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Abstract

Infinite derivative theory of gravity is a modification to the general

theory of relativity. Such modification maintains the massless gravi-

ton as the only true physical degree of freedom and avoids ghosts.

Moreover, this class of modified gravity can address classical singu-

larities.

In this thesis some essential aspects of an infinite derivative theory

of gravity are studied. Namely, we considered the Hamiltonian for-

malism, where the true physical degrees of freedom for infinite deriva-

tive scalar models and infinite derivative gravity are obtained. Fur-

thermore, the Gibbons-Hawking-York boundary term for the infinite

derivative theory of gravity was obtained. Finally, we considered the

thermodynamical aspects of the infinite derivative theory of gravity

over different backgrounds. Throughout the thesis, our methodology

is applied to general relativity, Gauss-Bonnet and f(R) theories of

gravity as a check and validation.
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Chapter 1

Introduction

General theory of relativity (GR), [1], can be regarded as a revolutionary step

towards understanding one of the most controversial topics of theoretical physics:

gravity. The impact of GR is outstanding. Not only does it relate the geometry

of space-time to the existence of the matter in a very startling way, but it also

passed, to this day, all experimental and observational tests it has undergone.

However, like many other theories, GR is not perfect [2]. At classical level, it is

suffering from black hole and cosmological singularities; and at quantum level,

the theory is not renormalisable and also not complete in the ultraviolet (UV)

regime. In other words, at short distances (high energies) the theory blows up.

It should be noted that non-renormalisability is not necessarily an indication

that a theory is not UV complete. In fact, non-renormalisability can indicate a

breakdown of perturbation theory at the energies of the order of the mass scale

of the non-renormalisable operators, with a UV-complete but non-renormalisable

theory at higher energies (e.g. loop quantum gravity). Renormalisability is how-

ever desirable as it allows the theory to be consistent and calculable at all energies,

thus renormalisability may help to formulate of a UV complete theory, but its

absence dos not necessarily mean the theory is UV incomplete.

As of today, obtaining a successful theory of quantum gravity [3, 4, 5, 6, 7]

remains an open problem. At microscopic level, the current standard model (SM)

of particle physics describes the weak, strong and electromagnetic interactions.

The interactions in SM are explained upon quantisation of gauge field theories
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[10]. On the other side of the spectrum, at macroscopic level, GR describes the

gravitational interaction based on a classical gauge field theory. Yet, generalisa-

tion of the gauge field theory to describe gravity at the quantum level is an open

problem. Essentially, quantising GR leads to a non-renormalisable theory [9]. On

the other hand also, the generalisation of the SM, with the current understanding

of the gauge groups, provides no description of gravity.

Renormalisation plays a crucial role in formulating a consistent theory of

quantum gravity [8]. So far, efforts on this direction were not so successful.

Indeed, as per now, quantum gravity is not renormalisable by power counting.

This is to say that, quantum gravity is UV divergent. The superficial degree of

divergence for a given Feynman diagram can be written as [170],

D = d+
[
n

(
d− 2

2

)
− d
]
V −

(
d− 2

2

)
N (1.0.1)

where d is the dimension of space-time, V is the number of vertices, N is the

number of external lines in a diagram, and there are n lines meeting at each

vertex. The quantity that multiplies V in above expression is just the dimension

of the coupling constant (for example for a theory like λφn, where λ is the coupling

constant). There are three rules governing the renormalisability [170]:

1. When the coupling constant has positive mass dimension, the theory is

super-renormalisable.

2. When the coupling constant is dimensionless the theory is renormalisable.

3. When the coupling constant has negative mass dimension the theory is

non-renormalisable.

The gravitational coupling, which we know as the Newton’s constant, GN = M−2
P ,

is dimensionful (where MP is the Planck mass) with negative mass dimension,

whereas, the coupling constants of gauge theories, such as α of quantum electro-

dynamics (QED) [14], are dimensionless.

Moreover, in perturbation theory and in comparison with gauge theory, af-

ter each loop order, the superficial UV divergences in quantum gravity becomes
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worse [11, 12, 13]. Indeed, in each graviton loop there are two more powers of

loop momentum (that is to say that there are two more powers in energy expan-

sion, i.e. 1-loop has order (∂g)4, 2-loop has order (∂g)6 and etc.), this is to atone

dimensionally for the two powers of MP in the denominator of the gravitational

coupling. Instead of the logarithmic divergences of gauge theory, that are renor-

malisable via a finite set of counterterms, quantum gravity contains an infinite

set of counterterms. This makes gravity, as given by the Einstein-Hilbert (EH)

action, an effective field theory, useful at scales only much less the the Planck

mass.

Non-local theories may provide a promising path towards quantisation of grav-

ity. Locality in short means that a particle is only affected by its neighbouring

companion [10, 15]. Thus, non-locality simply means that a particle’s behaviour

is no longer constrained to its close neighbourhood but it also can be affected by

interaction far away. Non-locality can be immediately seen in many approaches

to quantise gravity, among those, string theory (ST) [16, 17, 20] and loop quan-

tum gravity (LQG) [18, 19] are well known. Furthermore, in string field theory

(SFT) [21, 22], non-locality presents itself, for instance in p-adic strings [23] and

zeta strings [24]. Thus, it is reasonable to ask wether non-locality is essential to

describe gravity.

ST 1 is known to treat the divergences and attempts to provide a finite theory

of quantum gravity [16, 17]. This is done by introducing a length scale, corre-

sponding to the string tension, at which particles are no longer point like. ST

takes strings as a replacement of particles and count them as the most funda-

mental objects in nature. Particles after all are the excitations of the strings.

There have been considerable amount of progress in unifying the fundamental

forces in ST. This was done most successfully for weak, strong and electromag-

netic forces. As for gravity, ST relies on supergravity (SUGRA) [25], to treat

the divergences. This is due to the fact that supersymmetry soothes some of the

UV divergences of quantum field theory, via cancellations between bosonic and

fermionic loops, hence the UV divergences of quantum gravity become milder in

1It shall be mention that ST on its own has no problem in quantising gravity, as it is
fundamentally a 2-dimensional CFT, which is completely a healthy theory. However, ST is
known to work well only for small string coupling constant. Thus, ST successfully describes
weakly interacting gravitons, but it is less well developed to describe strong gravitational field.
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SUGRA. For instance, ST cures the two-loop UV divergences; comparing this

with the UV divergences of GR at two-loop order shows that ST is astonishingly

useful. However, SUGRA and supersymmetric theories in general have their own

shortcomings. For one thing, SUGRA theories are not testable experimentally,

at very least for the next few decades.

An effective theory of gravity, which one derives from ST (or otherwise) per-

mits for higher-derivative terms. Before discussing higher derivative terms in the

context of gravity one can start by considering a simpler problem of an effective

field theory for a scalar field. In the context of ST, one may find an action of the

following form,

S =

∫
dDx

[1

2
φK(�)φ− V (φ)

]
, (1.0.2)

where K(�) denotes the kinetic operator and it contains infinite series of higher

derivative terms. The d’Alembertian operator is given by � = gµν∇µ∇ν . Finally,

V (φ) is the interaction term. The choice of K(�) depends on the model one

studies, for instance in the p-adic [23, 42, 43, 44] or random lattice [41, 45, 46, 47,

48], the form of the kinetic operator is taken to be K(�) = e−�/M
2
, where M2 is

the appropriate mass scale proportional to the string tension. The choice of K(�)

is indeed very important. For instance for K(�) = e−�/M
2
, which is an entire

function [69], one obtains a ghost free propagator. That is to say that there is no

field with negative kinetic energy. In other words, the choice of an appropriate

K(�) can prevent introducing extra un-physical states in the propagator.

Furthermore, ST [21, 40] serves two types of perturbative corrections to a

given background, namely the string loop corrections and the string world-sheet

corrections. The latter is also known as alpha-prime (α′) corrections. In termi-

nology, α′ is inversely proportional to the string tension and is equal to the sting

length squared (α′ = l2s) and thus we shall know that it is working as a scale.

Schematically the α′ correction to a Lagrangian is given by,

L = L(0) + α′L(1) + α′2L(2) + · · · , (1.0.3)

where L(0) is the leading order Lagrangian and the rest are the sub-leading correc-

tions. This nature of the ST permits to have corrections to GR. In other words, it
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had been suggested that a successful action of quantum gravity shall contain, in

addition to the EH term, corrections that are functions of the metric tensor with

more than two derivatives. The assumption is that these corrections are needed

if one wants to cure non-renormalisability of the EH action [40]. An example of

such corrections can be schematically written as,

l2s(a1R
2 + a2RµνR

µν + a2RµνλσR
µνλσ) + · · · (1.0.4)

where ai are appropriate coefficients. After all, higher derivative terms in the ac-

tion above, would have a minimal influence on the low energy regime and so the

classical experiments remain unaffected. However, in the high energy domain they

would dictate the behaviour of the theory. For instance, such corrections lead to

stabilisation of the divergence structure and finally the power counting renormal-

isability. Moreover, higher derivative gravity focuses specifically on studying the

problems of consistent higher derivative expansion series of gravitational terms

and can be regarded as a possible approach to figure out the full theory of gravity.

In this thesis, we shall consider infinite derivatives theories [70, 71, 72, 73, 74,

75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87]. These theories are a sub-class of

non-local theories. In the context of gravity, infinite derivative theories are con-

structed by infinite series of higher-derivative terms. Those terms contain more

than two derivatives of the metric tensor. Infinite derivative theories of gravity

(IDG) gained an increasing amount of attention on recent years as they address

the Big Bang singularity problem [53, 54, 55, 56, 57, 58] and they also have other

interesting cosmological [59, 60, 61, 62, 63, 64, 65, 66] implementations. Partic-

ularly, as studied in [53], IDG can provide a cosmological non-singular bouncing

solution where the Big Bang is replaced with Big Crunch. Subsequently, further

progress made in [54, 55] to discover inflationary scenarios linked to IDG. More-

over, such IDG can modify the Raychaudari equations [67], such that one obtains

a non-singular bouncing cosmology without violating the null energy conditions.

Additionally, at microscopic level, one may consider small black holes with mass

much smaller than the Planck mass and observe that IDG prevents singulari-

ties in the Newtonian limit where the gravitational potential is very weak [68].
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After all, many infinite derivative theories were proposed in different contexts.

[26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]

It has been shown by Stelle [50, 51] that, gravitational actions which include

terms quadratic in the curvature tensor are renormalisable. Such action was

written as,

S =

∫
d4x
√
−g[αR + βR2 + γRµνR

µν ], (1.0.5)

the appropriate choice of coupling constants, α, β and γ leads to a renormalisable

theory. Even though such theory is renormalisable, yet, it suffers from ghost. It

shall be noted that one does not need to add the Riemann squared term to the

action above, as in four dimensions it would be the Gauss-Bonnet theory,

SGB =

∫
d4x
√
−g[R2 − 4RµνR

µν +RµνλσR
µνλσ], (1.0.6)

which is an Euler topological invariant and it should be noted that such modifica-

tion does not add any local dynamics to the graviton (because it is topological).

For Stelle’s action [50, 51] the GR propagator is modified schematically as,

Π = ΠGR −
P2

k2 +m2
, (1.0.7)

where it can be seen that there is an extra pole with a negative residue in the

spin-2 sector of the propagator (where P denotes spin projector operator). This

concludes that the theory admits a massive spin-2 ghost. In literature this is

known as the Weyl ghost. We shall note that the propagator in 4-dimensional

GR is given by,

ΠGR =
P2

k2
− P0

s

2k2
, (1.0.8)

this shows that even GR has a negative residue at the k2 = 0 pole, and thus a

ghost. Yet this pole merely corresponds to the physical graviton and so is not

harmful. The existence of ghosts is something that one shall take into account.

At classical level they indicate that there is vacuum instability and at quantum

level they indicate that unitarity is violated.

In contrast, there are other theories of modified gravity that may be ghost

6



free, yet they are not renormalisable. From which, f(R) theories [88] are the

most well known. The action for f(R) theory is given by,

S =
1

2

∫
d4x
√
−gf(R), (1.0.9)

where f(R) is the function of Ricci scalar. The most famous sub-class of f(R)

theory is known as Starobinsky model [89] which has implications in primordial

inflation. Starobinsky action is given by,

S =
1

2

∫
d4x
√
−g(M2

PR + c0R
2), (1.0.10)

where c0 is constant. The corresponding propagator is given by,

Π = ΠGR +
1

2

P0
s

k2 +m2
, (1.0.11)

where there is an additional propagating degree of freedom in the scalar sector

of the propagator, yet this spin-0 particle is not a ghost and is non-tachyonic for

m2 ≥ 0.

[90] proposed a ghost-free tensor Lagrangian and its application in gravity. Af-

ter that, progress were made by [53, 91, 92] to construct a ghost-free action in IDG

framework. Such attempts were made to mainly address the cosmological and

black hole singularities. Further development were made by [32, 33, 36, 37, 68, 93]

to obtain a ghost-free IDG . This is to emphasis that ghost-freedom and renor-

malisability are important attributes when it comes to constructing a successful

theory of quantum gravity.

Infinite derivative theory of gravity

Among various modifications of GR, infinite derivative theory of gravity is

the promising theory in the sense that it is ghost-free, tachyonic-free and renor-

malisable, it also addresses the singularity problems. A covariant, quadratic in

7



curvature, asymptotically free theory of gravity which is ghost-free and tachyon-

free around constant curvature backgrounds was proposed by [68].

We shall mention that asymptotic freedom means that the coupling constant

decreases as the energy scale increases and vanishes at short distances. This is for

the case that the coupling constant of the theory is small enough and so the theory

can be dealt with perturbatively. As an example, QCD is an asymptotically free

theory [10].

