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Abstract

Delay quality-of-service (QoS) guarantees play a critical role in enabling

delay-sensitive wireless applications. By applying the theory of effective

capacity (EC), the maximum arrival rate with a guaranteed delay-outage

probability constraint, is analyzed and investigated in terms of delay-

constrained resource allocation and link-layer throughput analysis.

Firstly, a joint optimization problem of link-layer energy efficiency (EE)

and EC in a single-user single-carrier communication system, is proposed

and investigated, under a delay violation probability requirement and an

average transmit power constraint. Formulated as a normalized multi-

objective optimization problem (MOP), the problem is transformed into

a weighted single-objective optimization problem (SOP), and then solved.

The proposed optimal power value is proved to be sufficient for the Pareto

optimal set of the original EE-EC MOP.

Secondly, a total EC maximization problem subject to the individual link-

layer EE requirement as well as the per-user average transmit power limit,

in a multi-user multi-carrier orthogonal frequency-division multiple access

(OFDMA) system, is proposed and analyzed. Formulated as a combina-

torial integer programming problem, the problem is decoupled into a fre-

quency provisioning problem and an independent per-user multi-carrier

EE-EC tradeoff problem. A low-complexity heuristic algorithm is pro-

posed to obtain the subcarrier assignment solution coupled with a per-user

optimal power allocation strategy, across frequency and time domains.

Finally, the achievable link-layer rate under the per-user delay QoS re-

quirements is studied for a downlink M-user non-orthogonal multiple ac-

cess (NOMA) network. The impact of the transmit signal-to-noise ratio

(SNR) and the delay QoS requirement on the per-user achievable EC and

the total link-layer rate is investigated and compared between NOMA and

orthogonal multiple access (OMA) networks. All theoretical conclusions

and closed-form expressions are confirmed with Monte Carlo results.
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Chapter 1

Introduction

1.1 Motivations

Delay quality-of-service (QoS) guarantees will play a critical role in 5G and beyond

5G wireless networks, due to the explosive growth of delay-sensitive wireless com-

munication applications and networks, such as vehicular communications, E-health

communication and Tactile Internet [1–9]. Extensive studies have been carried out,

for systems with deterministic delay QoS requirements, where the delay is bounded

within a certain threshold. However, satisfying a deterministic delay bound is prac-

tically infeasible for the time-varying fading channels, due to the random variations

experienced in the channel conditions [10]. Specifically, in future mobile wireless

networks, users are expected to tolerate various levels of delay for their service sat-

isfactions [11]. Henceforth, to satisfy diverse users’ delay requirements, a simple and

flexible statistical delay QoS metric is imperative to be analyzed.

Note that conventional channel models directly characterize the fluctuations in

the amplitude of a radio signal and then provide the physical-layer performance of

wireless communication systems [10]. Hence, they can be called as the physical-layer

channel models. However, physical-layer channel models cannot easily guarantee the

delay QoS performance for a connection, such as queue distributions, buffer overflow

probabilities, and delay violation probabilities [10,12]. The reason is that, these com-

plex delay QoS metrics need an analysis of the queueing behavior of the connection,

which is hard to extract from the physical-layer models [10].

Recognizing the limitations of the physical-layer channel models in delay QoS sup-

port, the authors in [10] proposed a link-layer channel model termed effective capacity

(EC), which is the dual of effective bandwidth (EB). The theory of EB was exten-

sively studied in the early 90’s with the emphasis on wired asynchronous transfer

mode (ATM) networks [13–18]. By introducing a statistical envelope process which
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deterministically bounds the moment generating function of the cumulative arrivals,

the authors in [13] proposed the theory of EB, which gives the minimum service rate

that is needed to support the probabilistic delay QoS requirements. As a dual of EB,

EC, proposed in [10], denotes the maximum arrival rate that a given service process

can support, on the condition that the required delay violation probability is guaran-

teed. Specifically, a comprehensive overview of the theory of EB and EC is provided

in Chapter 2. Note that EC can be considered as the link-layer spectral efficiency

(SE), while the link-layer energy efficiency (EE) can be formulated as the ratio of

EC to the total power expenditure [19,20]. Just like the inconsistent property of EE

and SE in physical-layer channel model, the link-layer EE and EC are also incompat-

ible [21]. In more detail, for a point-to-point communication system operating in a

flat-fading channel, the EE versus EC curve is proved to be bell shape when non-zero

circuit power is considered [22]. Hence, inspired by green communications, the focus

first lies on designing an efficient resource allocation strategy to balance the three

important QoS metrics, i.e., EE, SE and delay [22–26].

By applying the theory of EC, in this thesis, the delay-constrained resource allo-

cation problem is first studied for delay-sensitive wireless communication networks.

Focusing on a single-user single-carrier communication system, a multi-objective op-

timization problem (MOP) of link-layer EE and EC is first proposed and investigated,

under a delay-outage probability constraint and an average transmit power limit. To

solve the problem, an optimal power allocation strategy is proposed and proved to be

sufficient for the Pareto optimal set of the original EE-EC MOP. To further balance

these QoS metrics in a more practical scenario, a total EC maximization problem is

proposed and investigated for the uplink transmission in a multi-user multi-carrier or-

thogonal frequency-division multiple access (OFDMA) system, subject to each user’s

link-layer EE requirement as well as the per-user average transmit power limit.

Apart from the delay-constrained resource allocation, the throughput analysis for

different wireless communication networks is also of great importance. Note that

non-orthogonal multiple access (NOMA) has been considered as a promising multiple

access (MA) technique towards 5G networks. Current research work in NOMA-related

areas mainly focuses on the topics such as cooperative design [27–29], subcarrier

assignment and power control policy [30–32], physical layer security [33, 34], fairness

analysis [35, 36], etc. Meanwhile, by adopting the theory of EC, the performance

gain of NOMA over orthogonal multiple access (OMA), with a guaranteed statistical

delay constraint, deserves elaborate study. Considering a downlink NOMA network

with M users, the individual link-layer rate and the total achievable EC are studied

2



and analyzed in Chapter 5, while the per-user statistical delay QoS requirements are

satisfied.

1.2 Thesis Outline and Contributions

1.2.1 Thesis Contributions

Motivated by the above discussions, this thesis focuses on different delay-sensitive

wireless communication networks. Specifically, by applying the theory of EC and

the link-layer channel model, the maximum achievable arrival rate with a guaranteed

delay-outage probability constraint, is analyzed and investigated in terms of delay-

constrained resource allocation and the link-layer throughput analysis. The main

contributions of this thesis can be summarized as follows.

In Chapter 2, the theory of effective capacity, the convex optimization theory

and literature review are provided. The background knowledge of large deviation

theory and envelope processes is introduced first, which paves the way for deriving

the theory of EB and EC. By deterministically bounding the moment generating

function of the cumulative arrivals, the statistical envelope process proposed in [13]

provides an upper bound on the traffic flows in a probabilistic manner. After applying

the queueing theory and the large deviation theory, it is proved that the minimum

envelope rate proposed in [13], which can be calculated from the Gärtner-Ellis limits,

is the EB satisfying the required buffer overflow probability and the delay violation

probability. Inspired by the theory of EB, the authors in [10] proposed the dual, i.e.,

the concept of EC. Specifically, EC denotes the maximum arrival rate that a given

service process can support, on the condition that a target delay violation probability

is guaranteed. After providing the concept of EC, the convex optimization theory is

then briefly introduced in this chapter, followed by the literature review. Note that

the included mathematical theorems and definitions regarding the EC theory and the

convex optimization theory were from existing literature. However, this chapter only

serves as a comprehensive overview, to help the readers to thoroughly understand the

background knowledge.

In Chapter 3, the delay-QoS driven resource allocation problem is proposed and

solved in a point-to-point single-user single-carrier communication system. To bal-

ance the three important QoS metrics, i.e., EE, EC and delay, a normalized link-layer

EE-EC MOP is formulated on a Nakagami-m fading channel, under a delay-outage

probability constraint and an average transmit power constraint. The MOP is then

transformed into a power-constrained single-objective optimization problem (SOP),

3



by introducing two adjustable weights to the objectives. Focusing on the uncon-

strained EE-EC tradeoff problem first, a closed-form expression for the optimal power

allocation strategy is derived to pave the way for the power-constrained problem. To

solve the power-constrained EE-EC tradeoff problem, the Pseudocode of the optimal

power allocation algorithm is then proposed. The impact of different system param-

eters on the optimal average power, such as the importance weight, normalization

factor, circuit power, and power amplifier efficiency, is thoroughly analyzed. In more

detail, this chapter has the following contributions:

• A generalized link-layer EE-EC MOP in a Nakagami-m fading channel under a

delay-outage probability constraint and an average transmit power constraint

is transformed into an SOP using weighted sum method. Specifically, two nor-

malization values are introduced to balance the measurements and orders of

magnitude of EE and EC.

• The unconstrained EE-EC tradeoff formulation is then proved to be continu-

ously differentiable, strictly quasiconvex in the average power, which follows a

cup shape curve. Henceforth, the global optimum is unique and can be achieved

at a finite value.

• By using the Charnes-Cooper transformation and Karush-Kuhn-Tucker (KKT)

conditions, an optimal power allocation scheme for the power-unconstrained

link-layer EE-EC tradeoff problem is derived, and proved to be sufficient for

the Pareto optimal set of the original EE-EC MOP. For the power-constrained

tradeoff problem, the Pseudocode of the optimal power allocation algorithm is

provided in Table 3.1.

• The average optimal power level is proved to be monotonically decreasing with

the importance weight, but strictly increasing with the normalization factor,

scaled circuit-to-noise power ratio and power amplifier efficiency.

• Finally, a proper guideline on how to choose the normalization factor and the

importance weight to benefit either link-layer EE or EC is provided.

In Chapter 4, the focus lies on maximizing the total EC for the uplink transmission

in a multi-user multi-carrier OFDMA network, subject to each user’s required link-

layer EE performance level and its individual resource limits. Firstly, the resource

allocation problem is decoupled into two steps, i.e., the subcarrier assignment solution
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and the optimal power allocation strategy for each user. In more detail, a low-

complexity heuristic algorithm is proposed, which first allocates each served user the

exact number of its required subcarriers, and then implements the optimal power

allocation strategy for each user. Finally, the remaining subcarriers will be allocated

by applying the strategy that the user with current minimum EC value has the

allocation priority. To sum up, this chapter has the following contributions:

• A novel total EC maximization problem for the uplink transmission, in a multi-

user multi-carrier OFDMA system, is formulated as a complex combinatorial

integer programming problem, subject to each user’s link-layer EE requirement

and the individual’s average input power limit. An adjustable EE requirement

factor is introduced to further tune each user’s EE constraint value, which

transforms the formulated problem into a tradeoff problem between the total

EC and the users’ individual EE achievements.

• The formulated challenging problem is first decoupled into a frequency pro-

visioning problem and an independent link-layer multi-carrier EE-EC trade-

off problem for each user. The traditional exhaustive algorithm and a fair-

exhaustive algorithm are introduced first, followed by a low-complexity heuris-

tic algorithm, which cares about user fairness, offers a close-to-optimal perfor-

mance, and also has a complexity linearly relating to the size of the problem.

• The independent power-constrained link-layer EE-EC tradeoff problem is then

solved and analyzed for each single-user multi-carrier system, given a subcarrier

assignment matrix. The optimal power allocation strategy, which is across fre-

quency and time domains, and the Pseudocode of the optimal power allocation

algorithm are derived and proposed.

• The proposed per-user optimal average power level is proved to be monotonically

decreasing with its EE requirement factor. Furthermore, the proposed per-user

link-layer EE value is proved to be monotonically decreasing with its circuit

power value, but increasing with its EE requirement factor.

• Simulation results reveal that when there is a link-layer EE constraint, each

user’s operational tradeoff EC value 1 will not show a monotonic trend with its

delay QoS exponent. Further, the tradeoff EC value achieved with a smaller

1Here each user’s operational tradeoff EC value is the calculated final EC value achieved at its
EE requirement equality.
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number of available subcarriers may be higher than the one obtained with larger

number of subcarriers.

In Chapter 5, the achievable link-layer rate and the total achievable EC are studied

for a downlink NOMA network with M users, under the per-user statistical delay

QoS requirements. Specifically, the M users are assumed to be divided into multiple

NOMA pairs, with coventional OMA applied for inter-NOMA-pairs multiple access.

The performance gain of NOMA over OMA is investigated, by analyzing the impact

of the transmit signal-to-noise ratio (SNR) and the delay QoS requirement on the

performance of individual EC and the total link-layer rate. In more detail, this

chapter has the following contributions:

• Focusing on a downlinkM-user network, the individual EC and the total achiev-

able link-layer rate are formulated and investigated. Assuming thatM users are

divided into multiple NOMA pairs, we prove that OMA achieves higher total

EC than NOMA, at small SNRs. Further, simulation results show that NOMA

outperforms OMA, at high SNRs.

• Focusing on a downlinkM-user network, the total EC difference between NOMA

and OMA becomes stable when the transmit SNR is extremely high.

• Focusing on a two-user network, the closed-form expressions for the link-layer

rates for both users, in NOMA and OMA, are derived. The accuracy is then

confirmed by comparing with the Monte Carlo simulation results.

• Focusing on a two-user network, the impact of the transmit SNR2 and the delay

QoS requirement is analyzed in two cases, for both NOMA and OMA scenarios.

Case 1: consider delay-constrained users; Case 2: consider delay-unconstrained

users.

• In Case 1 and Case 2, we characterize the region of the transmit SNR, in which

NOMA outperforms OMA, in terms of the individual and the total EC for the

two-user system.

2The transmit SNR is defined as the ratio of the transmission power to the noise power, in which
the noise is assumed to be the additive white Gaussian noise. Further details will be provided in
the next section.
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1.2.2 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2, the theory of

EC and convex optimization is introduced first, followed by a brief literature review

on the resource allocation towards green communications and the current research

progress in NOMA networks. In Chapter 3, the delay-constrained resource allocation

for a joint optimization problem of link-layer EE and EC is analyzed and solved in a

single-user single-carrier communication system. As a natural extension of Chapter

3, Chapter 4 studies the delay-constrained resource allocation which solves the total

EC maximization problem for the uplink transmission in a multi-user multi-carrier

system, subject to each user’s link-layer EE requirement and the individual power

limit. In Chapter 5, the link-layer throughput analysis and the total achievable EC

are studied and analyzed for a downlink M-user NOMA network, under the per-user

statistical delay QoS requirements. Finally, in Chapter 6, this thesis is summarized

and the recommendations for future research are provided.
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Chapter 2

Background Theory and Literature

Review

2.1 The Theory of Effective Capacity

2.1.1 Large Deviation Theory

Let X1, X2, . . . , be a sequence of independent and identically distributed (i.i.d.) ran-

dom variables with mean µ = E[X1] < ∞, and let Mn =
1

n
(X1 + · · ·+Xn) denote

the empirical mean. From the weak law of large numbers, it is noted that for any

ǫ > 0, P (|Mn − µ| > ǫ) → 0, as n→ ∞ [37]. But how fast is this convergence? This

falls into the scope of the theory of large deviations [38, 39]. Large deviation theory

includes a set of techniques for turning difficult probability problems dealing with a

class of rare events into analytic problems in the calculus of variations [38].

To find out the decay rate, the probability of the empirical mean exceeding a is

considered, where a is a value larger than µ, i.e., a > µ. Then, by fixing a positive

parameter θ > 0, we get [37]

P

(
∑

1≤i≤n

Xi > an

)
= P

(
e
θ

∑
1≤i≤n

Xi

> eθan
)

(2.1)

≤
E

[
e
θ

∑

1≤i≤n

Xi

]

eθan
(2.2)

=
E
[∏

i e
θXi
]

(eθa)n
(2.3)

=

(
E
[
eθX1

]

eθa

)n

. (2.4)

From (2.1) to (2.2), it is derived by utilizing the Markov inequality [38]. From (2.3)
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to (2.4), it is due to the reason that the random variables Xi, i ∈ [1, n], are i.i.d. [38].

Finally, (2.4) can be considered as an upper bound for the tail probability. For the

bound to be meaningful and useful, E
[
eθX1

]
needs to exist and

E
[
eθX1

]

eθa
needs to be

less than 1. Here, E
[
eθX1

]
is the moment generating function (MGF) of X1 and can

be denoted by MX(θ)
1.

Definition. Let X be a random variable. The MGF of X is defined by [40]

MX(θ) = E[eθX ] =





∑

x

eθxPX(x), if X is discrete with PMF PX(x),

∫ ∞

−∞

eθxfX(x)dx, if X is continuous with PDF fX(x).

The domain DX of MX(θ) is defined as the set DX = {θ ∈ R|MX(θ) <∞}.
Henceforth, DX is the set of θ for which the MGF is finite, i.e., when the sum or

integral given above converges [41]. Furthermore, according to [37], it can be proved

that the ratio
E
[
eθX1

]

eθa
< 1, for sufficiently small positive θ values, for any a > µ.

Similarly, if a < µ,
E
[
eθX1

]

eθa
< 1 holds for sufficiently small negative θ values2. Hence,

for a > µ, one can conclude that for sufficiently small positive values of θ in DX
3,

(2.4) provides an exponential bound on the tail probability for the empirical mean.

Note that the reason for calling MX(θ) moment generating function is due to the

Taylor expansion of eθX [41, 42]. By assuming that it converges, we have

MX(θ) = E[eθX ] = E

[
1 + θX +

1

2
θ2X2 +

1

3!
θ3X3 + . . .

]
=

∞∑

i=0

1

i!
θiE[X i].

The terms E[X i] are called ”moments” and include important information about the

distribution. Through the MGF, all the moments of this distribution can be calcu-

lated. For example, if a MGF exists for a random variable X , then the mean of X can

be found by evaluating the first derivative of the MGF at θ = 0, i.e., E[X ] =M ′
X(0).

The variance of X can be found by evaluating the first and second derivatives of

the MGF at θ = 0, i.e., M ′′
X(0) − (M ′

X(0))
2. Another important property of MGF

is that it has a one-to-one correspondence with the random variable’s probability

distribution. In other words, for any distribution there is a unique MGF that char-

acterizes it (if it exists) and for each MGF there is a unique probability distribution

it characterizes [43].

1Here we use MX(θ) rather than MX1
(θ), to denote the identical MGF for the i.i.d. sequence

{Xi, i = 1, . . . , n}.
2The proof is omitted here for simplicity. Please refer to [37] for the complete information.
3The domain DX is an interval containing zero [37].
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Recall that for any a > µ, by fixing a positive θ, an exponential bound on the tail

probability P

( ∑
1≤i≤n

Xi > an

)
has been found in (2.4). On the other hand, if a < µ,

by fixing a negative θ < 0, one can get that

P

(
∑

1≤i≤n

Xi < an

)
= P

(
e
θ

∑

1≤i≤n

Xi

> eθan
)

≤
(
MX(θ)

eθa

)n

. (2.5)

Finally, the above findings can be summarized in the theorem below [37].

Theorem 1. Given an i.i.d. sequence X1, . . . , Xn, the MGF MX(θ) is assumed to

be finite for all θ in some neighborhood B0 of θ = 0. Let a > µ = E[X1]. Then there

exists θ > 0, such that
MX(θ)

eθa
< 1 and

P




∑
1≤i≤n

Xi

n
> a


 ≤

(
MX(θ)

eθa

)n

. (2.6)

Similarly, if a < µ, then there exists θ < 0, such that
MX(θ)

eθa
< 1 and

P




∑
1≤i≤n

Xi

n
< a


 ≤

(
MX(θ)

eθa

)n

. (2.7)

Proof. The proof follows the above analysis.

Theorem 1 provides an exponential bound on the tail probability for the empirical

average of X1, . . . , Xn. But how tight can the bound be? Since θ can be varied as

long as MX(θ) is finite, therefore the value of θ which minimizes the ratio
MX(θ)

eθa

needs to be found [37]. By rewriting

(
MX(θ)

eθa

)n

as e−n(θa−lnMX(θ)), we get4 [44]

inf
θ

(
MX(θ)

eθa

)n

= inf
θ
e−n(θa−lnMX(θ)) (2.8)

= e
inf
θ

−n(θa−lnMX(θ))
(2.9)

= e
−n sup

θ

(θa−lnMX(θ))
. (2.10)

From (2.8) to (2.9), it is due to the reason that the exponential function is a mono-

tonically increasing function. From (2.9) to (2.10), it is derived by applying the

4Here, sup
θ

f(θ) is the supremum of f(θ), which represents the least upper bound. Meanwhile,

inf
θ

f(θ) is the infimum of f(θ), which denotes the greatest lower bound. Further, if the minimum

(or maximum) exists, then it must be the infimum (or supremum).
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Proposition 11.4 in [45], which says that if c < 0, c ∈ R, then inf
A
cf = c sup

A
f , for a

bounded function f : A→ R. Then, let us apply the infimum of the upper bound to

the first part of Theorem 1. Hence, (2.6) can be transformed into

P




∑
1≤i≤n

Xi

n
> a


 ≤ inf

θ>0

(
MX(θ)

eθa

)n

= e
−n sup

θ>0
(θa−lnMX(θ))

. (2.11)

According to [46], the tightness of the above bound can be confirmed. In other words,

it can be proved that lim
n→∞

1

n
logP

(∑
1≤i≤nXi

n
> a

)
= − sup

θ>0
(θa− lnMX(θ)), based

on the assumption that the supremum can be obtained at some interior point in the

neighborhood B0. Further, sup
θ>0

(θa− lnMX(θ)) is called Legendre transform, defined

below [37].

Definition. A Legendre transform of a convex function Λ (θ) is defined by I(x) =

sup
θ

(θx− Λ(θ)). The domain Dx of I(x) is given as {x ∈ R| sup
θ

(θx− Λ(θ)) <∞}.
Suppose that Λ(θ) = lnMX(θ) and finite MGFMX(θ) exists for all θ. According to

[37,45], it is proved that lnMX(θ), which is called the log moment generating function

or the cumulant generating function, is convex. Then, the Legendre transform5 I(x) =

sup
θ

(θx− lnMX(θ)) , x ∈ R, is proved to be a convex (being the supremum of linear,

hence a convex function) and non-negative function, with its minimum I(µ) = 0

obtained at the mean value µ = E[X1] [37, 38, 45]. Furthermore, it is shown to be an

increasing function on [µ,∞), and a decreasing function on (−∞, µ] [37].

Note that the tail probability described in Theorem 1 considers relatively sim-

ple situations. To deal with more complicated rare events, like the likelihood of

P (

∑
1≤i≤nXi

n
∈ A) for some set A ⊂ R, a more generalized theorem is needed [47,48].

Theorem 2. (Cramér Theorem) Let X1, . . . , Xn, be a sequence of i.i.d. real valued

random variables with Sn =

∑
1≤i≤nXi

n
, which satisfies the large deviation principle

with the convex rate function I(x) = sup
θ

(θx− lnMX(θ)).

1. For any closed set F ⊂ R, lim sup
n→∞

1

n
logP (Sn ∈ F ) ≤ − inf

x∈F
I(x),

2. For any open set U ⊂ R, lim inf
n→∞

1

n
logP (Sn ∈ U) ≥ − inf

x∈U
I(x).

Proof. The proof is omitted here. Please refer to [37] for further information.

5The Legendre transform of lnMX(θ) is also commonly called the rate function in the theory of
Large Deviations.
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Here, lim sup
n→∞

f(n) is defined as lim sup
n→∞

f(n) = lim
n→∞

g(n), where g(n) = sup
k≥n

f(k),

representing the supremum of f(k) with k ≥ n. Similarly, lim inf
n→∞

f(n) is defined as

lim inf
n→∞

f(n) = lim
n→∞

h(n), where h(n) = inf
k≥n

f(k), representing the infimum of f(k)

with k ≥ n [45]. Furthermore, according to [45, 49], it is noted that for any function

f(t), if its limit exists, i.e., lim
t→∞

f(t) = f ∗ (where f ∗ is possibly infinite), then both the

lim sup and lim inf of the function are equal to f ∗, i,e, lim sup
t→∞

f(t) = lim inf
t→∞

f(t) = f ∗.

Conversely, if lim sup
t→∞

f(t) = lim inf
t→∞

f(t), then the regular limit also exists and is equal

to the same value [49].

To see that Theorem 2 is a generalization of Theorem 1, we provide the following

analysis [44, 47]. Set F = [a,∞)6, and U = (a,∞), a ≥ µ = E[X1]. For x ∈ [a,∞),

I(x) monotonically increases with a minimum value achieved at x = a. Hence,

by applying the first part of Cramér Theorem, we have lim sup
n→∞

1

n
logP (Sn ≥ a) ≤

− inf
x≥a

I(x) = −min
x≥a

I(x) = −I(a). Furthermore, due to the reason that F ⊃ U ,

one can get that P (Sn ∈ F ) ≥ P (Sn ∈ U), i.e., P (Sn ≥ a) ≥ P (Sn > a). By

applying the second part of Cramér Theorem, we get lim inf
n→∞

1

n
logP (Sn ≥ a) ≥

lim inf
n→∞

1

n
logP (Sn > a) ≥ − inf

x>a
I(x) = −I(a)7. Henceforth, one can conclude that

lim sup
n→∞

1

n
logP (Sn ≥ a) = lim inf

n→∞

1

n
logP (Sn ≥ a), which equals to the regular limit,

i.e., lim
n→∞

1

n
logP (Sn ≥ a) = −I(a) [37, 44]. Since the limit is insensitive to whether

the inequality is strict, hence we can get that lim
n→∞

1

n
logP (Sn > a) = −I(a) [37],

which confirms the analysis following Theorem 1.

Note that Cramér Theorem only applies to a sequence of i.i.d. random variables.

For a sequence of not necessarily independent random variables, the Gärtner-Ellis

Theorem provided below can be utilized to deal with large deviation events [50–53].

Consider a sequence of random variables {Yn, n ≥ 1}. Let Λn(θ) =
1

n
log
(
E
[
eθYn

])
.

Note that Λn(θ) can be proved to be a convex function via Hölder’s inequality [52,53]8.

Theorem 3. (Gärtner-Ellis Theorem [53])Assume

(A1) lim
n→∞

Λn(θ) = Λ(θ) <∞ for all θ ∈ R,

(A2) Λ(θ) is differentiable for all θ ∈ R.

Let Λ∗(a) = sup
θ
θa− Λ(θ).

6Note that the set F is closed, since its complement (−∞, a) is an open set.
7This step requires the property of lim inf: lim inf

t→∞

f(t) ≥ lim inf
t→∞

g(t), if f(t) ≥ g(t), for all t.
8The proof is omitted here for simplicity. Please refer to [52] for further information.
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1. (Upper bound) For every close set F ⊂R, lim sup
n→∞

1

n
logP

(
Yn
n

∈ F

)
≤− inf

a∈F
Λ∗(a).

2. (Lower bound) For every open set U⊂R, lim inf
n→∞

1

n
logP

(
Yn
n

∈ U

)
≥− inf

a∈U
Λ∗(a).

Proof. The proof is omitted here. Please refer to [37] for further information.

Gärtner-Ellis Theorem states that when the scaled cumulant generating function

of Yn, i.e., Λn(θ), is differentiable and converges, the large deviation principle holds

for
Yn
n

with a rate function Λ∗(a) given by the Legendre-Fenchel transform of Λ(θ)9.

2.1.2 Envelope Process

To support quality-of-service (QoS) guarantees in communication networks, it is im-

portant to characterize the source traffic and the network service, matched using a

First-In-First-Out (FIFO) buffer [10]. The most widely used approach for traffic char-

acterization, is to require that the cumulative arrival traffic A(t) of a flow over any

interval of length t conforms to an upper bound, called the traffic envelope Â(t). Cor-

respondingly, the service characterization is a guarantee of a minimum service level,

specified by a service envelope Ĉ(t) [10]. Such traffic and service envelopes could be

deterministic (i.e., strict bounds) or statistical (i.e., violation is allowed, but with a

small probability), which can be used for provisioning of deterministic or statistical

service guarantees [54], such as a bounded delay or a delay violation probability. In

this section, the deterministic envelope process is briefly introduced first, followed by

the statistical envelope process, which leads to the concept of effective bandwidth.

2.1.2.1 Deterministic Envelope Process

We first describe a discrete-time arrival process of a traffic source by a sequence of

variables {a(t), t = 0, 1, 2, . . . }. Let A (t1, t2) be the cumulative number of arrivals in

the time interval (t1, t2], i.e., A(t1, t2) =
t2∑

t1+1

a(t). Assume that there is no arrival at

time 0, and that A(t) is nondecreasing, i.e., A(t1) ≤ A(t2), for all t1 ≤ t2.

Generally, for such traffic flows, a deterministic envelope process could be any

nondecreasing, nonnegative function, as long as the cumulative traffic is bounded

[13, 54], i.e., A(t1, t2) ≤ Â(t2 − t1), ∀t1 ≤ t2. In this section, we only focus on the

9Here, the Legendre-Fenchel transform is a generalization of the Legendre transform, which ap-
plies to non-convex functions.
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simple linear envelope process proposed in [55]10:

A (t1, t2) ≤ â (t2 − t1) + σ, ∀t1 ≤ t2, (2.12)

where σ is called the burstiness parameter and â can be considered as an upper

bound on the long-term average rate of the traffic flow [55]11. Since A (t1, t2) is the

number of arrivals in the interval (t1, t2], hence, the linear envelope process in (2.12)

basically imposes an upper bound on the number of arrivals within a time interval.

Furthermore, the proposed linear envelope process is formulated as a function of the

time interval τ = t2 − t1, regardless where the interval begins [13].

Since envelope processes are not unique, therefore it is important to find the

tightest one, which satisfies A∗(t) = sup
s≥0

A(s, s + t). That is, A∗(t) is called the

minimum envelope process (MEP) of A(t). According to [13], it is known that the

MEP A∗(t) is increasing and subadditive12, and the minimum envelope rate (MER)

is defined as a∗ = lim
t→∞

A∗(t)

t
.

While the deterministic traffic bound looks intuitive, a drawback is that it gen-

erally considers the ”hard” performance guarantees, such as the worst-case delay

bounds and no packet dropped in the network [54]. As a consequence, it cannot

take advantage of the statistical nature of traffic [57]. In addition, hard performance

guarantees might be an overkill for some applications, where a certain amount of loss

or delay violation is tolerable. For example, in fading communication networks, it is

especially challenging and unnecessary to satisfy a strict deterministic delay bound,

due to the random variations experienced in channel conditions, user mobility and

changing environment.

2.1.2.2 Statistical Envelope Process

As opposed to the deterministic approach, a statistical envelope process bounds traffic

flows in a probabilistic manner, and provides ”soft” QoS guarantees, statistically [54].

There are various statistical envelope processes, but in this section the focus lies on

the stochastic traffic characterization proposed in [13]. Specifically, this envelope

process deterministically bounds the moment generating function of the cumulative

arrival A(t) and supports probabilistic delay QoS guarantees. Note that if the MGF

of a random variable X is bounded by a finite constant D as
(
E[eθX ]

)1/θ ≤ D, then

10For more generalized deterministic envelope processes, please refer to [54] for further information.
11An arbitrary traffic flow can be policed to be confined to the linear envelope process, by using

a token bucket with a token rate â and a token bucket size σ [54, 56].
12A process A∗(t) is subadditive if A∗(t1 + t2) ≤ A∗(t1) +A∗(t2).
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from Chernoff’s bound [58], its distribution is bounded exponentially with respect to

θ as

P (X ≥ x) ≤ Dθe−θx, for all x. (2.13)

Henceforth, by deterministically bounding the MGF of the cumulative arrival A(t),

the arrival traffic itself can be bounded in a probabilistic way.

The mathematical expression of the statistical envelope process proposed in [13]

can be given as

1

θ
log
(
E
[
eθA(t1,t2)

])
≤ Â(θ, t2 − t1), ∀t1 ≤ t2, (2.14)

where Â(θ, t) is called an θ-envelope process of A(t) [13]. Similar to the deterministic

case, the θ-MEP of A(t) is defined as A∗(θ, t) = sup
s≥0

1

θ
log
(
E
[
eθA(s,s+t)

])
, and the

θ-MER is given as a∗(θ) = lim sup
t→∞

A∗(θ, t)

t
[13].

By applying the Chernoff bound in (2.13) and the Lindley’s equation from queue-

ing theory, the above statistical envelope process can be used to derive the proba-

bilistic delay QoS measures, which leads to the concept of effective bandwidth.

2.1.3 Effective Bandwidth

Consider a discrete-time FIFO queue with a single link. Let a(t) and q(t) be the

number of arrivals at time t and the number of packets in the queue at time t,

respectively. Assume that the buffer size is infinite and that the link can serve c(t)

packets per unit of time, which means that the capacity of the link at time t is c(t).

