = ut is
obvious. Next, a surface with two open boundaries is determined uniquely by its genus g ≥ 0, the
number of free boundary components h ≥ 0, and the number of boundary components containing
open boundaries k ∈ {1, 2}. Thus, any such surface can be uniquely decomposed as a product
sg · th · uk−1 which implies the lemma. �
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(a) Genus one surface
corresponding to s

(b) Genus zero
surface with free
boundary corres-
ponding to t

(c) Genus zero
surface cor-
responding to
u

Figure 2. Generators of π0(M∗)

Consider now the dg algebra A∗ = C(M∗). It is a cocommutative dg bialgebra; the elements
s, t, u ∈ π0(M∗) ⊂ H0(M∗) are the grouplike generators. Even though we do not have homotopy
commutativity for this monoid we do still have homological stability [Har85], in other words
ls : Hk(M∗)→ Hk(M∗) and lu : Hk(M∗)→ Hk(M∗) are isomorphisms in the stable range, i.e. on
summands with genus g � k.

Proposition 12.9. There are quasi-isomorphisms of A∗–modules:
(1) Ls(A∗) ' C(BΓ∞)⊗ C(D)⊗k[t] k[u, t, s, s−1]/(u2 − ut)
(2) Lu,s(A∗) ' C(BΓ∞)⊗ C(B(S1 o Σ∞))[t, t−1, s, s−1]

Proof. Homological stability implies immediately that A∗ ⊗k[s] k[s, s−1] is s–local. By Corol-
lary 5.16 we have a quasi-isomorphism of A∗–modules

Ls(A∗) ' A∗ ⊗k[s] k[s, s−1].

The proof of part (1) now proceeds as in Proposition 12.5 noting that homological stability
implies the various colimits do not depend on the parameter u. Similarly, for part (2) observe
that Ls(A∗)⊗k[u] k[u, u−1] is u–local using the fact that s is invertible in homology together with
homological stability, then proceed as in Proposition 12.5. �

We obtain the following result, analogous but more general than Theorem 12.3 and The-
orem 12.6.

Theorem 12.10.
(1) There is an isomorphism of bialgebras

H(Ls(A∗))⊗Q ∼= Q[κ1, κ2, . . . ]⊗D∗[s, s−1]

where D∗ ⊂ Q[ν, t, u]/(u2 − ut) is the subalgebra of elements of the form λ + tx with
λ ∈ Q, x ∈ Q[ν, t, u]/(u2 − ut).

(2) There is an isomorphism of Hopf algebras

H(Lu,s(A∗))⊗Q ∼= Q[ν, κ1, κ2, . . . ][t, t−1, s, s−1].

Here the generator ν has degree 2.

Proof. For part (2), although we do not have homotopy commutativity of M∗, we do have that
M1 is (equivalent to) a submonoid of M∗ so there is a dg algebra map from Lt,s(A1) to Lu,s(A∗).
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By inspection this map is the identity as a map of vector spaces, which shows the algebra
structures coincide.

Similarly, for part (1), Ls(A1) is the obvious subalgebra of Ls(A∗) so we only need to verify
that the multiplicative action of the element u is as described, which is clear. �

Remark 12.11. We have considered here the mapping class groups of surfaces with free
boundary and no restriction on what diffeomorphisms do to the free boundary/punctures because
this is the case most commonly associated with the ribbon graph complex. However, we could
equally have considered versions where we require that the free boundaries/punctures are not
allowed to be permuted (sometimes called the pure mapping class group), or where we require
that each free boundary is parametrised and diffeomorphisms can only permute free boundaries
in a way that is compatible with the given parametrisation (in fact, Bödigheimer–Tillmann
[BT01] reserve the term ‘free boundary’ for this notion). To obtain corresponding results, we
replace S1 o Σk by (S1)×k in the first case and by Σk in the second case.