Finally, the IDG modification of gravity can be written as [93],

S = SEH + SUV

=
1

2

∫
d4x
√
−g
[
M2

PR +RF1(�̄)R +RµνF2(�̄)Rµν +RµνλσF3(�̄)Rµνλσ
]
,

(1.0.12)

where SEH denotes the Einstein-Hilbert action and SUV is the IDG modification

of GR. In above notation, MP is the Planck mass, �̄ ≡ �/M2 and M is the

mass scale at which the non-local modifications become important. The Fi’s are

functions of the d’Alembertian operator and given by,

Fi(�̄) =
∞∑
n=0

fin�̄
n. (1.0.13)

As we shall see later in section 5.2.2 one can perturb the action around Minkowski

background. To do so, one uses the definition of the Riemannian curvatures in

linearised regime and thus obtains,

S(2) =
1

32πG
(D)
N

∫
dDx

[
1

2
hµν�a(�̄)hµν + hσµb(�̄)∂σ∂νh

µν

+ hc(�̄)∂µ∂νh
µν +

1

2
h�d(�̄)h+ hλσ

f(�̄)

2�
∂σ∂λ∂µ∂νh

µν

]
, (1.0.14)

where [94],

a(�̄) = 1 +M−2
P (F2(�̄)�+ 4F3(�̄)�), (1.0.15)

b(�̄) = −1−M−2
P (F2(�̄)�+ 4F3(�̄)�), (1.0.16)
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c(�̄) = 1−M−2
P (4F1(�̄)�+ F2(�̄)�), (1.0.17)

d(�̄) = −1 +M−2
P (4F1(�̄)�+ F2(�̄)�), (1.0.18)

f(�̄) = 2M−2
P (2F1(�̄)�+ F2(�̄)�+ 2F3(�̄)�). (1.0.19)

The field equations can be expressed in terms of the inverse propagator as,

Π−1ρσ
µν hρσ = κTµν , (1.0.20)

by writing down the spin projector operators in D-dimensional Minkowski space

and then moving to momentum space the graviton propagator for IDG gravity

can be obtained in the form of,

Π(D)(−k2) =
P2

k2a(−k2)
+

P0
s

k2[a(−k2)− (D − 1)c(−k2)]
. (1.0.21)

We note that, P2 and P0
s are tensor and scalar spin projector operators respec-

tively. Since we do not wish to introduce any extra propagating degrees of free-

dom apart from the massless graviton, we are going to take f(�̄) = 0 that implies

a(�̄) = c(�̄). Thus,

Π(D)(−k2) =
1

k2a(−k2)

(
P2 − 1

D − 2
P0
s

)
. (1.0.22)

To this end, the form of a(−k2) should be such that it does not introduce any

new propagating degree of freedom, it was argued in Ref. [53, 68] that the form of

a(�) should be an entire function, so as not to introduce any pole in the complex

plane, which would result in additional degrees of freedom in the momentum

space. In fact, the IDG action is ghost-free under the constraint [93],

2F1(�̄) + F2(�̄) + 2F3(�̄) = 0 (1.0.23)

around Minkowski background. In other words, the above constraint ensures

that the massless graviton remains the only propagating degree of freedom and
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no extra degrees of freedom are being introduced. More specifically, if one chooses

the graviton propagator to be constructed by an exponential of an entire function

[53] 1,

a(−k2) = ek
2/M2

, (1.0.24)

the propagators becomes (for D = 4),

Π(−k2) =
1

k2ek2/M2

(
P2 − 1

2
P0
s

)
=

1

ek2/M2 ΠGR. (1.0.25)

Indeed, the choice of the exponential of an entire function prevents the produc-

tion of new poles. For an exponential entire function, the propagator becomes

exponentially suppressed in the UV regime while in the infrared (IR) regime one

recovers the physical graviton propagator of GR [96, 118]. Recovery of GR at IR

regime takes place as k2 → 0 that leads to a(0) = 1 and thus,

lim
k2→0

Π(−k2) =
1

k2

(
P2 − 1

2
P0
s

)
, (1.0.26)

which is the GR propagator. Furthermore, the IDG action given in (1.0.12) can

resolve the singularities presented in GR, at classical level [53], upon choosing the

exponential given in (1.0.24) (which represents the infinite derivatives); (consult

appendix B). Such theory is known to also treat the UV behaviour, leading to

the convergent of Feynman diagrams [96].

The IDG theory given by the action (1.0.12) is motivated and established fairly

recently. Thus, there are many features in the context of IDG that must be stud-

ied. In this thesis we shall consider three important aspects of infinite derivative

theories: The Hamiltonian analysis, the generalised boundary term and thermo-

dynamical implications.

1The appearance of a(−k2) in the propagator definition is the consequence of having infinite
derivative modification in the gravitational action. [53]
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Hamiltonian formalism

Hamiltonian analysis is a powerful tool when it comes to studying the stabil-

ities and instabilities of a given theory. It furthermore can be used to calculate

the number of the degrees of freedom for the theory of interest. Stabilities of a

theory can be investigated using the Ostrogradsky’s theorem [98].

Let us consider the following Lagrangian density,

L = L(q, q̇, q̈), (1.0.27)

where “dot” denotes time derivative and so such Lagrangian density is a function

of position, q, and its first and second derivatives, in this sense q̇ is velocity and

q̈ is acceleration. In order to study the classical motion of the system, the action

must be stationary under arbitrary variation of δq. Hence, the condition that

must be satisfied are given by the Euler-Lagrange equations:

∂L

∂q
− d

dt

(∂L
∂q̇

)
+
d2

dt2

(∂L
∂q̈

)
= 0. (1.0.28)

The acceleration can be uniquely solved by position and velocity if and only if ∂2L
∂q̈2

is invertible. In other words, when ∂2L
∂q̈2 6= 0, the theory is called non-degenerate.

If ∂2L
∂q̈2 = 0, then the acceleration can not be uniquely determined. Indeed, non-

degeneracy of the Lagrangian permits to use the initial data, q0, q̇0, q̈0 and
...
q 0,

and determine the solutions. Now let us define the following,

Q1 = q, P1 =
∂L

∂q̇
− d

dt

(∂L
∂q̈

)
, (1.0.29)

Q2 = q̇, P2 =
∂L

∂q̈
, (1.0.30)

where Pi’s are the canonical momenta. In this representation the acceleration can

be written in terms of Q1, Q2 and P2 as q̈ = f(Q1, Q2, P2). The corresponding
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Hamiltonian density would then take the following form,

H = P1Q1 + P2f(Q1, Q2, P2)− L(Q1, Q2, f), (1.0.31)

for such theory the vacuum decays into both positive and negative energy, and

thus the theory is instable, this is because the Hamiltonian density, H, is linear

in the canonical momentum P1, [98]. Such instabilities are called Ostrogradsky

instability.

Higher derivative theories are known to suffer from such instability [20]. From

the propagator analysis, the instabilities are due to the presence of ghost in

theories that contain two or more derivatives. In gravity, the four-derivative

gravitational action proposed by Stelle [50] is an example where one encounters

Ostrogradsky instability.

Ostrogradsky instability is built upon the fact that for the highest momentum

operator, which is associated with the highest derivative of the theory, the energy

is given linearly, as opposed to quadratic. Yet in the case of IDG, one employs a

specific expansion of infinite derivatives, which traces back to the Taylor expan-

sion of F (�̄), this leads to a graviton propagator that admits no ghost degree of

freedom and thus one can overcome the instabilities. We mentioned that, IDG

theory is ghost-free and there is no extra degrees of freedom. In this regard, we

shall perform the Hamiltonian analysis for the IDG gravity [99] to make sure

that the theory is not suffering from Ostrogradsky instability. Such analysis is

performed in Chapter 3.
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Boundary term

Given an action and a well posed variational principle, it is possible to asso-

ciate a boundary term to the corresponding theory [101]. In GR, when varying

the EH action, the surface contribution shall vanish if the action is to be station-

ary [102]. The surface contribution that comes out of the variation of the action

is constructed by variation of the metric tensor (i.e. δgµν) and variation of its

derivatives (i.e. δ(∂σgµν)). However, imposing δgµν = 0 and fixing the variation

of the derivatives of the metric tensor are not enough to eliminate the surface

contribution.

To this end, Gibbons, Hawking and York (GHY) [101, 102] proposed a modi-

fication to the EH action, such that the variation of the modification cancels the

term containing δ(∂σgµν) and so imposing δgµν = 0 would be sufficient to remove

the surface contribution. Such modification is given by,

S = SEH + SGHY ∼
∫
d4x
√
−gR + 2

∮
d3x
√
hK, (1.0.32)

where SGHY is the GHY boundary term, K is the trace of the extrinsic curvature

on the boundary and h is the determinant of the induced metric defined on the

boundary. Indeed, SGHY is essential to make the GR’s action as given by the SEH

stationary. It shall be noted that boundary terms are needed for those space-times

that have well defined boundary. As an example, in the case of black holes, GHY

term is defined on the horizon of the black hole (where the geometrical boundary

of the black hole is located).

Additionally, SGHY possesses other important features. For instance, in Hamil-

tonian formalism, GHY action plays an important role when it comes to calcu-

lating the Arnowitt-Deser-Misner (ADM) energy [103]. Moreover, in Euclidean

semiclassical approach, the black hole entropy is given entirely by the GHY term

[104]. It can be concluded that, given a theory, obtaining a correct boundary is

vital in understanding the physical features of the theory.

To understand the physics of IDG better, we shall indeed find the bound-

ary term associated with the theory. Thus, in chapter 4 we generalise the GHY
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boundary term for the IDG action [100] given by (1.0.12). The exitance of infi-

nite series of covariant derivative in the IDG theory requires us to take a more

sophisticated approach. To this end, ADM formalism and in particular coframe

slicing was utilised. As we shall see later, our method recovers GR’s boundary

term when �→ 0.

Thermodynamics

Some of the most physically interesting solutions of GR are black holes. The

laws that are governing the black holes’ thermodynamics are known to be analo-

gous to those that are obtained by the ordinary laws of thermodynamics. So far,

only limited family of black holes are known, they are stationary asymptotically

flat solutions to Einstein equations. These solutions are given by [105],

Non-rotating (J = 0) Rotating (J 6= 0)
Uncharged (Q = 0) Schwarzschild Kerr
Charged (Q 6= 0) Reissner-Nordström Kerr-Newman

where J denotes the angular momentum and Q is the electric charge. The

reader shall note that a static background is a stationary one, and as a result a

rotating solution is also stationary yet not static. Moreover, electrically charged

black holes are solutions of Einstein-Maxwell equations and we will not consider

them in this thesis.

Let us summarise the thermodynamical laws that are governing the black

hole mechanics. The four laws of black hole thermodynamics are put forward by

Bardeen, Carter, and Hawking [106]. They are:

1. Zeroth law : states that the surface gravity of a stationary black hole is

uniform over the entire event horizon (H). i.e.

κ = const on H. (1.0.33)
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2. First law : states that the change in mass (M), charge (Q), angular mo-

mentum (J) and surface area (A) are related by:

κ

8π
δA = δM + ΦδQ− ΩδJ (1.0.34)

where we note that A = A(M,Q, J), Φ is the electrostatic potential and Ω

is the angular velocity.

3. Second law : states that the surface area of a black hole can never decrease,

i.e.

δA ≥ 0 (1.0.35)

given the null energy condition is satisfied.

4. Third law : states that the surface gravity of a black hole can not be reduced

to zero within a finite advanced time, conditioning that the stress-tensor

energy is bounded and satisfies the weak energy condition.

Hawking discovered that the quantum processes lead to a thermal flux of particles

from black holes, concluding that they do indeed behave as thermodynamical

systems [107]. To this end, it was found that black holes possesses a well defined

temperature given by,

T =
~κ
2π
, (1.0.36)

this is known as the Hawking’s temperature. Given this and the first law imply

that the entropy of a black hole is proportional to the area of its horizon and thus

the well known formula of [108],

S ≡ A

4~GN

, (1.0.37)

from the second law we must also conclude that the entropy of an isolated system

can never decrease. It is important to note that Hawking radiation implies that

the black hole area decreases which is the violation of the second law, yet one

must consider the process of black hole evaporation as a whole. In other words,
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1.1 Summary of results in literature

the total entropy, which is the sum of the radiation of the black hole entropies,

does not decrease.

So far we reviewed the entropy which corresponds to GR as it is described by

the EH action. Deviation from GR and moving to higher order gravity means

getting corrections to the entropy. Schematically we can write (for f(R) and

Lovelock entropies [109]),

S ∼ A

4GN

+ higher curvature corrections, (1.0.38)

as such the first law holds true for the modified theories of gravity including the

IDG theories. Yet in some cases the second law can be violated by means of

having a decrease in entropy (for instance Lovelock gravity [109]). Indeed, to

this day the nature of these violations are poorly understood. In other words

it is not yet established wether δ(SBH + Soutside) ≥ 0 holds true. The higher

corrections of a given theory are needed to understand the second law better.

To this end, we shall obtain the entropy for number of backgrounds and regimes

[117, 118, 119, 120] in chapter 5 for IDG theories.

1.1 Summary of results in literature

In this part, we shall present series of studies made in the IDG framework, yet

they are not directly the main focus of this thesis.