If the link has a constant capacity, then c(t) = c, for all t. The link works under a

work-conserving policy, i.e., a policy that does not allow idling when there are packets

in the queue. Further, q(t) converges to a steady state q(∞), if both a(t) and c(t) are

stationary and ergodic, and E[a(t)] < E[c(t)] [43, 53].

Let A(t1, t2) =
t2∑

t=t1+1

a(t) be the total number of arrivals in the time interval

(t1, t2], and C(t1, t2) =
t2∑

t=t1+1

c(t). Before deriving the theory of effective bandwidth

(EB), the authors in [16, 53] proposed a theorem as follows.

Theorem 4. Let us make the following assumptions first.

(A1) a(t) and c(t) are independent.

(A2) For all θ ∈ R, lim
t→∞

1

t
log
(
E
[
eθA(0,t)

])
= ΛA (θ) and ΛA (θ) is differentiable.
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(A3) For all θ ∈ R, lim
t→∞

1

t
log
(
E
[
eθC(0,t)

])
= ΛC (θ) and ΛC (θ) is differentiable.

(A4) Both a(t) and c(t) are stationary and ergodic, and E[a(t)] < E[c(t)].

If there exists a unique θ∗ > 0 such that

ΛA (θ∗) + ΛC (−θ∗) = 0, (2.15)

then we can get

lim
x→∞

log (Pr (q (∞) ≥ x))

x
= −θ∗. (2.16)

Proof. The proof is omitted here for simplicity. Please refer to [16, 53].

Specifically, when the capacity is a fixed constant, i.e., c(t) = c for all t, ΛC (−θ∗)
reduces to

ΛC (−θ∗) = lim
t→∞

1

t
log
(
e−θ∗ct

)
= −θ∗c. (2.17)

By inserting (2.17) into (2.15), we get that
ΛA (θ∗)

θ∗
= c. Henceforth, one can conclude

that, when the capacity is fixed as a constant c, the condition needed to satisfy the

queue overflow probability is that
ΛA (θ∗)

θ∗
= c. In other words,

ΛA (θ∗)

θ∗
can be

considered as the bandwidth (approximated) needed to guarantee the queue overflow

probability [53]. Hence,
ΛA (θ)

θ
, denoted by Eb(θ), is called the effective bandwidth

of the arrival process, on the condition that the tail distribution of the queue length

has the decay rate θ [16].

Furthermore, the assumptions (A2-3), known as the Gärtner-Ellis limits [50, 51],

connects the large deviation theory with the θ-MER introduced in Section 2.1.2.2 [53].

To establish the connection, we recall that {a(t), t ≥ 0} is stationary and ergodic.

Hence, the θ-MEP of the arrival process, i.e., A∗(θ, t), equals to
1

θ
log
(
E
[
eθA(0,t)

])
.

Further, the θ-MER of A(t), i.e., a∗(θ), defined as lim sup
t→∞

1

θt
log
(
E
[
eθA(0,t)

])
, equals

to lim
t→∞

1

θt
log
(
E
[
eθA(0,t)

])
13, due to the reason that the Gärtner-Ellis limit exists.

Hence, one can conclude that the θ-MER of A(t), equal to
ΛA (θ)

θ
, is the effective

bandwidth of the arrival process [53], when the Gärtner-Ellis limit of A(t) exists.

13Note that for any function f(t), if its limit exists, i.e, lim
t→∞

f(t) = f∗, then lim sup
t→∞

f(t) = f∗.
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2.1.4 Effective Capacity

Inspired by the theory of EB, the authors in [10] proposed the concept of effective ca-

pacity (EC), as a dual of EB. Let {c(t), t = 0, 1, 2, . . . } be a discrete-time service pro-

cess, which is stationary and ergodic. C(t1, t2) =
t2∑

t=t1+1

c(t) denotes the partial sum.

Assume that the Gärtner-Ellis limit of C(t), expressed as lim
t→∞

1

t
log
(
E
[
eθC(0,t)

])
=

ΛC (θ), exists and is a differentiable convex function for all θ ∈ R [16]. Consider that

the arrival rate is a constant, i.e., a. Therefore, by applying Theorem 4 in Section

2.1.3, one can get that

ΛC (−θ∗) = −ΛA (θ∗) = −θ∗a, (2.18)

where θ∗ is the unique delay QoS exponent satisfying (2.16). From (2.18), it is noted

that −ΛC (−θ∗)
θ∗

= a, which can be considered as the effective capacity of the service

process, on the condition that the queue overflow probability can be guaranteed with

a decay rate θ∗. Finally, −ΛC (−θ∗)
θ∗

, denoted by Ec(θ), can be calculated from the

Gärtner-Ellis limit:

Ec(θ) = −ΛC (−θ∗)
θ∗

= − lim
t→∞

1

θt
log
(
E
[
e−θC(0,t)

])
. (2.19)

Furthermore, let us define ǫ as the required queue overflow probability limit. In

other words, the maximum queue overflow probability that can be afforded is given

as ǫ. In this case, by applying (2.16), the minimum decay rate θ∗ can be calculated

as θ∗ = − (log ǫ) /x. Inserting the minimum decay rate θ∗ into (2.19), a maximum

value of Ec(θ
∗) satisfying the queue overflow probability limit can be found, since

EC is a monotonically decreasing function with the delay QoS exponent. Hence,

one can say that, in order to guarantee a required queue overflow probability limit,

the calculated effective capacity Ec(θ
∗) represents the maximum constant arrival rate

that the service process can support.

Further, when the sequence {c(t), t = 0, 1, 2, . . .} is uncorrelated, the effective
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capacity reduces to

Ec(θ) = − lim
t→∞

1

θt
log

(
E

[
e
−θ

t∑
i=1

c(i)

])
(2.20)

= − lim
t→∞

1

θt
log

(
E

[
t∏

i=1

e−θc(i)

])
(2.21)

= − lim
t→∞

1

θt
log

(
t∏

i=1

E
[
e−θc(i)

]
)

(2.22)

= − lim
t→∞

1

θt
log
(
E
[
e−θc(i)

])t
(2.23)

= −1

θ
log
(
E
[
e−θc(i)

])
. (2.24)

From (2.21) to (2.22), it is due to the reason that the sequence {c(t), t = 0, 1, 2, . . . } is

uncorrelated. From (2.22) to (2.23), it is because that the service process is stationary

and ergodic. Apparently, when the service process is uncorrelated, the EC expression

in (2.24) only depends on marginal statistics, which is much simpler than the general

expression given in (2.19), where the higher-order statistics are required [11]. Since

the block fading channel generates an i.i.d., hence uncorrelated, service process, it

can greatly simplify the EC expressions [11].

Note that the above introduction of EC assumes the constant arrival rate. Actu-

ally, it can be generalized to investigate the delay QoS performance of any stationary

arrival process [11]. By rewriting (2.15) in Theorem 4 in Section 2.1.3, we can get

that if there exists a unique θ∗ > 0 such that

ΛA (θ∗)

θ∗
= −ΛC (−θ∗)

θ∗
, (2.25)

then we have

lim
x→∞

log (Pr (q (∞) ≥ x))

x
= −θ∗. (2.26)

Since
ΛA (θ∗)

θ∗
= Eb(θ

∗) denotes the EB and −ΛC (−θ∗)
θ∗

= Ec(θ
∗) is the EC, hence,

(2.25) and (2.26) indicate that the EB function intersects with the EC function at

the point where the delay QoS exponent is θ∗. Here, θ∗ is the one which guarantees

the queue overflow probability limit.

To thoroughly understand the relationship between EB and EC when the time-

varying arrival process and service process are considered, Fig. 2.1 is included which

shows the curves of EB and EC versus the delay QoS exponent θ [11]. Set µa =
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Figure 2.1: EC and EB, as functions of the delay QoS exponent θ.

lim
θ→0

Eb(θ), and µc = lim
θ→0

Ec(θ). From Fig. 2.1, it shows that when the minimum value

of EB is larger than the maximum value of EC, i.e., µa > µc, there is no solution

for θ∗ > 0 existing. In this case, the service process cannot support the required

delay QoS for the given arrival process, which is consistent with the conclusion from

queueing theory that, if E[a(t)] > E[c(t)], both queue length and the queueing delay

will approach to infinity. This is because that, when θ → 0, the EB is equal to the

average arrival rate of the traffic process, i.e., µa = lim
θ→0

Eb(θ) = E[a(t)]. Meanwhile,

when θ → 0, the EC is equal to the average service rate of the service process, i.e.,

µc = lim
θ→0

Ec(θ) = E[c(t)] [11].

In the above analysis, the buffer overflow probability was considered as the delay

QoS measurements. When the focus is on the delay experienced by a source packet

arriving at time t, defined by D(t), an expression analogous to (2.26) can be estimated

as [10, 53]

Pr (D(t) > Dmax) ≈ Pr (q(t) > 0) e−θµDmax , (2.27)

where Dmax denote the delay bound, and Pr (q(t) > 0) is the probability of a non-

empty buffer, which can be approximated by the ratio of the average arrival rate

and the average service rate [11], i.e.,
E[a(t)]

E[c(t)]
. Furthermore, from [11], we note that

µ = Ec(θ) = Eb(θ), when a time-varying arrival process is considered.
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Considering the delay violation probability in (2.27) as a function of θ, one can

notice that the parameter θ plays an important role for statistical QoS guarantees,

by indicating the exponential decay rate of the delay QoS violation probability [11].

A smaller θ corresponds to a slower decay rate, which implies that the system can

tolerate a looser QoS guarantee, while a larger θ indicates a faster decay rate, which

means that a more stringent QoS requirement can be supported. In particular, when

θ → 0, the system can tolerate an arbitrarily long delay. When θ → ∞, it indicates

that the system cannot tolerate any delay [12].

2.2 Convex Optimization Theory

2.2.1 Convex Optimization Problems

Normally, an optimization problem has the following form [59, 60]

min f0(x) (2.28a)

subject to: fi(x) ≤ bi, i = 1, . . . , m (2.28b)

hi(x) = 0, i = 1, . . . , p. (2.28c)

Here, the vector x = [x1, . . . , xn] is the optimization variable of the problem, the

function f0 : Rn → R is the objective function, the functions fi : Rn → R, i =

1, . . . , m, are the inequality constraint funtions, the constants b1, . . . , bm are the limits

for the constraints, and the functions hi : R
n → R, i = 1, . . . , p are called the equality

constraint functions [59]. If a vector x∗ provides the minimum objective value among

all feasible vectors which satisfy the constraints, then it is an optimal solution.

Then, a convex optimization problem has the following form [59]

min f0(x) (2.29a)

subject to: fi(x) ≤ 0, i = 1, . . . , m (2.29b)

aTi x = bi, i = 1, . . . , p, (2.29c)

where f0, . . . , fm are convex functions. Comparing (2.29) with the general form (2.28),

one can notice that the convex problem has the following requirements: 1) the objec-

tive function must be convex; 2) the inequality constraint functions must be convex;

3) the equality constraint functions hi(x) = aTi x − bi must be affine [59]. Here, we

note that a function fi : R
n → R is convex if its domain dom fi is a convex set and

if for all x, y ∈ dom fi with 0 ≤ α ≤ 1, we have [59]

fi(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y). (2.30)
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A function fi is strictly convex if strict inequality holds in (2.30) whenever x 6= y and

0 < α < 1. Further, a function fi is concave if −fi is convex, and strictly concave

if −fi is strictly convex. Since an affine function always holds the equality in (2.30),

therefore one can note that an affine function is both convex and concave [60].

Normally, if we can formulate a practical problem as a convex optimization prob-

lem, then we can solve it efficiently. However, sometimes the formulations can be

nonconvex [60]. For example, if f0 is quasiconvex instead of convex, then the prob-

lem (2.29) becomes a quasiconvex optimization problem [61]. Here, we note that a

function f : Rn → R is called quasiconvex if its domain and all its sublevel sets

Sα = {x ∈ dom f | f(x) ≤ α}, for α ∈ R, are convex. The sublevel sets of convex

functions are convex, therefore convex functions are quasiconvex. But the converse

is not true. For some quasiconvex problems following specific structures, e.g., convex

fractional programming [62,63], they can be transformed into equivalent convex prob-

lems and then get solved efficiently. The calculated optimal solutions can be proved

to be optimal for the original quasiconvex problems [62, 63].

2.2.2 Lagrangian Dual and KKT Conditions

In this section, we briefly introduce the Lagrangian dual and the Karush-Kuhn-Tucker

(KKT) condtions, which will be applied in Chapter 3 and Chapter 4 to solve the

optimization problems and to derive the optimal power allocation strategies.

The basic idea in Lagrangian duality is to take the constraints in (2.28) into

account by augmenting the objective function with a weighted sum of the constraint

functions [59]. The Lagrangian L : Rn ×Rm ×Rp → R associated with the problem

(2.28) is defined as follows [59]

L(x, λ, v) = f0(x) +
m∑

i=1

λifi(x) +

p∑

i=1

vihi(x). (2.31)

Here, λi is the Lagrangian multiplier associated with the ith inequality constraint

fi(x) ≤ 0, and vi is the Lagrangian multiplier associated with the ith equality con-

straint hi(x) = 0. The vectors λ and v are called the Lagrangian multiplier vectors

associated with the optimization problem [59].

Then, the Lagrangian dual function g : Rm×Rp → R is defined as the minimum

value of the Lagrangian over x: for λ ∈ Rm, v ∈ Rp,

g(λ, v) = inf
x
L(x, λ, v) = inf

x
f0(x) +

m∑

i=1

λifi(x) +

p∑

i=1

vihi(x). (2.32)
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The Lagrangian dual function g(λ, v) is concave even when the orginal problem (2.28)

is not convex, since the dual function is the pointwise infimum of a family of affine

functions of (λ, v) [59]. For each pair (λ, v) with λ � 014, the Lagrangian dual function

provides a lower bound on the optimal value p∗ of the optimization problem (2.28).

Then, in order to find the best lower bound that can be obtained from the Lagrangian

function, the following optimization problem needs to be solved [59]:

max g(λ, v) (2.33a)

subject to: λ � 0. (2.33b)

This problem is called the Lagrangian dual problem associated with the problem

(2.28). Correspondingly, the orginal problem (2.28) can be called as the primal prob-

lem. Apparently, the Lagrangian dual problem (2.33) is a convex optimization prob-

lem, since the objective function is concave and the constraint function is convex [59].

This does not depend on the convexity of the primal problem (2.28) [59].

Then, we assume that the functions f0, . . . , fm, h1, . . . , hp are differentiable. From

[59], we note that if a convex optimization problem with differentiable objective and

constraint functions satisfies Slater’s condition, then the KKT conditions provide

necesseary and sufficient conditions for optimality. Hence, by assuming that fi func-

tions are convex and hi functions are affine, and x∗, λ∗, v∗ are any points that satisfy

the KKT conditions

fi(x
∗) ≤ 0, i = 1, . . . , m (2.34a)

hi(x
∗) = 0, i = 1, . . . , p (2.34b)

λ∗i ≥ 0, i = 1, . . . , m (2.34c)

λ∗i fi(x
∗) = 0, i = 1, . . . , m (2.34d)

∇f0(x∗) +
m∑

i=1

λ∗i∇fi(x∗) +

p∑

i=1

v∗i∇hi(x∗) = 0, (2.34e)

then x∗, λ∗, v∗ are primal and dual optimal, with zero duality gap [59].

2.3 Literature Review

2.3.1 Resource Allocation Towards Green Communications

According to International Telecommunication Union, the number of mobile subscrip-

tions worldwide has dramatically increased in recent years [64]. In addition, many

14Here, the curled inequality symbol � denotes generalized inequality. For vectors, it represents
componentwise inequality. For symmetric matrices, it represents matrix inequality.
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new wireless applications, such as autonomous driving, smart cities, smart homes and

appliances have emerged from research ideas to concrete systems [1]. The explosive

growth of wireless communication applications coupled with the proliferation of mo-

bile devices dramatically speeds up the progress of wireless networks, which results

in a higher-quality human life and rapid economic growth. Meanwhile, many tech-

nical challenges still remain unsolved in wireless network designs, e.g., the need for

reducing energy consumption and end-to-end latency [1].

According to [65], for every 1 TeraWatt hour (TWh) energy consumption, the

information and communication technology (ICT) sector is responsible for approxi-

mately 0.75 million tons of CO2 gas emissions. If no action is taken, the overall costs

and risks of climate change, as a result of the increasing green house gases (GHG)

emissions, will be equivalent to losing at least 5% of global gross domestic product

(GDP) every year [66]. Nevertheless, it is also well known that ICT industry has the

potential to reduce more than 23% of its current GHG emissions [66]. Interestingly,

if one-third of the GHG emissions is reduced, the generated economical benefit will

be higher than the required investment [67]. As an important part of ICT, wireless

communication sector needs to take the responsibility to save more energy. Green

communication technology, which emphasizes energy efficiency (EE) in addition to

spectral efficiency (SE), has thereby been proposed as an effective solution which

not only benefits communication technology sector, but also promotes economic and

ecological sustainability. However, considering the compromise between network per-

formance and energy savings, designing an efficient resource allocation strategy to

limit the network energy consumption is a real challenge [68–70].

In this trend, an energy-efficient optimization problem to maximize the EE of

the worst-case link was formulated and studied in [71], subject to the rate require-

ments, transmit power, and subcarrier assignment constraints. Price-driven algo-

rithms for joint power and admission control are proposed to characterize the tradeoff

between the total energy consumption and the system capacity in [72]. Considering

the cognitive radio networks, a multi-objective optimization was formulated in [73],

in which the ergodic capacity was maximized and the total transmission power of

femtocell base stations was minimized. A general power consumption model in multi-

user orthogonal frequency division multiple access (OFDMA) systems, including the

transmission power, signal processing power, and circuit power from both the trans-

mitter and receiver sides, was first established in [74]. Then the authors in [74]

proposed a joint optimization method to iteratively find the optimal solution for

the EE-maximization problem, subject to a peak transmit power constraint and a
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minimum system data rate requirement. EE and SE tradeoff, based on Shannon

limit, has also been extensively studied for different kinds of wireless communica-

tion networks, such as energy-constrained wireless multi-hop networks with a single

source-destination pair [75], multi-user downlink OFDMA networks [76], general nar-

rowband interference-limited systems [77] and OFDMA-based cooperative cognitive

radio networks [78]. Further, the relationship between EE and SE for downlink mul-

tiuser distributed antenna systems with proportional fairness was investigated in [79].

Specifically, the EE-maximization problem was first converted into a multi-objective

optimization problem (MOP), by maximizing the numerator of EE while minimiz-

ing its denominator. Then, the MOP was transformed into a single-objective opti-

mization problem (SOP) using weighted sum method, and the optimal power value

was provided by applying Lagrangian method and sub-gradient iteration approach.

Considering imperfect channel estimation in an orthogonal frequency division multi-

plexing (OFDM) network, the inverse of EE and inverse of SE were combined into a

weighted optimization problem in [80]. The problem was then transformed into a con-

vex problem, namely, to jointly minimize the total power consumption and maximize

the channel capacity, which was solved using Lagrangian method.

In the aforementioned studies [75–80], Shannon limit was utilized as the system

throughput, which is mostly considered as the suitable capacity metric for commu-

nication systems with no link-layer delay QoS requirements. Nevertheless, for delay-

sensitive mobile multimedia applications, such as video conferencing, autonomous

driving and online gaming, provisioning QoS requirements is critical. Actually, 5G,

the next generation of mobile communication technology, has been anticipated to not

only offer >1 Gbps downlink data rate, but also sub-1ms end-to-end latency and 90%

reduction in network energy usage [1]. This infers that the future wireless communica-

tion networks are targeted at satisfying the end-user applications’ QoS requirements,

while at the same time increasing EE and SE for green communications.

In order to fulfill these requirements, extensive studies in the context of power

control, scheduling, and admission control have been widely provided in [10, 19, 20,

23, 24, 26, 81–87]. A cross-layer optimization framework for delay-sensitive applica-

tions over a single wireless link was formulated in [81], in which some characteristics,

e.g., delay deadlines, dependencies, distortion impacts, were considered and discussed.

The authors in [82] provided energy-efficient transmission techniques for a group of

M packets subject to the individual packet transmission delay constraint. The above

works all characterize the delay QoS requirement for a dynamic queuing system in
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a deterministic way, where the delay is bounded within a certain threshold [83]. Al-

though this sounds reasonable for real-time services, satisfying fixed QoS guarantees

is especially challenging in fading communication scenarios, due to the random varia-

tions experienced in channel conditions, user mobility and changing environment [84],

which could lead to settling for non-necessarily low data rates. In this direction, the

delay-limited capacity, i.e., the zero-outage capacity, which is defined as the maximum

rate achievable with a prescribed strict delay bound, was derived and analyzed in [88]

and [89]. Since delay-limited capacity is a performance level that can be attained

regardless of the values of the fading states, it can be seen as a stringent and deter-

ministic service guarantee [84]. However, the attempt to provide a strict lower bound

on delay may result in extremely conservative guarantees [10]. For example, the only

lower bound that can be deterministically guaranteed in a Rayleigh fading channel

is a capacity of zero [10]. In contrast to the above deterministic delay QoS bounds,

in this thesis, the statistical delay QoS requirement is considered, which confines the

delay bound violation probability to a required value range. In this direction, the

authors in [10] introduced a link-layer capacity notion supporting statistical delay

QoS requirements, which is the concept of EC.

EC, as a generalized link-level capacity notion which specifies the maximum ar-

rival rate with a target delay-outage probability requirement, has recently received a

lot of attention [10]. Specifically, EC can be regarded as the link-layer SE while the

link-layer EE can be formulated as the ratio of EC to the total power expenditure.

However, just like the inconsistent property of EE and SE in physical-layer channel

model, the link-layer EE and EC also can be incompatible [21]. In more detail, for a

point-to-point communication system operating in a flat-fading channel, the EE ver-

sus EC curve is bell shape when non-zero circuit power is considered [22]. Comparing

with the physical-layer EE and SE, the link-layer EE and EC experience a much

more pronounced tradeoff [22–24]. Therefore, how to allocate the system resource

to efficiently balance the two conflicting metrics deserves elaborate study. Towards

this direction, considering frequency flat-fading channels, an optimal power allocation

strategy to maximize EC subject to an EE constraint, for delay-limited mobile mul-

timedia applications was introduced in [23]. [24] analyzed the tradeoff between EE

and EC by providing the mutually beneficial (MB) region and the contention-based

(CB) region. In more detail, the MB region refers to the case when EE and EC

can mutually optimize, whereas in the CB region, the trends of EE and EC conflict.

However, the adjustable tradeoff between EE and EC, as well as a closed-form power

allocation strategy, was not involved in [24]. The EE-EC relationship was exploited
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and plotted, by expressing signal-to-noise ratio (SNR) in terms of SE using a curve

fitting method in [25]. However, according to the users’ diverse preferences, vari-

ous application types and dynamic surrounding circumstances, a more flexible and

tractable tradeoff function is preferable, which is not provided in [22–25].

Furthermore, the optimal power allocation strategy proposed in the above men-

tioned papers focus on the point-to-point single-channel communication systems.

Note that based on the theory of Shannon limit, the total average rate of a multi-

carrier system is a linear summation of each subcarrier’s achievable average rate.

This, however, does not apply to systems with limited statistical delay requirements.

Specifically, in delay-constrained systems, the concavity and monotonicity of the EC

do not remain homogeneous for single-carrier and multi-carrier systems [20]. In ad-

dition, for systems with statistical delay QoS constraints, it has been proven that the

optimal power allocation strategy for single-carrier communications cannot be sim-

ply extended to the multi-carrier communications [20]. Hence, considering a single-

user multi-carrier link over a frequency-selective fading channel, the delay-constrained

EC maximization and EE maximization problem were separately addressed in [20]

and [19], respectively. However, the link-layer EE-EC tradeoff problem for the multi-

carrier communications is not investigated and analyzed in the existing literature.

Especially, when a multi-user multi-carrier network is considered, the link-layer EE-

EC tradeoff problem becomes more challenging. The formulated problem will be a

complex combinatorial integer programming problem, rather than a convex optimiza-

tion problem in [20] which can be solved using Lagrangian method. In [26] and [87],

an EE optimization problem with a statistical delay provisioning and the per-user’s

EC requirement constraint was analyzed for a downlink multi-user OFDMA network.

In these two papers, the power allocation for each subcarrier is assumed to be only

related to this subcarrier’s channel power gains, and not related to the same user’s

other subcarriers’ channel power gains. Therefore, based on this assumption and the

i.i.d. property of all subcarriers, the EC for a single-user multi-carrier system can

be formulated as a linear summation of all subcarriers’ EC values. Although this

independent optimization approach is optimal in maximizing the Shannon capacity

(e.g., water-filling power control for multi-carrier transmissions), it is not an optimal

policy to maximize the EC-based problems for an arbitrary statistical delay provi-

sioning [20]. In this thesis, we will not make this assumption, and aim to derive the

optimal power allocation strategy for each user, which is not only across the time

domain, but also across the frequency domain.
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2.3.2 Current Research Progress in NOMA Networks

Due to the explosive growth of mobile data and the Internet of Things (IoT) appli-

cations which exponentially accelerate the demand for high data rates, 5G has been

anticipated to offer much higher data rate, less end-to-end latency and a significant

reduction in network energy usage [1]. When it comes to the proposed multiple access

(MA) techniques for 5G, non-orthogonal multiple access (NOMA) has been attract-

ing a lot of attention as a promising scheme, due to the fact that it can offer im-

proved spectral efficiency [90], higher cell-edge throughput [91] and low transmission

latency [92], over conventional orthogonal multiple access (OMA) techniques. Current

available NOMA techniques can be broadly divided into two categories, i.e., power-

domain and code-domain NOMA [93]. The power-domain NOMA15 allows multiple

users to simultaneously transmit using the same radio resources, either in time, fre-

quency, or in code [93]. At the transmitter side, power-domain user-multiplexing can

be enabled using superposition coding [90]. At the receiver side, multiuser separa-

tion techniques, such as successive interference cancellation (SIC), can be utilized to

decode the signal [94, 95].

Current research work in NOMA-related areas mainly focuses on the topics such

as cooperative design [27–29], subcarrier assignment and power control policy [30–32],

physical layer security [33,34], fairness analysis [35,36], etc. For example, a coopera-

tive NOMA scheme was analyzed in [27], in which the users with the stronger channel

conditions were used as relays to improve the reception reliability for users with poorer

connections. It was concluded that the cooperative NOMA scheme can achieve the

maximum diversity gain for all the users [27]. The impact of user pairing on the

performance of two different NOMA systems, i.e., NOMA with fixed power allocation

(F-NOMA) and cognitive radio inspired NOMA (CR-NOMA), was studied in [96]. It

was found that F-NOMA can offer a larger sum rate than OMA, and the performance

gain between the two techniques can be enlarged by selecting users whose channel

conditions are more distinctive [96]. In [28], the application of simultaneous wireless

information and power transfer (SWIPT) to NOMA networks with randomly located

users was investigated. Closed-form expressions for the outage probability and sys-

tem throughput were derived to characterize the performance of the proposed user

selection schemes. Further, considering a downlink NOMA transmission, an EE max-

imization problem was studied in [30], in which both the subcarrier assignment and

the power allocation algorithms were provided for multiplexed users. The physical

15The power-domain NOMA will be simplified as NOMA, in the following sections.
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layer secrecy issue of NOMA was discussed in [33], in which the secrecy sum rate of a

single-input single-output (SISO) NOMA system consisting of a transmitter, multiple

legitimate users and an eavesdropper, was maximized subject to per-user minimum

data rate requirement. In [35], two different objectives, i.e., the sum rate and the min-

imum rate, were maximized respectively, to propose a suitable proportional fairness

scheduling for a two-user NOMA system. It was shown that the proportional fairness

scheduling that maximizes the minimum normalized rate can not only provide pro-

portional fairness, but also small variation of transmission rates [35]. Furthermore,

the optimal power allocation technique to maximize the user fairness in a downlink

NOMA network was investigated in [36], under two different assumptions: 1) when all

users’ data rates are adapted to the instantaneous channel state information (CSI),

and 2) when all users have fixed data rates under the average CSI.

However, all the aforementioned studies were based on Shannon limit theory,

without taking into consideration the users’ delay requirements. For systems with

delay-sensitive applications, the physical-layer based performance analysis and power

adaptive techniques may not be efficient. By applying the concept of EC and the

link-layer channel model, a suboptimal power control policy was proposed in [97]

to maximize the sum EC, for a two-user downlink NOMA network. However, the

theoretical conclusions regarding to the advantage of NOMA over OMA on the link-

layer rate performance, was not provided in [97], as well as the closed-form expressions

for the individual EC in a two-user NOMA network.
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Chapter 3

Single-User Single-Carrier

Link-Layer EE-EC Tradeoff

3.1 Introduction

In this chapter, the delay-constrained resource allocation problem is proposed and

analyzed in a single-user single-carrier communication system. A joint optimiza-

tion problem of link-layer energy efficiency (EE) and effective capacity (EC) in a

Nakagami-m fading channel is formulated as a normalized multi-objective optimiza-

tion problem (MOP) first, under a delay-outage probability constraint and an average

transmit power constraint. Then, it is transformed into a power-constrained single-

objective optimization problem (SOP), by applying the weighted sum method. To

solve the power-constrained SOP, the power-unconstrained SOP is considered and

solved first. Firstly, the objective function is proved to be continuously differentiable

and strictly quasiconvex in the optimum average input power, which confirms a cup

shape curve. Then, the power-unconstrained SOP is solved by applying Charnes-

Cooper transformation and Karush-Kuhn-Tucker (KKT) conditions. The proposed

optimal power allocation, which includes the optimal strategy for the link-layer EE-

maximization problem and the EC-maximization problem as extreme cases, is proved

to be sufficient for the Pareto optimal set of the original EE-EC MOP. Finally, the

power-constrained link-layer EE-EC tradeoff problem is analyzed and solved, by fol-

lowing the Pseudocode of the optimal power allocation algorithm in Table 3.1. To

obtain more insight, the impact of different system parameters on the optimal power

level is analyzed, such as the importance weight, normalization factor, scaled circuit-

to-noise power ratio, and power amplifier efficiency. Simulation results confirm the

analytical derivations and further show the effects of fading severeness and transmis-

sion power limit on the tradeoff performance.
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The remainder of this chapter is organized as follows. In Section 3.2, the system

model and a general tradeoff problem formulation are provided. The theory of link-

layer EC and EE is introduced in Section 3.3. Further, the optimal power allocation

strategy is derived and analyzed in this section, followed by the analysis of the impact

of importance weight, normalization factor, scaled circuit-to-noise power ratio, and

power amplifier efficiency on the average power level. Finally, numerical results are

given in Section 3.4, followed by conclusions in Section 3.5.

3.2 System Model and Problem Formulation

3.2.1 System Model

A point-to-point wireless communication link over a Nakagami-m flat-fading channel

is considered in this chapter. Different from the physical-layer channel model which

has limitations in quality-of-service (QoS) support, the link-layer model depicted in

Fig. 3.1(a) captures a generalized link-level capacity notion of the fading channel,

under a delay QoS requirement [10], [98]. Firstly, the upper-layer packets are divided

into frames at the data-link layer. Then, the source traffic and the network service

are matched using a first-in-first-out (FIFO) buffer, which prevents loss of packets

that could occur when the source rate is higher than the service rate, at the expense

of increasing the delay [10]. At the physical layer, the frames stored at the buffer

are split into bit streams. Adaptive coding and power allocation strategy are applied

at the transmitter [12], using the channel-state information (CSI) fed back from the

receiver, and the predetermined delay QoS requirement. The bit streams are read

out of the FIFO buffer and transmitted through the wireless fading channel. Finally,

the reverse operations are performed at the receiver and the frames are recovered for

further processing.

The wireless channel is assumed to be block fading, i.e., the channel gain is in-

variant during each fading-block, but independently varies from one fading-block to

another. The length of each fading-block, denoted by Tf , is assumed to be an integer

multiple of the symbol duration Ts. Ideal Nyquist transmission symbol rate is also

assumed to be satisfied, which means that the symbol duration Ts =
1

B
, where B is

the channel bandwidth. In addition, the service rate process using adaptive trans-

mission, {R[t], t = 1, 2, . . . }, is considered to be stationary and ergodic [98]. The

instantaneous service rate, in b/s/Hz, at the tth fading-block is given by

R [t] = log2

(
1 + Pt[t]

γ [t]

PLσ2
n

)
, (3.1)
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Figure 3.1: Block diagram for a point-to-point wireless communication link.

where Pt[t] denotes the transmission power, PL shows the distance-based path-loss,

and σ2
n = N0B, with N0 indicating the single-sided noise spectral density. In addition,

γ[t] represents the channel power gain of the unit-variance Nakagami-m block fading

channel with the probability density function (PDF)1 [99]

fγ(γ) =
mmγm−1

Γ(m)
e−mγ ,

where Γ(z) =

∫ ∞

0

wz−1e−wdw is the Gamma function [100]. To be specific, the

Nakagami-m fading distribution is parameterized by the fading parameter m [101].