12.4. Closed gluing. We may also consider a monoid which uses usual gluing of surfaces
along their boundary. Indeed, let Diffg,2 be the category whose objects are compact oriented
surfaces of genus g with two ordered non-empty boundary components equipped with a collar
neighbourhood and whose morphisms are orientation preserving diffeomorphisms which preserve
the collar neighbourhoods pointwise. Then gluing the first boundary component of one surface
to the second boundary component of another induces an associative operation on the groupoids
Γg,2 = π0 Diffg,2 making N =

∐∞
g=0BΓg,2 into a topological monoid. Then the dg algebra

B = C(N) has a grouplike element s ∈ H0(BΓ1,2) which generates the monoid of grouplike
elements.

Again, we do not have homotopy commutativity so the standard argument does not quite
apply. Nevertheless, we do have homological stability, which is sufficient to deduce the following.

Proposition 12.12. There is a quasi-isomorphism of B–modules

Ls(B) ' C(BΓ∞)[s, s−1].

�

Theorem 12.13. There is an isomorphism of Hopf algebras

H(Ls(B))⊗Q ∼= Q[κ1, κ2, . . . ][s, s−1].

Proof. Once again, the problem lies in determining that the algebra structure is as stated, since
commutativity is no longer so clear.

There is a map of monoids M ′1 → N (more accurately, this map is between topological
monoids equivalent to M ′1 and N) which for a surface of genus 1 is illustrated in Theorem 12.4,
this observation (and elegant illustration) is from Tillmann [Til97]. Therefore, by the universal
property of localisation, there is a map of dg algebras Ls(A′1)→ Ls(B). By inspection this is
the identity on homology as a map of vector spaces and hence it is an isomorphism of algebras,
in fact of Hopf algebras, on homology as required. �

Remark 12.14. We can also obtain corresponding results for closed gluings of surfaces with
punctures; we omit these extra examples since the methods are the same as those already
employed above.
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7−→

Figure 3. Map from open gluing to closed gluing

12.5. Localisation of the dg algebra of ribbon graphs. Consider the anticyclic operad
Ass whose algebras are dg associative algebras with an odd scalar product. Viewing Ass as
a modular operad with trivial self-gluings we can form its Feynman transform FAss [GK98].
The vacuum part FAss((0)) of it is just Kontsevich’s ribbon graph complex [Kon94] and its
cohomology is essentially the homology of moduli spaces of Riemann surfaces with unlabelled
boundary components. Similarly, the dg space FAss((n)) for n > 0 is the complex of ribbon
graphs with n marked legs; the corresponding homology is the homology of the moduli spaces of
Riemann surfaces with n labelled open intervals embedded into the boundary [Cos07]. In view
of the correspondence between mapping class groups and moduli spaces of Riemann surfaces,
the dg space FAss((2)) is quasi-isomorphic to C(M∗). Moreover, the operadic composition
determines the structure of a dg algebra on FAss((2)) which reflects the gluing of Riemann
surfaces along open boundaries. This operation corresponds to the multiplication on the monoid
M∗ and we conclude that FAss((2)) and C(M∗) are quasi-isomorphic as dg algebras. Under
this quasi-isomorphism the class s ∈ H0(M∗) is represented by any trivalent ribbon graph of
topological genus one, with two legs and a single boundary component. Similarly, the class
u ∈ H0(M∗) is represented by a trivalent ribbon graph of topological genus zero, two single
boundary components and a leg attached to each boundary component, see Figure 4.

•

1 • • 2

•
(a) Ribbon graph representing
the class s

1 • 2 •

(b) Ribbon graph represent-
ing the class u

Figure 4. Ribbon graphs corresponding to generators of π0(M∗)

We obtain the following corollary, from Theorem 12.10.

Corollary 12.15.
(1) The dg algebra Ls(FAss((2))) has homology

Q[κ1, κ2, . . . ]⊗D∗[s, s−1],

where D∗ ⊂ Q[ν, t, u]/(u2 − ut) is the subalgebra of elements of the form λ + tx with
λ ∈ Q, x ∈ Q[ν, t, u]/(u2 − ut).

(2) The dg algebra Lu,s(FAss((2))) has homology

Q[ν, κ1, κ2, . . . ][t, t−1, s, s−1].
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Remark 12.16. The dg algebra FAss((2)) is a cofibrant dg k[s]–algebra so the localisation
Ls(FAss((2))) can be obtained by just adjoining a single strict inverse to the element s. A
similar remark holds for the localisation Lu,s(FAss((2))).
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