UV quantum behaviour

The perturbation around Minkowski background led to obtaining the lin-

earised action and subsequently the linearised field equations for action (1.0.12),

the relevant Bianchi identity was obtained and the corresponding propagator for

the IDG action was derived. Inspired by this developments, an infinite derivative

scalar toy model was proposed by [96]. Such action is given by (note that this

action can be generalised to include quadratic terms as well, yet the purpose of

16



1.1 Summary of results in literature

the study in [96] was to consider a toy model which can be handled technically),

S =

∫
d4x

[
1

2
φ�a(�̄)φ+

1

4MP

(φ∂µφ∂
µφ+φ�φa(�̄)φ−φ∂µφa(�̄)∂µφ)

]
, (1.1.39)

for above action, 1-loop and 2-loop computations were performed and it was

found that counter terms can remove the momentum cut-off divergences. Thus,

it was concluded that the corresponding Feynman integrals are convergent. It has

been also shown by [96] that, at 2-loops the theory is UV finite. Furthermore, a

method was suggested for rendering arbitrary n-loops to be finite. Also consult

[94, 97]. It should be noted that (1.1.39) is a toy model with cubic interactions

and considered in [96] due to its simplicity, however it is possible to consider

quadratic interactions too and thus generalise the action.

Scattering amplitudes

One of the most interesting aspect of each theory in the view of high energy

particle physics is studying the behaviour of the cross sections corresponding to

the scattering processes [110]. A theory can not be physical if the cross section

despairs at high energies. This is normally the case for theories with more than

two derivatives. However, it has been shown by [95] that, infinite derivative scalar

field theories can avoid this problem. This has been done by dressing propagators

and vertices where the external divergences were eliminated when calculating the

scattering matrix element. This is to say that, the cross sections within the infi-

nite derivative framework remain finite.

Field equations

In [111], the IDG action given in (1.0.12) was considered. The full non-linear

field equations were obtained using the variation principle. The corresponding

Bianchi identities were verified and finally the linearised field equations were
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1.1 Summary of results in literature

calculated around Minkowski background. In similar fashion [15] obtained the

linearised field equations around the de-Sitter (dS) background.

Newtonian potential

Authors of [68] studied the Newtonian potential corresponding to the IDG

action, given in (1.0.12), in weak field regime. In linearised field equations taking

a(�̄) = e−�̄ leads to the following Newtonian potential (See Appendix B for

derivation),

Φ(r) = −
κmgErf(Mr

2
)

8πr
, (1.1.40)

where mg is the mass of the object which generates the gravitational potential

and κ = 8πGN . In the limit where r → ∞ one recovers the Minkowski space-

time. In contrast, when r → 0, the Newtonian potential becomes constant. This

is where IDG deviates from GR for good, in other words, at short distances the

singularity of the 1/r potential is replaced with a finite constant.

Similar progress was made by [112]. In the context of IDG the Newtonian

potential was studied for a more generalised choice of entire function, i.e. a(�̄) =

eγ(�̄), where γ is an entire function. It was shown that at large distances the

Newtonian potential goes as 1/r and thus in agreement with GR, while at short

distances the potential is non-singular.

Later on, [113] studied the Newtonian potential for a wider class of IDG. Such

potentials were found to be oscillating and non-singular, a seemingly feature of

IDG. [113] showed that for an IDG theory constrained to allow defocusing of null

rays and thus the geodesics completeness, the Newtonian potential can be made

non-singular and be in agreement with GR at large distances.

[113] concluded that, in the context of higher derivative theory of gravity, null

congruences can be made complete, or can be made defocused upon satisfaction

of two criteria at microscopic level: first, the graviton propagator shall have a

scalar mode, comes with one additional root, besides the massless spin-2 and

secondly, the IDG gravity must be, at least, ghost-free or tachyon-free.
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1.2 Organisation of thesis

Singularities

GR allows space-time singularity, in other words, null geodesic congruences

focus in the presence of matter. [114] discussed the singularity freedom in the

context of IDG theory. To this end, the Raychaudari equation corresponding to

the IDG was obtained and the bouncing cosmology scenarios were studied. The

latest progress in this direction outlined the requirements for defocusing condi-

tion for null congruences around dS and Minkowski backgrounds.

Infrared modifications

[115] considered an IDG action where the non-local modifications are ac-

counted in the IR regime. The infinite derivative action considered in [115]

contains an infinite power series of inverse d’Alembertian operators. As such

they are given by,

Gi(�̄) =
∞∑
n=1

cin�̄
−n. (1.1.41)

The full non-linear field equations for this action was obtained and the corre-

sponding Bianchi identities were presented. The form of the Newtonian potential

in this type of gravity was calculated. Some of the cosmological of implications,

such as dark energy, of this theory were also studied [116].

1.2 Organisation of thesis

The content of this thesis is organised as follows:

Chapter 2: In this chapter the infinite derivative theory of gravity (IDG) is

introduced and derived. This serves as a brief review on the derivation of
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1.2 Organisation of thesis

the theory which would be the focus point of this thesis.

Chapter 3: Hamiltonian analysis for an infinite derivative gravitational action,

which is constructed by Ricci scalar and covariant derivatives, is performed.

First, the relevant Hamiltonian constraints (i.e. primary/secondary and

first class/ second class) are defined and a formula for calculating the num-

ber of degrees of freedom is proposed. Then, we applied the analysis to

number of theories. For instance, a scalar field model and the well known

f(R) theory. In the case of gravity we employed ADM formalism and ap-

plied the regular Hamiltonian analysis to identify the constraints and finally

to calculate the number of degrees of freedom.

Chapter 4: In this chapter the generalised GHY boundary term for the infi-

nite derivative theory of gravity is obtained. First, the ADM formalism is

reviewed and the coframe slicing is introduced. Next, the infinite deriva-

tive action is written in terms of auxiliary fields. After that, a generalised

formula for obtaining the GHY boundary term is introduced. Finally, we

employ the generalised GHY formulation to the infinite derivative theory

of gravity and obtain the boundary term.

Chapter 5: In this chapter thermodynamical aspects of the infinite derivative

theory of gravity are studied. We shall begin by reviewing the Wald’s

prescription on entropy calculation. Then, Wald’s approach is used to

obtain the entropy for IDG theory over a generic spherically symmetric

background. Such entropy is then analysed in the weak field regime. Fur-

thermore, the entropy of IDG action obtained over the (A)dS background.

As a check we used an approximation to recover the entropy of the well

known Gauss-Bonnet theory from the (A)dS background. We then study

the entropy over a rotating background. This had been done by generalising

the Komar integrals, for theories containing Ricci scalar, Ricci tensor and

their derivatives. Finally, we shall obtain the entropy of a higher deriva-

tive gravitational theory where the action contains inverse d’Alembertian

operators (i.e. non-locality).
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1.2 Organisation of thesis

Conclusion: In the final part of this thesis, we summarise the results of our

study and discuss the findings. Furthermore, the future work is discussed

in this section.

Appendices: We start by giving the notations, conventions and useful formulas

relevant to this thesis. Furthermore, the detailed computations, relevant to

each chapter, were presented so the reader can easily follow them.
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Chapter 2

Overview of infinite derivative

gravity

In this chapter we shall summarise the derivation of the infinite derivative grav-

itational (IDG) action around flat background. In following chapters we study

different aspects of this gravitational action.

2.1 Derivation of the IDG action

The most general, quadratic in curvature, and generally covariant gravitational

action in four dimensions [93] can be written as,

S = SEH + SUV , (2.1.1)

SEH =
1

2

∫
d4x
√
−gM2

PR, (2.1.2)

SUV =
1

2

∫
d4x
√
−g
(
Rµ1ν1λ1σ1O

µ1ν1λ1σ1

µ2ν2λ2σ2
Rµ2ν2λ2σ2

)
, (2.1.3)

where SEH is the Einstein-Hilbert action and SUV denotes the higher deriva-

tive modification of the GR in ultraviolet sector. The operator O
µ1ν1λ1σ1

µ2ν2λ2σ2
retains

general covariance.
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2.1 Derivation of the IDG action

Expanding (2.1.3), the total action becomes,

S =
1

2

∫
dx4
√
−g
[
M2

PR +RF1(�)R +RF2(�)∇ν∇µR
µν +RµνF3(�)Rµν

+ Rν
µF4(�)∇ν∇λR

µλ +RλσF5(�)∇µ∇σ∇ν∇λR
µν +RF6(�)∇µ∇ν∇λ∇σR

µνλσ

+ RµλF7(�)∇ν∇σR
µνλσ +Rρ

λF8(�)∇µ∇σ∇ν∇ρR
µνλσ

+ Rµ1ν1F9(�)∇µ1∇ν1∇µ∇ν∇λ∇σR
µνλσ +RµνλσF10(�)Rµνλσ

+ Rρ
µνλF11(�)∇ρ∇σR

µνλσ +Rµρ1νσ1F12(�)∇ρ1∇σ1∇ρ∇σR
µρνσ

+ Rν1ρ1σ1
µ F13(�)∇ρ1∇σ1∇ν1∇ν∇λ∇σR

µνλσ

+ Rµ1ν1ρ1σ1F14(�)∇ρ1∇σ1∇ν1∇µ1∇µ∇ν∇λ∇σR
µνλσ

]
, (2.1.4)

it shall be noted that we performed integration by parts where it was appropriate.

Also, Fi’s are analytical functions of d’Alembertian operator (� = gµν∇µ∇ν).

Around Minkowski background the operator would be simplified to: � = ηµν∂µ∂ν .

The functions Fi’s are given explicitly by,

Fi(�̄) =
∞∑
n=0

fin�̄
n, (2.1.5)

where �̄ ≡ �/M2. In this definition, M is the mass-scale at which the non-

local modifications become important at UV scale. Additionally, fin are the

appropriate coefficients of the sum in (2.1.5).

Making use of the antisymmetric properties of the Riemann tensor,

R(µν)ρσ = Rµν(ρσ) = 0, (2.1.6)

and the Bianchi identity,

∇αR
µ
νβγ +∇βR

µ
νγα +∇γR

µ
ναβ = 0, (2.1.7)
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2.1 Derivation of the IDG action

the action given in (2.1.4), reduces to,

S =
1

2

∫
dx4
√
−g
[
M2

PR +RF1(�)R +RµνF3(�)Rµν +RF6(�)∇µ∇ν∇λ∇σR
µνλσ

+ RµνλσF10(�)Rµνλσ +Rν1ρ1σ1
µ F13(�)∇ρ1∇σ1∇ν1∇ν∇λ∇σR

µνλσ

+ Rµ1ν1ρ1σ1F14(�)∇ρ1∇σ1∇ν1∇µ1∇µ∇ν∇λ∇σR
µνλσ

]
. (2.1.8)

Due to the perturbation around Minkowski background, the covariant derivatives

become partial derivatives and can commute around freely. As an example, (see

Appendix D)

RF6(�)∇µ∇ν∇λ∇σR
µνλσ =

1

2
RF6(�)∇µ∇ν∇λ∇σR

µνλσ

+
1

2
RF6(�)∇µ∇ν∇λ∇σR

µνλσ. (2.1.9)

By commuting the covariant derivatives we get,

RF6(�)∇µ∇ν∇λ∇σR
µνλσ =

1

2
RF6(�)∇ν∇µ∇λ∇σR

µνλσ

+
1

2
RF6(�)∇µ∇ν∇λ∇σR

µνλσ. (2.1.10)

Finally, it is possible to relabel the indices and obtain,

RF6(�)∇µ∇ν∇λ∇σR
µνλσ = RF6(�)∇ν∇µ∇λ∇σR

(µν)λσ = 0, (2.1.11)

which vanishes due to antisymmetric properties of the Riemann tensor as men-

tioned in (2.1.7).

After all the relevant simplifications, we can write the IDG action as,

S =
1

2

∫
d4x
√
−g
(
M2

PR +RF1(�̄)R +RµνF2(�̄)Rµν +RµνλσF3(�̄)Rµνλσ
)
.

(2.1.12)

This is an infinite derivative modification to the GR.
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Chapter 3

Hamiltonian analysis

In this chapter, we shall perform a Hamiltonian analysis on the IDG action given

in (2.1.12). Due to the technical complexity, the analysis are being performed on a

simpler version of this action by dropping the RµνF2(�̄)Rµν and RµνλσF3(�̄)Rµνλσ

terms. In our analysis, we obtain the true dynamical degrees of freedom. We shall

note that not including RµνF2(�̄)Rµν and RµνλσF3(�̄)Rµνλσ to the IDG action

does not change the dynamics of the theory we are considering and thus the

degrees of freedom would not be changed. Consult [96] for propagator analysis

and the degrees of freedom. In fact, RµνF2(�̄)Rµν and RµνλσF3(�̄)Rµνλσ terms

exist as a matter of generality. We will proceed, by first shortly reviewing the

Hamiltonian analysis, provide the definitions for primary, secondary, first-class

and second-class constraints [123, 124, 125, 126, 127] and write down the formula

for counting the number of degrees of freedom. We then provide some scalar

toy models as examples and show how to obtain the degrees of freedom in those

models. After setting up the preliminaries and working out the toy examples,

we turn our attention to the IDG action and perform the analysis, finding the

constraints and finally the number of degrees of freedom.

Hamiltonian analysis can be used as a powerful tool to investigate the stabil-

ity and boundedness of a given theory. It is well known that, higher derivative

theories, those that contain more than two derivatives, suffer from Ostrograd-

sky’s instability [98]. Having infinite number of covariant derivatives in the IDG

action however makes the Ostrogradsky’s analysis redundant, as one can employ
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a specific expansion which traces back to the Taylor expansion of F (�̄) that leads

to a ghost free graviton propagator.

In the late 1950s, the 3+1 decomposition became appealing; Richard Arnowitt,

Stanley Deser and Charles W. Misner (ADM) [121, 122] have shown that it is

possible to decompose four-dimensional space-time such that one foliates the arbi-

trary region M of the space-time manifold with a family of spacelike hypersurfaces

Σt, one for each instant in time. In this chapter, we shall show how by using the

ADM decomposition, and finding the relevant constraints, one can obtain the

number of degrees of freedom. It will be also shown, that how the IDG action

can admit finite/infinite number of the degrees of freedom.