For m = 1, the distribution matches Rayleigh fading, whereas, for m =
(K + 1)2

(2K + 1)
,

the distribution is approximately Rician fading with parameter K [101]. The case of

m→ ∞ describes the Additive White Gaussian Noise (AWGN) channels [101].

3.2.2 Problem Formulation

Note that spectral efficiency (SE) denotes the maximum achievable data rate in

b/s/Hz, and EE, defined as the ratio of SE to the total power expenditure, rep-

resents the number of delivered information per energy consumed at the transmitter

side, in b/J/Hz [102]. EE and SE, either in physical-layer channel model, or in

link-layer channel model, conflict with each other [80] [21]. Therefore, the intention

1The block index t of Pt[t] and γ[t] will be omitted for simplicity.
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of simultaneously optimizing both of them, over a feasible set determined by con-

straint functions [103], falls into the scope of an MOP. To get rid of the different

measurements and orders of magnitude of EE and SE, we normalize them with two

normalization values, ΨEE and ΨSE, respectively. The normalized MOP is, hence,

formulated as:

Q1 : max
Pt

EE

ΨEE
and max

Pt

SE

ΨSE
(3.2a)

subject to: P t ≤ Pmax, (3.2b)

where P t = Eγ [Pt] indicates the expectation of the transmission power and Pmax

denotes the average input power limit. Here, Eγ [·] indicates the expectation over the

PDF of γ. ΨEE and ΨSE are assumed to be the EE and SE values achieved at the

same normalization factor, denoted as Pnorm satisfying Pnorm > 0. In more detail,

ΨEE = EE |Pt=Pnorm
and ΨSE = SE |Pt=Pnorm

.

Since EE is generally defined as the ratio of SE to the total power expenditure,

the inverse of the two functions in problem Q1 can be minimized to make SE as the

common denominator, yielding

Q2 : min
Pt

ΨEE

EE
and min

Pt

ΨSE

SE
(3.3a)

subject to: P t ≤ Pmax. (3.3b)

Lemma 1. The MOP, Q2, is equivalent to the MOP, Q1.

Proof. The proof is provided in Appendix A.

For an MOP, instead of having a single global solution, a set of points which

all fit Pareto optimality is provided. To be specific, a Pareto optimal set includes

solutions that cannot be improved in one objective function without deteriorating

the performance in at least one of the rest of objective functions. Henceforth, Lemma

1 implies that if a point is Pareto optimal for problem Q2, it also belongs to the

Pareto optimal set for problem Q1, and vice-versa.

In order to solve the MOP Q2 and to achieve the Pareto optimal solutions, one

general way is to convert the MOP into an SOP, using weighted sum method [104],

[105]. As such, the optimization problem Q2 can be transformed into:

Q3 : min
Pt

w1
ΨEE

EE
+ (1− w1)

ΨSE

SE
(3.4a)

subject to: P t ≤ Pmax, (3.4b)
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where w1 ∈ [0, 1] is the importance weight. Specifically, w1 and 1− w1 represent the

relative importance of the two objective functions, EE and SE, respectively. When

w1 = 0, the tradeoff problem reduces to an SE-maximization problem, while when

w1 = 1, the problem Q3 is simplified into an EE-maximization problem. In other

words, the importance of EE gradually grows as w1 increases from 0 to 1.

In order to guarantee the Pareto optimal solutions for problem Q2, the following

theorem is provided to demonstrate the relationship between the weighted optimal

point and Pareto optimal solutions of the MOP Q2.

Theorem 5. The unique optimal solution P̂ of the weighted optimization problem,

min
q∑

i=1

wifi(P ), P ∈ [0, Pmax], for a given w = {[wi]1×q|wi ∈ [0, 1],
q∑

i=1

wi = 1}, is
Pareto optimal for the MOP, min fi(P ), i = 1, . . . , q, P ∈ [0, Pmax].

Proof. The proof is provided in Appendix B.

Implicitly, Lemma 1 and Theorem 5 illustrate that if P̂ is a unique optimal solution

for the weighted optimization problem Q3, it is Pareto optimal for the original MOP

Q1.

3.3 Link-layer EE-EC tradeoff

In this section, the theory of EC and link-layer EE is introduced to incorporate

the link-level delay-QoS metrics. The tradeoff performance is optimized by adap-

tively distributing the transmit power over time, based on the channel condition and

the system delay requirement. An optimal power allocation strategy for the power-

unconstrained EE-EC tradeoff problem is first developed and investigated, to pave

the way for the power-constrained tradeoff problem. Further, the influence of various

system parameters on the tradeoff performance is analyzed in this section.

3.3.1 Effective Capacity and Link-layer Energy Efficiency

From Chapter 2.1, we note that by assuming that the Gärtner-Ellis theorem [52, Pages

34-36] is satisfied, EC of an independent and identically distributed (i.i.d.) block

fading channel can be expressed as [10]

Ec = − 1

θTfB
ln
(
E
[
e−θBTfR[t]

])
(b/s/Hz) , (3.5)

where the parameter θ (θ > 0) denotes the exponential decay rate of the QoS violation

probability. A slower decay rate can be represented by a smaller θ, which indicates
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that the system can tolerate a looser QoS guarantee, while a more stringent QoS

requirement is expressed by a larger θ. In order to guarantee a required queue overflow

probability limit given in (2.16), the corresponding EC, which can also be considered

as the link-layer SE, represents the maximum constant arrival rate that the service

process can support.

Finally, the link-layer EE for a delay-sensitive system can be defined as the ratio

of EC to the sum of the transmitter’s circuit power Pc and the average transmission

power scaled by the power amplifier efficiency ǫ, yielding

EE =
Ec

Pc +
1

ǫ
P t

, 0 ≤ ǫ ≤ 1. (3.6)

3.3.2 Optimal Power Allocation

Using (3.4a)-(3.4b) and (3.6), the link-layer EE-EC tradeoff problem can be expressed

as

Q5 :min
Pt

w1

ΨEE

(
Pc +

1

ǫ
P t

)

Ec

+ (1− w1)
ΨEC

Ec

(3.7a)

subject to: P t ≤ Pmax, (3.7b)

where ΨEC is the normalization value for EC, which is defined as the EC value achieved

at the normalization factor, Pnorm, e.g., ΨEC = Ec |Pt=Pnorm
.

Replacing EC in (3.7a) with (3.5) and then inserting (3.1), the EE-EC tradeoff

problem can be transformed into

Q6 : min
Pr≥0

w1ΨEEKℓ

(
Pcr +

1

ǫ
Pr

)
+ (1− w1)ΨEC

− 1

θTfB
ln
(
Eγ

[
(1 + Prγ)

−α(θ)
]) (3.8a)

subject to: Pr ≤
Pmax

Kℓ
, (3.8b)

The scaled transmission power, Pr =
Pt

Kℓ
is the optimization variable in (3.8a), which

can be any nonnegative real value, i.e., Pr ≥ 02. Further, Pr =
P t

Kℓ
denotes the scaled

average input power, Pcr =
Pc

Kℓ
represents the circuit-to-noise power ratio, Kℓ = PLσ

2
n,

2Since the fading coefficient is uncountable, the optimization variable Pr, which is adapted to the
fading coefficient, also forms an uncountable set.
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and α(θ) =
θTfB

ln 2
. After deleting the negative constant, − 1

θTfB
, the minimization

problem (3.8a) reduces to a maximization problem. Then, by inverting the objective

function, it can be converted back into a minimization problem, yielding3

Q7 : min
Pr≥0

ln
(
Eγ

[
(1 + Prγ)

−α(θ)
])

w1ΨEEr

(
Pcr +

1

ǫ
Pr

)
+ (1− w1)ΨEC

(3.9a)

subject to: Pr ≤
Pmax

Kℓ
, (3.9b)

where ΨEEr = ΨEEKℓ.

3.3.2.1 Optimum Power Allocation with No Input Power Constraint

In this section, the unconstrained SOP is tackled to pave the way for the optimal

power allocation algorithm of the power-constrained SOP. To fully understand the

unconstrained SOP, we start by investigating the properties of this case with a pre-

determined importance weight w1, which are summarized in the following theorem.

Theorem 6. Define U7 as the objective function of the tradeoff problem Q7, i.e., the

minimization function in (3.9a). For a predetermined importance weight, U7 has the

following properties:

1. U7 is continuously differentiable and strictly quasiconvex in Pr,

2. U7 first decreases and then increases with Pr, which turns out to be a cup shape

curve,

3.

U7′





> 0 if U7 <
ǫ

w1ΨEEr

f(Pr)
′

= 0 if U7 =
ǫ

w1ΨEEr

f(Pr)
′,

< 0 if U7 >
ǫ

w1ΨEEr

f(Pr)
′

where f(Pr) = ln
(
Eγ

[
(1 + Prγ)

−α(θ)
])

, U7′ =
dU7

dPr

, and f(Pr)
′ =

df(Pr)

dPr

.

Proof. The proof is provided in Appendix C.

3The objective function in problem Q7 is similar to equation (4) developed in [98]. The difference
is the second addend and the introduced adjustable parameters in the denominator of (3.9a).
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In Theorem 6, Property 1) reveals the differentiability of (3.9a) and guarantees

the existence and uniqueness of the global minimum, for a predetermined weight

value. Property 2) indicates that the global optimum is always achieved at a finite

power value. From Property 2) and Property 3), one can notice that when Pr → 0,

U7′ < 0, which means now U7 >
ǫ

w1ΨEEr

f(Pr)
′. With Pr increasing, U7 gradually

decreases until it equals to
ǫ

w1ΨEEr

f(Pr)
′. After that point, U7 starts to increase with

Pr. Further, Property 3) connects the sign of the first derivative with the relative

difference of U7 and the scaled first derivative of f(Pr).

To solve the unconstrained SOP, we apply the Charnes-Cooper transformation.

Lemma 2. A ratio problem (P ) : min
x∈S

f(x)

g(x)
, where f is convex and g is affine and

positive, f, g : S → R, S ⊆ Rn, can be transformed into a convex program

(P ′) : min
y/φ∈S

φf(y/φ)

subject to: φg(y/φ) = 1,

by using the Charnes-Cooper transformation y =
1

g(x)
x, φ =

1

g(x)
, where φ > 0.

Proof. The proof is provided in Appendix D.

According to Lemma 2, the power-unconstrained minimization problem (3.9a)

reduces to the following equivalent problem Q8, by applying the Charnes-Cooper

transformation and one further step of substitution4.

Q8 : min
Pr≥0

φ ln
(
Eγ

[
(1 + Prγ)

−α(θ)
])

(3.12a)

subject to: φ

(
w1ΨEEr

(
Pcr +

1

ǫ
Pr

)
+ (1− w1)ΨEC

)
= 1. (3.12b)

Note that problem Q8 is not jointly convex in Pr and φ. But, by regarding φ as a

parameter, problem Q8 becomes a convex program in Pr, since the objective function

is convex [98] and the constraint is an affine function in Pr. The KKT conditions are,

hence, sufficient and necessary for the optimal solution. Set λ ∈ R+,R+ ≡ [0,∞] as

the Lagrange multiplier, the Lagrangian function can be expressed as

L (Pr, λ)

= φ ln
(
Eγ

[
(1 + Prγ)

−α(θ)
])

+ λ

(
φ

(
w1ΨEEr

(
Pcr +

1

ǫ
Pr

)
+ (1− w1)ΨEC

)
− 1

)
.

4The Charnes-Cooper transformation is first utilized to achieve the convex program (P ′), then

problem Q8 is derived by substituting x =
y

φ
in problem (P ′).

36



The KKT condition
∂L(Pr, λ)

∂Pr

= 0 can be expanded as

α(θ)

∫ ∞

0

(1 + Prγ)
−α(θ)−1 γf(γ)dγ =

λw1ΨEEr

ǫ
Eγ

[
(1 + Prγ)

−α(θ)
] ∫ ∞

0

f(γ)dγ.

Finally, it can be expressed as

α(θ)γ (1 + P ∗
r γ)

−α(θ)−1 =
λw1ΨEEr

ǫ
Eγ

[
(1 + P ∗

r γ)
−α(θ)

]
, (3.13a)

and the optimum power distribution scheme can be found as

P ∗
r =




α(θ)

1

1 + α(θ)

(w1ν)

1

1 + α(θ) γ

α(θ)

1 + α(θ)

− 1

γ




+

, (3.14)

where ν =
λΨEEr

ǫ
Eγ

[
(1 + P ∗

r γ)
−α(θ)

]
is referred to as the scaled-Lagrangian-multiplier

and [x]+ = max{0, x}.
Now the optimal value of φ can be found. Since all unknowns have been expressed

as explicit functions of ν, this reduces to finding ν∗ from the following equation

∇φL = ln
(
Eγ

[
(1 + P ∗

r γ)
−α(θ)

])
+ λ

(
w1ΨEEr

(
Pcr +

1

ǫ
P ∗
r

)
+ (1− w1)ΨEC

)
= 0.

(3.15)

By substituting the power allocation (3.14) into (3.15), the optimal value for ν (re-

ferred to as ν∗) can be easily found using the following equation

ΨEErEγ

[(
1+

[
(γα(θ))

1
1+α(θ)

(w1ν∗)
1

1+α(θ)

−1

]+)−α(θ)]
ln

(
Eγ

[(
1+

[
(γα(θ))

1
1+α(θ)

(w1ν∗)
1

1+α(θ)

−1

]+)−α(θ)])

+ ǫν∗

(
w1ΨEEr

(
Pcr +

1

ǫ
Eγ

[
α(θ)

1
1+α(θ)

(w1ν∗)
1

1+α(θ) γ
α(θ)

1+α(θ)

− 1

γ

]+)
+ (1− w1)ΨEC

)
= 0.

(3.16)

Lemma 3. For the Nakagami-m fading channel, the closed-form expressions of P ∗
r

and Eγ

[
(1 + P ∗

r γ)
−α(θ)

]
are given in (3.18a) and (3.18b), wherein Γ(a, x) is the upper

incomplete gamma function, i.e., Γ(a, x) =

∫ ∞

x

za−1e−z dz, and E1(x) =

∫ ∞

x

e−z

z
dz

indicates the exponential integral [100]5.

5It is assumed that the path of integration excludes the origin and does not cross the negative
real axis [100].

37



P ∗
r

=





(
α(θ)
w1ν

∗

) 1
1+α(θ)m

α(θ)
1+α(θ)

Γ(m)(m−
α(θ)

1+α(θ))

[
−
(

w1ν∗m
α(θ)

)(m−
α(θ)

1+α(θ))
e−

w1ν
∗m

α(θ) + Γ
(
m+ 1

1+α(θ)
, w1ν∗m

α(θ)

)]

− m
Γ(m)(m−1)

[
−
(

w1ν∗m
α(θ)

)m−1

e−
w1ν

∗m

α(θ) +Γ
(
m, w1ν∗m

α(θ)

)]
,when m 6=1, m 6= α(θ)

α(θ)+1
,

(
α(θ)
w1ν∗

) 1
1+α(θ)

Γ
(

1
1+α(θ)

, w1ν∗

α(θ)

)
− E1

(
w1ν∗

α(θ)

)
, when m = 1,

(
α(θ)
w1ν

∗

) 1
α(θ)+1 ( α(θ)

α(θ)+1)
α(θ)

α(θ)+1

Γ( α(θ)
α(θ)+1)

E1

(
w1ν∗

1+α(θ)

)
+ α(θ)

Γ( α(θ)
α(θ)+1)

[
− e−

w1ν
∗

α(θ)+1

(
w1ν∗

α(θ)+1

)− 1
α(θ)+1

+Γ
(

α(θ)
α(θ)+1

, w1ν∗

α(θ)+1

)]
, when m =

α(θ)

α(θ) + 1
,

(3.18a)

Eγ

[
(1 + P ∗

r γ)
−α(θ)

]

=





(
w1ν∗

α(θ)

) α(θ)
1+α(θ) m

α(θ)
1+α(θ)

Γ(m)(m−
α(θ)

1+α(θ))

[
−
(

w1ν∗m
α(θ)

)m−
α(θ)

1+α(θ)
e−

w1ν
∗m

α(θ)

+Γ
(
m+ 1

1+α(θ)
, w1ν∗m

α(θ)

)]
+ 1− Γ

(
m,

w1ν
∗m

α(θ)

)

Γ(m)
, when m 6= α(θ)

α(θ) + 1
,

(
w1ν

∗

α(θ)+1

) α(θ)
1+α(θ)

Γ( α(θ)
α(θ)+1)

E1

(
w1ν∗

α(θ)+1

)
+ 1− Γ

(
α(θ)

α(θ)+1
,

w1ν
∗

α(θ)+1

)

Γ( α(θ)
α(θ)+1)

, when m =
α(θ)

α(θ) + 1
.

(3.18b)

Proof. The proof is provided in Appendix E.

After inserting the closed-form expressions (3.18a)-(3.18b) into (3.16), the optimal

value for ν, i.e., ν∗, can be solved from (3.16) using root-finding functions, e.g., fzero

in Matlab. The optimal input power level P ∗
t can then be found by inserting ν∗ into

(3.18a), namely

P ∗
t = Kℓ × P ∗

r |ν=ν∗ . (3.17)

Since the channel is assumed to be stationary and ergodic, henceforth, its average

will not be affected by the shift in the time origin. Further, the pointwise mapping

between Pr and γ is fixed for each fading realization and is determined by the power

allocation policy that depends on Pr.

The above equations conclude the power-unconstrained EE-EC tradeoff solution.

Now we provide the following analysis to pave the way for the power-constrained

EE-EC tradeoff problem, that is presented in next section. Let us assume the op-

timal average power P ∗
t which solves the power-unconstrained tradeoff problem is
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found. Then, the power-unconstrained EE-EC tradeoff problem simplifies into an

EC-maximization problem with an input power constraint, yielding

max
Pr≥0

− 1

θTfB
ln
(
Eγ

[
(1 + Prγ)

−α(θ)
])

(3.19a)

subject to: Pr ≤
P ∗
t

Kℓ
. (3.19b)

3.3.2.2 Optimal Power Allocation under Average Input Power Constraint

In this section, the optimization problem (3.9a)-(3.9b) can be solved using the results

from Subsection 3.3.2.1. After the unique optimum average power value P ∗
t for the

power-unconstrained problem is calculated, it needs to be compared with the input

average power limit Pmax. If P ∗
t ≤ Pmax, it means that the system has enough power

to support the optimal tradeoff performance found in Subsection 3.3.2.1. Otherwise,

P ∗
t ≥ Pmax means that Pmax is too small to support the power allocation strategy

(3.14)-(3.18b) and the system has to operate at the maximum available power Pmax.

Therefore, the operational input average power value becomes min(P ∗
t , Pmax).

Hence, the power-constrained EE-EC tradeoff problem in (3.9a)-(3.9b) simplifies

to an EC-maximization problem with two input power constraints, yielding

max
Pr≥0

− 1

θTfB
ln
(
Eγ

[
(1 + Prγ)

−α(θ)
])

(3.20a)

subject to: Pr ≤
P ∗
t

Kℓ
, (3.20b)

Pr ≤
Pmax

Kℓ
. (3.20c)

The optimal power allocation to solve (3.9a)-(3.9b) is according to (3.14), wherein,

the optimal ν∗ is found such that KℓPr |ν=ν∗= min(P ∗
t , Pmax). To summarize, the

Pseudocode of the optimal power allocation algorithm to solve (3.9a)-(3.9b) is illus-

trated in Table 3.1.

Furthermore, the optimal power allocation strategy (3.14)-(3.18b) has the follow-

ing properties:

Properties 1. 1. For every given weight value, the proposed optimal solution (3.14)-

(3.18b) is sufficient for the Pareto optimal set of the original EE-EC MOP Q1.

2. The proposed optimal solution includes the optimal power allocation strategy for

the link-layer EE-maximization problem (when w1 = 1) and also the one for the

EC-maximization problem (when w1 = 0), as extreme cases.
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Table 3.1: Optimal Power Allocation Algorithm for a Single-User Single-Carrier Sys-
tem

Input: Initialization parameters
w1 importance weight of EE
Pnorm normalization factor
ΨEE normalization value of EE, e.g., ΨEE = EE |Pt=Pnorm

ΨEC normalization value of EC, e.g., ΨEC = Ec |Pt=Pnorm

θ exponential decay rate of the QoS violation probability
Pmax input average power limit
Pc circuit power
m Nakagami fading parameter
ǫ power amplifier efficiency
Kℓ pathloss and noise factor, e.g., Kℓ = PLσ

2
n

Tf fading block duration
B channel bandwidth

Step 1:

Create (3.16), using closed-form expressions given in (3.18a) and (3.18b).
Find ν∗ which solves (3.16) using root-finding functions, e.g., fzero in Matlab.
Insert ν∗ in (3.14) to calculate P ∗

r and then get P ∗
t , using P

∗
t = Kℓ × P ∗

r .
Insert ν∗ in (3.18a) to calculate P ∗

r and then get P ∗
t , using P

∗
t = Kℓ × P ∗

r .
Step 2:

If Pmax > P ∗
t

Calculate Ec using (3.5) and EE using (3.6), by applying P ∗
t and P ∗

t .
Else

Create P ∗
t = Pmax and use P ∗

r =
Pmax

Kℓ
to update ν∗ by solving (3.18a).

Insert ν∗ in (3.14) to calculate P ∗
r and then get P ∗

t , using P
∗
t = Kℓ × P ∗

r .
Calculate Ec using (3.5) and EE using (3.6), by applying P ∗

t and P ∗
t .

End
Output:

[
P ∗
t , P

∗
t , Ec,EE

]

3. When θ → 0, EC is equivalent to the ergodic capacity. For the weighted physical-

layer EE-SE tradeoff problem, the optimum power allocation strategy is the tra-

ditional water-filling approach, with the water level to be chosen so that the

maximum tradeoff performance can be achieved [98].

4. When θ → ∞, EC is equivalent to the zero-outage capacity, and the optimum

power allocation strategy is to maintain a constant received signal-to-noise ratio

(SNR), at a level that maximizes the tradeoff performance [106].

In more detail, we first note that with a predetermined importance weight, the

unique optimal solution of Q8 is sufficient for the optimal solution of the weighted
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tradeoff problem Q7 [62, 63]. Then, by applying Lemma 1, Theorem 5 and Theorem

6, one can show that the optimal power allocation strategy (3.14)-(3.18b) for every

determined weight value, is sufficient for the Pareto optimal set of the original EE-EC

MOP Q1.

Furthermore, the optimal solution (3.14)-(3.18b) is similar to the optimal power

allocation strategy of the link-layer EE-maximization problem in [98], with a different

value of the optimal scaled-Lagrangian-multiplier ν∗. Specifically, when w1 = 1, the

proposed optimal solution (3.14) reduces to the one developed in [98]. It means that

the optimal solution in [98] is a special case of the optimal power allocation strategy for

the weighted EE-EC tradeoff problem in this chapter. Specifically, in [98], the optimal

operational average power equals to min(P ∗
EE, Pmax), while the optimal average power

varies between [P ∗
EE, Pmax], for a typical EE-EC tradeoff problem.

When θ → 0, by following similar steps, the optimal power allocation strategy for

the weighted tradeoff problem can be derived as

Pr =

(
1

ρ
− 1

γ

)+

, (3.21)

which is the well-known water-filling approach and ρ can be found from the KKT

condition

Eγ

[(
ln

(
γ

ρ

))+
]
− ρ

((
ǫPcr + Eγ

[(
1

ρ
− 1

γ

)+
])

+
ǫ (1− w1)ΨEC

w1ΨEEr

)
= 0. (3.22)

When θ → ∞, a system with extremely stringent delay requirement is considered,

which means in this case, EC is equivalent to the zero-outage capacity [98].

3.3.3 The Impact of w1, Pnorm, Pcr and ǫ on the EE-EC Trade-

off

From (3.14)-(3.18b), it is noted that the calculated tradeoff optimal power value can

be influenced by four factors, which are the importance weight w1, normalization

factor Pnorm, scaled circuit-to-noise power ratio Pcr, and power amplifier efficiency

ǫ. In order to thoroughly understand the effects of these factors on the tradeoff

performance, we provide the following lemmas.

Lemma 4. The optimal average power value P ∗
t monotonically decreases with w1,

but strictly increases with Pnorm.

Proof. The proof is provided in Appendix F.
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To understand Lemma 4, we note that ΨEE and ΨEC can not only function as the

normalization values, but also can be regarded as two weights. Hence, the complete

weights of EE and EC can be viewed as w1ΨEE and (1 − w1)ΨEC, respectively. In

order to compare the relative importance of the two objective functions, the complete

weights need to be compared, yielding

WEE

WEC

=
w1ΨEE

(1− w1)ΨEC

=
1

Kℓ

(
1

w1
− 1

)(
Pcr +

1

ǫ
Pnorm

) , (3.23)

where WEE = w1ΨEE and WEC = (1−w1)ΨEC denote the complete weights of EE and

EC, respectively. From (3.23), one can note that WEE/WEC increases with w1, which

means that with the increase of w1, the importance of EC drops. Hence, when w1

increases, the system prefers to sacrifice more EC to achieve a better EE. Therefore,

the optimum average transmit power P ∗
t will be shifted from Pmax-side to P ∗

EE-side.

On the other hand, (3.23) indicates that when Pnorm grows, the ratio of WEE to WEC

decreases. This means that with the increase of Pnorm, the system prefers to improve

EC, with certain deteriorations of EE. Therefore, following the same trend with EC,

P ∗
t will increase with Pnorm.

Lemma 4 provides a proper guideline for users to design a more flexible and

favorable system, based on diverse preferences and different system requirements.

For example, if the system prefers a better EC, a larger Pnorm as well as a smaller w1

should be chosen to offer a larger optimal transmit power, and in turn, a relatively

larger EC. In contrast, if a user prefers more EE, a smaller Pnorm as well as a larger

w1 will be more beneficial.

To investigate the effects of the scaled circuit-to-noise power ratio Pcr and the

power amplifier efficiency ǫ, we introduce the following lemma.

Lemma 5. The average optimal power P ∗
t monotonically increases with the scaled

circuit-to-noise power ratio Pcr , as well as the power amplifier efficiency ǫ.

Proof. The proof is omitted here due to the page limit, but can be found by following

similar steps as in Appendix F.

3.4 Numerical Results

In this section, the impact of the normalization factor Pnorm, fading severness parame-

ter m, scaled circuit-to-noise power ratio Pcr , importance weight w1, and transmission

power constraint on the link-layer EE-EC tradeoff problem is numerically investigated
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for a flat block-fading channel with delay-outage probability constraints. In the fol-

lowing figures, it is assumed that the fading-block duration Tf = 2ms, bandwidth

B = 250kHz, input average power limit Pmax = 10dB, power amplifier efficiency

ǫ = 0.5, fading parameter m = 1, and the QoS exponent θ = 10−2, unless otherwise

indicated.

Fig. 3.2 includes the plots for EC (on the left-hand-side (LHS) y-Axis, in solid lines

with markers) and EE6 (on the right-hand-side (RHS) y-Axis, markers only) versus

the importance weight w1, for various scaled circuit-to-noise power ratio values, with

normalization factor Pnorm = 0.5P ∗
EE

7. This figure reveals that, when w1 ∈ [0.18, 1],

the link-layer EE increases whereas EC gradually decreases with w1. This happens

because the increase of w1 raises the importance of EE and diminishes the priority

of EC, which confirms our design intention. Moreover, when Pcr = 5dB, there is

a flat region, i.e., w1 ∈ [0, 0.18], wherein EE and EC remain constant. It happens

because, in this region, the calculated optimum average power P ∗
t is larger than Pmax.

Since the power-constrained tradeoff system performs at min(P ∗
t ,Pmax), which, in this

case, equals to Pmax, hence, the final operational average power is a fixed constant.

Therefore, the constant EE and EC will be observed in this region. Furthermore,

although the flat region exists for both settings of Pcr, the one obtained when Pcr =

5dB is larger than the case when Pcr = −5dB. In Section 3.3.3, it has been proved

that when Pcr increases, the optimum average input power P ∗
t increases, which means

that P ∗
t will remain larger than Pmax and EC will stabilize at its maximum value for

a longer period of w1. In addition, Fig. 3.2 also demonstrates that, with fixed w1,

when Pcr increases from -5dB to 5dB, the value of EE decreases. This is due to the

fact that EE varies inversely with P ∗
t , while the optimum average power P ∗

t increases

monotonically with Pcr . Therefore, EE decreases with the circuit-to-noise power ratio

Pcr .

The results of EC and EE versus Pmax, for various values of w1, with Pcr = 0dB

and Pnorm = P ∗
EE, are plotted in Fig. 3.3 and Fig. 3.4, respectively. From Fig.

3.3, it shows that when w1 = 0.5 and w1 = 1, EC first continuously increases, and

then it remains stable, after a break-point. This is because, for the weighted tradeoff

problem with w1 = 0.5 or w1 = 1, the operational average power limit is settled at

min(P ∗
t , Pmax). Specifically, when Pmax ≤ P ∗

t , the system operates at Pmax, whereas

when Pmax ≥ P ∗
t , the tradeoff system will not consume all the available power, but

6In this section, all EE figures show the scaled EE values calculated with the scaled circuit-to-
noise power ratio and the scaled average transmission power. In other words, the actual EE values
equal to 1/Kℓ multiplied with the values on the y-Axis.

7Here P ∗

EE
is the optimum average power value for the EE-maximization problem.
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Figure 3.2: EC and link-layer EE versus importance weight w1 for various values of
Pcr in Rayleigh fading channels.

rather operates at P ∗
t , which leads to a constant EC. These observations, however, do

not apply to the case of w1 = 0, which represents the EC-maximization problem. In

this case, EC continuously increases with
Pmax

Kℓ
while EE, shown in Fig. 3.4, decreases

after reaching its peak value. This is due to the fact that the allocation strategy for

the EC-maximization problem consumes the whole available input power, resulting

in continuously growing EC, and simultaneously losing EE, after its maximum value.

Similarly, from Fig. 3.4, one can find that when w1 = 0.5, EE first increases

until it reaches its peak value, at which Pmax = P ∗
EE, then EE gradually decreases

until Pt = P ∗
t , after which it stabilizes. This demonstrates that the operational

optimal average power, min(P ∗
t , Pmax), is always achieved between [P ∗

EE, Pmax]. And,

for any Pmax ≥ P ∗
t , the tradeoff system performs at P ∗

t , which leads to a constant

EE in Fig. 3.4. In addition, when w1 = 1, which indicates the EE-maximization

problem, Fig. 3.4 shows that the link-layer EE gradually increases until its peak

value, achieved at P ∗
EE, after which it remains constant. This is due to the fact that

the average optimal power limit for the EE-maximization problem is always achieved

at min(P ∗
EE, Pmax) [98], which means that when Pmax ≤ P ∗

EE, the system operates

at the most achievable power value Pmax, and when Pmax ≥ P ∗
EE, it performs at the

global optimal power level P ∗
EE. Although Fig. 3.3 and Fig. 3.4 are plotted using the

link-layer rate, the same trend can be observed in physical-layer tradeoff problem.

The plots for P ∗
r versus w1 for various fading parameters, with Pnorm = 0.5P ∗

EE
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Pmax

Kℓ
for various values of

importance weight w1 in Rayleigh fading channels.
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Figure 3.4: Maximum achievable EE versus scaled average power limit
Pmax

Kℓ
for

various values of w1 in Rayleigh fading channels.

and Pcr = −5dB, is given in Fig. 3.5. Noting that the increase of w1 increases the

importance of EE in the tradeoff problem, therefore, when w1 increases, P ∗
r mono-

tonically decreases, which can be confirmed from Fig. 3.5. Further, this figure also
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r versus importance weight

w1 for various values of fading parameter m.

shows that, for a fixed w1, when m increases, P ∗
r increases. This happens because

with less channel fluctuations, the probability of the received data remaining in the

FIFO buffer will be dropped, and therefore, EC and P ∗
r will increase. Further, from

Fig. 3.5, it is noted that, for the cases of m = 1 and m = 1.8, P ∗
r first stabilizes at

its maximum value Pmax, when w1 is very small. This is because, in this region, the

required optimal average power P ∗
t is larger than the available transmit power Pmax,

therefore the tradeoff system can only operate at Pmax.