3.1 Preliminaries

Suppose we have an action that depends on time evolution. We can write down

the equations of motion by imposing the stationary conditions on the action and

then use variational method. Consider the following action,

I =

∫
L(q, q̇)dt , (3.1.1)

the above action is expressed as a time integral and L is the Lagrangian density

depending on the position q and the velocity q̇. The variation of the action leads

to the equations of motion known as Euler-Lagrange equation,

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0 , (3.1.2)

we can expand the above expression, and write,

q̈
∂2L

∂q̇∂q̇
=
∂L

∂q
− q̇ ∂

2L

∂q∂q̇
, (3.1.3)

the above equation yields an acceleration, q̈, which can be uniquely calculated by

position and velocity at a given time, if and only if ∂2L
∂q̇∂q̇

is invertible. In other

words, if the determinant of the matrix ∂2L
∂q̇∂q̇
6= 0, i.e. non vanishing, then the
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theory is called non-degenerate. If the determinant is zero, then the acceleration

can not be uniquely determined by position and the velocity. The latter system

is called singular and leads to constraints in the phase space [127, 128].

3.1.1 Constraints for a singular system

In order to formulate the Hamiltonian we need to first define the canonical mo-

menta,

p =
∂L

∂q̇
. (3.1.4)

The non-invertible matrix ∂2L
∂q̇∂q̇

indicates that not all the velocities can be written

in terms of the canonical momenta, in other words, not all the momenta are

independent, and there are some relation between the canonical coordinates [123,

124, 125, 126, 127], such as,

ϕ(q, p) = 0 ⇐⇒ primary constraints , (3.1.5)

known as primary constraints. Take ϕ(q, p) for instance, if we have vanishing

canonical momenta, then we have primary constraints. The primary constraints

hold without using the equations of motion. The primary constraints define a

submanifold smoothly embedded in a phase space, which is also known as the

primary constraint surface, Γp. We can now define the Hamiltonian density as,

H = pq̇ − L . (3.1.6)

If the theory admits primary constraints, we will have to redefine the Hamiltonian

density, and write the total Hamiltonian density as,

Htot = H + λa(q, p)ϕa(q, p) , (3.1.7)

27



3.1 Preliminaries

where now λa(q, p) is called the Lagrange multiplier, and ϕa(q, p) are linear com-

binations of the primary constraints 1. The Hamiltonian equations of motion are

the time evolutions, in which the Hamiltonian density remains invariant under

arbitrary variations of δp, δq and δλ ;

ṗ = −δHtot

δq
= {q,Htot} , (3.1.8)

q̇ = −δHtot

δp
= {p,Htot} . (3.1.9)

As a result, the Hamiltonian equations of motion can be expressed in terms of

the Poisson bracket. In general, for canonical coordinates, (qi, pi), on the phase

space, given two functions f(q, p) and g(q, p), the Poisson bracket can be defined

as

{f, g} =
n∑
i=1

( ∂f
∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
, (3.1.10)

where qi are the generalised coordinates, and pi are the generalised conjugate

momentum, and f and g are any function of phase space coordinates. Moreover,

i indicates the number of the phase space variables.

Now, any quantity is weakly vanishing when it is numerically restricted to be

zero on a submanifold Γ of the phase space, but does not vanish throughout the

phase space. In other words, a function F (p, q) defined in the neighbourhood of

Γ is called weakly zero, if

F (p, q)|Γ = 0⇐⇒ F (p, q) ≈ 0 , (3.1.11)

where Γ is the constraint surface defined on a submanifold of the phase space.

Note that the notation “≈” indicates that the quantity is weakly vanishing; this

1We should point out that the total Hamiltonian density is the sum of the canonical Hamilto-
nian density and terms which are products of Lagrange multipliers and the primary constraints.
The time evolution of the primary constraints, should it be equal to zero, gives the secondary
constraints and those secondary constraints are evaluated by computing the Poisson bracket
of the primary constraints and the total Hamiltonian density. In the literature, one may also
come across the extended Hamiltonian density, which is the sum of the canonical Hamiltonian
density and terms which are products of Lagrange multipliers and the first-class constraints,
see [128].
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is a standard Dirac’s terminology, where F (p, q) shall vanish on the constraint

surface, Γ, but not necessarily throughout the phase space.

When a theory admits primary constraints, we must ensure that the theory is

consistent by essentially checking whether the primary constraints are preserved

under time evolution or not. In other words, we demand that, on the constraint

surface Γp,

ϕ̇|Γp = {ϕ,Htot}|Γp = 0 ⇐⇒ ϕ̇ = {ϕ,Htot} ≈ 0 . (3.1.12)

That is,

ϕ̇ = {ϕ,Htot} ≈ 0 =⇒ secondary constraint . (3.1.13)

By demanding that Eq. (3.1.12) (not identically) be zero on the constraint surface

Γp yields a secondary constraint [123, 129], and the theory is consistent. In case,

whenever Eq. (3.1.12) fixes a Lagrange multiplier, then there will be no secondary

constraints. The secondary constraints hold when the equations of motion are

satisfied, but need not hold if they are not satisfied. However, if Eq. (3.1.12)

is identically zero, then there will be no secondary constraints. All constraints

(primary and secondary) define a smooth submanifold of the phase space called

the constraint surface: Γ1 ⊆ Γp. A theory can also admit tertiary constraints,

and so on and so forth [128]. We can verify whether the theory is consistent by

checking if the secondary constraints are preserved under time evolution or not.

Note that Htot is the total Hamiltonian density defined by Eq. (3.1.7). To

summarize, if a canonical momentum is vanishing, we have a primary constraint,

while enforcing that the time evolution of the primary constraint vanishes on the

constraint surface, Γ1 give rise to a secondary constraint.

3.1.2 First and second-class constraints

Any theory that can be formulated in Hamiltonian formalism gives rise to Hamil-

tonian constraints. Constraints in the context of Hamiltonian formulation can be

thought of as reparameterization; while the invariance is preserved 1. The most

1For example, in the case of gravity, constraints are obtained by using the ADM formalism
that is reparameterizing the theory under spatial and time coordinates. Hamiltonian constraints
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important step in Hamiltonian analysis is the classification of the constrains. By

definition, we call a function f(p, q) to be first-class if its Poisson brackets with

all other constraints vanish weakly. A function which is not first-class is called

second-class 1. On the constraint surface Γ1, this is mathematically expressed as

{f(p, q), ϕ}|Γ1
≈ 0 =⇒ first-class , (3.1.14)

{f(p, q), ϕ}|Γ1
6≈ 0 =⇒ second-class . (3.1.15)

We should point out that we use the “≈” sign as we are interested in whether

the Poisson brackets of f(p, q) with all other constraints vanish on the constraint

surface Γ1 or not. Determining whether they vanish globally, i.e., throughout the

phase space, is not necessary for our purposes.

3.1.3 Counting the degrees of freedom

Once we have the physical canonical variables, and we have fixed the number of

first-class and/or second-class constraints, we can use the following formula to

count the number of the physical degrees of freedom 2, see [128],

N =
1

2
(2A−B− 2C) =

1

2
X (3.1.16)

where

• N = number of physical degrees of freedom

• A = number of configuration space variables

• B = number of second-class constraints

• C = number of first-class constraints

• X = number of independent canonical variables

generate time diffeomorphism, see [130].
1One should mention that the primary/secondary and first-class/second-class classifications

overlap. A primary constraint can be first-class or second-class and a secondary constraint can
also be first-class or second-class.

2Note that the phase space is composed of all positions and velocities together, while the
configuration space consists of the position only.
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3.2 Toy models

3.2 Toy models

In this section we shall use Dirac’s prescription and provide the relevant con-

straints for some toy models and then obtain the number of degrees of freedom.

Our aim will be to study some very simplistic time dependent models before

extending our argument to a covariant action.

3.2.1 Simple homogeneous case

Let us consider a very simple time dependent action,

I =

∫
φ̇2dt , (3.2.17)

where φ is some time dependent variable, and φ̇ ≡ ∂0φ. For the above action the

canonical momenta is 1

p =
∂L

∂φ̇
= 2φ̇ . (3.2.18)

If the canonical momenta is not vanishing, i.e. p 6= 0, then there is no constraints,

and hence no classification, i.e. B = 0 in Eq. (3.1.16), and so will be, C = 0. The

number of degrees of freedom is then given by the total number of the independent

canonical variables:

N =
1

2
X =

1

2
(p, φ) =

1

2
(1 + 1) = 1 . (3.2.19)

Therefore, this theory contains only one physical degree of freedom. A simple

generalization of a time-dependent variable to infinite derivatives can be given

1We are working around Minkowski background with mostly plus, i.e., (−,+,+,+).
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by:

I =

∫
dtφF

(
− ∂2

∂t2

)
φ

=

∫
dt

(
c0φ

2 + c1φ

(
− ∂2

∂t2

)
φ+ c2φ

(
− ∂2

∂t2

)2

φ+ c3φ

(
− ∂2

∂t2

)3

φ+ · · ·
)

=

∫
dt

(
c0φ

2 − c1φφ
(2) + c2φφ

(4) − c3φφ
(6) + · · ·

)
, (3.2.20)

where φ = φ(t), and F could take a form, like:

F

(
− ∂2

∂t2

)
=
∞∑
n=0

cn

(
− ∂2

∂t2

)n
. (3.2.21)

The next step is to find the conjugate momenta, so that we can use the generalised

formula [98],

p1 =
∂L

∂φ̇
− d

dt

(
∂L

∂φ̈

)
+

(
d

dt

)2(
∂L

∂
...
φ

)
− · · · ,

p2 =
∂L

∂φ̈
− d

dt

(
∂L

∂
...
φ

)
+

(
d

dt

)2(
∂L

∂
....
φ

)
− · · · ,

... (3.2.22)

Now the conjugate momenta for action Eq. (3.2.20) as,

p1 = c1φ̇− c2φ
(3) + c3φ

(5) − c4φ
(7) + · · ·

p2 = −c1φ+ c2φ
(2) − c3φ

(4) + c4φ
(6) − · · ·

p3 = −c2φ
(1) + c3φ

(3) − c4φ
(5) + · · ·

p4 = c2φ − c3φ
(2) + c4φ

(4) − · · ·
... (3.2.23)

and, so on and so forth. For Eq. (3.2.20), we can count the number of the

degrees of freedom essentially by identifying the independent number of canonical
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variables, that is,

N =
1

2
X =

1

2
(φ, p1, p2, · · · ) =

1

2
(1 + 1 + 1 + · · · ) =∞ . (3.2.24)

An infinite number of canonical variables corresponding to an infinite number

of time derivatives acting on a time-dependent variable leads to a theory that

contains infinite number of degrees of freedom.

3.2.2 Scalar Lagrangian with covariant derivatives

As a warm up exercise, let us consider the following action,

I =

∫
d4x
(
c0φ

2 + c1φ�̄φ
)
, (3.2.25)

where φ is a generic scalar field of mass dimension 2; and �̄ ≡ �/M2, where M is

the scale of new physics beyond the Standard Model, � is d’Alembertian operator

of the form � = ηµν∇µ∇ν , where ηµν is the Minkowski metric, and c0, c1 are

constants. We can always perform integration by parts on the second term, and

rewrite

c1φ�̄φ =
c1

M2
∂µφ∂

µφ = − c1

M2
∂0φ∂

0φ+
c1

M2
∂iφ∂

iφ , (3.2.26)

therefore the canonical momenta can be expressed, as

π =
∂L

∂φ̇
= 2

c1

M2
φ̇ , (3.2.27)
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3.3 Infinite derivative scalar field theory

where we have used the notation φ̇ ≡ ∂0φ, also note that ∂0φ∂
0φ = −∂0φ∂0φ.

The next step is to write down the Hamiltonian density, as:

H = πφ̇− L = 2
c1

M2
φ̇2 − c0φ

2 − c1φ�̄φ

= 2
c1

M2
φ̇2 − c0φ

2 +
c1

M2
(−φ̇2 + ∂iφ∂

iφ) (3.2.28)

= −c0φ
2 +

c1

M2
φ̇2 +

c1

M2
∂iφ∂

iφ .

Again, if π 6= 0, or for instance, c1 6= 0, then there are no constraints. The

number of degrees of freedom for the action will be given by,

1

2
X =

1

2
{(p, φ)} = 1. (3.2.29)

It can be seen from the examples provided that going to higher derivatives

amounts to have infinite number of conjugate momenta and thus infinite number

of degrees of freedom. In the next section we are going to construct an infinite

derivative theory such that the number of the degrees of freedom are physical

and finite.

3.3 Infinite derivative scalar field theory

Before considering any gravitational action, it is helpful to consider a Lagrangian

that is constructed by infinite number of d’Alembertian operators, we build this

action in Minkowski space-time,

I =

∫
d4xφF(�̄)φ, with: F(�̄) =

∞∑
n=0

cn�̄
n , (3.3.30)

where cn are constants. Such action is complicated and thus begs for a more

technical approach, we approach the problem by first writing an equivalent action
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3.3 Infinite derivative scalar field theory

of the form,

Ieqv =

∫
d4xAF(�̄)A , (3.3.31)

Where the auxiliary field, A, is introduced as an equivalent scalar field to φ,

this means that the equations of the motion for both actions (I and Ieqv) are

equivalent. In the next step, let us expand the term F(�̄)A,

F(�̄)A =
∞∑

n=0

cn�̄
nA = c0A+ c1�̄A+ c2�̄

2A+ c3�̄
3A+ · · · (3.3.32)

Now, in order to eliminate the contribution of �̄A, �̄2A and so on, we are going

to introduce two auxiliary fields χn and ηn, where the χn’s are dimensionless and

the ηn’s have mass dimension 2 (this can be seen by parameterising �̄A, �̄2A,

· · · ). We show few steps here by taking some simple examples

• Let our action to be constructed by a single box only, then,

Ieqv =

∫
d4xA�̄A . (3.3.33)

Now, to eliminate �̄A in the term A�̄A, we wish to add a following term

in the above action,

∫
d4x χ1A(η1 − �̄A) =

∫
d4x

[
χ1Aη1 + ηµν(∂µχ1A∂νA+ χ1∂µA∂νA)

]
.

(3.3.34)

where we derived above as follow:

χ1A(η1 −�A) = χ1Aη1 − χ1A�A

= χ1Aη1 − ηµνχ1A∂µ∂νA

= χ1Aη1 − ηµν∂µ(χ1A∂νA) + ηµν∂µχ1A∂νA+ ηµνχ1∂µA∂νA

= χ1Aη1 + ηµν∂µχ1A∂νA+ ηµνχ1∂µA∂νA , (3.3.35)

where it should be noted that we have dropped the total derivative and also
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3.3 Infinite derivative scalar field theory

we have absorbed the factor of M−2 into χ1 (the mass dimension of η1 is

modified accordingly). Therefore, here the d’Alembertian operator is not

barred. Finally, we can write down the equivalent action in the following

form,

Ieqv =

∫
d4x
(
Aη1 + χ1A(η1 − �̄A)

)
, (3.3.36)

by solving the equation of motion for χ1, we obtain

η1 = �̄A , (3.3.37)

and hence, Eqs. (3.3.33) and (3.3.36) are equivalent.

• Before generalising our method, let us consider the following,

Ieqv =

∫
d4x

[
A�̄A+ A�̄2A

]
, (3.3.38)

in order to eliminate the term A�̄2A, we add the term

∫
d4x χ2A(η2 − �̄η1) =

∫
d4x

[
χ2Aη2 + ηµν(∂µχ2A∂νη1 + χ2∂µA∂νη1)

]
.

(3.3.39)

We can rewrite action Eq. (3.3.38) as:

Ieqv =

∫
d4x
(
A(η1 + η2) + χ1A(η1 − �̄A) + χ2A(η2 − �̄η1)

)
. (3.3.40)

Solving the equation of motion for χ2 yields η2 = �̄η1 = �̄2A.

Similarly, in order to eliminate the terms A�̄nA and so on, we have to repeat

the same procedure up to �̄n. Note that we have established this by solving the

equation of motion for χn, we obtain, for n ≥ 2,

ηn = �̄ηn−1 = �̄nA. (3.3.41)
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Now, we can rewrite the action Eq. (3.3.31) as,

Ieqv =

∫
d4x

{
A(c0A+

∞∑
n=1

cnηn) + χ1A(η1 −�A) +
∞∑
l=2

χlA(ηl −�ηl−1)

}

=

∫
d4x

{
A(c0A+

∞∑
n=1

cnηn)

+ ηµν(A∂µχ1∂νA+ χ1∂µA∂νA) + ηµν
∞∑
l=2

(A∂µχl∂νηl−1 + χl∂µA∂νηl−1)

+
∞∑
l=1

Aχlηl

}
,

=

∫
d4x

{
A(c0A+

∞∑
n=1

cnηn) +
∞∑
l=1

Aχlηl

+ η00(A∂0χ1∂0A+ χ1∂0A∂0A) + ηij(A∂iχ1∂jA+ χ1∂iA∂jA)

+ η00

∞∑
l=2

(A∂0χl∂0ηl−1 + χl∂0A∂0ηl−1) + ηij
∞∑
l=2

(A∂iχl∂jηl−1 + χl∂iA∂jηl−1)

}
.

(3.3.42)

where we have absorbed the powers of M−2 into the cn’s & χn’s and the mass

dimension of the ηn’s has been modified accordingly. Hence, the box operator is

not barred. We shall also mention that in Eq. (3.3.42) we have decomposed the

d’Alembertian operator to its components around the Minkowski background:

� = ηµν∂µ∂ν = η00∂0∂0 + ηij∂i∂j, where the zeroth component is the time coordi-

nate, and {i, j} are the spatial coordinates running from 1 to 3. The conjugate

momenta for the above action are given by:

pA =
∂L

∂Ȧ
=
[
− (A∂0χ1 + χ1∂0A)−

∞∑
l=2

(χl∂0ηl−1)
]
,

pχ1 =
∂L

∂χ̇1

= −A∂0A, pχl =
∂L

∂χ̇l
= −(A∂0ηl−1),

pηl−1
=

∂L

∂η̇l−1

= −(A∂0χl + χl∂0A). (3.3.43)
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where Ȧ ≡ ∂0A. Therefore, the Hamiltonian density is given by

H = pAȦ+ pχ1χ̇1 + pχlχ̇l + pηl−1
η̇l−1 − L

= A(c0A+
∞∑
n=1

cnηn)−
∞∑
l=1

Aχlηl

− (ηµνA∂µχ1∂νA+ ηijχ1∂iA∂jA)

− ηµν
∞∑
l=2

(A∂µχl∂νηl−1 + χl∂µA∂νηl−1) . (3.3.44)

See Appendix E for the explicit derivation of (3.3.44). Let us recall the equivalent

action (3.3.42) before integration by parts. That reads as,

Ieqv =

∫
d4x

{
A(c0A+

∞∑
n=1

cnηn)+χ1A(η1−�A)+
∞∑
l=2

χlA(ηl−�ηl−1)

}
; (3.3.45)

we see that we have terms like :

χ1A(η1 −�A)

and

χlA(ηl −�ηl−1), for l ≥ 2.

Additionally, we know that solving the equations of motion for χn leads to ηn =

�nA. Therefore, it shall be concluded that the χn’s are the Lagrange multipliers,

and not dynamical as a result. From the equations of motion, we get the following

primary constraints 1:

σ1 = η1 −�A ≈ 0 ,

... (3.3.46)

σl = ηl −�ηl−1 ≈ 0 .

1Let us note that Γp is a smooth submanifold of the phase space determined by the primary
constraints; in this section, we shall exclusively use the “≈” notation to denote equality on Γp.
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In other words, since χn’s are the Lagrange multipliers, σ1 and σl’s are pri-

mary constraints. The time evolutions of the σn’s fix the corresponding Lagrange

multipliers λσn in the total Hamiltonian (when we add the terms λσnσn to the

Hamiltonian density H); therefore, the σn’s do not induce secondary constraints.

As a result, to classify the above constraint, we will need to show that the Poisson

bracket given by (3.1.10) is weakly vanishing:

{σm, σn}|Γp = 0 , (3.3.47)

so that σn’s can be classified as first-class constraints. However, this depends on

the choice of F(�), whose coefficients are hiding in χ’s and η’s. It is trivial to

show that, for this case, there is no second-class constraint, i.e., B = 0, as we do

not have {σm, σn} 6≈ 0. That is, the σn’s are primary, first-class constraints. In

our case, the number of phase space variables,

2A ≡ 2×
{

(A, pA), (η1, pη1), (η2, pη2), · · ·︸ ︷︷ ︸
n=1, 2, 3,···∞

}
≡ 2× (1 +∞) = 2 +∞ .

(3.3.48)

For each pair, (ηn, pηn), we have assigned one variable, which is multiplied by

a factor of 2, since we are dealing with field-conjugate momentum pairs, in the

phase space. In the next section, we will fix the form of F(�̄) to estimate the

number of first-class constraints, i.e., C and, hence, the number of degrees of

freedom. Let us also mention that the choice of F(�̄) will determine the number

of solutions to the equation of motion for A we will have, and consequently these

solutions can be interpreted as first-class constraints which will determine the

number of physical degrees of freedom, i.e. finite/infinite number of degrees of

freedom will depend on the number of solutions of the equations of motion for A.

See more detail on Appendix G.
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3.3.1 Gaussian kinetic term and propagator

Let us now consider an example of infinite derivative scalar field theory, but with

a Gaussian kinetic term in Eq. (3.3.30), i.e. by exponential of an entire function,

Ieqv =

∫
d4x A

(
�e−�̄

)
A . (3.3.49)

For the above action, the equation of motion for A is then given by:

2

(
�e−�̄

)
A = 0 . (3.3.50)

We observe that there is a finite number of solutions; hence, there are also finitely

many degrees of freedom 1. In momentum space, we obtain the following solution,

k2 = 0 , (3.3.51)

and the propagator will follow as [68, 93] :

Π(k̄2) ∼ 1

k2
e−k̄

2

, (3.3.52)

where we have used the fact that in momentum space � → −k2, and we have

k̄ ≡ k/M . There are some interesting properties to note about this propagator:

• The propagator is suppressed by an exponential of an entire function, which

has no zeros, poles. Therefore, the only dynamical pole resides at k2 = 0,

i.e., the massless pole in the propagator, i.e., degrees of freedom N = 1.

This is to say that, even though we have infinitely many derivatives, but

there is only one relevant degrees of freedom that is the massless scalar field.

In fact, there are no new dynamical degrees of freedom. Furthermore, in

the UV the propagator is suppressed.

1Note that, for an infinite derivative action of the form Ieqv =
∫
d4x A cos(�̄)A, we would

have an infinite number of solutions and, hence, infinitely many degrees of freedom. Note that
the choice of cos(�̄) leads to infinite number of solutions due to the periodicity of the cosine
function. In this footnote we take cos(�̄) to illustrate what it means by bad choice of F (�̄).
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3.4 IDG Hamiltonian analysis

• The propagator contains no ghosts (this is because an entire function does

not give rise to poles in the infinite complex plane), which usually plagues

higher derivative theories. By virtue of this, there is no analogue of Ostrógradsky

instability at classical level. Given the background equation, one can indeed

understand the stability of the solution.

The original action Eq. (3.3.49) can now be recast in terms of an equivalent

action as:

Ieqv =

∫
d4x

[
A
(
�e−�̄

)
A+ χ1A(η1 −�A) +

∞∑
l=2

χlA(ηl −�ηl−1)

]
.

(3.3.53)

We can now compute the number of the physical degrees of freedom. Note that

the determinant of the phase-space dependent matrix Amn = {σm, σn} 6= 0, so the

σn’s do not induce further constraints, such as secondary constraints. Therefore 1,

2A ≡ 2×
{

(A, pA), (η1, pη1), (η2, pη2), · · ·︸ ︷︷ ︸
n

}
= 2× (1 +∞) = 2 +∞

B = 0,

2C ≡ 2× (σn) = 2(∞) =∞,

N =
1

2
(2A−B− 2C) =

1

2
(2 +∞− 0−∞) = 1 . (3.3.54)

As expected, the conclusion of this analysis yields exactly the same dynamical

degrees of freedom as that of the Lagrangian formulation. The coefficients ci of

F(�̄) are all fixed by the form of �e−�̄.

3.4 IDG Hamiltonian analysis

In this section we will take a simple action of IDG, and study the Hamiltonian

density and degrees of freedom, we proceed by briefly recap the ADM formalism

1In this case and hereafter in this chapter, one shall include the k2 = 0 solution when
counting the number of degrees of freedom. This can be written in position space as �A = 0.
Since �A is already parameterised as η1, the counting remains unaffected.
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3.4 IDG Hamiltonian analysis

for gravity as we will require this in our analysis.

3.4.1 ADM formalism

One of the important concepts in GR is diffeomorphism invariance, i.e. when

one transforms coordinates at given space-time points, the physics remains un-

changed. As a result of this, one concludes that diffeomorphism is a local trans-

formation. In Hamiltonian formalism, we have to specify the direction of time.

A very useful approach to do this is ADM decomposition [121, 122], such de-

composition permits to choose one specific time direction without violating the

diffeomorphism invariance. In other words, choosing the time direction is nothing

but gauge redundancy, or making sure that diffeomorphism is a local transforma-

tion. We assume that the manifold M is a time orientable space-time, which can

be foliated by a family of space like hypersurfaces Σt, at which the time is fixed

to be constant t = x0. We then introduce an induced metric on the hypersurface

as

hij ≡ gij|t ,

where the Latin indices run from 1 to 3 for spatial coordinates.

In 3 + 1 formalism the line element is parameterised as,

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) , (3.4.55)

where N is the lapse function and N i is the shift vector, given by

N =
1√
−g00

, N i = − g
0i

g00
. (3.4.56)

In terms of metric variables, we then have

g00 = −N2 + hijN
iN j, g0i = Ni, gij = hij ,

g00 = −N−2, g0i =
N i

N2
, gij = hij − N iN j

N2
. (3.4.57)
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3.4 IDG Hamiltonian analysis

Furthermore, we have a time like vector nµ (i.e. the vector normal to the hyper-

surface) in Eq. (3.4.55), they take the following form:

ni = 0, ni = −N
i

N
, n0 = −N, n0 = N−1 . (3.4.58)

From Eq. (3.4.55), we also have
√
−g = N

√
h. In addition, we are going to

introduce a covariant derivative associated with the induced metric hij:

Di ≡ eµi∇µ .

We will define the extrinsic curvature as:

Kij = − 1

2N
(DiNj +DjNi − ∂thij) . (3.4.59)

It is well known that the Riemannian curvatures can be written in terms of the

3+1 variables. In the case of scalar curvature we have [122]:

R = KijK
ij −K2 + R +

2√
h
∂µ(
√
hnµK)− 2

N
√
h
∂i(
√
hhij∂jN) , (3.4.60)

where K = hijKij is the trace of the extrinsic curvature, and R is scalar curvature

calculated using the induced metric hij
1.