To show the tradeoff relationship between the link-layer EE and EC, the plots

for EE versus EC, for various values of m, with Pnorm = 0.5P ∗
EE and Pcr = −5dB, is

plotted in Fig. 3.6. It shows that when m = 1.8, the MOP achieves the largest EE

and EC, while the curve with the smallest m, i.e., m = 0.5, provides the least values

of EE and EC.

Fig. 3.7 and Fig. 3.8 include the plots for EE and EC versus the importance

weight w1, for various values of Pnorm, with Pcr = −5dB, respectively. From Fig.

3.7, one can note that, when w1 is relatively large, e.g., w1 ∈ [0.46, 1], EE shows a

consistently upward trend with the increase of w1, for all considered values of Pnorm.

When w1 is small, e.g., w1 ∈ [0, 0.46] and Pnorm = Pmax, EE initially remains constant

until reaching a break-point, then gradually increases toward its maximum value.

On the other hand, Fig. 3.8 shows that, when Pnorm = Pmax, EC levels off at its

maximum value for a longer period of w1, in comparison with the other EC curves
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Figure 3.6: Maximum achievable EE versus EC for various values of Nakagami fading
parameter m.
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Figure 3.7: Maximum achievable EE versus importance weight w1 for various values
of Pnorm in Rayleigh fading channels.

with Pnorm = 0.5P ∗
EE and Pnorm = P ∗

EE. This provides a guideline for an EC-desired

system and indicates that with a larger normalization factor Pnorm, there is a better

chance to make EC remain around its maximum value for a longer scope of varying

w1. Moreover, Fig. 3.7 and Fig. 3.8 demonstrate that the ranges of EC and EE,
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Figure 3.8: EC versus importance weight w1 for various values of normalization factor
Pnorm in Rayleigh fading channels.

covered by w1 ∈ [0, 1], are always fixed, regardless of the different definitions of Pnorm.

For example, from Fig. 3.7, the EE curve with Pnorm = P ∗
EE, and the one with

Pnorm = Pmax, achieve the same value of the scaled EE, 0.13 b/J/Hz, at w1 = 0.12

and w1 = 0.7745, respectively. Meanwhile, in Fig. 3.8, EC obtained at w1 = 0.12,

and Pnorm = P ∗
EE, equals to the EC value achieved at w1 = 0.7745, and Pnorm = Pmax.

The results of EC (on the LHS y-Axis, in solid lines with markers) and EE (on

the RHS y-Axis, markers only) versus w1, for various values of θ, with Pcr = −5dB,

and Pnorm = P ∗
EE, are included in Fig. 3.9. As we discussed in Section 3.3.2.2, the

case of θ → 0 refers to a system with no delay requirement, hence, EC is equivalent

to the ergodic capacity. Although Fig. 3.9 indicates that, when θ → 0, EC and EE

are larger than those obtained when θ = 10−2, one can also notice that when θ → 0,

e.g., θ < 10−5, the delay-outage probability equals to 1, from Fig. 3.14. This is due

to the fact that, for the physical-layer EE-SE tradeoff problem, no delay requirement

means that the delay-outage probability can be very high. Further, Fig. 3.9 also

shows that the physical-layer EC and EE, i.e., when θ → 0, follow the same trend

with the link-layer EC and EE, with θ = 10−2.

The plots for EC versus the delay QoS exponent θ, under different power allocation

policies, with w1 = 0.5, Pnorm = P ∗
EE and Pcr = −5dB, is included in Fig. 3.10.

Specifically, this figure compares the EC values under the optimal link-layer power

allocation solution, which is derived in this chapter, and the traditional physical-layer
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Figure 3.9: EC and link-layer EE versus importance weight w1 for various values of
θ in Rayleigh fading channels.
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Figure 3.10: EC versus delay QoS exponent θ under different power allocation policies
in Rayleigh fading channels.

water-filling approach. From Section 3.3.2.2, it is noted that when θ becomes very

small, e.g., θ < 10−4, EC approaches to ergodic capacity. In this case, the proposed

optimal power allocation strategy (3.14)-(3.18b) converges to the traditional water-

filling strategy. Therefore, in Fig. 3.10, one can note that, when θ < 10−4, the values
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Figure 3.11: Normalized optimum average power value P ∗
r versus ϑ for various values

of fading parameter m and scaled circuit-to-noise power ratio Pcr.

of EC for the two different power policies are equal. When θ becomes larger, e.g.,

θ ≥ 10−3, which refers to a system with a stringent delay requirement, Fig. 3.10

indicates that the proposed link-layer optimal power allocation strategy guarantees a

better performance than the traditional water-filling approach, with the water-filling

performance approaching to zero when θ → 0.1.

Fig. 3.11 and Fig. 3.12 include the plots for the optimal average power and

EE versus ϑ, where ϑ describes the ratio of Pnorm to Pmax, i.e., Pnorm = ϑPmax,

for various values of the fading parameter m and the scaled circuit-to-noise power

ratio Pcr . Specifically, a typical tradeoff system is considered and w1 = 0.5. From

Fig. 3.11 and Fig. 3.12, it is shown that, the optimal average power P ∗
r increases,

while EE decreases with ϑ, for different values of m. This happens because when ϑ

increases, Pnorm becomes larger, which indicates that the priority of EE reduces and

the importance of EC increases. Hence, the increase of ϑ leads to a lower value of

EE, and a higher value of P ∗
r . Furthermore, Fig. 3.11 indicates that for a fixed value

of m, a system with a bigger Pcr results in a larger P ∗
r , which confirms the conclusion

in Lemma 5.

Fig. 3.13 includes the plots for P ∗
r versus the delay QoS exponent θ for various

values of w1 and Pnorm, with Pcr = −10dB. When w1 = 0, P ∗
r levels out at the max-

imum transmit power limit Pmax, which confirms that the EC-maximization system

always consumes all the available power [12]. When w1 = 0.5 and Pnorm = Pmax, P ∗
r
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Figure 3.13: Normalized optimum average power value P ∗
r versus θ for various values

of w1 and Pnorm in Rayleigh fading channels.

increases with θ, until it remains stable at a certain value, which is just under Pmax.

In contrast, For cases of w1 = 0.5 and Pnorm = P ∗
EE, and w1 = 1 and Pnorm = Pmax, the

optimum average power levels are achieved at minimal values. Furthermore, when

w1 = 0.5, P ∗
r obtained with Pnorm = Pmax is higher, comparing to the case with
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Figure 3.14: Delay-outage probability versus θ for various values of w1 and normal-
ization factor Pnorm in Rayleigh fading channels.

Pnorm = P ∗
EE. This is due to the fact that, a larger Pnorm reduces the priority of EE

and raises the importance of EC, which results in a larger P ∗
r and a smaller EE.

The delay-outage probability limit P out
delay versus the delay QoS exponent for various

values of w1 and Pnorm, with a maximum tolerable delay threshold Dmax = 500 and

the circuit-to-noise power ratio Pcr = -10dB, is illustrated in Fig. 3.14. This figure

indicates that for loose delay-constrained systems, e.g., θ → 10−5, different values of

w1 will not affect the achievable P
out
delay significantly. Also, in this case, the delay-outage

probability approaches to 1, which means that the probability of the delay exceeding

the maximum delay bound Dmax approaches to 1. Further, for larger values of θ, e.g.,

θ ≥ 10−3, the delay-outage probability increases with w1. This happens because a

smaller w1 represents a system which prefers the EC-maximization approach. Hence,

a higher EC will be achieved in this case and the probability that the delay exceeds a

maximum delay-bound Dmax will reduce. Furthermore, for a fixed θ, when w1 = 0.5

and Pnorm = P ∗
EE, the delay-outage probability limit is larger than that with the same

w1 and Pnorm = Pmax. This is due to the fact that a system with a larger Pnorm offers

a larger EC, which means that the probability of data remaining in the FIFO buffer

will be dropped, and hence, the delay-outage probability P out
delay will be smaller.
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3.5 Summary

A joint optimization problem of link-layer EE and EC in a Nakagami-m fading chan-

nel under a delay-outage probability constraint and an average transmit power con-

straint was considered and investigated in this chapter. First, a normalized MOP

was formulated and transformed into an SOP, by applying the weighted sum method.

Then, the formulated SOP was proved to be continuously differentiable and strictly

quasiconvex in the optimum average input power. The weighted quasiconvex EE-EC

tradeoff problem was then solved by applying the Charnes-Cooper transformation

and KKT conditions. After obtaining the optimal power allocation scheme, which

includes the optimal strategy for the link-layer EE-maximization problem and the

EC-maximization problem as extreme cases, the proposed scheme was further proved

to be sufficient for the Pareto optimal set of the original EE-EC MOP. In order to

thoroughly analyze the tradeoff performance, the impact of the normalization factor,

importance weight, scaled circuit-to-noise power ratio and power amplifier efficiency

was analyzed and investigated. Furthermore, a proper guideline on how to choose the

normalization factor and importance weight to build a more favorable system towards

EE or EC was also provided.

In this chapter, the resource allocation problem in a point-to-point single-user

single-carrier wireless communication system was proposed and investigated. As a

natural extension, in the next chapter, the resource allocation problem, including

the subcarrier allocation and the optimal power allocation strategy, is proposed and

solved for the uplink transmission, in a multi-user multi-carrier orthogonal frequency

division multiple access (OFDMA) system.
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Chapter 4

Multi-User Multi-Carrier

Link-Layer EE-EC Tradeoff

4.1 Introduction

As a natural extension of Chapter 3, Chapter 4 studies the delay quality-of-service

(QoS) driven resource allocation for the uplink transmission in a multi-user multi-

carrier orthogonal frequency division multiple access (OFDMA) system. A total

effective capacity (EC) maximization problem is formulated as a combinatorial in-

teger programming problem, subject to each user’s link-layer energy efficiency (EE)

requirement as well as the per-user average transmission power limit. To solve this

challenging problem, it is first decoupled into a frequency provisioning problem and

an independent multi-carrier link-layer EE-EC tradeoff problem for each user. In

order to obtain the subcarrier assignment solution, a low-complexity heuristic algo-

rithm is proposed, which not only offers close-to-optimal solutions, while serving as

many users as possible, but also has a complexity linearly relating to the size of the

problem. After obtaining the subcarrier assignment matrix, the original formulated

problem reduces to a link-layer EE-EC tradeoff problem for each single-user multi-

carrier system. Although in Chapter 3, the optimal power allocation strategy for the

link-layer EE-EC tradeoff problem has been proposed for a single-user single-carrier

system, it cannot be simply extended to the multi-carrier communications [20]. Con-

sidering the multi-carrier EE-EC tradeoff problem for each user, the per-user optimal

power allocation strategy, across both frequency and time domains, is derived and

analyzed. The impact of the circuit power and the EE requirement factor on each

user’s link-layer EE level and optimal average power is then theoretically investigated.

Simulation results compare the proposed low-complexity heuristic algorithm with the

traditional exhaustive algorithm and a fair-exhaustive algorithm, which confirm our
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design intentions, and further show the effects of delay QoS exponent, the total num-

ber of users and the number of subcarriers on the system tradoeff performance.

The remainder of this chapter is organized as follows. In Section 4.2, the system

model and problem formulation are introduced. Then, the optimal and suboptimal

resource allocation solutions are proposed in Section 4.3, including frequency provi-

sioning algorithms, optimal power allocation strategy for each single-user multi-carrier

system, and also theoretical analysis of some system parameters’ influence. Finally,

simulation results are given in Section 4.4, followed by conclusions in Section 4.5.

4.2 System Model and Problem Formulation

4.2.1 System Model

We consider the uplink transmission, where the K active users send their own infor-

mation to the base station, in a multi-user multi-carrier OFDMA system depicted

in Fig. 4.1. A total bandwidth of B is divided into N subcarriers, each with a

bandwidth of
B

N
. Assume that each subcarrier is exclusively assigned to at most one

user at each time to avoid interference among different users. The total number of

allocated subcarriers for all users does not exceed the available frequency resources.

Therefore, a feasible subcarrier assignment indicator matrix can be denoted as φ,

which satisfies

φ ∈ Φ ,

{
[φk,n]K×N | φk,n ∈ {0, 1},

K∑

k=1

φk,n ≤ 1,
K∑

k=1

N∑

n=1

φk,n ≤ N, k ∈ K0, n ∈ N0

}
.

(4.1)

Here, Φ denotes the set of all possible subcarrier allocation indicator matrices, and

K0 = {1, 2, . . . , K}, N0 = {1, 2, . . . , N} denote the set of all users and all subcarriers,

respectively. The number of allocated subcarriers for the kth user is denoted by Nk,

namely, Nk =
N∑

n=1

φk,n, and the bandwidth allocated to the kth user is denoted by Bk,

i.e., Bk = Nk
B

N
.

Each transmitter implements a first-in-first-out (FIFO) buffer, which prevents loss

of packets that could occur when the source rate is higher than the service rate, at the

expense of increasing the delay [10]. The upper-layer packets are divided into frames

at the data-link layer and are stored at the transmit buffer. The frames are then split

into bit streams at the physical layer. By utilizing perfect channel state information

(CSI) knowledge fed back from the receiver and the predetermined statistical QoS
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Figure 4.1: Uplink transmission in a multi-user multi-carrier network.

constraint, adaptive modulation and coding (AMC) and adaptive power control policy

are applied at the transmitter side [20]. Then, the bit streams are read out of the

buffer and are transmitted through the wireless fading subcarriers. At the receiver

side, the reverse operations are performed and the frames are recovered for further

processing. Each subcarrier is assumed to be block fading, i.e., the channel gains are

invariant within a fading-block’s time duration Tf , but independently varies from one

fading block to another. In addition, the length of each fading-block, Tf , is considered

to be an integer multiple of the symbol duration Ts, and is assumed to be less than

the fading coherence time [20].

For the kth user on the nth subcarrier at the fading-block index t, the subcarrier

power gain is denoted by γk,n[t], k ∈ K0, n ∈ N0. Also, each subcarrier is assumed

to experience independent and identically distributed (i.i.d.) additive white Gaus-

sian noise (AWGN) with the single-sided power spectral density η0. Therefore, the

instantaneous maximum achievable rate of the kth user on the nth subcarrier at the

tth fading-block is given by

Rk,n [t] =
B

N
Tf log2

(
1 + Pk,n [t]

γk,n [t]

P k
Lη0

(
B
N

)
)

(bits) , (4.2)

where P k
L denotes the distance-based path-loss power and Pk,n [t] is the nonnegative

transmission power for the kth user on the nth subcarrier, at the tth fading-block, i.e.,

Pk,n [t] ≥ 0. Specifically, for the kth user, the vector of subcarrier power allocation

values is denoted as Pk [t] =
[
Pk,1 [t] , Pk,2 [t] , ... Pk,N [t]

]
1. The total achievable

rate over all allocated subcarriers for the kth user, which depends on the subcarrier

allocation indicator matrix φ and the subcarrier power allocation vector Pk, can

1Since the service rate process of the kth user on the nth subcarrier is considered to be stationary
and ergodic [20], hereafter, the block index t could be omitted for simplicity.
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Figure 4.2: Queuing system model for each transmitter.

be denoted as Rk (φ,Pk) =
∑

n∈Nk

φk,nRk,n, where Nk is the index set of subcarriers

allocated to the kth user.

4.2.2 Effective Capacity and Link-Layer Energy Efficiency

For each transmitter, the FIFO buffer can be considered as a dynamic queueing system

which connects the stationary ergodic arrival and service processes, depicted in Fig.

4.2 [13]. From Chapter 2.1, we note that by using the large deviation theory, the

queue length process Q (t) converges in distribution to a steady-state queue length

Q (∞) such that [13]

− lim
x→∞

ln (Pr{Q (∞) > x})
x

= θ, (4.3)

where Pr{a > b} shows the probability that a > b holds. This implies that the prob-

ability of the queue length exceeding a certain threshold x decays exponentially fast

as x increases [39]. Note that in (4.3), the parameter θ (θ > 0) indicates the expo-

nential decay rate of the QoS violation probability. A smaller θ denotes a looser QoS

requirement, while a larger θ implies a lower probability of violating the queue length

and a more stringent delay constraint. Particularly, when θ → 0, refering to a system

with no delay constraint, the optimum power allocation strategy is the traditional

water-filling approach and the maximum achievable rate is ergodic capacity [86]. For

a transmitter with θ → ∞, the optimum power allocation is the channel inversion

with fixed rate transmission technique, under which the delay-limited capacity can

be achieved [98]. In other words, the ergodic capacity and the delay-limited capacity

can be considered as two extreme cases of the concept of EC.

Furthermore, when the focus is on the delay experienced by a source packet ar-

riving at time t, defined by D(t), the delay-outage probability P out
delay can be given

in (2.27). From Chapter 2.1, we note that, in order to meet a target delay-bound

violation probability limit, P out
delay, EC represents the maximum constant arrival rate

that the current service process can support.
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Assume that the Gärtner-Ellis theorem [52, Pages 34-36] is satisfied. For the kth

user, the EC over a multi-carrier transmission with a total bandwidth Bk can be

expressed as [10]

Ek
c (θk,φ,Pk) = − 1

θkTfBk
ln
(
E
[
e−θkRk(φ,Pk)

])
(b/s/Hz) , (4.4)

where θk stands for the delay QoS exponent of the kth user which is associated with

the statistical delay QoS requirement and E[·] indicates the expectation operator.

Henceforth, the EC of the kth user becomes a function of θk, φ, and Pk.

By expanding Rk (φ,Pk) and inserting it into (4.4), the EC of the kth user can be

further expressed as

Ek
c (θk,φ,Pk) = − 1

θkTfBk
ln

(
E

[
e
−θk

∑
n∈Nk

φk,nRk,n
])

(b/s/Hz) . (4.5)

For the multi-user OFDMA network, the total EC can be expressed as

Ec (θ,φ,P) =

∑K
k=1NkE

k
c (θk,φ,Pk)∑K

k=1Nk

(b/s/Hz) , (4.6)

where θ =
[
θ1, θ2, ... θK

]
is the 1×K vector of delay exponents for all K users. P

denotes the transmission power allocation matrix, for all users over all subcarriers, i.e.,

P ∈ P ,

{
[Pk,n]K×N ∈ R+ | Eγk

[∑N
n=1 φk,nPk,n

]
≤ P k

max, k ∈ K0

}
2. Here, P is all

the possible power allocation matrices, and Eγk
[·] indicates the expectation over the

probability density function (PDF) of γk, where γk is the kth user’s subcarrier power

gains, i.e., γk =
[
γk,1, γk,2, ... γk,Nk

]
. Further, P k

max represents the maximum

average power limit of the kth user.

Moreover, for the kth user, the link-layer EE can be defined as the ratio of EC to

the sum of its circuit power P k
c , and the average transmission power scaled by the

power amplifier efficiency ǫ, yielding

EEk (θk,φ,Pk) =
Ek

c (θk,φ,Pk)

P k
c +

1

ǫ
Eγk

[
∑

n∈Nk

φk,nPk,n

] . (4.7)

2We note that these are other kinds of power constraints adopted in the literature, such as the
peak power constraints, power outage probability constraints, etc. In this paper, we consider the
expectation power constraints, i.e., the average power is limited to a maximum value.
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4.2.3 Problem Formulation

From a system point of view, the total EC needs to be maximized to achieve the

best system performance. On the other hand, from the individual user point of view,

each user has its own link-layer EE requirement, average transmission power limit

and delay QoS constraint. Therefore, considering a multi-user multi-carrier network,

the overall system throughput maximization problem, subject to each user’s resource

constraints, can be formulated as

Q1 : max
φ∈Φ,P∈P

Ec (θ,φ,P) (4.8a)

subject to: EEk (θk,φ,Pk) ≥ ηkreq, ∀k, (4.8b)

Eγk

[
N∑

n=1

φk,nPk,n

]
≤ P k

max, ∀k, (4.8c)

K∑

k=1

φk,n ≤ 1, ∀n, (4.8d)

K∑

k=1

N∑

n=1

φk,n ≤ N, (4.8e)

φk,n ∈ {0, 1}, ∀k, ∀n, (4.8f)

Pk,n ≥ 0, ∀k, ∀n, (4.8g)

where ηkreq is the kth user’s required link-layer EE level, defined by a certain ra-

tio of its maximum achievable link-layer EE value, i.e., ηkreq = χk
EE × ηk,Nmax. Here,

ηk,Nmax = EEk
∣∣∣Nk=N

Pk=P k∗
EE

denotes the kth user’s maximum achievable EE value, when all

N subcarriers in the system are allocated to it. P k∗
EE is the operational average input

power which achieves ηk,Nmax. Further, χk
EE ∈ [0, 1] is an adjustable EE requirement

factor, which reveals the strictness of the kth user’s required EE level and directly

influences the system performance. In particular, χk
EE = 0 indicates that the kth user

has no EE requirement, while χk
EE = 1 means that the user k requires a maximum EE

value ηk,Nmax. Since ηk,Nmax depends on the individual user’s delay QoS exponent and its

maximum averge power limit, therefore this value is different for each user. Hence,

defined as a ratio of ηk,Nmax, the k
th user’s required EE level ηkreq is also different from

the other users, even when they have the same EE requirement factors.

Due to the conflicting property of the total EC and each user’s personal EE

achievement, after introducing χk
EE, the formulated problem Q1 becomes an ad-

justable tradeoff problem. To be more specific, if the total system throughput has a
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high priority, each user’s EE requirement factor can be required to be very low, which

results in a low link-layer EE level for each user. Correspondingly, if the total system

throughput has a low priority, each user’s EE requirement factor can be relatively

high, so that each user will have a satisfied high level of link-layer EE.

4.3 Optimal and Sub-optimal Solutions

Since it is assumed that one subcarrier can be assigned to only one user at a time,

therefore there could be KN possible subcarrier assignments [107]. Hence, the com-

plexity of the above combinatorial integer programming problem in finding the jointly

optimal subcarrier and power allocation grows exponentially with the number of sub-

carriers. Furthermore, it is very difficult to jointly obtain the optimal subcarrier

allocation sets and all power allocation values in every frame, due to the reasons

below. Firstly, from (4.5), one can notice that the EC formulation of the kth user

not only requires the multiplication of two unknown parameters, i.e., φk,n, and Rk,n,

but also involves the expectation over the joint PDF of all subcarriers’ channel power

gains, i.e., γk. Secondly, the expectation and the multiplication operations cannot be

interchanged, even if all subcarriers are assumed to be i.i.d., and that is because the

power allocation value on each subcarrier is related to the other subcarriers.

Henceforth, in order to make the formulated problem Q1 tractable, we divide the

solving process into two steps: frequency provisioning which decides the number of

subcarriers to be allocated to each user; and optimal power allocation for each user

over all its allocated subcarriers. Specifically, the proposed frequency provisioning

algorithms, which are independent of the instantaneous CSI knowledge in each frame,

will be implemented only once within a period of time. On the other hand, for each

user, the proposed optimal power allocation strategy on each subcarrier, not only

relies on the instantaneous CSI of this subcarrier, but also depends on the other

subcarriers’ CSI knowledge in each frame.

We start from introducing three frequency provisioning algorithms: traditional

exhaustive algorithm3, fair-exhaustive algorithm and the proposed low-complexity

heuristic frequency allocation algorithm. After obtaining the subcarrier assignments,

the optimal power allocation strategy for each single-user multi-carrier system will

then be derived and obtained in Section 4.3.2.

3In order to clearly compare the three frequency provisioning algorithms, the traditional exhaus-
tive algorithm is also briefly introduced in Section 4.3.1, although it is generally well-known.
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4.3.1 Frequency Provisioning Algorithms

By applying frequency provisioning, it is assumed that all subcarriers follows the

same distribution. It is the number of designated subcarriers which matters, re-

gardless where those subcarriers are located in the frequency band [107]. To reduce

the problem complexity and the solving time, a pre-calculated offline database D
is first built which stores all users’ maximum achievable link-layer EE values, i.e.,

ηmax =
[
η1
max, η2

max, ... ηK
max

]T
, in terms of certain settings of Pc, θ and N . Here,

ηk
max is a 1×N vector of the kth user’s maximum achievable EE values with different

number of allocated subcarriers, i.e., ηk
max =

[
ηk,1max, ηk,2max, ... ηk,Nmax

]
. Specifically,

in order to calculate ηk
max, the optimal power allocation strategy introduced in [19]

for an EE-maximization problem in a single-user multi-carrier system is utilized. In

this case, we assume that the average input power limit is large enough to support

the calculated optimum power value. Define ηreq =
[
η1req, η2req, ... ηKreq

]T
as the

K × 1 vector of the EE requirement values for all K users. Then, we can transform

ηreq to a K × 1 vector which specifies all users’ required number of subcarriers, i.e.,

Sreq =
[
S1
req, S2

req, ... SK
req

]T
.

Let us consider the kth user as an example. Its required link-layer EE value is

denoted by ηkreq, and correspondingly, its subcarrier requirement value will be stored

as Sk
req. To obtain Sk

req, a flowchart is provided in Fig. 4.3 to compare ηkreq with

ηk
max. If the maximum achievable EE value obtained with i subcarriers is larger than

the required EE value, i.e., ηk,imax ≥ ηkreq, then one can conclude that the minimum

number of subcarriers required to satisfy the kth user’s EE requirement ηkreq, is i, i.e.,

Sk
req = i. Henceforth, all K users’ EE requirements in ηreq can be transformed to the

subcarrier requirement vector Sreq, by utilizing the flowchart in Fig. 4.3. In this way,

the feasibility of each user’s EE constraint can be easily checked by comparing the

number of allocated subcarriers with the number of required subcarriers.

4.3.1.1 Traditional Exhaustive Algorithm

The traditional way to solve the formulated NP-hard problem, i.e., (4.8a)-(4.8g), is

to carry out an exhaustive search, which systematically enumerates all possible com-

binations and finally locates the solution which optimizes the objective function and

satisfies all the problem constraints [107]. Specifically, for problem Q1, the set of

feasible combinations is found first. Then, the optimal power allocation strategy pro-

posed in the next section, will be applied to all the feasible combinations. Finally,

the feasible combination which offers the maximum system throughput will be chosen
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Figure 4.3: Transform ηkreq to Sk
req.

as the optimal solution. Although exhaustive search is able to find the optimal fre-

quency provisioning solution, it also lacks user fairness and has a high computational

complexity which exponentially grows with the size of the problem.

4.3.1.2 Fair-Exhaustive Algorithm

To further find the optimal frequency provisioning solution which not only maximizes

the total system EC value, while satisfying each user’s link-layer EE requirement,

but also serves the maximum number of users that can be allowed, we propose a fair

exhaustive algorithm. Firstly, the sum of all users’ required subcarriers is compared

with the total number of subcarriers N to find the maximum number of users that can

be served. For example, let us assume N = 8, K = 4, and the subcarrier requirement

vector for all users is [1, 2, 2, 4]. Hence, the total available subcarriers can serve 3 users

at most. Secondly, the set of feasible subcarrier allocation vectors is found, in which

each allocation vector not only satisfies all served users’ subcarrier requirements, but

also serves the maximum allowed number of users. Then, the optimal power allocation

strategy proposed in Section 4.3.2 will be applied to all feasible allocation vectors to

locate the fair and optimal solution which outperforms the others.

Clearly, by enumerating all possible subcarrier allocation vectors which can serve
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the allowed maximum number of users, the above proposed algorithm exhaustively

find the optimal solution in a fair way. Although the fair-exhaustive algorithm is less

complex compared to the traditional exhaustive algorithm, but its computational

complexity is still very high, especially when the number of available subcarriers N

is large. To further reduce the solving complexity, we provide the following heuristic

algorithm, which is simple, fair and close-to-optimal.

4.3.1.3 Heuristic Algorithm

There are three steps included in the proposed heuristic frequency provisioning algo-

rithm, which are allocation process, calculation process and check process. Firstly,

in order to serve as many users as possible, in the allocation process, we start from

the user which requires the minimum number of subcarriers. Each served user will be

allocated the exact number of its required subcarriers, so that all the allocated users

can satisfy their EE requirements. The allocation will be repeated until the remaining

subcarriers run out, or there are not enough subcarriers to satisfy the next user’s EE

requirement, or all users’ subcarrier requirements have already been satisfied. Then,

the calculation process starts, in which each served user operates the optimal power

allocation strategy described in Table 4.2 to obtain its current EC value. In the check

process, the aim is to maximize the system throughput, based on the strategy that

the user with current minimum EC value has the allocation priority. Therefore, the

remaining subcarriers will be assigned one-by-one to the user which has the current

minimum EC value, until all subcarriers run out.

Assume the final subcarrier allocation vector is denoted byN=
[
N1, N2, ... NK

]
.

The Pseudocode of the proposed heuristic algorithm is illustrated in Table 4.1. Note

that the proposed algorithm only needs at most K − 1 comparisons per iteration,

given that each user’s EC values with various number of subcarriers are pre-calculated

off-line and are stored in a database. Therefore, the heuristic algorithm offers a rel-

atively low computational complexity comparing to the two exhaustive algorithms

whose complexity exponentially increase with the number of subcarriers. On the

other hand, later, in simulation results, it is shown that the proposed low-complexity

algorithm offers a close performance with the fair-exhaustive algorithm.

Now, let us analyze and explain the strategies utilized in the proposed heuristic

algorithm. Firstly, in the allocation process, the heuristic algorithm starts the allo-

cation from the user which has the minimum subcarrier requirement. Assume that

user i has the relatively small number of required subcarriers, Si
req. By regarding
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Table 4.1: Heuristic Algorithm for a Multi-User Multi-Carrier System

Initialization:

Calculate Sreq, using ηreq and the pre-calculated database D.
Define Stol = N , H = Sreq.

Allocation Process:

While Stol > 0
If H = 0
Break;

End

Find Hi = min(H), and Hi > 0;
If Stol > Si

req

Ni = Si
req;

Stol = Stol − Si
req;

Hi = 0;
Else

Break;
End

End

Calculation Process:

For each user i with Hi = 0, apply the optimal power allocation in Table 4.2.
Calculate the ith user’s EC value Ji and define J =

[
J1, J2, ... JK

]
.

Check Process:

While Stol > 0
Find Ji = min(J), in which user i satisfies Hi = 0;
Ni = Ni + 1;
Apply the optimal power allocation algorithm to user i and update Ji.

End

Output: N ; Ec given in (4.6).

θi and χ
i
EE as the two influencing parameters on Si

req, a small value of Si
req may re-

sult from the following two possibilities: 1) user i has a small delay QoS exponent

θi and the same χi
EE value, comparing to the other users; 2) user i has a small EE

requirement factor χi
EE, and the same θi value, comparing to the others. For the first

situation, a small delay QoS exponent θi means a loose requirement on delay QoS,

which will offer a bigger EC value, when the allocated number of subcarriers and χi
EE

are fixed. Meanwhile, for the second situation, a small value of χi
EE also provides a

larger EC value, because now the EE requirement constraint is easy to be satisfied

and the multi-carrier system will have more resource and flexibility to maximize the

EC performance. Consequently, the design idea of the allocation process not only

makes sure that as many users as possible can be served, but also intends to serve

the user which can contribute a larger EC value.
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Figure 4.4: Effective capacity versus delay QoS exponent θ, for various values of N .

On the other hand, the design strategy of the check process, i.e., the user with

current minimum EC value has the allocation priority, comes from Fig. 4.4, which

describes the results of the maximum EC versus delay QoS exponent θ, for various

values of N , in a single-user multi-carrier system. Specifically, Fig. 4.4 reveals that

the user with current minimum EC value has a high possibility to offer the largest

EC-increase, if given one more subcarrier. In more detail, from Fig. 4.4, it shows

that for two users with the same values of θ, if we can allocate more subcarriers

to them, the user with current smaller EC value, i.e., the one which has smaller

number of subcarriers, will get a larger EC-increase. Furthermore, Fig. 4.4 shows

that, for two users with the same number of subcarriers, if we allocate each user two

more subcarriers, the user with relatively smaller EC value, namely, the one which

has larger delay QoS exponent, will have a larger EC-increase. Simulation results

in Section 4.4 confirm the effectiveness of this design method, and inform that the

proposed heuristic algorithm offers very close performance with the fair-exhaustive

algorithm.

4.3.2 Optimal Power Allocation for a Single-User Multi-Carrier

System

Given a subcarrier assignment matrix φ, the multi-user OFDMA system can be

viewed as a frequency-division multiple access (FDMA) system, where each user trans-

mits data through a number of assigned subcarriers independently [108]. Therefore,
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the original total EC maximization problem, subject to each user’s link-layer EE re-

quirement and maximum average power limit, can be transformed into a link-layer

EE-EC tradeoff problem for each single-user multi-carrier system.