One can calculate each term in (3.4.60) using the information about extrinsic

curvature and those provided in (3.4.58). The decomposition of the d’Alembertian

operator can be expressed as:

� = gµν∇µ∇ν (3.4.61)

= (hµν + εnµnν)∇µ∇ν = (hijeµi e
ν
j − nµnν)∇µ∇ν

= hijDiDj − nν∇n∇ν = �hyp − nν∇n∇ν ,

1We note that the Greek indices are 4-dimensional while Latin indices are spatial and 3-
dimensional.
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3.4 IDG Hamiltonian analysis

where we have used the completeness relation for a space-like hypersurface, i.e.

ε = −1, and we have also defined ∇n = nµ∇µ.

3.4.2 ADM decomposition of IDG

Let us now take an IDG action. We will restrict ourselves to part of an IDG

action which contains only the Ricci scalar,

S =
1

2

∫
d4x
√
−g
[
M2

PR +RF(�̄)R

]
, F(�̄) =

∞∑
n=0

fn�̄
n , (3.4.62)

where MP is the 4-dimensional Planck scale, given by M2
P = (8πGN)−1, with

GN is Newton’s gravitational constant. The first term is Einstein Hilbert term,

with R being scalar curvature in four dimensions and the second term is the

infinite derivative modification to the action, where �̄ ≡ �/M2 , since � has

dimension mass squared and F(�̄) will be dimensionless. Note that � is the

4-dimensional d’Alembertian operator given by � = gµν∇µ∇ν . Moreover, fn are

the dimensionless coefficients of the series expansion.

Having the 3 + 1 decomposition discussed in the earlier section, we rewrite

our original action given in Eq.(3.4.62) in its equivalent form,

Seqv =
1

2

∫
d4x
√
−g
[
M2

PA+ AF(�̄)A+B(R− A)

]
, (3.4.63)

where we have introduced two scalar fields A and B with mass dimension two.

Solving the equations of motion for scalar field B results in A = R. The equations

of motion for the original action, Eq.(3.4.62), are equivalent to the equations of

motion for Eq. (3.4.63):

δSeqv =
1

2
δ

{
√
−g
[
M2

PA+ AF(�̄)A+B(R− A)

]}
= 0⇒ R = A . (3.4.64)

44



3.4 IDG Hamiltonian analysis

Following the steps of a scalar field theory, we expand F(�̄)A,

F(�̄)A =
∞∑

n=0

fn�̄
nA = f0A+ f1�̄A+ f2�̄

2A+ f3�̄
3A+ · · · (3.4.65)

As before, in order to eliminate �̄A, �̄2A, · · · , we will introduce two new auxiliary

fields χn and ηn with the χn’s being dimensionless and the ηn’s of mass dimension

two.

• As an example, in order to eliminate �̄A in A�̄A, we must

add the following terms to Eq. (3.4.63):

1

2

∫
d4x
√
−gχ1A(η1 − �̄A)

=
1

2

∫
d4x
√
−g[χ1Aη1 − χ1A�A]

=
1

2

∫
d4x
√
−g[χ1Aη1 − gµνχ1A∂µ∂νA]

=
1

2

∫
d4x
√
−g[χ1Aη1 − gµν∂µ(χ1A∂νA)

+ gµν∂µχ1A∂νA+ gµνχ1∂µA∂νA]

=
1

2

∫
d4x
√
−g[χ1Aη1 + gµν∂µχ1A∂νA+ gµνχ1∂µA∂νA]

=
1

2

∫
d4x
√
−g
[
χ1Aη1 + gµν(∂µχ1A∂νA+ χ1∂µA∂νA)

]
(3.4.66)

Solving the equation of motion for χ1; yields η1 = �̄A. In the about

derivation we integrated by parts on the second step and have dropped the

total derivative, also we have absorbed the factor of M−2 into χ1(the mass

dimension of η1 is modified accordingly), hence, the d’Alembertian operator

is not barred.
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3.4 IDG Hamiltonian analysis

• For instance, in order to eliminate the term A�̄2A, we add the term

1

2

∫
d4x χ2A(η2−�̄η1) =

1

2

∫
d4x

[
χ2Aη2 +gµν(∂µχ2A∂νη1 +χ2∂µA∂νη1)

]
.

(3.4.67)

Solving the equation of motion for χ2 yields; η2 = �̄η1 = �̄2A.

Similarly, in order to eliminate the terms A�̄nA and so on, we have to repeat the

same procedure up to �̄n. Again, we have shown that by solving the equations

of motion for χn, we obtain,

ηn = �̄ηn−1 = �̄nA, for n ≥ 2.

Following the above steps, we can rewrite the action Eq. (3.4.63), as:

Seqv =
1

2

∫
d4x
√
−g

{
A(M2

P + f0A+
∞∑
n=1

fnηn) +B(R− A) + χ1A(η1 −�A)

+
∞∑
l=2

χlA(ηl −�ηl−1)

}

=
1

2

∫
d4x
√
−g

{
A(M2

P + f0A+
∞∑
n=1

fnηn) +B(R− A)

+ gµν(A∂µχ1∂νA+ χ1∂µA∂νA) + gµν
∞∑
l=2

(A∂µχl∂νηl−1 + χl∂µA∂νηl−1)

+
∞∑
l=1

Aχlηl

}
, (3.4.68)

where we have absorbed the powers of M−2 into the fn’s and χn’s, and the mass

dimension of ηn’s has been modified accordingly, hence, the box operator is not

barred.

Note that the gravitational part of the action is simplified. In order to perform

the ADM decomposition, let us first look at the B(R−A) term, with the help of
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3.4 IDG Hamiltonian analysis

Eq. (3.4.60) we can write:

B(R− A) = B
(
KijK

ij −K2 + R− A
)
− 2∇nBK −

2√
h
∂j(∂i(B)

√
hhij),

(3.4.69)

where from Eq. (3.4.60) we expanded the following terms,

B
2√
h
∂µ(
√
hnµK) (3.4.70)

= ∇µ

[
B

2√
h

(
√
hnµK)

]
− (∇µB)

2√
h

(
√
hnµK)

= ∇µ

[
2BnµK

]
− 2(∇µB)nµK = −2nµ(∇µB)K = −2∇nBK ,

and,

−B 2

N
√
h
∂i(
√
hhij∂jN) (3.4.71)

= − 2

N
√
h
∂i(B(

√
hhij∂jN)) +

2

N
√
h
∂i(B)

√
hhij∂jN

=
2

N
√
h
∂i(B)

√
hhij∂jN =

2

N
√
h
∂j(∂i(B)

√
hhijN)− 2√

h
∂j(∂i(B)

√
hhij)

= − 2√
h
∂j(∂i(B)

√
hhij) .

Note that we have used nµ∇µ ≡ ∇n and dropped the total derivatives. Further-

more, we can use the decomposition of d’Alembertian operator, given in (3.4.61),

and also in 3+1, we have
√
−g = N

√
h. Hence, the decomposition of the action
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3.4 IDG Hamiltonian analysis

(3.4.68) becomes:

Seqv =
1

2

∫
d3xN

√
h

{
A(M2

P + f0A+
∞∑
n=1

fnηn) +B
(
KijK

ij −K2 + R− A
)

− 2∇nBK −
2√
h
∂j(∂i(B)

√
hhij)

+ hij(A∂iχ1∂jA+ χ1∂iA∂jA)− (A∇nχ1∇nA+ χ1∇nA∇nA)

+ hij
∞∑
l=2

(A∂iχl∂jηl−1 + χl∂iA∂jηl−1)−
∞∑
l=2

(A∇nχl∇nηl−1 + χl∇nA∇nηl−1)

+
∞∑
l=1

Aχlηl

}
, (3.4.72)

where the Latin indices are spatial, and run from 1 to 3. Note that the χ fields

were introduced to parameterise the contribution of �̄A, �̄2A, · · · , and so on.

Therefore, A and η are auxiliary fields, which concludes that χ fields have no

intrinsic value, and they are redundant. In other words they are Lagrange mul-

tiplier, when we count the number of phase space variables.

The same can not be concluded regarding the B field, as it is introduced to

obtain equivalence between scalar curvature, R, and A. Since B field is coupled

to R, and the scalar curvature is physical - we must count B as a phase space vari-

able. As we will see later in our Hamiltonian analysis, this is a crucial point while

counting the number of physical degrees of freedom correctly. To summarize, as

we will see, B field is not a Lagrange multiplier, while χ fields are.

3.4.3 f(R) gravity

Before proceeding further in our analysis and count the number of degrees of

freedom for IDG, it is worth providing a well known example to test the machinery

we build so far. To this end, let us consider the action for f(R) gravity,

S =
1

2κ

∫
d4x
√
−gf(R) , (3.4.73)
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where f(R) is a function of scalar curvature and κ = 8πGN . The equivalent

action for above is then given by,

S =
1

2κ

∫
d4x
√
−g
(
f(A) +B(R− A)

)
, (3.4.74)

where again solving the equations of motion for B, one obtains R = A, and hence

it is clear that above action is equivalent with Eq. (3.4.73). Using Eq. (3.4.69)

we can decompose the action as,

S =
1

2κ

∫
d3xN

√
h
(
f(A) +B

(
KijK

ij −K2 + R− A
)
− 2∇nBK

− 2√
h
∂j(∂i(B)

√
hhij)

)
. (3.4.75)

Now that the above action is expressed in terms of (hab, N, N
i, B, A), and their

time and space derivatives. We can proceed with the Hamiltonian analysis and

write down the momentum conjugate for each of these variables:

πij =
∂L

∂ḣij
=
√
hB(Kij − hijK)−

√
h∇nBh

ij, pB =
∂L

∂Ḃ
= −2

√
hK,

pA =
∂L

∂Ȧ
≈ 0, πN =

∂L

∂Ṅ
≈ 0, πi =

∂L

∂Ṅ i
≈ 0 . (3.4.76)

where Ȧ ≡ ∂0A is the time derivative of the variable. We have used the “≈” sign

in Eq. (3.4.76) to show that (pA, πN , πi) are primary constraints satisfied on the

constraint surface:

Γp = (pA ≈ 0, πN ≈ 0, πi ≈ 0).

Γp is defined by the aforementioned primary constraints. For our purposes,

whether the primary constraints vanish globally (which they do), i.e., through-

out the phase space, is irrelevant. Note that the Lagrangian density, L, does not

contain Ȧ, Ṅ or Ṅ i, therefore, their conjugate momenta vanish identically.
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3.4 IDG Hamiltonian analysis

We can define the Hamiltonian density as:

H = πijḣij + pBḂ − L (3.4.77)

≡ NHN +N iHi , (3.4.78)

where HN = π̇N , and Hi = π̇i. By using Eq. (3.4.77), we can write

HN =
1√
hB

πijhikhjlπ
kl − 1

3
√
hB

π2 − πpB

3
√
h

+
B

6
√
h
p2
B

−
√
hBR +

√
hBA+ 2∂j[

√
hhij∂i]B + f(A) , (3.4.79)

and,

Hi = −2hik∇lπ
kl + pB∂iB . (3.4.80)

Therefore, the total Hamiltonian can be written as,

Htot =

∫
d3xH (3.4.81)

=

∫
d3x

(
NHN +N iHi + λApA + λNπN + λiπi

)
, (3.4.82)

where λA, λN , λi are Lagrange multipliers, and we have GA = ṗA.

3.4.3.1 Classification of constraints for f(R) gravity

Having vanishing conjugate momenta means we can not express Ȧ, Ṅ and Ṅ i as

a function of their conjugate momenta and hence pA ≈ 0, πN ≈ 0 and πi ≈ 0

are primary constraints, see (3.4.76). To ensure the consistency of the primary

constraints so that they are preserved under time evolution generated by total

Hamiltonian Htot, we need to employ the Hamiltonian field equations and enforce

that HN and Hi be zero on the constraint surface Γp,

π̇N = −δHtot

δN
= HN ≈ 0, π̇i = −δHtot

δN i
= Hi ≈ 0 , (3.4.83)
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such that HN ≈ 0 and Hi ≈ 0, and therefore they can be treated as secondary

constraints.

Let us also note that Γ1 is a smooth submanifold of the phase space determined

by the primary and secondary constraints; hereafter in this section, we shall

exclusively use the “≈” notation to denote equality on Γ1. It is usual to call

HN as the Hamiltonian constraint, and Hi as diffeomorphism constraint. Note

that HN and Hi are weakly vanishing only on the constraint surface; this is why

the r.h.s of Eqs. (3.4.79) and (3.4.80) are not identically zero. If π̇N = HN and

π̇i = Hi were identically zero, then there would be no secondary constraints.

Furthermore, we are going to define GA, and demand that GA be weakly zero

on the constraint surface Γ1,

GA = ∂tpA = {pA,Htot} = −δHtot

δA
= −
√
hN(B + f ′(A)) ≈ 0 , (3.4.84)

which will act as a secondary constraint corresponding to primary constraint

pA ≈ 0. Hence,

Γ1 = (pA ≈ 0, πN ≈ 0, πi ≈ 0, GA ≈ 0, HN ≈ 0, Hi ≈ 0).

Following the definition of Poisson bracket in Eq.(3.1.10), we can see that

since the constraints HN and Hi are preserved under time evolution, i.e., ḢN =

{HN ,Htot}|Γ1 = 0 and Ḣi = {Hi,Htot}|Γ1 = 0, and they fix the Lagrange multi-

pliers λN and λi. That is, the expressions for ḢN and Ḣi include the Lagrange

multipliers λN and λi; thus, we can solve the relations ḢN ≈ 0 and Ḣi ≈ 0

for λN and λi, respectively, and compute the values of the Lagrange multipliers.