Specifically, for the kth user, the problem can be expressed as

Q2 : max
Pk,n≥0
n∈Nk

Ek
c (θk,Pk) (4.9a)

subject to: EEk (θk,Pk) ≥ ηkreq, (4.9b)

Eγk

[
Nk∑

n=1

Pk,n

]
≤ P k

max. (4.9c)

By recalling that the total bandwidth allocated to the kth user is Bk, the total

instantaneous service rate of the kth user is given by

Rk =
Bk

Nk
Tf

Nk∑

n=1

log2


1 + Pk,n

γk,n

P k
Lη0

(
Bk

Nk

)


 (bits) . (4.10)

By inserting (4.10) into (4.4), we get the mathematical expression of EC for the kth

user. Correspondingly, the link-layer EE for the kth user, as the ratio of EC to the

total power expenditure, can be obtained. Therefore, problem Q2 can be expanded

as

Q3 : max
P r
k,n

≥0

n∈Nk

− 1

αk
log2


Eγk




Nk∏

n=1

(
1 +NkP

r
k,nγk,n

)−
αk

Nk




 (4.11a)

subject to :

− 1

αk
log2


Eγk


∏Nk

n=1

(
1 +NkP

r
k,nγk,n

)−
αk

Nk






Kk
ℓ

(
P k
cr +

1

ǫ
Eγk

[
Nk∑
n=1

P r
k,n

]) ≥ ηkreq, (4.11b)

Kk
ℓ Eγk

[
Nk∑

n=1

P r
k,n

]
≤ P k

max, (4.11c)

where αk ≡ θkTfBk

ln (2)
, P r

k,n =
Pk,n

Kk
ℓ

, and P k
cr =

P k
c

Kk
ℓ

. Here Kk
ℓ = P k

Lη0Bk, which

denotes the path loss factor, including both AWGN power and path loss power. Set

η̂kreq = Kk
ℓ η

k
req, and P̂

k
max = P k

max/K
k
ℓ . Then, K

k
ℓ in (4.11a)-(4.11c) can be canceled to

scale the system performance with respect to the path loss factor.

From (4.11a)-(4.11c), one can notice that the EC expression in a single-user multi-

carrier system is not a linear summation of each subcarrier’s achievable EC value.
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Hence, the concavity and monotonicity of the EC function in a single-subcarrier

system cannot be simply extended to the multi-carrier system. In order to find the

joint energy and spectral efficient power allocation strategy in a single-user multi-

carrier system, we start from analyzing the proposed problem Q3.

First, by referring to the scaled multi-carrier transmit power vector as P r
k =[

P r
k,1, P r

k,2, ... P r
k,N

]
, we note that the objective function (4.11a) is concave in

P r
k [19]. Then, the link-layer EE, as the ratio of a concave function over a non-negative

affine function in P r
k , is a quasi-concave function in subcarrier power allocations [19].

Therefore, its upper contour set defined by (4.11b) is convex [59]. Hence, (4.11a)-

(4.11c) is a concave optimization problem and the Karush-Kuhn-Tucker (KKT) con-

ditions are both sufficient and necessary for the global optimum value. Furthermore,

the proposed optimal power allocation strategy for the kth user will be related to the

joint PDF of the subcarrier power gains γk, given by ρ (γk).

To solve the concave optimization problem (4.11a)-(4.11c), we start from analyzing

the power-unconstrained problem (4.11a)-(4.11b), which paves the way for the power-

constrained optimization problem. By transforming (4.11b) to

− 1

αk
log2


Eγk




Nk∏

n=1

(
1 +NkP

r
k,nγk,n

)−
αk

Nk




− η̂kreq

(
P k
cr +

1

ǫ
Eγk

[
Nk∑

n=1

P r
k,n

])
≥ 0,

(4.12)

the Lagrangian function can be given as follows

L (P r
k , λ) = − 1

αk
log2


Eγk




Nk∏

n=1

(
1 +NkP

r
k,nγk,n

)−
αk

Nk






+ λ


− 1

αk
log2


Eγk




Nk∏

n=1

(
1 +NkP

r
k,nγk,n

)−
αk

Nk






−η̂kreq

(
P k
cr +

1

ǫ
Eγk

[
Nk∑

n=1

P r
k,n

]))
−

Nk∑

n=1

µnP
r
k,n, (4.13)

where λ ∈ R is the Lagrange multiplier associated to (4.12) and µn is the Lagrange

multiplier associated to the constraint P r
k,n ≥ 0, ∀ n ∈ Nk.

At the optimal power allocation, we have

∂L (P r
k , λ)

∂P r
k

= 0. (4.14)

Because of the complementary slackness condition [59], if P r
k,n > 0, then µn = 0,

∀ n ∈ Nk. On the other hand, if P r
k,n = 0, ∃ n ∈ Nk, then µn 6= 0. Thus, the following

two cases need to be considered to find the optimal power allocation strategy.

67



4.3.2.1 Case 1 : P r
k,n > 0, ∀ n ∈ Nk

In this case, all Nk subcarriers are allocated non-zero transmission power. Therefore,

based on the complementary slackness, {µn}Nk

n=1 = 0. Then, the KKT condition (4.14)

can be simplified as

Nk∏

i=1

(
1 +NkP

r
k,iγk,i

)−
αk

Nk =
β

γk,n

(
1 +NkP

r
k,nγk,n

)
, ∀ n ∈ Nk, (4.15)

where β =
λη̂kreq

ǫ(λ+ 1) log2 e
Eγk


∏Nk

n=1

(
1 +NkP

r
k,nγk,n

)−
αk

Nk


. By multiplying the right

and left-hand sides of theNk equations in (4.15), the optimal power allocation strategy

for the kth user on the nth subcarrier can be obtained as

P r
k,n =

1

Nk


 1

β
1

αk+1
∏Nk

i=1 γ
αk

(αk+1)Nk

k,i

− 1

γk,n


 , n ∈ Nk. (4.16)

The derived power allocation strategy (4.16) is optimal only when all subcarriers

are assigned with positive powers. If there are one or more subcarriers which are allo-

cated non-positive powers, then the second case needs to be taken into consideration.

4.3.2.2 Case 2 : P r
k,j = 0, ∃ j ∈ Nk

If there exists P r
k,j ≤ 0, then the set of subcarriers, which only positive powers are

assigned, needs to be found.

Firstly, we define N̂k =



n ∈ Nk

∣∣∣∣∣
1

Nk


 1

β
1

αk+1
∏Nk

i=1 γ
αk

(αk+1)Nk

k,i

− 1

γk,n


 ≥ 0



. Ac-

cording to Lemma 1 in [20], the total power must be assigned to the subcarriers

which belong to N̂k, while the subcarriers n 6∈ N̂k should not be allocated any power.

Therefore, a new power-unconstrained optimization problem could be expressed as

Q4 : max
P r
k,n

≥0

n∈N̂k

− 1

αk
log2


Eγk




N̂k∏

n=1

(
1 +NkP

r
k,nγk,n

)−
αk

Nk




 (4.17a)

subject to :

− 1

αk

log2


Eγk


∏N̂k

n=1

(
1 +NkP

r
k,nγk,n

)−
αk

Nk






Kk
ℓ

(
P k
cr +

1

ǫ
Eγk

[
N̂k∑
n=1

P r
k,n

]) ≥ ηkreq, (4.17b)
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where N̂k = |N̂k| represents the cardinality of N̂k.

Therefore, if P r
k,n > 0, ∀ n ∈ N̂k, then, the optimization problem can be solved

exactly like Case 1. Otherwise, if there are subcarriers n ∈ N̂k having P r
k,n = 0, then

N̂k must be further partitioned by recursively repeating the above process until a set

N ∗
k can be found, in which all subcarriers are allocated positive powers [19].

After obtaining N ∗
k , the optimal power allocations are computed as

P r
k,n =





1

Nk




1

β
Nk

Nk+αkN∗
k

∏
i∈N ∗

k
γ

αk
Nk+αkN

∗
k

k,i

− 1

γk,n


 , n ∈ N ∗

k

0, otherwise

(4.18)

where N∗
k =| N ∗

k |.
The optimal value for β, referred to as β∗, can be found when the kth user’s EE

constraint is satisfied with equality, yielding

− 1

αk
log2


Eγk




Nk∏

n=1

(
1 +NkP

r
k,nγk,n

)−
αk

Nk




− η̂kreq

(
P k
cr +

1

ǫ
Eγk

[
Nk∑

n=1

P r
k,n

])
= 0.

(4.19)

Further, the value of β∗ which solves (4.19) will be found numerically, by applying

Monte Carlo method and some root-finding algorithms. This is because that the

closed-form expressions of the expectation values in (4.19) are too difficult to find,

since the proposed optimal power allocation strategy on each subcarrier, given in

(4.18), is dependent on the other subcarriers’ CSI knowledge. Note that since EE

versus EC is a bell shape curve, the required EE level, if possible, can be achieved

at two different EC values, which means that there will be two solutions for β, i.e.,

β1 and β2, to satisfy (4.19). Assume that Pk1 = Pk |β=β1, and Pk2 = Pk |β=β2,

where Pk stands for Kk
ℓ Eγk

[∑Nk

n=1 P
r
k,n

]
. Therefore, the feasible set of the average

input power level satisfying the EE constraint (4.11b) can be written as
[
Pk1, Pk2

]
4.

Considering the intention to maximize EC and the fact that EC is a monotonically

increasing function in Pk [19], the optimal average input power value P ∗
k , which solves

the power-unconstrained problem (4.11a)-(4.11b), is chosen as the larger one which

satisfies (4.19), i.e., P ∗
k = max

(
Pk1, Pk2

)
. Based on the assumption that Pk2 is larger

than Pk1, therefore P
∗
k = Pk2, and correspondingly, β∗ = β2. Here, we complete the

solving process of the optimal power allocation for the power-unconstrained problem

(4.11a)-(4.11b).

4Without losing any generality, here we assume that Pk2 is larger than Pk1.
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Table 4.2: Optimal Power Allocation Algorithm for a Single-User Multi-Carrier Sys-
tem

Input:
[
φ, θk, Tf, B,N,Nk, P

k
c , ǫ, K

k
ℓ ,γk, P

k
max, η

k
req

]

Step 1:

Have a initial guess of β.
Repeat

Create (4.19), using (4.16) or (4.18), which applies Monte Carlo method.
Update β using bisection method.

Until find β∗ which solves (4.19).

Calculate P r
k,n, n ∈ Nk, and P ∗

k = Kk
ℓ Eγk

[∑Nk

n=1 P
r
k,n

] ∣∣∣∣
β=β∗

.

Step 2:

If P k
max > P ∗

k

Calculate Ek
c given in (4.5) and the link-layer EEk value in (4.7).

Else
Create P ∗

k = P k
max and update β∗, correspondingly.

Calculate P r
k,n, n ∈ Nk, in (4.16) or (4.18).

Calculate Ek
c given in (4.5) and the link-layer EEk value in (4.7).

End
Output:

[
P r
k,n, P

∗
k , E

k
c ,EE

k
]

By utilizing the above proposed optimal power allocation strategy, we start to

analyze the optimization problem (4.11a)-(4.11c) with the average input power con-

straint. After the feasible set of the average power value for the EE constraint (4.11b)

is found, the power-constrained EC maximization problem for the kth user, subject

to a link-layer EE constraint, can be simplified to

Q5 : max
P r
k,n

≥0

n∈Nk

− 1

αk

log2


Eγk




Nk∏

n=1

(
1 +NkP

r
k,nγk,n

)−
αk

Nk




 (4.20a)

subject to : Pk ∈
[
Pk1, Pk2

]
, (4.20b)

Pk ≤ P k
max. (4.20c)

Since EC is a monotonically increasing function in Pk [19], therefore, the optimal

average power value which solves the problem in (4.20a)-(4.20c) will be achieved at

one of the three endpoint values, i.e., Pk1, Pk2, or P
k
max. In more detail, if Pk2 ≤ P k

max,

it means that the kth user has enough power to support the proposed optimal power

allocation strategy given in (4.16). Therefore, in this case, the optimal power level

P ∗
k , equals to Pk2, and the optimal power allocation strategy (4.16) will be applied

and operated. On the other hand, if Pk1 < P k
max < Pk2, it means that P k

max is too

small to support the optimal situation. Hence, the system has to operate at P k
max and
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the optimal power allocation to solve (4.11a)-(4.11b) is according to (4.16), wherein,

the optimal β∗ is found such that P ∗
k |β=β∗= P k

max. Moreover, if P k
max < Pk1, it means

that even the maximum available average power is too small to confirm the feasibility

of the required EE value. Therefore, now the power-constrained problem Q5 has

no feasible solution. To avoid this situation, we assume that each user’s maximum

available power is always sufficient to support the feasibility of its required EE value,

i.e, P k
max ≥ Pk1.

To summarize, the Pseudocode of the optimal power allocation algorithm to solve

the power-constrained link-layer EE-EC tradeoff problem for the kth user, through

multiple subcarriers, is illustrated in Table 4.2. After obtaining the optimal power

allocation strategy and the optimal operational average power for problem Q3, further

analysis is required to thoroughly understand and investigate the impact of the kth

user’s circuit power value and EE requirement factor on its link-layer EE-EC tradeoff

performance. Hence, we provide the following lemmas5.

4.3.3 The Impact of P k
c and χk

EE on the kth User’s EE-EC

Tradeoff Performance

Lemma 6. The kth user’s link-layer tradeoff EE value EE
(
P ∗
k

)
decreases with P k

c .

Proof. The proof is provided in Appendix G.

Lemma 6 indicates that if P k
c becomes larger, the calculated link-layer EE for

the kth user decreases in this power-constrained EE-EC tradeoff problem, but its EC

value will become larger, due to the conflict relationship between EE and EC. On the

contrary, a smaller value of P k
c will benefit its link-layer EE level, but the EC value

will deteriorate.

Furthermore, the optimal tradeoff power value and the system performance can

also be influenced by the introduced EE requirement factor. Specifically, when χk
EE

increases, the required link-layer EE level increases. Therefore, the final operational

link-layer EE value which satisfies the EE requirement equality increases. Since the

proposed tradeoff average power operates at the EE-EC conflicting region, therefore

the corresponding EC value will decrease due to the increase in EE level. Hence, we

can obtain the following lemma.

Lemma 7. The optimal average power value P ∗
k monotonically decreases with χk

EE,

but the corresponding link-layer tradeoff EE value EE
(
P ∗
k

)
increases with χk

EE.

5In these lemmas, the influence of P k
max is ignored, by assuming that it is large enough to support

the optimal power allocation strategy, i.e., P k
max

≥ P ∗

k
.
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Figure 4.5: The total effective capacity versus the number of subcarriers N , for
heuristic algorithm, exhaustive algorithm and fair-exhaustive algorithm.

Proof. The proof follows the above explanations and is omitted here.

4.4 Simulation Results

In this section, we simulate the uplink transmission in a multi-user multi-subcarrier

system, in which the fading statistics of different subcarriers are considered to be i.i.d.

Rayleigh distributed such that the subcarrier power gains are realized as exponential

random variables with unit mean. The performance of the exhaustive algorithm, the

fair-exhaustive algorithm, and the heuristic algorithm on the total EC maximization

problem, will be numerically evaluated and compared under the constraints of each

user’s link-layer EE requirement and average transmission power limit. To further

analyze the problem and confirm the lemmas proposed in Section 4.3.3, the impact of

delay QoS exponent, EE requirement factor and circuit-to-noise power ratio on each

user’s tradeoff EC value and the total EC performance is simulated and analyzed. In

the following simulations, it is assumed that B·Tf = 200, the power amplifier efficiency

ǫ = 1, each user’s individual average transmission power limit Pmax = 10dB, unless

otherwise indicated.

In order to show the performance of the proposed heuristic algorithm, Fig. 4.5

shows the results of the total EC versus the number of subcarriers N , for the heuris-

tic algorithm, the exhaustive algorithm and the fair-exhaustive algorithm. To get
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Figure 4.6: The number of served users versus the number of subcarriers N , for
heuristic algorithm, exhaustive algorithm and fair-exhaustive algorithm.

Fig. 4.5, the number of users K is fixed, i.e., K = 4, in which all users have

the same settings of EE requirement factor and circuit-to-noise power ratio, i.e.,

χEE = [0.7, 0.7, 0.7, 0.7], and P k
cr = −10dB, ∀k ∈ K0. Here, χEE is the 1 ×K vector

of the EE requirement factor for all K users. The delay QoS exponent vector θ is

given by [10−3, 10−3, 10−2, 10−2]. For the exhaustive algorithm, when the number of

subcarriers N increases, the total EC does not change very much, due to the loose

delay QoS requirements for all the users. For the fair-exhaustive algorithm and the

heuristic algorithm, the total EC performance curves are very close. This indicates

that the proposed heuristic algorithm not only has a low complexity and guarantees

user fairness, but also offers a close-to-optimal performance.

To further compare the three algorithms, the plots for the number of served users

versus the number of subcarriers N are included in Fig. 4.6. Although the exhaustive

algorithm offers the best system performance in Fig. 4.5, Fig. 4.6 indicates that it

serves the least number of users among all three algorithms. Especially, for the

exhaustive algorithm, when N ∈ [4, 8], it allocates all subcarriers to only one user,

which shows a lack of fairness. On the contrary, for the heuristic algorithm and the

fair-exhaustive algorithm, the number of served users shows an increasing trend until

it equals to the total number of users K. This happens because the increase of N

means more available frequency resources and the ability of supporting more users

gradually increases.
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Figure 4.7: The optimal average tradeoff power value versus delay QoS exponent θk,
for various values of Nk.

By considering the kth user’s multi-carrier system, Fig. 4.7 and Fig. 4.8 are plotted

which respectively include the curves of the optimal average power6 and the tradeoff

EC value versus θk, for two different values of Nk, with χ
k
EE = 0.2, and P k

cr = −10dB.

Fig. 4.7 first shows that with a fixed Nk, when θk increases, the average power value

increases. To explain this, we first recall that, the kth user’s EE requirement value

is defined as a multiplication of χk
EE and ηk,Nk

max , in which ηk,Nk
max is a function of θk

and Nk. With the fixed values of Nk and χk
EE, η

k,Nk
max decreases with θk [19], and in

turn, the EE requirement value decreases. Furthermore, the curve of link-layer EE

versus average power becomes wider when the user’s delay QoS exponent becomes

more stringent [23]. Therefore, when θk increases, the optimal tradeoff average power

obtained at a reduced EE requirement equality will become larger. Furthermore, Fig.

4.7 indicates that with a fixed value of θk, when Nk becomes larger, the average power

value reduces. This is due to the fact that when the values of θk and χk
EE are fixed,

ηk,Nk
max increases with Nk [19], as well as the required EE level. From Fig. 1 in [23], we

note that a larger EE requirement will be satisfied at a smaller average power value.

Hence, in this case, more available number of subcarriers lead to less average power

consumption.

6Note that Fig. 4.7 only serves as a guideline, which shows the the trend of average power versus
delay QoS exponent, for different settings of allocated subcarriers. The average power values given
in Fig. 4.7 are not typical, as in reality these values need to be smaller.
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Figure 4.8: Effective capacity versus delay QoS exponent θk, for various values of Nk.

Fig. 4.8 shows the relationship between the kth user’s tradeoff EC value and θk

for a single-user multi-carrier transmission system. This figure reveals two important

conflicting situations and some insightful conclusions. Firstly, this figure indicates

that one user’s operational EC value will not show a monotonic trend with its delay

QoS exponent, when there is a link-layer EE constraint. This phenomenon violates

the monotonic trend of EC versus delay QoS exponent, in the EC-maximization

situation provided in [20]. From [20], we note that for a fixed delay QoS exponent,

the maximum EC increases monotonically with the transmission power. Also, for

a fixed transmission power, the EC value monotonically decreases with the delay

QoS exponent. However, in our case, when θk is small, the kth user’s link-layer EE

requirement can be easily satisfied with a small value of transmission power. In

contrast, when θk becomes stringent, the required EE value has to be satisfied with

a very large power value, like the trend indicated in Fig. 4.7. In other words, the

operational average power value will increase with θk. But, the increase of θk and the

increase of the average power have a conflicting influence on the user’s operational

EC value. Therefore, with the inconsistent influence of these two parameters, EC will

not show a monotonic trend, which can be confirmed from Fig. 4.8. Clearly, when

θk is loose, the tradeoff EC value will be more influenced by θk. On the contrary,

when θk becomes stringent, the average power dominates the situation, therefore the

operational EC value shows an increasing trend, indicated from Fig. 4.8.

Secondly, Fig. 4.8 further reveals that one user’s tradeoff EC value achieved at a
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Figure 4.9: The total effective capacity versus the number of users K, for heuristic
algorithm and exhaustive algorithm.

smaller number of subcarriers may be higher than the one obtained with relatively

larger number of subcarriers, when there is a link-layer EE constraint. Specifically,

when θk is loose, e.g., θk ∈ [10−4, 0.05125], the tradeoff EC value with 4 subcarriers

is higher than the one obtained with 2 subcarriers. When θk becomes stringent, e.g.,

θk ∈ [0.05125, 100], the tradeoff EC value achieved with 4 subcarriers is lower than

the one obtained with 2 subcarriers. This phenomenon also violates the monotonic

trend of EC versus the number of subcarriers in EC-maximization situation analyzed

in [20]. This is due to the fact that with a link-layer EE requirement, when Nk

increase, the average power value required to satisfy the EE constraint decreases.

Since the increase of Nk and the corresponding decrease of the average power will

have a conflicting influence on the user’s operational EC value, then EC will not

show a monotonic trend. Apparently, Fig. 4.8 indicates that when θk is loose, the

tradeoff EC value will be more influenced by Nk. When θk becomes stringent, the

average power dominates the situation, therefore the operational EC value follows the

same trend with the average power. In conclusion, Fig. 4.7 and Fig. 4.8 indicate that

when there is a link-layer EE requirement, each user’s operational tradeoff EC value

may not show a monotonic trend with its delay QoS exponent value or its available

number of subcarriers.

To examine the effect of the number of users on a multi-user multi-carrier system

with limited resources, Fig. 4.9 includes the plots for the total EC versus the number
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Figure 4.10: The total effective capacity versus the number of users K1 in group K1,
for various values of Pcr .

of users K, for the heuristic algorithm and the fair-exhaustive algorithm. Specifically,

the total number of available subcarriers is fixed at N = 10. All users are assumed

to have the same settings of circuit-to-noise power ratio, delay QoS exponent, and

EE requirement factor, i.e., P k
cr = −10dB, θk = 10−2, and χk

EE = 0.7, ∀k ∈ K0.

When the number of users K increases, the total EC values calculated from the two

algorithms decrease and then stabilize when K ≥ 6. This happens because, when

K increases from 2 to 6, the number of served users increases and correspondingly,

the number of subcarriers allocated to each served user decreases. Henceforth, the

achievable EC for each served user reduces and the total EC value calculated from

(4.6) decreases. When K ≥ 6, the number of served users remains the same, due to

the limited number of available subcarriers. Hence, the total EC value stays stable

when K becomes greater than 6.

Assume that all K users, having the same delay QoS exponent and circuit-to-

noise power ratio Pcr, are split into two groups, i.e., K1 and K2. In group K1, all

K1 users are required to have the same settings of the EE requirement factor, i.e.,

χ1
EE = 0.1. Meanwhile, in group K2, all K−K1 users are assumed to have a larger EE

requirement factor values, i.e., χ2
EE = 0.8. This indicates that the users in group K1

have looser EE requirements compared to the users in group K2. Set the total number

of users K = 6, and the total number of subcarriers N = 12. Fig. 4.10 includes the

plots for the results of the total EC versus the number of users K1 in group K1, for
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Figure 4.11: Link-layer energy efficiency and the optimal average power versus circuit-
to-noise power ratio P k

cr , for various values of χ
k
EE.

various values of circuit-to-noise power ratio Pcr. With a fixed Pcr , when K1 increases

from 0 to 6, the total EC value, in b/s/Hz, gradually increases. This is because when

K1 increases, the number of users with χ1
EE = 0.1 increases and correspondingly, the

number of users with χ2
EE = 0.8 reduces. Note that for each user, a large value of

EE requirement factor means that the user has a strict requirement on its link-layer

EE value and will end up with a relatively small EC value. Therefore, when the

number of users in group K2 reduces, the system can save more resource to benefit

the total EC value, rather than sacrifice the system performance to support the strict

EE requirements. When K1 increases from 5 to 6, the number of users in group K2

reduces from 1 to 0 and the total EC value grows dramatically. This is due to the fact

that in the check process of heuristic algorithm, the user having current minimum

EC value will get the priority, which corresponds to the single user in group K2, when

K1 = 5. Therefore, in this case, the heuristic algorithm spends many resources on

the user with χ2
EE = 0.8. When K1 = 6, all users are in group K1 and they have the

same loose EE requirements, i.e., χ1
EE = 0.1. Therefore, the system resources can be

arranged evenly, which results in a great growth in the total EC value. Furthermore,

from Fig. 4.10, we note that when Pcr becomes larger, the system total EC value

increases. Since a bigger value of Pcr for all users will not change their relative

difference, and correspondingly, will not change the subcarrier assignment solution,

this phenomenon indicates that given a fixed subcarrier assignment, when one user’s
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Figure 4.12: Effective capacity and link-layer energy efficiency versus χk
EE, for various

values of θk and Nk.

circuit power increases, the total EC value will increase, as well as its own EC value.

To analyze the impact of the circuit-to-noise power ratio P k
cr and the EE require-

ment factor χk
EE on the kth user’s multi-carrier system, Fig. 4.11 plots the results of

the link-layer EE (on the left hand side (LHS) y-Axis, in solid lines) and the optimal

tradeoff average power (on the right hand side (RHS) y-Axis, in dash lines) versus

P k
cr , for two different values of χk

EE, considering Nk = 4 and θk = 10−2. When χk
EE is

fixed, the link-layer EE value decreases and the optimal average power increases with

P k
cr , which confirms the proved Lemma 6. Furthermore, for a fixed P k

cr , when χk
EE

becomes larger, the kth user’s link-layer EE value increases, but the optimal average

power decreases, which confirms the proposed Lemma 7 in Section 4.3.3.

The plots of link-layer EE (on the RHS y-Axis, in dash lines) and EC (on the

LHS y-Axis, in solid lines) versus χk
EE, for various values of delay QoS exponent θk

and Nk, are included in Fig. 4.12. From this figure, we note that with fixed number

of subcarriers Nk, when χk
EE increases, EE increases. This confirms the proposed

Lemma 7 in Section 4.3.3. Furthermore, with a fixed Nk, EC decreases with χk
EE.

This is due to the fact that the tradeoff system operates in the conflicting region

of EE and EC, therefore the EE-increases result from EC-reductions. Moreover,

when χk
EE and θk are fixed, as the number of subcarriers increases, both EC and

EE increase. For a fixed Nk, when the delay QoS exponent θk increases from 10−3

to 10−2, both EE and EC decrease. Especially, when Nk = 1, the decreases of EE
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Figure 4.13: The total effective capacity versus EE requirement factor for different
values of delay QoS exponent in heuristic algorithm, and fair-exhaustive algorithm.

and EC, as a result of the increase in θk, are significant. However, when Nk is

larger, e.g., Nk = 8, the decreases of EE and EC are minor. This indicates that

the multi-carrier communication system is more robust against delay requirements,

in comparison with single-carrier communication systems. In other words, when

the delay QoS requirement becomes more stringent, the multi-carrier system would

sacrifice less EE and EC to guarantee the required delay constraint.

Assume that the total number of users K = 4 and the total number of available

subcarriers N = 8. Specifically, all K users are assumed to have the same settings of

delay QoS exponent and EE requirement factor. To further analyze and investigate

the effect of EE requirement factor on the multi-user multi-carrier system, Fig. 4.13

includes the plots for the total EC versus EE requirement factor, with Pcr = −10dB

and two different values of θ, for the heuristic algorithm and the fair-exhaustive

algorithm. When the EE requirement factor increases, the total EC value of the

multi-user multi-carrier system decreases for the heuristic algorithm and the fair-

exhaustive algorithm. Furthermore, when all users’ delay requirements are loose, i.e.,

θ = [10−3, 10−3, 10−3, 10−3], the EC curves of the two algorithms are exactly the same.

This indicates that for a system having loose delay requirements, the difference of the

total EC values calculated from the two algorithms is very small. When the delay

QoS exponent values become larger, the total EC values become smaller, for both of

the two algorithms. This is because, a larger value of delay QoS exponent represents a
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Figure 4.14: The total effective capacity versus maximum power value, for different
values of θ.

more stringent delay requirement, therefore each user’s maximum achievable arrival

rate that it can support to maintain the target delay requirement, becomes small.

Henceforth, the total system link-layer achievable rate reduces, correspondingly.

Considering that the per-user maximum available power value can influence the

optimal results, Fig. 4.14 is included to show the performance of the heuristic algo-

rithm and the fair-exhaustive algorithm, when the maximum available power value

varies. The total number of subcarriers is fixed at N = 6, and the number of users

is K = 4. All users are assumed to have the same settings of EE requirement factor,

i.e., χEE = [0.5, 0.5, 0.5, 0.5], and the same values of circuit-to-noise power ratio, i.e.,

P k
cr = −10dB, ∀k ∈ K0. In addition, two different scenarios of delay QoS exponent

vector θ are included in Fig. 4.14, i.e., all elements in θ are either 10−3 or 10−1.

Firstly, Fig. 4.14 shows that in both scenarios, the calculated EC values from the

two algorithms are close, only with very little difference which makes the two curves

difficult to distinguish. This confirms that the proposed heuristic algorithm indeed

guarantees a close-to-optimal performance. Furthermore, when all users have more

stringent delay QoS requirements, the total EC value reduces, which means that the

value of EC needs to be sacrificed in this situation. More importantly, from Fig.

4.14, one can notice that for a fixed θ, the curves first increase, and then stabilize.

This is because when the maximum available power value is too small to support the

proposed optimal power value, the system has to operate at Pmax. Therefore, the
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Figure 4.15: Delay-outage probability versus delay QoS exponent θk, for different
values of χEE.

final calculated EC value is smaller in this case, since it is obtained at Pmax, rather

than at the optimal power value. On the other hand, when the value of Pmax becomes

larger than the proposed optimal power value, then the system will operate at the

optimal average power, which gives the optimal EC value, satisfying each user’s EE

constraint. To find detailed analysis, please refer to Section 4.3.2.

Fig. 4.15 plots the delay-outage probability for the kth user, P out
delay, versus delay

QoS exponent θk, for various values of χ
k
EE with a maximum tolerable delay threshold

Dmax = 200 and the circuit-to-noise power ratio P k
cr = −10dB. This figure reveals

that for the loose delay-constrained situations, e.g., θk = 10−4, the delay-outage

probability values stay the same with different values of χk
EE. For more stringent

delay-constrained situation, e.g., θk = 10−2, a smaller χk
EE ends up with lower delay-

outage probability. This happens because a smaller χk
EE value means more sacrifice

of EE from its maximum value, and in turn, results in more increase in its EC value.

Therefore, the probability that the buffer length exceeds Dmax decreases, henceforth,

the delay-outage probability reduces.

4.5 Summary

A total EC maximization problem for the uplink transmission in a multi-user multi-

carrier OFDMA system, was formulated as a combinatorial integer programming
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problem, subject to each user’s link-layer EE requirement as well as the individual’s

average transmission power limit. To solve this challenging resource allocation prob-

lem, it was first decoupled into a frequency provisioning problem and an independent

multi-carrier link-layer EE-EC tradeoff problem for each user. A low-complexity

heuristic algorithm was proposed, which not only offers close-to-optimal solutions,

while serving as many users as possible, but also has a complexity linearly relating to

the size of the problem. After obtaining the subcarrier assignment matrix, the multi-

carrier link-layer EE-EC tradeoff problem for each user was formulated and solved by

using KKT conditions. The per-user optimal power allocation strategy, across both

frequency and time domains, was then derived. Further, the impact of the circuit

power and the EE requirement factor on each user’s tradeoff EE level and optimal

average power value was theoretically investigated. Simulation results confirmed the

proofs and design intentions, and further revealed that when there is a link-layer EE

constraint, each user’s tradeoff EC value may not monotonically decrease with its

delay QoS provisioning, and the tradeoff EC value obtained with less subcarriers may

be higher than the one achieved with more subcarriers.

In this chapter, a complex resource allocation problem was proposed and solved,

including the subcarrier allocation and the optimal power allocation strategy, for

the uplink transmission in a multi-user multi-carrier OFDMA system. In the next

chapter, we then start to analyze the performance of the individual achievable link-

layer rate and the total EC, under the per-user statistical delay QoS requirement, for

a downlink non-orthogonal multiple access network with multiple users.
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Chapter 5

Link-Layer Rate in a Downlink

NOMA Network

5.1 Introduction

In this chapter, the achievable link-layer rate, namely, effective capacity (EC), is stud-

ied and investigated for a downlink non-orthogonal multiple access (NOMA) network

with M users, under the per-user statistical delay quality-of-service (QoS) require-

ments. Specifically, theM users are assumed to be divided into multiple NOMA pairs.

Conventional orthogonal multiple access (OMA) then is applied for inter-NOMA-pairs

multiple access. Focusing on the total link-layer rate for a downlink M-user network,

it is proved that OMA outperforms NOMA when the transmit signal-to-noise ratio

(SNR) is small. On the contrary, simulation results show that NOMA prevails over

OMA at high values of SNR. Aware of the importance of a two-user NOMA network,

the impact of the transmit SNR and the delay QoS requirement on the individual

EC performance and the total link-layer rate are theoretically investigated for a two-

user network. Specifically, for delay-constrained and delay-unconstrained users, it is

proved that for the user with the stronger channel condition in a two-user network,

NOMA prevails over OMA when the transmit SNR is large. On the other hand,

for the user with the weaker channel condition in a two-user network, NOMA out-

performs OMA when the transmit SNR is small. Furthermore, for the user with the

weaker channel condition, the individual EC in NOMA is limited to a maximum value,

even if the transmit SNR goes to infinity. To confirm these insightful conclusions,

the closed-form expressions for the individual EC in a two-user network, by applying

NOMA or OMA, are derived for both users and then confirmed using Monte Carlo

simulations.
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The remainder of this chapter is organized as follows. The system model is given in

Section 5.2. In Section 5.3, the theory of effective capacity is briefly introduced. Then,

we start to analyze and investigate the individual EC and the total link-layer rate for a

downlink NOMA network in Section 5.4, which includes the closed-form expressions

for the link-layer rates in a two-user network, in NOMA and OMA scenarios, and

the theoretical conclusions for a two-user network and a downlink NOMA network

with mutiple NOMA pairs. Simulation results are given in Section 5.5, followed by

conclusions in Section 5.6.

5.2 System Model

We consider a cellular downlink transmission with one base station (BS) and M

single-antenna users. At the BS, the upper layer packets are organized into frames,

which are then stored at the transmit buffer1, in the link layer. After split into bit

streams, these frames will be transmitted through the allocated channel. According

to the NOMA principle, the BS will send
M∑
k=1

√
αkPsk to the destinations, where sk

is the message for the kth user, P is the total transmission power, and αk denotes the

power allocation coefficient for the kth user.

As for each wireless channel from the BS to an individual user, it is assumed to

be block fading with a bandwidth of B, i.e., the channel gain is invariant during

each fading-block, but independently varies from one fading-block to another. The

length of each fading-block, denoted by Tf , is assumed to be an integer multiple of

the symbol duration Ts. Meanwhile, the duration of one frame size is assumed to be

equal to the length of the fading-block, i.e., Tf . The channel gain between the BS

and the kth user is denoted by hk
2, which is modeled according to Rayleigh fading

distribution. Without loss of generality, the users’ channels are assumed to be sorted

so that |h1|2 ≤ |h2|2 ≤ · · · ≤ |hM |2, which indicates that the kth user always holds the

kth weakest channel. Henceforth, based on the NOMA protocol, the power coefficients

can be ordered as α1 ≥ · · · ≥ αM , and
M∑
k=1

αk = 1 [27].

The received signal at the kth user is given by yk = hk
M∑
l=1

√
αlPsl + nk, where nk

denotes the additive white Gaussian noise. By applying the successive interference

cancellation (SIC) technique, the kth user will detect the ith user’s message, when

1Here, it is assumed that the BS offers one virtual buffer for every served user.
2The time index t is omitted because the channel gains are assumed to be stationary and ergodic

random processes.
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i < k, and then remove the ith user’s message from its received signal, in a successive

manner [27]. The message for the jth user, for j > k, however, will be treated

as noise at the kth user. Note that the condition under which the kth user can

successfully decode the ith user’s message is to satisfy Ri→k ≥ R̃i [109]. Here, R̃i is

the ith user’s target data rate, and Ri→k denotes the kth user’s data rate to detect

the ith user’s message, i.e., Ri→k = log2

(
1 +

ρ|hk|2αi

ρ|hk|2
∑M

l=i+1 αl + 1

)
, where ρ denotes

the transmit SNR, i.e., ρ =
P

N0B
, with N0B indicating the noise power. Assume

that R̃i is determined opportunistically by the ith user’s channel condition [109], i.e.,

R̃i = Ri = log2

(
1 +

ρ|hi|2αi

ρ|hi|2
∑M

l=i+1 αl + 1

)
, which means that its target rate equals

to the data rate achieved when it decodes its own message. Hence, it is easy to verify

that the condition Ri→k ≥ R̃i always holds since |hk|2 ≥ |hi|2, for k > i.

Consequently, the achievable data rate3, in b/s/Hz, for the kth user in a downlink

NOMA network, can be formulated as

Rk = log2

(
1 +

ρ|hk|2αk

ρ|hk|2
∑M

l=k+1 αl + 1

)
. (5.1)

5.3 Effective Capacity

Let us take the kth user as an example. At the BS, considering the dynamic queueing

system for the kth user, we assume that the buffer size is infinite and the link can serve

Rk(t) packets per unit of time, which means that the capacity of the link at time t is

Rk(t). From Chapter 2.1, we note that by using the large deviation theory, the buffer

overflow probability satisfies (2.16). When the focus is on the delay experienced by a

source packet arriving at time t, defined by D(t), the delay-outage probability P out
delay

can be given in (2.27). Then, by assuming that Gärtner-Ellis limit exists, effective

capacity represents the maximum arrival rate that a link can support, on the condition

that a required delay QoS metric is satisfied [10].

By recalling that the wireless channel from the BS to the kth user follows a block

fading distribution, hence, the EC of the kth user can be formulated as [10, 86]

Ek
c = − 1

θkTfB
ln
(
E
[
e−θkTfBRk

])
, (b/s/Hz) . (5.2)

3The distance-based path-loss is assumed to be uniform for each user.
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Here, E [·] indicates the expectation over the probability density function (PDF) of

the allocated channel. Then, by inserting (5.1) into (5.2), the achievable link-layer

rate for the kth user in a downlink NOMA network can be obtained, yielding

Ek
c = − 1

θkTfB
ln


E




(
1 +

ρ|hk|2αk

ρ|hk|2
∑M

l=k+1 αl + 1

)−
θkTfB

ln 2





 . (5.3)

Furthermore, we note that the parameter θk (θk > 0) denotes the exponential de-

cay rate of the delay-outage probability, for the kth user. A smaller θk represents

a slower decay rate, which indicates that the user can tolerate a loose delay QoS

guarantee, while a larger θk means that a more stringent delay QoS guarantee is re-

quired [10, 86]. Specifically, when θk → 0, it indicates that the kth user has no delay

requirement. When θk → ∞, it means that the kth user has an extremely stringent

delay requirement [110].

5.4 Effective Capacity in a Downlink NOMA Net-

work

Aware of the difficulty of deriving the closed-form expression for the individual EC in

(5.3) when allM users transmit on the same channel, we start to investigate the situ-

ation when there are multiple NOMA pairs in a M-user network. Specifically, the M

users are assumed to be divided into
M

2
groups4, so that within each group, NOMA

will be implemented for only two users, and the conventional OMA can be used for

inter-NOMA-pairs multiple access [27]. Furthermore, a two-user downlink version

of NOMA, called the multiuser superposition transmission (MUST), has been pro-

posed for the Third Generation Partnership Project Long Term Evolution Advanced

(3GPP-LTE-A) networks [111]. Inspired by this, we first focus on the link-layer rate

performance of a two-user downlink NOMA network, which itself is of great impor-

tance, and also paves the way for the performance analysis of multiple NOMA pairs.

Closed-form expressions and insightful theoretical conclusions are first provided. Fi-

nally, based on the proposed derivations and theoretical insights, the total EC for the

multiple NOMA pairs is derived and investigated, in comparison with the total EC

for M OMA users.

4To achieve this, M is assumed to be an even positive number.
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Figure 5.1: Two-user downlink NOMA network.

5.4.1 Effective Capacity in a Two-user NOMA Network

Without loss of generality, the mth user and the nth user, m < n, are assumed to be

paired together as a two-user NOMA network, as depicted in Fig. 5.1. By applying

the SIC strategy, the nth user, which has the relatively stronger channel condition,

will first decode the message of the user with the weaker channel condition, i.e., the

mth user, and then decode its own message by removing the mth user’s message. On

the other hand, the mth user with the weaker channel condition, will decode its own

message by treating the nth user’s information as noise. In order to make sure that

SIC can be correctly carried out at the nth user, it is required that Rm→n ≥ Rm, i.e.,

log2

(
1 +

ραm|hn|2
ραn|hn|2 + 1

)
≥ Rm. According to the analysis in Section 5.2, it is noted

that this always holds since |hn|2 ≥ |hm|2, for n > m.

By applying the fixed power allocation, the power allocation coefficients for the

mth user and the nth user are denoted by αm and αn, respectively, where αm ≥ αn,

and αm + αn = 1, according to the NOMA principle. By assuming that both users

experience the same strength of additive white Gaussian noise, then the achievable

data rates, in b/s/Hz, for the mth user and the nth user in a two-user NOMA network,

are respectively formulated as

Rm = log2

(
1 +

ραm|hm|2
ραn|hm|2 + 1

)
, (5.4a)

Rn = log2
(
1 + ραn|hn|2

)
. (5.4b)

On the other hand, if the mth user and the nth user each have their message transmit-

ted using OMA scheduling, e.g., time division multiple access (TDMA), with total

transmit SNR ρ, the achievable data rate of each user can then be given by

R̄i =
1

2
log2

(
1 + ρ|hi|2

)
, i ∈ {m,n} (5.5)

88



where
1

2
denotes that each user has only half of the available radio resources in OMA

networks. Considering the duration of one frame as one time slot, (5.5) implies that

in TDMA networks, each user can only occupy half of the time slot to transmit, while

in the other half time slot, it will stay silent5.

Assuming that the Gärtner-Ellis theorem [52, Pages 34-36] is satisfied, the ex-

pressions of EC for the mth user and the nth user in a block fading channel can be

respectively given as [10]

Em
c = − 1

θmTfB
ln
(
E
[
e−θmTfBRm

])
(b/s/Hz) , (5.6a)

En
c = − 1

θnTfB
ln
(
E
[
e−θnTfBRn

])
(b/s/Hz) . (5.6b)

By inserting (5.4a) into (5.6a) and inserting (5.4b) into (5.6b), we then get that

Em
c = − 1

θmTfB
ln

(
E

[(
ρ|hm|2 + 1

ραn|hm|2 + 1

)2βm

])
, (5.7a)

En
c = − 1

θnTfB
ln
(
E

[(
1 + ραn|hn|2

)2βn

])
, (5.7b)

where βm = −θmTfB
2 ln 2

, and βn = −θnTfB
2 ln 2

.

For an OMA scheme, such as TDMA, the EC expressions for both users can be

calculated by inserting (5.5) into (5.6a) and (5.6b), which yield to

Ēm
c = − 1

θmTfB
ln
(
E

[(
1 + ρ|hm|2

)βm

])
, (5.8a)

Ēn
c = − 1

θnTfB
ln
(
E

[(
1 + ρ|hn|2

)βn

])
. (5.8b)

In the following subsection, the closed-form expressions for the link-layer rates

are first derived for both users, in NOMA and OMA, i.e., Em
c , Ēm

c , En
c , and Ēn

c .

Further, the impact of the transmit SNR ρ and the per-user delay QoS exponent,

on the individual EC performance and the total link-layer rates, in both NOMA and

OMA scenarios, will be investigated and analyzed for the two-user network.

5.4.1.1 The Closed-Form Expressions for the Individual EC in a Two-user

System

Suppose that h1, . . . , hM are M unordered independent channel gains, modeled

according to the unit-variance Rayleigh fading distribution. Set γm = ρ|hm|2 and

5Note that the way of equally allocating resource is a typical and special case. However, the
influence of different resource allocation strategies is beyond the scope of this chapter.
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γn = ρ|hn|2. When γm and γn are unordered, the PDF of γm and γn is denoted by

f(γm) and f(γn), respectively. Correspondingly, the cumulative distribution function

(CDF) of the unordered γm and γn can be denoted by F (γm), and F (γn). Since

the unordered channel gains are assumed to be statistically independent and iden-

tically distributed, hence, one can notice that f(γm) = f(γn), and F (γm) = F (γn),

∀ m, n ∈ {1, . . . ,M}. However, when the users’ channels are assumed to be sorted

so that |h1|2 ≤ |h2|2 ≤ · · · ≤ |hM |2, the order statistics of different channel power

gains will not be the same. In NOMA networks, the users are ordered first according

to their channel conditions, therefore the statistical features of the ordered channel

power gains fall into the scope of the order statistics [112]. The PDF of the ordered

γm and γn, where γm ≤ γn, are denoted by f(m) (γm), and f(n) (γn), respectively. From

order statistics [112], f(m) (γm) and f(n) (γn) are given by

f(m) (γm) = ψmf(γm)F (γm)
m−1 (1− F (γm))

M−m , (5.9a)

f(n) (γn) = ψnf(γn)F (γn)
n−1 (1− F (γn))

M−n , (5.9b)

where ψm =
1

B (m,M −m+ 1)
, ψn =

1

B (n,M − n+ 1)
, in which B(a, b) denotes

the beta function, according to B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
[100]. Here, Γ(a) = a!, as a is a

positive integer.

Theorem 7. For the mth user, the closed-form expression for the EC in NOMA, Em
c
,

is given in (5.10). Meanwhile, the EC in OMA, Ēm
c
, can be expressed in closed-form,

given in (5.11).

Proof. The proof is provided in Appendix H.
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Em
c =− 1

θmTfB
ln

(
α−2βm
n ψm

ρ

(
m−1∑

k=0

(
m− 1

k

)
(−1)k

ρ

M −m+ 1 + k

+
θm(αn − 1)

αn ln 2

m−1∑

k=0

(
m− 1

k

)
(−1)ke

M −m+ 1 + k

ραn Ei

(
−M −m+ 1 + k

ραn

)

+

∞∑

j=2

(
2βm
j

)(
αn−1

αn

)jm−1∑

k=0

(
m− 1

k

)
(−1)k




j−1∑
i=1

(i−1)!

α−i
n

(
−M−m+1+k

ρ

)j−i−1

(j − 1)!

−

(
−M−m+1+k

ρ

)j−1

(j − 1)!
e

M−m+1+k

ραn Ei

(
−M−m+1+k

ραn

)







 , (5.10)

Ēm
c = − 1

θmTfB
ln

(
ψm

ρ

m−1∑

k=0

(
m− 1

k

)
(−1)kU

(
1, 2+βm,

M−m+1+k

ρ

))
, (5.11)

where Ei (·) is the exponential integral, and U (a, b, z) is the confluent hypergeometric

function of the second kind [100].

Theorem 8. For the nth user, the closed-form expression for the EC in NOMA, En
c
,

is given in (5.12). Meanwhile, the EC in OMA, Ēn
c
, can be expressed in closed-form,

given in (5.13).

Proof. The proof is omitted here due to the page limit, but can be found by following

similar steps as in Appendix H.

En
c = − 1

θnTfB
ln

(
ψn

ραn

n−1∑

k=0

(
n− 1

k

)
(−1)kU

(
1, 2 + 2βn,

M − n + 1 + k

ραn

))
, (5.12)

Ēn
c = − 1

θnTfB
ln

(
ψn

ρ

n−1∑

k=0

(
n− 1

k

)
(−1)kU

(
1, 2 + βn,

M − n + 1 + k

ρ

))
. (5.13)

The accuracy of the above closed-form expressions will be confirmed by comparing

with Monte Carlo simulations in Section 5.5. Then, we start to investigate the impact

of the transmit SNR ρ and the per-user delay QoS exponents θm, θn, on the individual
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EC performance and the total link-layer rate for a two-user network, in both NOMA

and OMA scenarios. Two cases are deliberately analyzed in the following subsections,

i.e., Case 1: consider delay-constrained users6; Case 2: consider delay-unconstrained

users. Note that Case 2 is an extreme case of no delay, in which the individual

EC is proved to be equivalent to ergodic capacity7. Interestingly, the theoretical and

simulation results obtained for this case are indeed novel and not found in the current

literature. Further, by including Case 1 and Case 2, the performance of a two-user

downlink NOMA network, either delay-constrained or delay-unconstrained, can be

comprehensively analyzed and investigated.

5.4.1.2 Case 1: Consider Delay-Constrained Users

Lemma 8. Considering the individual EC in NOMA and OMA, for both users, we

prove that

(a) When ρ → 0, Em
c

→ 0, Ēm
c

→ 0, Em
c

− Ēm
c

→ 0, En
c
→ 0, Ēn

c
→ 0, and

En
c
− Ēn

c
→ 0.

(b) When ρ→∞8, lim
ρ→∞

Em
c
=log2

(
1

αn

)
, lim
ρ→∞

Ēm
c
→∞, and lim

ρ→∞

(
Em

c
−Ēm

c

)
→−∞.

(c) When ρ→ ∞, lim
ρ→∞

En
c
→ ∞, lim

ρ→∞
Ēn

c
→ ∞, and lim

ρ→∞

(
En

c
− Ēn

c

)
→ ∞.

Proof. The proof is provided in Appendix I.

From Lemma 8.(a), it shows that, for both users, either in NOMA or OMA, their

individual rates start at the same initial value of 0, at small values of ρ. Lemma

8.(b), on the other hand, indicates that for the weaker user9, when ρ → ∞, its EC

achieved by applying NOMA is limited by log2

(
1

αn

)
. This means that in a two-

user NOMA network, the weaker user can only achieve a limited EC, no matter how

large the transmit SNR can be. On the contrary, for the stronger user10, Lemma

8.(c) indicates that when ρ → ∞, its achievable EC in NOMA approaches infinity.

Furthermore, Lemma 8.(b) and Lemma 8.(c) reveal that when ρ→ ∞, the EC values

achieved by applying OMA approach infinity, for both of the two users.

6In this case, finite values of the delay QoS exponents θm, θn are considered.
7The proof and further explanations can be found in Lemma 13 in Section 5.4.1.3.
8Note that ρ → ∞ is not practical, but this is only to provide a guideline. In the simulation

results provided in Section 5.5, it shows that the conclusions proved for the case of ρ → ∞, are valid
for values of ρ as big as ρ = 30dB.

9Hereafter, the user with the weaker channel condition is referred to as the weaker user.
10Hereafter, the user with the stronger channel condition is referred to as the stronger user.
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Apparently, Lemma 8 only considers two extreme cases of ρ for both users. Hence-

forth, from Lemma 8, one cannot know how the individual EC will change with respect

to ρ on general terms. Will NOMA be always better than OMA for the nth user, at

any positive values of ρ? Will OMA be always better than NOMA for the mth user,

for any settings of ρ? To answer these questions and to further analyze the impact

of ρ on the individual EC, in a two-user NOMA network and in a two-user OMA

network, we provide the following lemmas.

Lemma 9. Considering the mth user’s EC, in NOMA and OMA, we prove that

(a) At any values of ρ,
∂Em

c

∂ρ
≥ 0, and

∂Ēm
c

∂ρ
≥ 0.

(b) When ρ→ 0, lim
ρ→0

∂
(
Em

c
− Ēm

c

)

∂ρ
=




1

2
− αn

ln 2


E [|hm|2] ≥ 0.

(c) When ρ is very large,
∂
(
Em

c
− Ēm

c

)

∂ρ
≤ 0, and it approaches 0 when ρ→ ∞.

Proof. The proof is provided in Appendix J.

From Lemma 9.(a), it shows that for the weaker user, its achievable EC, in NOMA

or OMA, is always non-decreasing with the transmit SNR. Furthermore, Lemma 9.(b)

indicates that, for the weaker user, when the transmit SNR is very small, the EC in

NOMA has a faster increasing speed than that in OMA. On the contrary, Lemma

9.(c) shows that for the weaker user, when the transmit SNR is very large, the EC in

OMA increases faster than that in NOMA.

To further explain the above theoretical conclusions, the focus lies on analyzing

the EC difference between NOMA and OMA, for the weaker user in a two-user system.

From Lemma 8 and Lemma 9, one can conclude that, Em
c − Ēm

c starts at the initial

value of 0, first increases, and at the end decreases to−∞ with a gradually diminishing

speed. This means that, for the weaker user, NOMA can achieve higher EC than

OMA, at small values of ρ. When the transmit SNR becomes extremely large, OMA

is more beneficial than NOMA, for the weaker user. Finally, when ρ → ∞, the

performance gain of OMA over NOMA becomes stable.

Lemma 10. Considering the nth user’s EC, in NOMA and OMA, we prove that

(a) At any values of ρ,
∂En

c

∂ρ
≥ 0, and

∂Ēn
c

∂ρ
≥ 0.
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(b) When ρ→ 0, lim
ρ→0

∂
(
En

c
− Ēn

c

)

∂ρ
=



αn −

1

2
ln 2


E [|hn|2] ≤ 0.

(c) When ρ is very large,
∂
(
En

c
− Ēn

c

)

∂ρ
≥ 0, and it approaches 0 when ρ→ ∞.

Proof. The proof is provided in Appendix K.

From Lemma 10.(a), it shows that for the stronger user, its achievable EC, in

NOMA or OMA, has a non-decreasing trend with the transmit SNR. Furthermore,

Lemma 10.(b) indicates that, for the stronger user, when the transmit SNR is very

small, the EC in OMA increases faster than that in NOMA. On the contrary, Lemma

10.(c) shows that when the transmit SNR becomes very large, the EC in NOMA

increases faster than the one in OMA, for the stronger user.

Then we start to analyze the range of ρ, in which NOMA is more beneficial than

OMA, for the stronger user in a two-user system. From Lemma 8 and Lemma 10, one

can conclude that, En
c − Ēn

c starts at the initial value of 0, first decreases, and finally

increases to ∞ with a gradually reducing speed. This means that, for the stronger

user, OMA achieves higher EC than NOMA, when the transmit SNR is small. At

high values of ρ, NOMA becomes more beneficial than OMA, for the stronger user.

Finally, when ρ → ∞, the performance gain of NOMA over OMA becomes stable,

for the stronger user.

In order to investigate the impact of the transmit SNR ρ on the performance of

the total link-layer achievable rate, we define TN = Em
c + En

c , which indicates the

total EC for the two-user NOMA network. Meanwhile, we define TO = Ēm
c + Ēn

c ,

which denotes the total achievable link-layer rate for the two-user OMA system. Note

that the total link-layer achievable rate for a two-user system is defined as a linear

summation of the two users’ EC values. This is due to the reason that for each user,

there is a dynamic queueing system with an infinite queue size. Then, for each user,

we can get its EC, which specifies the maximum arrival rate that its link can support,

on the condition that this user’s delay QoS requirement is satisfied. Therefore, when

we consider the two users as a system, the total maximum achievable arrival rate can

be defined as a linear summation of the two users’ EC values.

Lemma 11. Considering the total EC in NOMA, TN , for the two-user system, we

prove that

(a) At any values of ρ,
∂TN

∂ρ
≥ 0.
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(b) When ρ→ 0, TN → 0, lim
ρ→0

∂TN

∂ρ
=

1− αn

ln 2
E [|hm|2] +

αn

ln 2
E [|hn|2] ≥ 0.

(c) When ρ→ ∞, TN → ∞, lim
ρ→∞

∂TN

∂ρ
= 0.

Considering the total EC in OMA, TO, for the two-user system, we prove that

(d) At any values of ρ,
∂TO

∂ρ
≥ 0.

(e) When ρ→ 0, TO → 0, lim
ρ→0

∂TO

∂ρ
=

1

2 ln 2
E [|hm|2] +

1

2 ln 2
E [|hn|2] ≥ 0.

(f) When ρ→ ∞, TO → ∞, lim
ρ→∞

∂TO

∂ρ
= 0.

Proof. The proof is provided in Appendix L.

From Lemma 11.(a) and Lemma 11.(d), one can note that the total link-layer

rate for the two-user system, either in NOMA or OMA, shows a non-decreasing trend

with the transmit SNR. Furthermore, Lemma 11.(b) indicates that when the NOMA

scheme is applied, the total EC has a constant slope at small values of ρ, in which

the constant depends on the average of the channel power gains and the allocated

power coefficients. On the contrary, from Lemma 11.(e), one can find that the total

EC obtained in OMA scheme also shows a constant increasing speed at small values

of ρ, in which the constant only depends on the average of the channel power gains.

Finally, when ρ → ∞, Lemma 11.(c) and Lemma 11.(f) show that the increasing

speed of the total EC, either in NOMA or OMA, gradually diminishes.

To thoroughly investigate the region of ρ, in which NOMA is more advantageous

than OMA, in terms of the total link-layer rate for the complete two-user system, we

analyze TN − TO in the following lemma.

Lemma 12. Considering the difference of the total EC between NOMA and OMA,

for a two-user system, we prove that

(a) Whenρ→0,TN−TO→0, lim
ρ→0

∂ (TN−TO)

∂ρ
=
1−2αn

2 ln 2
E[|hm|2]+

2αn−1

2 ln 2
E[|hn|2]≤0.

(b) When ρ → ∞, TN − TO approaches a constant, given in (5.14), and we get

lim
ρ→∞

∂ (TN − TO)

∂ρ
= 0.

Proof. The proof is provided in Appendix M.
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lim
ρ→∞

(TN−TO)=− 1

θmTfB
ln


 α−2βm

n

E

[
(|hm|2)βm

]


− 1

θnTfB
ln



αn

2βnE

[
(|hn|2)2βn

]

E

[
(|hn|2)βn

]


. (5.14)

From Lemma 12.(a) and Lemma 12.(b), one can conclude that TN −TO starts at

the initial value of 0, first decreases and finally approaches a constant when ρ→ ∞,

given in (5.14). This reveals that at extremely high SNRs, the difference of the total

link-layer rate, between NOMA and OMA, stabilizes at a constant value, which is

irrelevant with the transmit SNR, but depends on the two users’ average channel

power gains, power coefficients, and delay QoS exponents. Together with Lemma 11,

one can conclude that OMA can achieve a higher value of the total EC, when the

transmit SNR is small, in comparison with the NOMA scheme.

5.4.1.3 Case 2: Consider Delay-Unconstrained Users

In this subsection, the delay-unconstrained EC is investigated, in a two-user NOMA

network and a two-user OMA network, when θm → 0, θn → 0, i.e., lim
θm→0

Em
c , lim

θm→0
Ēm

c ,

lim
θn→0

En
c , lim

θn→0
Ēn

c , as well as the EC difference between NOMA and OMA, for both

users, i.e., lim
θm→0

(
Em

c − Ēm
c

)
and lim

θn→0

(
En

c − Ēn
c

)
. Further, the impact of ρ in this

delay-unconstrained situation is also analyzed and investigated.

Lemma 13. Considering the EC for the mth user with θm → 0, in NOMA and OMA,

we prove that

(a) When θm → 0, lim
θm→0

Em
c

= E [Rm], lim
θm→0

Ēm
c

= E
[
R̄m

]
, lim

θm→0

(
Em

c
− Ēm

c

)
=

E [Rm]− E
[
R̄m

]
.

(b) When θm→0, ρ→∞, lim
θm→0
ρ→∞

Em
c
=log2

(
1

αn

)
, lim
θm→0
ρ→∞

Ēm
c

→ ∞, lim
θm→0
ρ→∞

(
Em

c
−Ēm

c

)
→

−∞.

Considering the EC for the nth user with θn → 0, in NOMA and OMA, we prove that

(c) When θn → 0, lim
θn→0

En
c
= E [Rn], lim

θn→0
Ēn

c
= E

[
R̄n

]
, lim
θn→0

(
En

c
− Ēn

c

)
= E [Rn]−

E
[
R̄n

]
.

(d) When θn → 0, ρ→ ∞, lim
θn→0
ρ→∞

En
c
→ ∞, lim

θn→0
ρ→∞

Ēn
c
→ ∞, lim

θn→0
ρ→∞

(
En

c
− Ēn

c

)
→ ∞.

Proof. The proof is provided in Appendix N.
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From Lemma 13.(a) and Lemma 13.(c), it is noted that for both users, no matter in

NOMA or OMA, when there is no delay requirement, i.e., θm → 0, and θn → 0, the in-

dividual achievable link-layer rate is equivalent to the ergodic capacity. Furthermore,

from Lemma 8 and Lemma 13, one can find that, the same conclusions regarding to

the performance of the system at high SNRs apply to the delay-unconstrained and

the delay-constrained users. For example, from Lemma 8.(b) and Lemma 13.(b), it

indicates that the weaker user in a two-user NOMA system can only achieve a limited

EC, no matter how large the transmit SNR can be, or how strict or loose the delay

exponent is. Further, one can also conclude that, for the weaker user, either with

or without delay constraint, OMA offers higher EC than NOMA, when ρ → ∞. On

the contrary, for the stronger user, either with or without delay constraint, NOMA

achieves higher EC than OMA at high SNRs.

Note that in Section 5.4.1.2 and Section 5.4.1.3, we have comprehensively inves-

tigated the individual link-layer rate and the total EC for a two-user NOMA system,

in comparison with the conventional OMA scheme. For delay-constrained and delay-

unconstrained users, we have characterized the region of ρ, in which NOMA is more

beneficial than OMA, in terms of the individual and the total EC. These insightful

conclusions, mathematically derived and theoretically proved, can provide valuable

guidelines for the further research, such as the resource allocation design, user pair-

ing/clustering technique and delay analysis in NOMA. Further, the above theoretical

conclusions will be confirmed using simulation results in Section 5.5.

5.4.2 Effective Capacity of Multiple NOMA Pairs

After analyzing the two-user NOMA network and deriving the closed-form expres-

sions, the total achievable link-layer rate for multiple NOMA pairs can be inves-

tigated. By considering that the M users are divided into
M

2
groups, we define

I = {1, 2, . . . , M
2
}, which contains the group index. Then, all NOMA pairs can be

included in Φ, Φ = {φ1,φ2, . . . ,φM/2}, satisfying φi ∩ φj = ∅, i 6= j, ∀i, j ∈ I, where

φi = {(mi, ni) | mi 6= ni, |hmi
|2 ≤ |hni

|2, ∀i ∈ I} denotes the ith NOMA pair with two

users, i.e., mi and ni.

Assume that for the ith NOMA pair, ∀i ∈ I, NOMA will be implemented for

the two users, i.e., mi and ni. Meanwhile, for the inter-group multiple access, it is

assumed that TDMA will be applied. Hence, for the two users in the ith NOMA pair,
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the achievable data rates, in b/s/Hz, can be respectively formulated as

Rmi
=

2

M
log2

(
1 +

ραmi
|hmi

|2
ραni

|hmi
|2 + 1

)
, (5.15a)

Rni
=

2

M
log2

(
1 + ραni

|hni
|2
)
. (5.15b)

On the other hand, if the users mi and ni each have their message transmitted using

TDMA, the achievable data rate for each user can be given by

R̄j =
1

M
log2

(
1 + ρ|hj|2

)
, j ∈ {mi, ni}, (5.16)

where
1

M
denotes that each user has only

1

M
of the time slot to transmit, while in

the other fractions of the time slot, it will stay silent.

Assuming that the Gärtner-Ellis theorem is satisfied, the EC formulations for the

users mi and ni in the ith NOMA pair can be obtained, yielding

Emi
c = − 1

θmi
TfB

ln

(
E

[(
ρ|hmi

|2 + 1

ραni
|hmi

|2 + 1

) 4
M

βmi

])
, (5.17a)

Eni
c = − 1

θni
TfB

ln
(
E

[(
1 + ραni

|hni
|2
) 4

M
βni

])
, (5.17b)

where βmi
= −θmi

TfB

2 ln 2
, and βni

= −θni
TfB

2 ln 2
. On the contrary, for the TDMA scheme,

the EC expressions for both users can also be obtained, which respectively yield to

Ēmi
c = − 1

θmi
TfB

ln
(
E

[(
1 + ρ|hmi

|2
) 2

M
βmi

])
, (5.18a)

Ēni
c = − 1

θni
TfB

ln
(
E

[(
1 + ρ|hni

|2
) 2

M
βni

])
. (5.18b)

Comparing (5.17a)-(5.18b) with (5.7a)-(5.8b), one can notice that the EC formula-

tions for the two users in the ith NOMA pair, have similar expressions with those

proposed for a two-user NOMA network in Section 5.4.1. Hence, by following similar

steps in Appendix H, the closed-form expressions for Emi
c , Eni

c , Ēmi
c , and Ēni

c can be

easily obtained, which are omitted here for simplicity. Our focus lies on analyzing the

total EC of multiple NOMA pairs, denoted by MN , in comparison with the total EC

for the M OMA users, i.e., MO. Note that MN can be defined as
M/2∑
i=1

(Emi
c + Eni

c ),

and correspondingly, MO equals to
M/2∑
i=1

(
Ēmi

c + Ēni
c

)
. To investigate the region of ρ, in

which NOMA can offer a higher value of the total link-layer rate for multiple NOMA

pairs, in comparison with the OMA scheme, we provide the following lemma.
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Lemma 14. Considering the difference of the total EC, between multiple NOMA

pairs and M OMA users, we prove that

(a) Whenρ→0, MN−MO→0, lim
ρ→0

∂(MN−MO)

∂ρ
=

M/2∑
i=1

1−2αni

M ln 2
(E[|hmi

|2]−E[|hni
|2])≤

0.