Therefore, we have no further constraints, such as tertiary ones and so on. We

will check the same for GA, that the time evolution of GA defined in the phase
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space should also vanish on the constraint surface Γ1,

ĠA ≡ {GA,Htot} =

(
δGA

δN

δHtot

δπN
− δGA

δπN

δHtot

δN

)
+

(
δGA

δN i

δHtot

δπi
− δGA

δπi

δHtot

δN i

)

+

(
δGA

δhij

δHtot

δπij
− δGA

δπij
δHtot

δhij

)
+

(
δGA

δA

δHtot

δpA
− δGA

δpA

δHtot

δA

)

+

(
δGA

δB

δHtot

δpB
− δGA

δpB

δHtot

δB

)

=
δGA

δA

δHtot

δpA
+
δGA

δB

δHtot

δpB

= N

{
N

3

(
2π − 2BpB

)
− 2
√
hN i∂iB −

√
hf ′′(A)λA

}
≈ 0 . (3.4.85)

The role of Eq. (3.4.85) is to fix the value of the Lagrange multiplier λA as long

as f ′′(A) 6= 0. We demand that f ′′(A) 6= 0 so as to avoid tertiary constraints. As

a result, there are no tertiary constraints corresponding to GA.

The next step in our Hamiltonian analysis is to classify the constraints. As

shown above, we have 3 primary constraints for f(R) theory. They are:

πN ≈ 0, πi ≈ 0 , pA ≈ 0,

and there are three secondary constraints, that are:

HN ≈ 0, Hi ≈ 0, GA ≈ 0.
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Following the definition of Poisson bracket in Eq. (3.1.10), we have:

{πN , πi} =

(
δπN
δN

δπi
δπN

− δπN
δπN

δπi
δN

)
+

(
δπN
δN i

δπi
δπi
− δπN

δπi

δπi
δN i

)

+

(
δπN
δhij

δπi
δπij
− δπN
δπij

δπi
δhij

)
+

(
δπN
δA

δπi
δpA
− δπN
δpA

δπi
δA

)

+

(
δπN
δB

δπi
δpB
− δπN
δpB

δπi
δB

)
≈ 0 . (3.4.86)

In a similar fashion, we can prove that:

{πN , πN} = {πN , πi} = {πN , pA} = {πN ,HN} = {πN ,Hi} = {πN , GA} ≈ 0

{πi, πi} = {πi, pA} = {πi,HN} = {πi,Hi} = {πi, GA} ≈ 0

{pA, pA} = {pA,HN} = {pA,Hi} ≈ 0

{HN ,HN} = {HN ,Hi} = {HN , GA} ≈ 0

{Hi,Hi} = {Hi, GA} ≈ 0

{GA, GA} ≈ 0 . (3.4.87)

The only non-vanishing Poisson bracket on Γ1 is

{pA, GA} = −δpA
δpA

δGA

δA
= −δGA

δA
= −
√
hNf ′′(A) 6≈ 0 . (3.4.88)

Having {pA, GA} 6= 0 for f ′′(A) 6= 0 means that both pA and GA are second-class

constraints. The rest of the constraints (πN , πi,HN ,Hi) are to be counted as

first-class constraints.

3.4.3.2 Number of physical degrees of freedom in f(R) gravity

Having identified the primary and secondary constraints and categorising them

into first and second-class constraints 1, we can use the formula in (3.1.16) to

1Having first-class and second-class constraints means there are no arbitrary functions in
the Hamiltonian. Indeed, a set of canonical variables that satisfies the constraint equations
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count the number of the physical degrees of freedom. For f(R) gravity, we have,

2A = 2× {(hij, πij), (N, πN), (N i, πi), (A, pA), (B, pB)}

= 2(6 + 1 + 3 + 1 + 1) = 24,

B = (pA, GA) = (1 + 1) = 2,

2C = 2× (πN , πi,HN , Hi) = 2(1 + 3 + 1 + 3) = 16,

N =
1

2
(24− 2− 16) = 3 . (3.4.89)

Hence f(R) gravity has 3 physical degrees of freedom in four dimensions; that

includes the physical degrees of freedom for massless graviton and also an extra

scalar degree of freedom 1.

Let us now briefly discuss few cases of interest:

• Number of degrees of freedom for f(R) = R + αR2:

For a specific form of

f(R) = R + αR2 , (3.4.90)

where α = (6M2)−1 to insure correct dimensionality. In this case we have,

{pA, GA} = −
√
hNf ′′(A) = −2

√
hN 6≈ 0 . (3.4.91)

The other Poisson brackets remain zero on the constraint surface Γ1, and

hence we are left with 3 physical degrees of freedom. These 3 degrees of are

corresponding to the two polarised degrees of freedom for massless graviton,

and one scalar mode. This extra degree of freedom which is a spin-0 particle

is not a ghost and is non-tachyonic.

• Number of degrees of freedom for f(R) = R:

For Einstein Hilbert action f(R) is simply,

f(R) = R , (3.4.92)

determines the physical state.
1We may note that the Latin indices are running from 1 to 3 and are spatial. Moreover,

(hij , π
ij) pair is symmetric therefore we get 6 from it.
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3.4 IDG Hamiltonian analysis

for which,

{pA, GA} = −
√
hNf ′′(A) ≈ 0 . (3.4.93)

Therefore, in this case both pA and GA are first-class constraints. Hence,

now our degrees of freedom counting formula in Eq. (3.1.16) takes the

following form:

2A = 2× {(hij, πij), (N, πN), (N i, πi), (A, pA), (B, pB)}

= 2(6 + 1 + 3 + 1 + 1) = 24,

B = 0,

2C = 2× (πN , πi,HN , Hi, pA, GA) = 2(1 + 3 + 1 + 3 + 1 + 1) = 20,

N =
1

2
(24− 0− 20) = 2 , (3.4.94)

which coincides with that of the spin-2 graviton as expected from the

Einstein-Hilbert action.

3.4.4 Constraints for IDG

The action and the ADM decomposition of IDG has been explained explicitly so

far. In this section, we will focus on the Hamiltonian analysis for the action of

the form of Eq. (3.4.62). The first step is to consider Eq. (3.4.72), and obtain

the conjugate momenta,

πN =
∂L

∂Ṅ
≈ 0, πi =

∂L

∂Ṅ i
≈ 0, πij =

∂L

∂ḣij
=
√
hB(Kij − hijK)−

√
h∇nBh

ij,

pA =
∂L

∂Ȧ
=
√
h
[
− (A∇nχ1 + χ1∇nA)−

∞∑
l=2

(χl∇nηl−1)
]
, pB =

∂L

∂Ḃ
= −2

√
hK,

pχ1 =
∂L

∂χ̇1

= −
√
hA∇nA, pχl =

∂L

∂χ̇l
= −
√
h(A∇nηl−1),

pηl−1
=

∂L

∂η̇l−1

= −
√
h(A∇nχl + χl∇nA). (3.4.95)
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3.4 IDG Hamiltonian analysis

as we can see in this case, the time derivatives of the lapse, i.e. Ṅ , and the shift

function, Ṅ i, are absent. Therefore, we have two primary constraints,

πN ≈ 0, πi ≈ 0 . (3.4.96)

The total Hamiltonian is given by:

Htot =

∫
d3xH (3.4.97)

=

∫
d3x

(
NHN +N iHi + λNπN + λiπi

)
, (3.4.98)

where λNand λi are Lagrange multipliers and the Hamiltonian density is given

by:

H = πijḣij + pAȦ+ pBḂ + pχ1χ̇1 + pχlχ̇l + pηl−1
η̇l−1 − L (3.4.99)

= NHN +N iHi , (3.4.100)

using the above equation and after some algebra we have:

HN =
1√
hB

πijhikhjlπ
kl − 1

3
√
hB

π2 − πpB

3
√
h

(3.4.101)

+
B

6
√
h
p2
B −
√
hBR +

√
hBA+ 2∂j[

√
hhij∂i]B

− 1

A
√
h
pχ1(pA −

χ1

A
pχ1)− 1

A
√
h

n∑
l=2

pχl(pηl−1
− χl
A
pχ1)

−
√
h

n∑
l=1

Aχlηl −
√
h

1

2
A(M2

P + f0A+
∞∑
n=1

fnηn)

−
√
hhij(A∂iχ1∂jA+ χ1∂iA∂jA)−

√
hhij

n∑
l=2

(A∂iχl∂jηl−1 + χl∂iA∂jηl−1) ,
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3.4 IDG Hamiltonian analysis

and,

Hi = −2hik∇lπ
kl + pA∂iA+ pχ1∂iχ1 + pB∂iB +

n∑
l=2

(pχl∂iχl + pηl−1
∂iηl−1) .

(3.4.102)

As described before in Eq. (3.4.83), we can determine the secondary constraints,

by:

HN ≈ 0, Hi ≈ 0 . (3.4.103)

We can also show that, on the constraint surface Γ1, the time evolutions ḢN =

{HN ,Htot} ≈ 0 and Ḣi = {Hi,Htot} ≈ 0 fix the Lagrange multipliers λN and λi,

and there will be no tertiary constraints.

3.4.4.1 Classifications of constraints for IDG

As we have explained earlier, primary and secondary constrains can be classified

into first or second-class constraints. This is derived by calculating the Poisson

brackets constructed out of the constraints between themselves and each other.

Vanishing Poisson brackets indicate first-class constraint and non vanishing Pois-

son bracket means we have second-class constraint.

For IDG action, we have two primary constraints: πN ≈ 0 and πi ≈ 0, and

two secondary constraints: HN ≈ 0, Hi ≈ 0, therefore we can determine the

classification of the constraints as:

{πN , πi} =

(
δπN
δN

δπi
δπN

− δπN
δπN

δπi
δN

)
+

(
δπN
δN i

δπi
δπi
− δπN

δπi

δπi
δN i

)
+

(
δπN
δhij

δπi
δπij
− δπN
δπij

δπi
δhij

)

+

(
δπN
δA

δπi
δpA
− δπN
δpA

δπi
δA

)
+

(
δπN
δB

δπi
δpB
− δπN
δpB

δπi
δB

)
+

(
δπN
δχ1

δπi
δpχ1

− δπN
δpχ1

δπi
δχ1

)

+

(
δπN
δχl

δπi
δpχl

− δπN
δpχl

δπi
δχl

)
+

(
δπN
δηl−1

δπi
δpηl−1

− δπN
δpηl−1

δπi
δηl−1

)
≈ 0 . (3.4.104)
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In a similar manner, we can show that:

{πN , πN} = {πN , πi} = {πN ,HN} = {πN ,Hi} ≈ 0

{πi, πi} = {πi,HN} = {πi,Hi} ≈ 0

{HN ,HN} = {HN ,Hi} ≈ 0

{Hi,Hi} ≈ 0 . (3.4.105)

Therefore, all of them (πN , πi,HN ,Hi) are first-class constraints. We can estab-

lished that by solving the equations of motion for χn yields

η1 = �A, · · · , ηl = �ηl−1 = �lA,

for l ≥ 2. Therefore, we can conclude that the χn’s are Lagrange multipliers, and

we get the following primary constraints from equations of motion,

Ξ1 = η1 −�A = 0 ,

Ξl = ηl −�ηl−1 = 0 , (3.4.106)

where l ≥ 2. In fact, it is sufficient to say that η1−�A ≈ 0 and ηl−�ηl−1 ≈ 0 on

a constraint surface spanned by primary and secondary constraints, i.e., (πN ≈
0, πi ≈ 0, HN ≈ 0, Hi ≈ 0, Ξn ≈ 0). As a result, we can now show,

{Ξn, πN} = {Ξn, πi} = {Ξn,HN} = {Ξn,Hi} = {Ξm,Ξn} ≈ 0 ; (3.4.107)

where we have used the notation ≈, which is a sufficient condition to be satisfied

on the constraint surface defined by Γ1 = (πN ≈ 0, πi ≈ 0, HN ≈ 0, Hi ≈
0, Ξn ≈ 0), which signifies that Ξn’s are now part of first-class constraints. We

should point out that we have checked that the Poisson brackets of all possible

pairs among the constraints vanish on the constraint surface Γ1; as a result, there

are no second-class constraints.
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3.4 IDG Hamiltonian analysis

3.4.4.2 Physical degrees of freedom for IDG

We can again use (3.1.16) to compute the degrees of freedom for IDG action

(3.4.62). First, let us establish the number of the configuration space variables,

A. Since the auxiliary field χn are Lagrange multipliers, they are not dynamical

and hence redundant, as we have mentioned earlier. In contrast we have to count

the (B, pb) pair in the phase space as B contains intrinsic value. For the IDG

action Eq. (3.4.62), we have:

2A ≡ 2×
{

(hij, π
ij), (N, πN), (N i, πi), (B, pb), (A, pA), (η1, pη1), (η2, pη2), · · ·︸ ︷︷ ︸

n=1, 2, 3,···∞

}
≡ 2× (6 + 1 + 3 + 1 + 1 +∞) = 24 +∞ , (3.4.108)

we have (ηn, pηn) and for each pair we have assigned one variable, which is mul-

tiplied by a factor of 2 since we are dealing with field-conjugate momentum pairs

in the phase space. Moreover, as we have found from the Poisson brackets of all

possible pairs among the constraints, the number of the second-class constraints,

B, is equal to zero. In the next sub-sections, we will show that the correct number

of the first-class constraints depends on the choice of F(�̄).