(b) When ρ → ∞, MN − MO approaches a constant, given in (5.19), and we get

lim
ρ→∞

∂ (MN −MO)

∂ρ
= 0.

Proof. The proof follows similar steps in Appendix M, and is omitted here for sim-

plicity.

lim
ρ→∞

(MN−MO)=

M/2∑

i=1

− 1

θmi
TfB

ln


 α

− 4
M

βmi
ni

E

[
(|hmi

|2) 2
M

βmi

]


− 1

θni
TfB

ln



αni

4
M

βniE

[
(|hni

|2)
4
M

βni

]

E

[
(|hni

|2) 2
M

βni

]


.

(5.19)

From Lemma 14, one can conclude that MN −MO starts at the initial value of 0,

first decreases at small values of ρ, and finally approaches a constant when ρ → ∞,

given in (5.19). This indicates that OMA outperforms NOMA on the total link-layer

rate performance for a M-user network, at small SNRs. Simulation results in the

next section further show that NOMA achieves higher total EC than OMA at high

values of SNR. Finally, Lemma 14.(b) indicates that the performance gain of NOMA

over OMA becomes stable when the transmit SNR becomes extremely high.

5.5 Numerical Results

In this section, all the theorems and the lemmas proposed in Section 5.4 will be

numerically confirmed. Further, the impact of the per-user delay QoS exponent, and

the transmit SNR ρ on the individual EC performance and the total link-layer rate, in

NOMA and OMA scenarios, is numerically analyzed and investigated in this section.

Specifically, we start from showing the simulation results for the two-user system, in

NOMA and OMA. To consider a two-user NOMA system, the total number of users

M = 10, and the users with the 2rd and the 8th weakest channels are assumed to be

paired together, i.e., m = 2, n = 8. The corresponding power coefficients for the two

users are set as, αm = 0.8, αn = 0.2, unless otherwise indicated. The fading-block

duration Tf = 0.01 ms, and the bandwidth B = 100kHz.
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Figure 5.2: Em
c and En

c , in NOMA, versus ρ for various values of the delay QoS
exponent vector θ.

To confirm the accuracy of the proposed closed-form expressions for EC in NOMA

scheme for both users, Fig. 5.2 plots the curves of Em
c and En

c versus the transmit

SNR ρ, for various values of the delay QoS exponent vector θ, where θ = [θm, θn]. This

figure shows the results calculated in two ways, i.e., by using Monte Carlo simulation

method and the proposed closed-form expressions in this chapter. From Fig. 5.2, the

accuracy of the closed-form expressions for EC in NOMA scheme for both users can

be confirmed. For the mth user and the nth user, Em
c and En

c gradually increase with

the transmit SNR ρ, which confirms the proposed Lemma 9.(a) and Lemma 10.(a).

Further, when the delay QoS exponent vector becomes more stringent, i.e., changing

from θ → [0, 0] to θ = [5, 5], the individual link-layer rates in NOMA, for both users,

decrease. This phenomenon will be further investigated in Fig. 5.10.

Fig. 5.3 includes the plots for Em
c and Ēm

c versus the transmit SNR ρ, for various

values of the delay QoS exponent vector θ. This figure first shows that when ρ

increases, the link-layer rate for the mth user, either in NOMA or OMA, shows a

non-decreasing trend. This confirms the proved Lemma 9.(a). For the Em
c in NOMA

scheme, it first increases when ρ is relatively small, then reaches a limit when ρ

becomes very large. This observation confirms Lemma 8.(b), since it is proved that

when ρ → ∞, Em
c approaches a maximum limit which is independent from the

transmit SNR and the user’s delay QoS requirement. Further, from Fig. 5.3, one

can notice that Em
c saturates as soon as ρ ≥ 30dB, although in Lemma 8.(b), the
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Figure 5.4: En
c , in NOMA, and Ēn

c , in OMA, versus the transmit SNR ρ for various
values of θ.

maximum limit of Em
c achieves when ρ → ∞. Finally, Fig. 5.3 shows that Em

c

in NOMA prevails over Ēm
c in OMA, when ρ is small, but with the increase of ρ,

OMA outperforms NOMA on the link-layer rate performance, for the mth user, which

confirms the analysis and explanations in Lemma 9 and Lemma 13.

Considering the nth user, Fig. 5.4 plots the curves of En
c and Ēn

c versus the
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Figure 5.5: Em
c − Ēm

c versus ρ for various values of the delay QoS exponent vector θ.

transmit SNR ρ, for various values of the delay QoS exponent vector θ. From this

figure, we note that En
c and Ēn

c start at the same value of 0, then monotonically

increase with respect to the transmit SNR ρ. This confirms Lemma 8.(a) and Lemma

10.(a). Furthermore, for a fixed value of θ, when ρ is small, Ēn
c in OMA is larger

than En
c in NOMA, but with the increase of the transmit SNR, NOMA becomes more

beneficial, in terms of the link-layer rate, which is analytically explained in Lemma

10 and Lemma 13. In addition, when the delay QoS exponent vector becomes more

stringent, i.e., changing from θ → [0, 0] to θ = [30, 30], the link-layer rate for the nth

user, either in NOMA or OMA, decreases, considering a fixed value of ρ.

In order to investigate the advantage of NOMA over OMA, for the mth user and

the nth user, Fig. 5.5 and Fig. 5.6 are provided, which include the plots for Em
c − Ēm

c

and En
c − Ēn

c versus the transmit SNR ρ, respectively, for various values of the delay

QoS exponent vector θ. Fig. 5.5 indicates that for the mth user, Em
c − Ēm

c starts

at the initial value of 0, increases slightly at small values of ρ, and then decreases

when the transmit SNR ρ further increases. This confirms Lemma 9.(b) and Lemma

9.(c). When the transmit SNR is high and fixed, Fig. 5.5 further shows that a more

stringent delay requirement with θ = [5, 5], results in a larger value of Em
c − Ēm

c

than the delay-unconstrained situation with θ → [0, 0]. Specifically, in comparison

with the delay-unconstrained system, the delay-constrained system with θ = [5, 5]

allows a longer range of ρ, in which NOMA prevails over OMA. On the other hand,

for the nth user, Fig. 5.6 shows that En
c − Ēn

c first starts at the initial value of 0,
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Figure 5.6: En
c − Ēn

c versus ρ for various values of the delay QoS exponent vector θ.

slightly decreases when ρ is small, and with the further increase of ρ, it increases.

This confirms Lemma 10.(b) and Lemma 10.(c). Furthermore, when the transmit

SNR is high and fixed, a more stringent delay requirement with θ = [20, 20] leads to

a smaller value of En
c − Ēn

c , than the delay-unconstrained situation with θ → [0, 0].

To investigate the impact of ρ on the performance of the total link-layer rate for

the two-user system, Fig. 5.7 is included which plots the curves of TN in NOMA

and TO in OMA, versus the transmit SNR ρ, for various values of θ. Fig. 5.7 first

indicates that the total EC for the two-user network, either in NOMA or OMA, starts

at the initial value of 0, and then gradually increases with the transmit SNR ρ. This

confirms Lemma 11.(a) and Lemma 11.(d). Specifically, when ρ is very small, the

total rate for the two-user network in OMA, TO, has a faster increasing speed than

that in NOMA, TN , which has been proved and explained in Lemma 12.(a). With

the increase of ρ, from Fig. 5.7, one can note that TN in NOMA gradually becomes

higher than TO in OMA, for both of the delay-constrained situation with θ = [1, 1]

and the delay-unconstrained situation with θ → [0, 0]. Furthermore, at high values

of ρ, the gap of the total EC between NOMA and OMA, for this two-user network,

becomes steady, which confirms Lemma 12.(b).

To further investigate and analyze the impact of the transmit SNR ρ and the

delay QoS exponent vector θ on the total EC difference, between a two-user NOMA

network and a two-user OMA network, Fig. 5.8 and Fig. 5.9 are included which

show the plots for TN − TO versus the transmit SNR ρ, for various settings of the
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delay QoS exponent vector θ. Specifically, to plot Fig. 5.8, the delay QoS exponent

of the nth user is fixed at θn = 0.01. Meanwhile, in Fig. 5.9, all curves are plotted

by fixing the value of θm at 0.01. From Fig. 5.8, one can note that for a fixed value

of θ, TN − TO starts at the initial value of 0, first decreases, then increases with the

transmit SNR ρ, finally reaches a maximum limit and stabilizes. This confirms the
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analysis and explanations proposed in Lemma 12. Further, Fig. 5.8 indicates that

when θn is fixed at 0.01, a larger θm leads to a higher value of TN −TO at high SNRs.

Correspondingly, Fig. 5.9 shows that when θm is fixed at 0.01, a smaller θn results in

a higher level of TN − TO at high SNRs.

To investigate the impact of the delay QoS exponent θm on the link-layer rate

performance for the mth user, Fig. 5.10 plots the results of Em
c in NOMA (in solid

lines) and E[Rm] (in dash lines) versus the delay QoS exponent θm, for various values

of ρ. This figure first indicates that, when the mth user has a loose delay requirement,

i.e., θm ≤ 10−1, the link-layer rate in NOMA, Em
c , is equivalent to the physical-layer

rate E[Rm], which confirms Lemma 13.(a). When the delay requirement becomes

more stringent, Em
c gradually decreases to the minimum value of 0, for various values

of ρ. On the contrary, the curves of E[Rm] versus θm always stay high and stable,

but this is due to the reason that there is no delay requirement guaranteed when

the physical-layer rate is considered. Furthermore, considering a fixed θm, when ρ

increases from 10 dB to 30 dB, Em
c becomes larger, which indicates that a higher

value of ρ will result in a larger value of EC in NOMA, for the mth user.

Finally, the focus lies on the comparison of NOMA and OMA, in terms of the

total link-layer rate difference, between multiple NOMA pairs andM OMA users. To

investigate the impact of the transmit SNR ρ and the user pairing set Φ on the total

EC difference, Fig. 5.11 includes the plots for MN −MO versus the transmit SNR ρ,

for various settings of the user pairing set Φ. Specifically, the total number of users
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Figure 5.11: MN −MO, versus the transmit SNR ρ for various settings of user pairing
set Φ.

M = 6, the power coefficients allocated to both users in a NOMA pair are given as

αmi
= 0.8, αni

= 0.2, ∀i ∈ I, (mi, ni) ∈ Φ11, and the delay QoS exponents of all users

are assumed to be approaching 0. From Fig. 5.11, it is noted that for a fixed setting

of Φ, MN −MO starts at the initial value of 0, first decreases, then increases until it

11Different settings of power coefficients can influence the simulation results, but this is beyond
the scope of this chapter, and can be kept as a future research topic.
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reaches a maximum value. This confirms the proposed Lemma 14 in Section 5.4.2,

which reveals that OMA achieves higher total EC than NOMA at small values of ρ.

Fig. 5.11 also indicates that NOMA is more beneficial than OMA, on the total EC

performance for a M-user network, when the transmit SNR becomes extremely high.

Furthermore, from Fig. 5.11, it shows that at high SNRs, the user pairing setting of

Φ = {(1, 6), (2, 5), (3, 4)} provides the largest level of MN − MO, which means that

among all the simulated settings, this case is the best user pairing solution.

5.6 Summary

The individual achievable link-layer rate and the total EC, under the per-user statis-

tical delay QoS requirement, were investigated and analyzed for a downlink NOMA

network with M users. Assuming that the M users are divided into multiple NOMA

pairs, it was proved that NOMA offers higher total EC than OMA at high SNRs.

Furthermore, the performance gain of NOMA over OMA was proved to become sta-

ble when the transmit SNR is extremely high. This indicates that once above a high

level, the increase of transmit SNR cannot guarantee more performance gain. Aware

of the importance of a two-user downlink NOMA network, the impact of the transmit

SNR and the delay QoS requirement on the individual EC performance and the total

link-layer rate, in NOMA and OMA, was studied for a two-user NOMA network. Two

cases were respectively analyzed. Case 1: Consider delay-constrained users. Case 2:

Consider delay-unconstrained users. For the stronger user, either delay-constrained

or delay-unconstrained, it was proved that NOMA prevails over OMA, when the

transmit SNR is large. On the contrary, for the weaker user in a two-user network, it

was proved that NOMA offers higher EC than OMA at small values of SNR. Further-

more, for the weaker user, either delay-constrained or delay-unconstrained, the EC in

NOMA was proved to be limited to a maximum value, even if the transmit SNR goes

to infinity. To confirm these theoretical conclusions, the closed-form expressions for

the individual EC in a two-user network were derived and confirmed by using simu-

lation results. Finally, simulation results also revealed that the user pairing settings

and the allocated power coefficients can influence the throughput performance, which

can be reserved as potential research topics.
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Chapter 6

Conclusions and Future Work

6.1 Summary

Due to the imperative need of satisfying statistical delay QoS guarantees, this thesis

mainly discussed the delay-constrained resource allocation and the link-layer through-

put analysis, focusing on different wireless communication networks. Based on the

link-layer channel model proposed in [10], the maximum arrival rate that a given ser-

vice process can support was analyzed and investigated, while satisfying a required

statistical delay QoS constraint.

Considering the compromise between the achievable rate, energy savings, and de-

lay QoS provisioning, the focus first lay on designing an efficient resource allocation

strategy to balance the three important metrics. Note that EC denotes the maximum

arrival rate with a guaranteed delay violation probability and the link-layer EE can

be formulated as the ratio of EC to the total power expenditure [12]. Hence, the

focus then lay on jointly maximizing EC and the link-layer EE, so that the three QoS

metrics can be balanced. It has been proved that the delay-constrained link-layer

rate, namely EC, conflicts with the link-layer EE, just like the inconsistent property

of EE and SE, from the physical-layer channel model [22]. Hence, to jointly maximize

two incompatible metrics, it falls into the scope of the multi-objective optimization

problem. Focusing on a point-to-point single-user single-carrier communication sys-

tem, a multi-objective optimization problem of link-layer EE and EC was proposed

and investigated, under a delay-outage probability constraint and an average transmit

power limit. This problem was then solved and the proposed optimal power alloca-

tion strategy was proved to be sufficient for the Pareto optimal set of the original

formulated multi-objective optimization problem.

To further balance the three QoS metrics in a more practical scenario, the delay-

QoS driven resource allocation problem was studied for the uplink transmission in
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a multi-user multi-carrier OFDMA system. A total EC maximization problem was

proposed and formulated, subject to each user’s link-layer EE requirement and the

per-user average transmit power limit. To solve this problem and provide the resource

allocation solution, a low-complexity heuristic algorithm was proposed, which first

allocates each served user the exact number of its required subcarriers, and then

implements the per-user optimal power allocation strategy. Finally, the remaining

subcarriers will be allocated by adopting the strategy that the user with current

minimum EC value has the allocation priority.

Finally, based on the link-layer channel model, the performance of an achievable

link-layer rate was analyzed for a downlink NOMA network with M users, under

the per-user statistical delay QoS requirement. The advantage of NOMA over OMA

was investigated by analyzing the impact of the transmit SNR on the total link-layer

rate performance. Considering a two-user network as a special case, the performance

gain of NOMA over OMA was also analyzed and investigated, for delay-constrained

and delay-unconstrained users. To confirm the proposed theoretical conclusions, the

closed-form expressions for the achievable EC in a two-user network, in NOMA and

OMA, were derived for both users and then confirmed using Monte Carlo simulations.

In more detail, the main contributions of this thesis can be summarized as follows.

In Chapter 2, the EC theory and convex optimization theory were briefly in-

troduced, followed by the literature review. This chapter provides a comprehensive

overview, which helps the readers to thoroughly understand the background knowl-

edge in regard to the link-layer channel model, convex optimization and the related

existing literature.

In Chapter 3, a normalized link-layer EE-EC MOP in a Nakagami-m fading chan-

nel was formulated and then transformed into a weighted SOP, under a delay-outage

probability constraint and an average transmit power limit. Specifically, two nor-

malization values were introduced to make the two objectives comparable. To solve

the power-constrained SOP, the unconstrained SOP was analyzed first. By proving

that the unconstrained EE-EC tradeoff problem is continuously differentiable, strictly

quasiconvex in the average power and follows a cup shape curve, it can be concluded

that the global optimum is unique and can be achieved at a finite value. Finally, for

the power-unconstrained EE-EC tradeoff problem, a closed-form expression for the

optimal power allocation strategy was derived, which paves the way for the power-

constrained problem. However, for a formulated MOP, the optimal solutions are a set

of points which all fit Pareto optimality, rather than a single global solution obtained

after solving an SOP. The question then arises, ”does the proposed optimal solution
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belong to the Pareto optimal set of the original MOP?” According to Theorem 5,

Theorem 6, and Lemma 1, one can confirm that the proposed optimal power, calcu-

lated for every pre-determined weight value, is sufficient for the Pareto optimal set of

the original EE-EC MOP. Further, it was shown that the proposed optimal solution

includes the optimal power allocation strategy for the link-layer EE-maximization

problem and also the one for the link-layer EC-maximization problem, as extreme

cases. This means that the formulated tradeoff problem is general, and the proposed

optimal solution is flexible. Finally, the power-constrained link-layer EE-EC tradeoff

problem was solved, and the Pseudocode of the optimal power allocation algorithm

was provided. Since the calculated optimal power value can be influenced by the sys-

tem parameters, hence, the impact of these factors on the tradeoff performance was

thoroughly studied. It was proved that the average optimal power level monotonically

decreases with the importance weight, but strictly increases with the normalization

factor, circuit power and power amplifier efficiency. Based on these conclusions, one

can find that, if the system prefers a higher EC, a larger value of the normalization

factor as well as a smaller importance weight should be chosen to offer a larger opti-

mal transmit power, and correspondingly, a larger EC. In contrast, if a user prefers a

higher EE, a smaller value of the normalization factor as well as a larger importance

weight are more beneficial. Simulation results confirmed the analytical derivations

and further showed the impact of fading severeness and transmission power limit on

the tradeoff performance.

In Chapter 4, a total EC maximization problem for the uplink transmission, in a

multi-user multi-carrier OFDMA system, was formulated as a combinatorial integer

programming problem, subject to each user’s link-layer EE requirement as well as

the per-user average transmission power limit. Specifically, an adjustable EE require-

ment factor was introduced to further tune each user’s EE requirement value, which

transformed the formulated problem into a tradeoff problem between the total EC

and all users’ individual EE achievements. In order to make the formulated prob-

lem tractable, the solving process was divided into two steps: frequency provisioning

which decided the number of allocated subcarriers for each user, and then optimal

power allocation for each single-user multi-carrier system. In order to obtain the sub-

carrier assignment solution, a low-complexity heuristic algorithm was proposed and

compared with the traditional exhaustive algorithm and a fair-exhaustive algorithm.

From the design intention and the simulation results, one can see that the proposed

heuristic algorithm cares about user fairness, offers a close-to-optimal performance,
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and also has a complexity linearly relating to the size of the problem. Given a sub-

carrier assignment matrix, the multi-user OFDMA system can then be viewed as a

FDMA system, where each user transmits data through a number of assigned sub-

carriers independently. Hence, the formulated tradeoff problem between the total EC

and all users’ individual EE achievements can be transformed into a link-layer EE-

EC tradeoff problem for each single-user multi-carrier system. The per-user optimal

power allocation strategy, across both frequency and time domains, was then derived.

Further, to thoroughly investigate the impact of system parameters on the tradeoff

performance, it was proved that each user’s achieved link-layer EE value monotoni-

cally decreases with its circuit power, but increases with its EE requirement factor.

Furthermore, each user’s optimal average power was proved to be monotonically de-

creasing with its EE requirement factor. Simulation results confirmed the proofs and

design intentions, and further revealed that when there is a link-layer EE constraint,

each user’s tradeoff EC level will not show a monotonic trend with its delay QoS

exponent. This phenonmenon differs from the monotonic trend of the maximum

EC versus delay QoS exponent for the unconstrained EC-maximization problem pro-

posed in [20]. On the other hand, simulation results also indicated that when there

is a link-layer EE constraint, the tradeoff EC value achieved with a smaller number

of available subcarrier may be higher than the one obtained with more subcarriers.

This also differs from the monotonic trend of the maximum EC versus the number of

subcarriers for the unconstrained EC-maximization problem in [20].

In Chapter 5, the achievable link-layer rate was studied for a downlink NOMA

network with M users, under the per-user statistical delay QoS requirement. Specif-

ically, the M users were assumed to be divided into multiple NOMA pairs, with

conventional OMA applied for inter-NOMA-pairs multiple access. Focusing on the

total link-layer rate for a downlink M-user network, it was proved that OMA outper-

forms NOMA when the transmit SNR is small. On the contrary, NOMA was proved

to be more beneficial than OMA at high values of SNR. Furthermore, the advantage

of NOMA over OMA was found to be stable when the transmit SNR is extremely

high. This indicates that once above a high level, the increase of transmit SNR cannot

guarantee any more performance gain. Note that a two-user downlink NOMA, called

as the MUST, has been proposed for the 3GPP-LTE-A networks. Hence, aware of

the importance of a two-user NOMA network, the impact of the transmit SNR and

the delay QoS requirement on the individual EC performance and the total link-layer

rate was also analyzed and investigated for a two-user network. Specifically, for delay-

constrained and delay-unconstrained users, it was proved that for the user with the
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stronger channel condition in a two-user network, NOMA prevails over OMA when

the transmit SNR is large. On the other hand, for the user with the weaker channel

condition, it was proved that NOMA outperforms OMA at small values of transmit

SNR. Furthermore, for the user with the weaker channel condition, the achievable

EC in NOMA was proved to be limited to a maximum value, even if the transmit

SNR goes to infinity. To confirm these theoretical conclusions, the closed-form ex-

pressions for the achievable EC in a two-user network, by applying NOMA or OMA,

were derived for both users and then confirmed using Monte Carlo simulations.

6.2 Future Work

Based on the present results, further work can be carried out in the following areas:

1. Note that the delay-constrained resource allocation has been studied in a single-

user single-carrier system and a multi-user multi-carrier communication system,

in Chapter 3 and Chapter 4, respectively. However, single-antenna transmitters

and receivers were assumed in the two chapters, with perfect CSI considered at

the transmitter. More practical and complicated scenarios can be considered,

such as other multiple access techniques, imperfect CSI, and multi-antenna

users. Firstly, when other multiple access techniques are considered, e.g., power-

domain NOMA, the resource allocation problem would be more challenging, due

to the interference from other NOMA users. Hence, it is of great importance

if an optimal delay-constrained power allocation strategy can be found for a

downlink NOMA network. On the other hand, for multi-antenna users with

perfect and imperfect CSI assumed, the delay-constrained resource allocation

also deserves elaborate study.

2. In Chapter 5, the performance of an achievable link-layer rate, was studied

and investigated for a M-user downlink NOMA network, under the per-user

statistical delay QoS requirement. However, the M users were assumed to

be divided into multiple NOMA pairs in Chapter 5. Firstly, assuming that

all M users transmit on the same channel, the closed-form expression for the

achievable EC deserves elaborate study. On the other hand, the impact of the

transmit SNR and the per-user delay QoS requirement on the individual EC

and the total link-layer rate requires further research, for a downlink NOMA

network with M users transmitting on the same channel.
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3. According to Chapter 2, the theory of EB was introduced by providing a sta-

tistical envelope process, which gives an upper bound on the traffic flows in a

probabilistic manner. Then, the minimum envelope rate was proved to be the

EB satisfying the required buffer overflow probability, under some certain con-

ditions. As a simple and efficient link-layer channel model, the theory of EB and

EC is easy to apply. However, different link-layer bounds with respect to the

service rate and the arrival rate can be found and applied, by using stochastic

process, to satisfy different delay limitations.
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Appendix A

Proof of Lemma 1

Proof. Suppose the point P ∗
t ∈ [0, Pmax], is a Pareto optimal solution for problem

Q2 and it is not a Pareto optimal solution for problem Q1. Hence, there must exist

P ′
t with

SE(P ′
t)

ΨSE

≥ SE(P ∗
t )

ΨSE

,
EE(P ′

t)

ΨEE

≥ EE(P ∗
t )

ΨEE

, and also at least one of the two

following conditions happens: 1)
SE(P ′

t)

ΨSE

>
SE(P ∗

t )

ΨSE

, 2)
EE(P ′

t)

ΨEE

>
EE(P ∗

t )

ΨEE

1. Note

that SE(Pt), EE(Pt), for Pt ∈ [0, Pmax], are always positive, therefore, there exists P ′
t

which guarantees that
ΨSE

SE(P ′
t)

≤ ΨSE

SE(P ∗
t )

,
ΨEE

EE(P ′
t)

≤ ΨEE

EE(P ∗
t )

, and at least one of

the two following conditions happens: 1)
ΨSE

SE(P ′
t)
<

ΨSE

SE(P ∗
t )

, 2)
ΨEE

EE(P ′
t)
<

ΨEE

EE(P ∗
t )

.

This contradicts the assumption that P ∗
t is a Pareto optimal solution for problem Q2.

This concludes the proof of Lemma 1.

1Here, SE(P ) and EE(P ) are defined as the SE and EE values achieved at certain average power
P .
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Appendix B

Proof of Theorem 5

Proof. 1Since P̂ is unique optimal solution for the weighted SOP, then
q∑

i=1

wifi(P̂ ) <

q∑
i=1

wifi(P ), wi ∈ [0, 1],
q∑

i=1

wi = 1, for all P ∈ [0, Pmax]. Suppose P̂ is not a Pareto

optimal solution for the MOP. Hence, there must exist P ′ ∈ [0, Pmax] with fi(P
′) ≤

fi(P̂ ) for all i = 1, . . . , q, and there is at least one j, such that fj(P
′) < fj(P̂ ),

j = 1, . . . , q. Multiplying by the weights, we have wifi(P
′) ≤ wifi(P̂ ) for all i =

1, . . . , q, and
q∑

i=1

wif(P
′) ≤

q∑
i=1

wif(P̂ ). This contradicts the uniqueness assumption.

Therefore, the theorem is proved.

1A similar theorem was mentioned in [113], but the proof was not provided.
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Appendix C

Proof of Theorem 6

Proof. Denote the sublevel set of U7 by Sβ =

{
Pr ∈

[
0,
Pmax

Kℓ

] ∣∣∣∣U7 ≤ β

}
. According

to [59], U7 is strictly quasiconvex in Pr if Sβ is strictly convex for any real number β.

In more detail, a set is strictly convex if any line (without the endpoints) connecting

two points in the set is inside the interior of the set. In other words, the set C is

strictly convex if every point c = λa+ (1− λ)b, λ ∈ (0, 1), λ ∈ R, for any two points

a, b ∈ C, a 6= b, is inside the interior of C.

Firstly, when β < 0, no points exist for U7 = β. When β ≥ 0, Sβ is equivalent to

Sβ =

{
Pr ∈

[
0,
Pmax

Kℓ

] ∣∣∣∣ ln
(
Eγ

[
(1 + Prγ)

−α(θ)
])

−β
(
w1ΨEEr

(
Pcr +

1

ǫ
Pr

)
+ (1− w1)ΨEC

)
≤ 0

}
.

Since ln
(
Eγ

[
(1 + Prγ)

−α(θ)
])

is strictly convex [98], and β

(
w1ΨEEr

(
Pcr +

1

ǫ
Pr

)

+ (1− w1)ΨEC

)
is affine in Pr, therefore, Sβ is strictly convex for any real number

β and U7 is strictly quasiconvex in Pr. This proves Property 1).

We now take the first derivative of (3.7a) with respect to Pr, yielding

U5′ =

w1ΨEEr

ǫ
Ec − J(Pr)E

′
c

Ec
2 ,

where J(Pr) = w1ΨEEr

(
Pcr +

1

ǫ
Pr

)
+ (1 − w1)ΨEC and E ′

c =
dEc

dPr

. When Pr → 0,

Ec → 0, J(Pr) > 0 and E ′
c > 0, therefore, U5′

∣∣
Pr→0

< 0. On the other hand, when
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Pr → ∞, we have

lim
Pr→∞

w1ΨEEr

ǫ
Ec

J(Pr)E ′
c

= lim
Pr→∞

w1ΨEEr

ǫ
E ′

c

w1ΨEEr

ǫ
E ′

c + J(Pr)E ′′
c

, (C.1)

where E ′′
c =

d2Ec

dPr
2 . We note that E ′′

c < 0, due to the fact that EC is strictly concave

in Pr [98]. Now, by using the fact that J(Pr) > 0, one can show that the RHS of

(C.1) is bigger than 1, which means that U5′ |Pr→∞> 0. Hence, when Pr → ∞, U5

is an increasing function in Pr. We note that U7 is derived by canceling the negative

multiplied constant in U5 and then inverting the objective function. Therefore, when

Pr → 0, U7 monotonically decreases and when Pr → ∞, U7 monotonically increases.

This proves that U7 has a cup shape curve in Pr, which completes the proof for

Property 2).

Now, we set f(Pr) = ln
(
Eγ

[
(1 + Prγ)

−α(θ)
])

and take the first derivative of U7

with respect to Pr to get

U7′ = lim
∆Pr→0

f
(
Pr +∆Pr

)

J
(
Pr +∆Pr

) − f
(
Pr

)

J
(
Pr

)

∆Pr

= lim
∆Pr→0

f
(
Pr +∆Pr

)
− f

(
Pr

)

∆Pr

− w1ΨEEr

ǫ
U7

J
(
Pr +∆Pr

)

= lim
∆Pr→0

f(Pr)
′ − w1ΨEEr

ǫ
U7

J
(
Pr +∆Pr

) .

Therefore, sgn(U7′) = sgn

(
f(Pr)

′ − w1ΨEEr

ǫ
U7

)
. This completes the proof of

Property 3).

117



Appendix D

Proof of Lemma 2

Proof. Here, we briefly prove that problem (P ′) is a convex program in (y, φ), and if

(y∗, φ∗) is an optimal solution of (P ′), then x∗ = y∗/φ∗ is an optimal solution of (P ).

Since f is a convex function, therefore, for the objective function of problem (P ′),

we have

(λφ1 + (1− λ)φ2) f

(
λy1 + (1− λ)y2
λφ1 + (1− λ)φ2

)

= (λφ1 + (1− λ)φ2) f

(
λφ1

λφ1 + (1− λ)φ2

y1
φ1

+
(1− λ)φ2

λφ1 + (1− λ)φ2

y2
φ2

)

≤λφ1f

(
y1
φ1

)
+ (1− λ)φ2f

(
y2
φ2

)

for any (y1, φ1), (y2, φ2) ∈ Rn × R+, and λ ∈ [0, 1]. Hence, the objective function of

problem (P ′) is convex in (y, φ).

Now, since g is affine, which is also convex, φg(y/φ) can be proved to be convex,

by following similar steps. Therefore, the feasible constraint set is a convex set and

one can conclude that problem (P ′) is a convex program if f is convex and g is an

affine function on S.

Henceforth, from the Charnes-Cooper transformation, we note that if the optimal

solution (y∗, φ∗) of problem (P ′) is found, then x∗ = y∗/φ∗ is optimal for problem

(P ).
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Appendix E

Proof of Lemma 3

Proof. Recall that the proposed optimal power allocation strategy is given as

P ∗
r =




α(θ)

1

1 + α(θ)

(w1ν)

1

1 + α(θ) γ

α(θ)

1 + α(θ)

− 1

γ




+

, (E.1)

where ν =
λΨEEr

ǫ
Eγ

[
(1 + P ∗

r γ)
−α(θ)

]
and [x]+ = max{0, x}.

Let us first calculate the closed-form for P ∗
r , considering the unit-variance Nakagami-

m block fading channel.

P ∗
r =

∫ ∞

γ0




α(θ)

1

1 + α(θ)

(w1ν)

1

1 + α(θ) γ

α(θ)

1 + α(θ)

− 1

γ



mmγm−1

Γ(m)
e−mγdγ, (E.2)

where γ0 is the threshold calculated by setting P ∗
r as 0, i.e., γ0 =

w1ν

α(θ)
. Then, we get

P ∗
r =

(
α(θ)

w1ν

) 1

1 + α(θ)
mm

Γ(m)

∫ ∞

γ0

γ
m−1−

α(θ)

1 + α(θ)e−mγdγ − mm

Γ(m)

∫ ∞

γ0

γm−2e−mγdγ.

(E.3)
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By setting a new variable t = mγ, (E.3) can be rewritten as

P ∗
r =

(
α(θ)

w1ν

) 1

1+α(θ) m

α(θ)

1+α(θ)

Γ(m)

∫ ∞

mγ0

t
m−1−

α(θ)

1+α(θ)e−tdt− m

Γ(m)

∫ ∞

mγ0

tm−2e−tdt (E.4)

=

(
α(θ)

w1ν

) 1

1 + α(θ)
m

α(θ)

1 + α(θ)

Γ(m)

(
m− α(θ)

1 + α(θ)

)
∫ ∞

mγ0

e−tdt
m−

α(θ)

1 + α(θ) − m

Γ(m)(m− 1)

∫ ∞

mγ0

e−tdtm−1

=

(
α(θ)

w1ν

) 1

1+α(θ) m

α(θ)

1+α(θ)

Γ(m)

(
m− α(θ)

1 + α(θ)

)


−e−mγ0 (mγ0)

m−
α(θ)

1 + α(θ) +

∫ ∞

mγ0

t
m+

1

1+α(θ)
−1

e−tdt




− m

Γ(m)(m− 1)

(
−e−mγ0(mγ0)

m−1 +

∫ ∞

mγ0

tm−1e−tdt

)
. (E.5)

Note that Γ(a, x) =

∫ ∞

x

ta−1e−t dt [100]. Therefore, one can get that

∫ ∞

mγ0

tm−1e−tdt =

Γ(m,mγ0) and

∫ ∞

mγ0

t
m+

1

1 + α(θ)
−1

e−tdt = Γ(m+
1

1 + α(θ)
, mγ0). Henceforth, by ap-

plying the upper incomplete gamma function and inserting γ0 =
w1ν

∗

α(θ)
1 into (E.5),

we can finally get that

P ∗
r =

(
α(θ)
w1ν∗

) 1
1+α(θ)

m
α(θ)

1+α(θ)

Γ(m)
(
m− α(θ)

1+α(θ)

)
[
−
(
w1ν

∗m

α(θ)

)(m−
α(θ)

1+α(θ))
e−

w1ν
∗m

α(θ) +Γ

(
m+

1

1+α(θ)
,
w1ν

∗m

α(θ)

)]

− m

Γ(m)(m− 1)

[
−
(
w1ν

∗m

α(θ)

)m−1

e−
w1ν

∗m

α(θ) +Γ

(
m,

w1ν
∗m

α(θ)

)]
,when m 6=1, m 6= α(θ)

α(θ)+1
.

(E.6)

To make (E.6) feasible, the necessary conditions are m 6= 1, and m 6= α(θ)

α(θ) + 1
. Now,

we calculate the closed-form expression for P ∗
r when m = 1.

When m = 1, the channel distribution becomes Rayleigh fading and fγ(γ) = e−γ .

1Here, ν∗ is the optimal value for v.
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Hence, we can get that

P ∗
r =

∫ ∞

γ0




α(θ)

1

1 + α(θ)

(w1ν)

1

1 + α(θ) γ

α(θ)

1 + α(θ)

− 1

γ


 e−γdγ

=

(
α(θ)

w1ν

) 1

1 + α(θ)
∫ ∞

γ0

γ

1

1 + α(θ)
−1

e−γdγ −
∫ ∞

γ0

e−γ

γ
dγ. (E.7)

Note that E1(x) =

∫ ∞

x

e−z

z
dz. By applying E1(x) and inserting γ0 =

w1ν
∗

α(θ)
, (E.7)

can be expressed as

P ∗
r =

(
α(θ)

w1ν∗

) 1

1+α(θ) Γ

(
1

1+α(θ)
,
w1ν

∗

α(θ)

)
−E1

(
w1ν

∗

α(θ)

)
, when m = 1. (E.8)

Finally, let us calculate the closed-form expression for P ∗
r , when m =

α(θ)

α(θ) + 1
.

By inserting m =
α(θ)

α(θ) + 1
into (E.4), one can get that

P ∗
r =

(
α(θ)

w1ν

) 1

1+α(θ)
(

α(θ)

1+α(θ)

) α(θ)

1+α(θ)

Γ

(
α(θ)

1+α(θ)

) E1

(
α(θ)γ0
1+α(θ)

)
−

α(θ)

1+α(θ)

Γ(
α(θ)

1+α(θ)
)

∫ ∞

α(θ)γ0
1+α(θ)

t

α(θ)

1+α(θ)
−2

e−tdt

(E.9)

=

(
α(θ)

w1ν

) 1

1+α(θ)
(

α(θ)

1 + α(θ)

) α(θ)

1 + α(θ)

Γ

(
α(θ)

1 + α(θ)

) E1

(
α(θ)γ0
1 + α(θ)

)

−

α(θ)

1 + α(θ)

Γ

(
α(θ)

1 + α(θ)

)(
α(θ)

1 + α(θ)
− 1

)
∫ ∞

α(θ)γ0
1+α(θ)

e−tdt

α(θ)

1 + α(θ)
−1

. (E.10)

By applying the upper incomplete gamma function and E1(x), (E.10) can be expressed
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as

P ∗
r =

(
α(θ)

w1ν∗

) 1

α(θ) + 1
(

α(θ)

α(θ) + 1

) α(θ)

α(θ) + 1

Γ

(
α(θ)

α(θ) + 1

) E1

(
w1ν

∗

1 + α(θ)

)
+

α(θ)

Γ

(
α(θ)

α(θ) + 1

)

×
[
−e

−
w1ν

∗

α(θ)+1
(

w1ν
∗

α(θ) + 1

)−
1

α(θ)+1
+Γ

(
α(θ)

α(θ)+1
,

w1ν
∗

α(θ) + 1

)]
, when m=

α(θ)

α(θ) + 1
.

(E.11)

Hence, the closed-form expressions for P ∗
r have been given in (E.6), (E.8), (E.11),

for m = 1, m =
α(θ)

α(θ) + 1
, and the other cases. The closed-form expressions for

Eγ

[
(1 + P ∗

r γ)
−α(θ)

]
can be derived by following similar steps and the proof is omitted

here for simplicity.
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Appendix F

Proof of Lemma 4

Proof. For a system with normalization values ΨEE,1 = EE |Pt=Pnorm,1
and ΨEC,1 =

Ec |Pt=Pnorm,1
, the optimal average transmit power is assumed to be P ∗

1 . Taking the

first derivative of the function U5 with respect to the average transmit power, it yields

U5′
∣∣∣∣Pt=P ∗

1
Pnorm=Pnorm,1

=

w1ΨEE,1

ǫ
Ec −

(
w1ΨEE,1

(
Pc +

1

ǫ
Pt

)
+ (1− w1) ΨEC,1

)
E ′

c

E2
c

(F.1a)

= ΨEE,1

(
w1Ec

ǫ
−
(
w1

ǫ
P ∗
1 + Pc +

(1− w1)

ǫ
Pnorm,1

)
E ′

c

)
, (F.1b)

which equals to 0 at the optimal point P ∗
1 .

Then, let us consider a system with a larger Pnorm, i.e., Pnorm,2 = Pnorm,1+∆Pnorm,

∆Pnorm > 0. Correspondingly, the normalization values are denoted by ΨEE,2 and

ΨEC,2, where ΨEE,2 = EE |Pt=Pnorm,2
and ΨEC,2 = Ec |Pt=Pnorm,2

. In this case, the

optimal average transmit power at which the tradeoff formulation can be maximized

is denoted by P ∗
2 . Replacing Pnorm,1 in (F.1a) with Pnorm,2, we have

U5′
∣∣∣∣Pt=P ∗

1
Pnorm=Pnorm,1+∆Pnorm

=

ΨEE,2

[
w1Ec

ǫ
−
(
w1

ǫ
P ∗
1 + Pc +

(1− w1)

ǫ
(Pnorm,1 +∆Pnorm)

)
E ′

c

]

E2
c

. (F.2a)

By using (F.1b), (F.2a) reduces to

U5′
∣∣∣∣Pt=P ∗

1
Pnorm=Pnorm,1+∆Pnorm

= −
ΨEE,2

(1− w1)

ǫ
∆PnormE

′
c

E2
c

< 0. (F.3)
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From Theorem 6, it is noted that U5 strictly decreases with the average transmit

power until reaching the minimum, then it becomes a monotonically increasing func-

tion. Therefore, (F.3) means that U5 with a larger Pnorm decreases at P ∗
1 and has

not reached its minimum yet, which means P ∗
2 must be larger than P ∗

1 . Hence, we

complete the proof which shows that when the normalization factor becomes larger,

the optimal average power value increases.

Further, it is easy to prove that the optimal average power monotonically decreases

with w1, therefore the proof is omitted here. This completes the proof of Lemma 4.
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Appendix G

Proof of Lemma 6

Proof. Assume that the final calculated tradeoff EE for the kth user, obtained with a

circuit power value P k
c,1 and Nk allocated subcarriers, is achieved at the average power

P ∗
k,1, i.e., EE

k
∣∣∣P k

c =P k
c,1

Pk=P ∗
k,1

. Meanwhile, the maximum achievable EE value for the kth user,

which is calculated by assuming all N subcarriers in the system are allocated to it,

is assumed to be achieved at P k∗
EE,1, i.e., η

k,N
max,1 = EEk

∣∣∣Nk=N
P k
c =P k

c,1

Pk=P k∗
EE,1

.

If the kth user has a higher circuit power, i.e, P k
c,2 = P k

c,1 + ∆P k
c , ∆P k

c > 0,

the calculated tradeoff EE for the kth user, obtained with Nk allocated subcarriers, is

assumed to be achieved at P ∗
k,2, i.e., EE

k
∣∣∣P k

c =P k
c,2

Pk=P ∗
k,2

. Meanwhile, the maximum achievable

EE value for the kth user, which is calculated by assuming all N subcarriers are

allocated to it, is assumed to be achieved at P k∗
EE,2, i.e., η

k,N
max,2 = EEk

∣∣∣Nk=N
P k
c =P k

c,2

Pk=P k∗
EE,2

.

Since we note that the optimal average power value is found when the kth user’s

EE constraint is satisfied with equality, hence, from (4.19), we have the following

equations:

EEk
∣∣∣P k

c =P k
c,1

Pk=P ∗
k,1

= χk
EE × ηk,Nmax,1 = χk

EE × EEk
∣∣∣Nk=N
P k
c =P k

c,1

Pk=P k∗
EE,1

, (G.1a)

EEk
∣∣∣P k

c =P k
c,2

Pk=P ∗
k,2

= χk
EE × ηk,Nmax,2 = χk

EE × EEk
∣∣∣Nk=N
P k
c =P k

c,2

Pk=P k∗
EE,2

. (G.1b)

In order to investigate the influence of circuit power P k
c on the tradeoff EE value,

we start from analyzing the effect of P k
c on the maximum EE value ηk,Nmax. For the

system with P k
c,1, if we assume the operational average input power is P k∗

EE,2, the
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corresponding calculated link-layer EE value becomes

EEk
∣∣∣Nk=N
P k
c =P k

c,1

Pk=P k∗
EE,2

=

Ek
c

∣∣∣Nk=N

Pk=P k∗
EE,2

P k
c,1 +

1

ǫ
P k∗
EE,2

. (G.2)

Meanwhile, for the system with P k
c,2, the maximum achievable EE value ηk,Nmax,2 can be

expanded as

EEk
∣∣∣Nk=N
P k
c =P k

c,2

Pk=P k∗
EE,2

=

Ek
c

∣∣∣Nk=N

Pk=P k∗
EE,2

P k
c,2 +

1

ǫ
P k∗
EE,2

. (G.3)

Apparently, we can notice that the link-layer EE value in (G.2) is larger than the one

in (G.3), because P k
c,1 < P k

c,2. This indicates that the calculated link-layer EE value

in (G.2), for the system with P k
c,1, is larger than the maximum achievable EE value

ηk,Nmax,2, for the system with P k
c,2. Furthermore, we note that ηk,Nmax,1 is larger than the

calculated EE value in (G.2), because ηk,Nmax,1 is the maximum achievable link-layer

EE value for the system with the circuit power P k
c,1. Henceforth, one can derive

that the maximum achievable link-layer EE value ηk,Nmax,1 for the system with circuit

power P k
c,1 is larger than the one obtained at a larger circuit power P k

c,2, i.e., η
k,N
max,2.

This means that with a fixed number of allocated subcarriers, when one user’s circuit

power becomes larger, its maximum achievable EE value reduces.

Since the kth user’s link-layer tradeoff EE value, achieved at its EE requirement

equality, is basically a certain ratio of its maximum achievable EE value, hence, from

(G.1a)-(G.1b), we can finally conclude that one user’s tradeoff EE level also decreases

with its circuit power.
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Appendix H

Proof of Theorem 7

Proof. By applying the order statistics, the EC in NOMA for the mth user, Em
c , can

be expanded as

Em
c = − 1

θmTfB
ln

(∫ ∞

0

(
γm + 1

αnγm + 1

)2βm

ψmf(γm)F (γm)
m−1 (1− F (γm))

M−m dγm

)
.

(H.1)

By inserting f(γm) =
1

ρ
e
−
γm
ρ , and F (γm) = 1− e

−
γm
ρ into (H.1), we have

Em
c =− 1

θmTfB
ln



ψm

ρ

∫ ∞

0

(
γm+1

αnγm+1

)2βm

e
−
(M−m+1)γm

ρ


1−e

−
γm
ρ




m−1

dγm


 .

(H.2)

According to the generalized binomial expansion, we first get the transformation

(
γm + 1

γmαn + 1

)2βm

=

(
1

αn

)2βm
(
1 +

αn − 1

γmαn + 1

)2βm

, (H.3)

where

(
1 +

αn − 1

γmαn + 1

)2βm

can then be expanded as
∞∑
j=0

(
2βm

j

)( αn − 1

γmαn + 1

)j

, due to

the fact that (1 + x)s =
∞∑
j=0

(
s
j

)
xj , for |x| < 1, where

(
s
j

)
is defined as follows [100]:

(
s

j

)
=
s(s− 1) . . . (s− j + 1)

j!
=

(s)j
j!
, if j ≥ 1, (H.4)

where (·)j is the Pochhammer symbol, and
(
s
0

)
= 1 [100].
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Then,


1− e

−
γm
ρ




m−1

can be replaced with
m−1∑
k=0

(
m−1
k

)
(−1)ke

−
γm
ρ

k

, by using the

binomial expansion [100]. Therefore, (H.2) can be transformed into

Em
c = − 1

θmTfB
ln

(
(αn)

−2βm ψm

ρ

∫ ∞

0

(
∞∑

j=0

(
2βm
j

) (
αn − 1

γmαn + 1

)j
)

×




m−1∑

k=0

(
m− 1

k

)
(−1)ke

−
(M −m+ 1 + k)γm

ρ


 dγm


 (H.5a)

=− 1

θmTfB
ln

(
(αn)

−2βm ψm

ρ

∫ ∞

0


 1︸︷︷︸

when j=0

+(2βm)
αn−1

γmαn+1︸ ︷︷ ︸
when j =1

+
∞∑

j=2

(
2βm
j

)(
αn−1

γmαn+1

)j

︸ ︷︷ ︸
when j ≥ 2




×




m−1∑

k=0

(
m− 1

k

)
(−1)ke

−
(M −m+ 1 + k)γm

ρ


 dγm


 (H.5b)

= − 1

θmTfB
ln

(
(αn)

−2βm ψm

ρ

(∫ ∞

0

m−1∑

k=0

(
m− 1

k

)
(−1)ke

−
(M −m+ 1 + k)γm

ρ dγm

+ (2βm) (αn − 1)
m−1∑

k=0

(
m− 1

k

)
(−1)k

∫ ∞

0

e
−
(M −m+ 1 + k)γm

ρ

γmαn + 1
dγm

+

∞∑

j=2

(
2βm
j

)
(αn − 1)j

m−1∑

k=0

(
m−1

k

)
(−1)k

∫ ∞

0

e
−
(M−m+1+k)γm

ρ

(γmαn+1)j
dγm


. (H.5c)

We now use the following equation from [114], namely, (3.353.2) and (3.352.4).

∫ ∞

0

e−µx

(x+ β)n
dx =

1

(n− 1)!

n−1∑

k=1

(k − 1)!(−µ)n−k−1β−k − (−µ)n−1

(n− 1)!
eβµEi(−βµ),

[n ≥ 2, |arg β| < π, Re µ > 0] (H.6a)
∫ ∞

0

e−µx

x+ β
dx = −eβµEi(−βµ), [|arg β| < π, Re µ > 0] , (H.6b)

where Ei(·) is the exponential integral.

By applying (H.6a) and (H.6b) into (H.5c), the closed-form expression for Em
c can
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be finally expressed as

Em
c = − 1

θmTfB
ln

(
(αn)

−2βm ψm

ρ

(
m−1∑

k=0

(
m− 1

k

)
(−1)k

ρ

M −m+ 1 + k

+
θm(αn − 1)

αn ln 2

m−1∑

k=0

(
m− 1

k

)
(−1)ke

M −m+ 1 + k

ραn Ei

(
−M −m+ 1 + k

ραn

)

+
∞∑

j=2

(
2βm
j

)(
αn−1

αn

)j m−1∑

k=0

(
m−1

k

)
(−1)k




1

(j − 1)!

j−1∑

i=1

(i− 1)!
(

1

αn

)i

(
−M−m+1+k

ρ

)j−i−1

−

(
−M−m+1+k

ρ

)j−1

(j − 1)!
e

M −m+ 1 + k

ραn Ei

(
−M −m+ 1 + k

ραn

)







 . (H.7)

Now, let us consider the closed-form expression for the EC in OMA scheme for

the mth user. By applying the order statistics, the EC in OMA for the mth user, Ēm
c ,

can be expanded as

Ēm
c =− 1

θmTfB
ln



ψm

ρ

∫ ∞

0

(1+γm)
βm e

−
(M−m+1)γm

ρ


1−e

−
γm
ρ




m−1

dγm


. (H.8)

After applying the binomial expansion for


1− e

−
γm
ρ




m−1

, we have

Ēm
c =− 1

θmTfB
ln



ψm

ρ

m−1∑

k=0

(
m−1

k

)
(−1)k

∫ ∞

0

(1+γm)
βm e

−
(M−m+1+k)γm

ρ dγm


.

(H.9)

From (13.2.5) in [100], we note that

U(a, b, z) =
1

Γ(a)

∫ ∞

0

e−ztta−1(1 + t)b−a−1dt, for Re a, Re z > 0, (H.10)

where U(·) is the confluent hypergeometric function of the second kind [100]. By

applying (H.10) to (H.9), Ēm
c can be finally expressed as

Ēm
c = − 1

θmTfB
ln

(
ψm

ρ

m−1∑

k=0

(
m−1

k

)
(−1)kU

(
1, 2+βm,

M−m+1+k

ρ

))
. (H.11)
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Appendix I

Proof of Lemma 8

Proof. Inserting ρ → 0 into (5.7a), (5.8a), (5.7b), and (5.8b), one can prove that

Em
c − Ēm

c → 0, and En
c − Ēn

c → 0. When ρ→ ∞, the EC in NOMA for the mth user,

i.e., Em
c , can be expressed as

lim
ρ→∞

− 1

θmTfB
ln


E







|hm|2 +
1

ρ

αn|hm|2 +
1

ρ




2βm




 = log2

(
1

αn

)
. (I.1)

Considering finite value of θm, we can prove that lim
ρ→∞

Ēm
c becomes

lim
ρ→∞

− 1

θmTfB
ln
(
E

[(
1 + ρ|hm|2

)βm

])

= lim
ρ→∞

− 1

θmTfB
ln

(
ρβmE

[(
1

ρ
+ |hm|2

)βm

])

= lim
ρ→∞

− 1

θmTfB

(
ln
(
ρβm
)
+ ln

(
E

[(
1

ρ
+ |hm|2

)βm

]))

= lim
ρ→∞

− 1

θmTfB
ln
(
ρβm
)

= lim
ρ→∞

1

2 ln 2
ln ρ, (I.2)

which approaches infinity. From (I.1) and (I.2), we get lim
ρ→∞

(
Em

c − Ēm
c

)
→ −∞.

As for the nth user, lim
ρ→∞

En
c → ∞, and lim

ρ→∞
Ēn

c → ∞ can be easily proved, which

are omitted here. To analyze the EC difference of the NOMA and OMA scheme for
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the nth user when ρ→ ∞, we have that

lim
ρ→∞

(
En

c − Ēn
c

)
(I.3a)

= lim
ρ→∞

− 1

θnTfB
ln



E

[
(1 + ραn|hn|2)2βn

]

E

[
(1 + ρ|hn|2)βn

]


 (I.3b)

= lim
ρ→∞

− 1

θnTfB
ln



ρβnE

[
(αn|hn|2)2βn

]

E

[
(|hn|2)βn

]


 , (I.3c)

which approaches infinity. This completes the proof that lim
ρ→∞

(
En

c − Ēn
c

)
→ ∞.
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Appendix J

Proof of Lemma 9

Proof. To analyze the trends of Em
c and Ēm

c with respect to ρ, we have

∂Em
c

∂ρ
=− 1

θmTfB

(
E

[(
ρ|hm|2 + 1

ραn|hm|2 + 1

)2βm

])′

E

[(
ρ|hm|2 + 1

ραn|hm|2 + 1

)2βm

] (J.1a)

=
1− αn

ln 2

E

[(
ρ|hm|2 + 1

ραn|hm|2 + 1

)2βm−1 |hm|2
(ραn|hm|2 + 1)2

]

E

[(
ρ|hm|2 + 1

ραn|hm|2 + 1

)2βm

] , (J.1b)

where ()′ is the first derivative with respect to ρ. Apparently, (J.1b) is non-negative.

Similarly, for the EC in OMA for the mth user, we get

∂Ēm
c

∂ρ
=

1

2 ln 2

E

[
(1 + ρ|hm|2)βm−1 |hm|2

]

E

[
(1 + ρ|hm|2)βm

] , (J.2)

which is non-negative too.

We then start to analyze the trend of Em
c − Ēm

c with respect to ρ, as follows.

∂
(
Em

c − Ēm
c

)

∂ρ
=
∂Em

c

∂ρ
− ∂Ēm

c

∂ρ
(J.3a)

=
1−αn

ln 2

E

[(
ρ|hm|2+1

ραn|hm|2+1

)2βm−1 |hm|2
(ραn|hm|2+1)2

]

E

[(
ρ|hm|2+1

ραn|hm|2+1

)2βm

] − 1

2 ln 2

E

[
(1+ρ|hm|2)βm−1 |hm|2

]

E

[
(1+ρ|hm|2)βm

] .

(J.3b)
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When ρ→ 0, we prove that

lim
ρ→0

∂
(
Em

c − Ēm
c

)

∂ρ
=

(
1− 2αn

2 ln 2

)
E
[
|hm|2

]
≥ 0, (J.4)

due to the reason that αn ∈
(
0,

1

2

]
and E [|hm|2] ≥ 0.

When ρ is very large, we can prove that

∂
(
Em

c − Ēm
c

)

∂ρ
(J.5a)

=
1− αn

ln 2

E

[(
ρ|hm|2
ραn|hm|2

)2βm−1 |hm|2
(ραn|hm|2)2

]

E

[(
ρ|hm|2
ραn|hm|2

)2βm

] − 1

2 ln 2

E

[
(ρ|hm|2)βm−1 |hm|2

]

E

[
(ρ|hm|2)βm

] (J.5b)

=

1− αn

αn ln 2
E

[
1

|hm|2
]
− 1

2 ln 2
ρ

ρ2
. (J.5c)

Since E

[
1

|hm|2
]
is a finite value, unrelated to ρ, therefore when ρ is very large, (J.5c)

can be approximated by − 1

2ρ ln 2
, which is smaller than 0. It gradually approaches 0

when ρ→ ∞.
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Appendix K

Proof of Lemma 10

Proof. Here, we analyze the trends of En
c and Ēn

c versus ρ.

∂En
c

∂ρ
= − 1

θnTfB

(
E

[
(1 + ραn|hn|2)2βn

])′

E

[
(1 + ραn|hn|2)2βn

] =
αn

ln 2

E

[
(1 + ραn|hn|2)2βn−1 |hn|2

]

E

[
(1 + ραn|hn|2)2βn

] ,

(K.1)

which is non-negative. As for the EC in OMA, we can also prove that
∂Ēn

c

∂ρ
≥ 0,

which is omitted here due to the page limit. To analyze the trend of En
c − Ēn

c versus

ρ, we have that

∂
(
En

c − Ēn
c

)

∂ρ
=
∂En

c

∂ρ
− ∂Ēn

c

∂ρ
(K.2a)

=
αn

ln 2

E

[
(1 + ραn|hn|2)2βn−1 |hn|2

]

E

[
(1 + ραn|hn|2)2βn

] − 1

2 ln 2

E

[
(1 + ρ|hn|2)βn−1 |hn|2

]

E

[
(1 + ρ|hn|2)βn

] . (K.2b)

When ρ→ 0, we prove that

lim
ρ→0

∂
(
En

c − Ēn
c

)

∂ρ
=



αn −

1

2
ln 2


E

[
|hn|2

]
≤ 0, (K.3)

due to the fact that αn ∈
(
0,

1

2

]
, and E [|hn|2] ≥ 0.

When ρ is very large, we can prove that

∂
(
En

c − Ēn
c

)

∂ρ
=
αn

ln 2

E

[
(ραn|hn|2)2βn−1 |hn|2

]

E

[
(ραn|hn|2)2βn

] − 1

2 ln 2

E

[
(ρ|hn|2)βn−1 |hn|2

]

E

[
(ρ|hn|2)βn

] (K.4a)

=
1

2ρ ln 2
, (K.4b)

which is non-negative, and approaches 0 when ρ→ ∞.
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Appendix L

Proof of Lemma 11

Proof. From Lemma 8, we note that when ρ→ 0, TN = Em
c +En

c → 0, and lim
ρ→∞

TN →
∞. For the sum EC in OMA scheme, TO, we can also get that TO → 0 when ρ→ 0,

and lim
ρ→∞

TO → ∞. In addition, for the sum EC in NOMA scheme, TN , we can prove

that

∂TN

∂ρ
=
∂ (Em

c + En
c )

∂ρ
(L.1a)

=
1−αn

ln 2

E

[(
ρ|hm|2+1

ραn|hm|2+1

)2βm−1 |hm|2
(ραn|hm|2+1)2

]

E

[(
ρ|hm|2+1

ραn|hm|2+1

)2βm

] +
αn

ln 2

E

[
(1+ραn|hn|2)2βn−1 |hn|2

]

E

[
(1+ραn|hn|2)2βn

] ,

(L.1b)

which is non-negative because
∂Em

c

∂ρ
≥ 0, and

∂En
c

∂ρ
≥ 0. When ρ→ 0, we have that

lim
ρ→0

∂TN

∂ρ
=

1− αn

ln 2
E
[
|hm|2

]
+
αn

ln 2
E
[
|hn|2

]
. (L.2)

When ρ→ ∞, we can prove that

lim
ρ→∞

∂TN

∂ρ
=

1− αn

αn ln 2ρ2
E

[
1

|hm|2
]
+

1

ρ ln 2
, (L.3)

which equals to 0.

By following similar steps, we can also prove that
∂TO

∂ρ
≥0, lim

ρ→0

∂TO

∂ρ
=

1

2 ln 2
E[|hm|2]

+
1

2 ln 2
E [|hn|2], and lim

ρ→∞

∂TO

∂ρ
= 0. Hence, we complete the proof for Lemma 11.

135



Appendix M

Proof of Lemma 12

Proof. When ρ→ 0, one can easily get that TN − TO → 0. When ρ→ ∞, we get

lim
ρ→∞

(TN − TO) = lim
ρ→∞

(
Em

c − Ēm
c + En

c − Ēn
c

)
(M.1a)

= lim
ρ→∞

− 1

θmTfB
ln




E

[(
ρ|hm|2 + 1

ραn|hm|2 + 1

)2βm

]

E

[
(1 + ρ|hm|2)βm

]



− 1

θnTfB
ln



E

[
(1 + ραn|hn|2)2βn

]

E

[
(1 + ρ|hn|2)βn

]




(M.1b)

= lim
ρ→∞

− 1

θmTfB
ln


 α−2βm

n

E

[
(|hm|2)βm

]ρ−βm


− 1

θnTfB
ln



α2βn
n E

[
(|hn|2)2βn

]

E

[
(|hn|2)βn

] ρβn




(M.1c)

= − 1

θmTfB
ln


 α−2βm

n

E

[
(|hm|2)βm

]


− 1

θnTfB
ln



αn

2βnE

[
(|hn|2)2βn

]

E

[
(|hn|2)βn

]


 , (M.1d)

which is a constant with respect to ρ.

From Lemma 11, we note that

lim
ρ→0

∂ (TN − TO)

∂ρ
= lim

ρ→0

(
∂TN

∂ρ
− ∂TO

∂ρ

)
=

1

2
− αn

ln 2
E
[
|hm|2

]
+
αn −

1

2
ln 2

E
[
|hn|2

]
,

(M.2)

which is non-positive because αn −
1

2
≤ 0, and E [|hn|2] ≥ E [|hm|2], since the instan-

taneous channel power gains |hn|2 is always larger than |hm|2.
When ρ→ ∞, one can easily prove that lim

ρ→∞

∂ (TN − TO)

∂ρ
= 0, which is omitted

here.
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Appendix N

Proof of Lemma 13

Proof. Recall that the EC expression in NOMA scheme, for the mth user, is given by

Em
c = − 1

θmTfB
ln

(
E

[(
ρ|hm|2 + 1

ραn|hm|2 + 1

)2βm

])
, (N.1)

which gives an indeterminate form
0

0
, when θm → 0.

By applying L’Hopital’s rule, lim
θm→0

Em
c becomes

lim
θm→0

−
E

[(
ρ|hm|2 + 1

ραn|hm|2 + 1

)2βm

ln

(
ρ|hm|2 + 1

ραn|hm|2 + 1

)(
− 1

ln 2

)]

E

[(
ρ|hm|2 + 1

ραn|hm|2 + 1

)2βm

]

=E


log2


1 +

αm|hm|2

αn|hm|2 +
1

ρ





 , (N.2)

which equals to E [Rm]. In other words, when θm → 0, which refers to a user with no

delay constraint, the EC in NOMA is equivalent to the ergodic capacity. Similarly, by

using L’Hopital’s rule, we can also conclude that lim
θm→0

Ēm
c =

1

2
E [log2 (1 + ρ|hm|2)],

which equals to E
[
R̄m

]
. Hence, when θm → 0, Em

c − Ēm
c = E [Rm] − E

[
R̄m

]
.

By following similar steps, we can get the same conclusion for the nth user, i.e.,

lim
θn→0

En
c = E [Rn], lim

θn→0
Ēn

c = E
[
R̄n

]
, and lim

θn→0

(
En

c − Ēn
c

)
= E [Rn]− E

[
R̄n

]
.

Consider the mth user with no delay constraint, i.e., θm → 0. By inserting

ρ → ∞ to (N.2), we can prove that lim
θm→0
ρ→∞

Em
c = E

[
log2

(
1

αn

)]
. As for the EC
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in OMA for the mth user, we can get that lim
θm→0
ρ→∞

Ēm
c → ∞, by inserting ρ → ∞ into

1

2
E [log2 (1 + ρ|hm|2)]. Henceforth, we can prove that lim

θm→0
ρ→∞

(
Em

c − Ēm
c

)
→ −∞.

Similarly, for the nth user with θn → 0, when the transmit SNR ρ is very large,

we can prove that lim
θn→0
ρ→∞

En
c → ∞, and lim

θn→0
ρ→∞

Ēn
c → ∞. As for lim

θn→0
ρ→∞

(
En

c − Ēn
c

)
, we have

that

lim
θn→0
ρ→∞

(
En

c − Ēn
c

)
(N.3a)

= lim
ρ→∞

E
[
log2

(
1 + ραn|hn|2

)]
− 1

2
E
[
log2

(
1 + ρ|hn|2

)]
(N.3b)

= lim
ρ→∞

E

[
log2

(
1 + ραn|hn|2√
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(N.3c)

= lim
ρ→∞

E
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log2


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1√
ρ
+
√
ραn|hn|2

√
1

ρ
+ |hn|2
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
 (N.3d)

= lim
ρ→∞

E

[
log2

(√
ραn

√
|hn|2

)]
, (N.3e)

which approaches infinity. Hence, we complete the proof for Lemma 13.
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