3.4.5 Choice of F(�̄)

In this sub-section, we will focus on an appropriate choice of F(�) for the action

Eq.(3.4.62), such that the theory admits finite relevant degrees of freedom (this is

what we want to satisfy when choosing the form of F(�)). From the Lagrangian

point of view, we could analyse the propagator of the action Eq.(3.4.62). It was

found in Refs. [53, 68] that F(�̄) can take the following form,

F(�̄) = M2
P

c(�̄)− 1

�
. (3.4.109)

The choice of c(�̄) determines how many roots we have and how many poles are

present in the graviton propagator, see Refs. [53, 68, 93]. Here, we will consider

two choices of c(�̄), one which has infinitely many roots, and therefore infinite

59



3.4 IDG Hamiltonian analysis

poles in the propagator. For instance, we can choose

c(�̄) = cos(�̄) , (3.4.110)

then the equivalent action would be written as:

Seqv =
1

2

∫
d4x
√
−g
[
M2

P

(
A+ A

(cos(�̄)− 1

�

)
A

)
+B(R− A)

]
. (3.4.111)

By solving the equations of motion for A, and subsequently solving for cos(�̄) we

get,

cos(k̄2) = 1− k2(BM−2
P − 1)

2A
, (3.4.112)

where in the momentum space, we have (� → −k2, around Minkowski space),

and also note k̄ ≡ k/M ; where B has mass dimension 2. From (F.0.10) in

appendix F, we have that

B = M2
P

(
1 +

4A

3k2

)
. (3.4.113)

Therefore, solving cos(k̄2) = 1
3
, we obtain infinitely many solutions. We observe

that there is an infinite number of solutions; hence, there are also infinitely many

degrees of freedom. These, infinitely many solutions can be written schematically

as:

Ψ1 = �A+ a1A = 0 ,

Ψ2 = �A+ a2A = 0 ,

Ψ3 = �A+ a3A = 0 ,

... (3.4.114)

60



3.4 IDG Hamiltonian analysis

or, in the momentum space,

−Ak2 + Aa1 = 0⇒ k2 = a1 ,

−Ak2 + Aa2 = 0⇒ k2 = a2 ,

−Ak2 + Aa3 = 0⇒ k2 = a3 ,

... (3.4.115)

Now, acting the � operators on Eq. (3.4.114), we can write

�Ψ2 = �2A+ a2�A ,

�2Ψ3 = �3A+ a3�
2A ,

...

�n−1Ψn = �nA+ an�
n−1A ,

... (3.4.116)

As we saw earlier it is possible to parameterize the terms of the form �A, �2A,

etc, by employing the auxiliary fields χl, ηl, for l ≥ 1. Therefore, we can write

the solutions Ψn as follows:

Ψ
′

1 = η1 + a1A = 0 ,

Ψ
′

2 = η2 + a2η1 = 0 ,

Ψ
′

3 = η3 + a3η2 = 0 .

... (3.4.117)

We should point out that we have acted the operator � on Ψ2, the operator �2

on Ψ3, etc. in order to obtain Ψ
′
2, Ψ

′
3, etc. As a result, we can rewrite the term

A+M−2
P AF(�̄)A, as

A+M−2
P AF(�̄)A = a0Ψ

′

1

∞∏
n=2

�−n+1Ψ
′

n . (3.4.118)
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We would also require φn auxiliary fields acting like Lagrange multipliers. Now,

absorbing the powers of M−2 into the coefficients where appropriate,

Seqv =
1

2

∫
d4x
√
−g
[
M2

Pa0

∞∏
n=1

ψn +B(R− A) + χ1A(η1 −�A)

+
∞∑
l=2

χlA(ηl −�ηl−1) + φ1(ψ1 −Ψ
′

1) +
∞∑
n=2

φn
(
ψn −�−n+1Ψ

′

n

)]
,

(3.4.119)

where a0 is a constant and, let us define Φ1 = ψ1 − Ψ
′
1 and, for n ≥ 2, Φn =

ψn −�−n+1Ψ
′
n. Then the equations of motion for φn will yield:

Φn = ψn −�−n+1Ψ
′

n = 0 . (3.4.120)

Again, it is sufficient to replace ψn − �−n+1Ψ
′
n = 0 with ψn − �−n+1Ψ

′
n ≈ 0

satisfied at the constraint surface. As a result there are n primary constraints in

Φn. Moreover, by taking the equations of motion for χn’s and φn’s simultaneously,

we will obtain the original action, see Eq. (3.4.111). The time evolutions of the

Ξn’s & Φn’s fix the corresponding Lagrange multipliers λΞn & λΦn in the total

Hamiltonian (when we add the terms λΞnΞn & λΦnΦn to the integrand in (3.4.98));

hence, the Ξn’s & Φn’s do not induce secondary constraints.

Now, to classify these constraints, we can show that the following Poisson

brackets involving Φn on the constraint surface (πN ≈ 0, πi ≈ 0,HN ≈ 0,Hi ≈
0,Ξn ≈ 0,Φn ≈ 0) are satisfied1:

{Φn, πN} = {Φn, πi} = {Φn,HN} = {Φn,Hi} = {Φm,Ξn} = {Φm,Φn} ≈ 0 ,

(3.4.121)

which means that the Φn’s can be treated as first-class constraints. We should

point out that we have checked that the Poisson brackets of all possible pairs

among the constraints vanish on the constraint surface Γ1; as a result, there are

1Let us note again that Γ1 is a smooth submanifold of the phase space determined by the
primary and secondary constraints; hereafter in this section, we shall exclusively use the “≈”
notation to denote equality on Γ1.
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no second-class constraints. Now, from Eq. (3.4.108), we obtain:

2A ≡ 2×
{

(hij, π
ij), (N, πN), (N i, πi), (B, pb), (A, pA), (η1, pη1), (η2, pη2), · · ·︸ ︷︷ ︸

n

}
= 2× (6 + 1 + 3 + 1 + 1 +∞) = 24 +∞

B = 0,

2C ≡ 2× (πN , πi,HN ,Hi,Ξn,Φn) = 2(1 + 3 + 1 + 3 +∞+∞) = 16 +∞+∞,

N =
1

2
(2A−B− 2C) =∞ . (3.4.122)

As we can see a injudicious choice for F(�̄) can lead to infinite number of degrees

of freedom., and there are many such examples. However, our aim is to come

up with a concrete example where IDG will be determined solely by massless

graviton and at best one massive scalar in the context of Eq. (3.4.62).

3.4.6 F(e�̄) and finite degrees of freedom

In the definition of F(�̄) as given in Eq. (3.4.109), if

c(�̄) = e−γ(�̄), (3.4.123)

where γ(�̄) is an entire function, we can decompose the propagator into partial

fractions and have just one extra pole apart from the spin-2 graviton. Conse-

quently, in order to have just one extra degree of freedom, we have to impose

conditions on the coefficient in F(�̄) series expansion (The reader may also con-

sult Appendix G). Moreover, to avoid �−1 terms appearing in the F(�̄), we must

have that,

c(�̄) =
∞∑
n=0

cn�̄
n , (3.4.124)

with the first coefficient c0 = 1, therefore:

F(�̄) =
(MP

M

)2
∞∑
n=0

cn+1�̄
n , (3.4.125)

63



3.4 IDG Hamiltonian analysis

Suppose we have c(�̄) = e−�̄, then using Eq. (3.4.109) we have,

F(�̄) =
∞∑
n=0

fn�̄
n , (3.4.126)

where the coefficient fn has the form of,

fn =
(MP

M

)2 (−1)n+1

(n+ 1)!
, (3.4.127)

Indeed this particular choice of c(�̄) is very well motivated from string field

theory [53]. In fact the above choice of γ(�̄) = −�̄ contains at most one extra

zero in the propagator corresponding to one extra scalar mode in the spin-0

component of the graviton propagator [68, 93]. We rewrite the action as:

Seqv =
1

2

∫
d4x
√
−g
[
M2

P

(
A+ A

(e−�̄ − 1

�

)
A

)
+B(R− A)

]
. (3.4.128)

The equation of motion for A is then:

M2
P

(
1 + 2

(e−�̄ − 1

�

)
A

)
−B = 0 . (3.4.129)

In momentum space, we can solve the equation above:

ek̄
2

= 1− k2(BM−2
P − 1)

2A
, (3.4.130)

where in the momentum space � → −k2 (on Minkowski space-time) and also

k̄ ≡ k/M . From Eq. (F.0.15) in the appendix F, we have, ek̄
2

= 1
3
, therefore

solving Eq. (3.4.130), we obtain

B = M2
P

(
1 +

4A

3k2

)
. (3.4.131)
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Note that we obtain only one extra solution (apart from the one for the massless

spin-2 graviton). We observe that there is a finite number of real solutions; hence,

there are also finitely many degrees of freedom. The form of the solution can be

written schematically, as:

Ω = �A+ b1A = 0 , (3.4.132)

or, in the momentum space,

− Ak2 + Ab1 = 0⇒ k2 = b1 , (3.4.133)

Now, we can parameterize the terms like �A, �2A, etc. with the help of auxiliary

fields χl and ηl, for l ≥ 1. Therefore, equivalently,

Ω
′
= η1 + b1A = 0 . (3.4.134)

Consequently, we can also rewrite the term AF(�̄)A with the help of auxiliary

fields ρ and ω. Upon taking the equations of motion for the field ρ, one can recast

A + M−2
P AF(�̄)A = b0ω G(A, η1, η2, . . . ). Hence, we can recast the action, Eq.

(3.4.128), as,

Seqv =
1

2

∫
d4x
√
−g
[
M2

P b0ω G(A, η1, η2, . . . ) +B(R− A) + χ1A(η1 −�A)

+
∞∑
l=2

χlA(ηl −�ηl−1) + ρ
(
ω − Ω

′)]
, (3.4.135)

where b0 is a constant, and we can now take ρ as a Lagrange multiplier. The

equation of motion for ρ will yield:

Θ = ω − Ω
′
= 0 . (3.4.136)

Note that Θ = ω − Ω
′ ≈ 0 will suffice on the constraint surface determined by

primary and secondary constraints (πN ≈ 0, πi ≈ 0,HN ≈ 0,Hi ≈ 0,Ξn ≈ 0,Θ ≈
0). As a result, Θ is a primary constraint. The time evolutions of the Ξn’s &

Θ fix the corresponding Lagrange multipliers λΞn & λΘ in the total Hamiltonian
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(when we add the terms λΞnΞn & λΘΘ to the integrand in (3.4.98)); hence, the

Ξn’s & Θ do not induce secondary constraints.

Furthermore, the function G(A, η1, η2, . . . ) contains the root corresponding

to the massless spin-2 graviton. Furthermore, taking the equations of motion

for χn’s and ρ simultaneously yields the same equation of motion as that of in

Eq. (3.4.128). The Poisson bracket of Θ with other constraints will give rise to

{Θ, πN} = {Θ, πi} = {Θ,HN} = {Θ,Hi} = {Θ,Ξn} = {Θ,Θ} ≈ 0 , (3.4.137)

where ≈ would have been sufficient. This leads to Θ as a first-class constraint.

Hence, we can calculate the number of the physical degrees of freedom as:

2A ≡ 2×
{

(hij, π
ij), (N, πN), (N i, πi), (B, pb), (A, pA), (η1, pη1), (η2, pη2), · · ·︸ ︷︷ ︸

n

}
= 2× (6 + 1 + 3 + 1 + 1 +∞) = 24 +∞

B = 0,

2C ≡ 2× (πN , πi,HN ,Hi,Ξn,Θ) = 2(1 + 3 + 1 + 3 +∞+ 1) = 18 +∞,

N =
1

2
(2A−B− 2C) =

1

2
(24 +∞− 0− 18−∞) = 3 . (3.4.138)

This gives 2 degrees of freedom from the massless spin-2 graviton in addition to

an extra degree of freedom as expected from the propagator analysis. This extra

degree of freedom which is not a ghost or tachyon comes from the choice of F(�̄),

in fact we have that F(�̄) = M2
P
e−�̄−1
� and this function admits one pole and

hence one degree of freedom. This is shown explicitly on Appendix F. Moreover,

note that the choice of F(�̄) is such that we avoid �−1 terms.

3.5 Summary

In this chapter we used Hamiltonian analysis to study the number of the degrees

of freedom for an infinite derivative theory of gravity (IDG). In this gravitational

modification, IDG contains infinite number of covariant derivatives acting on the

Ricci scalar.
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3.5 Summary

In Lagrangian framework, the number of the degrees of freedom is determined

from the propagator analysis. Particularly, it hinges on the number of the poles

arising in the propagator. The results of this chapter support the original idea

that both Lagrangian and Hamiltonian analysis will yield similar conclusions for

infinite derivative theories with Gaussian kinetic term [53]. In case of IDG, one

can study the scalar and the tensor components of the propagating degrees of

freedom [68, 93], and for Gaussian kinetic term which determines F(�̄), there

are only 2 dynamical degrees of freedom. In order to make sure that there are

no poles other than the original poles (corresponding to the original degrees of

freedom ) in the propagator, one shall demand that the propagator be suppressed

by exponential of an entire function. An entire function does not have any poles in

the finite complex plane This choice of propagator determines the kinetic term in

Lagrangian for infinite derivative theories. For a scalar toy model the kinetic term

becomes Gaussian, i.e., F = �e−�̄, while in gravity it becomes F = M2
P�
−1(e−�̄−

1).

From the Hamiltonian perspective, the essence of finding the dynamical de-

grees of freedom relies primarily on finding the total configuration space vari-

ables, and first and second-class constraints. As expected, infinite derivative

theories will have infinitely many configuration space variables, and so will be

first and second-class constraints. However, for a Gaussian kinetic term, F =

M2
P�
−1(e−�̄ − 1), the degrees of freedom are finite and the gravitational action

we considered admits 3 relevant degrees of freedom, two for the massless graviton

and an extra scalar mode that is not ghost or tachyonic.

67



Chapter 4

Boundary terms for higher

derivative theories of gravity

In this chapter we wish to find the corresponding Gibbons-Hawking-York term for

the most general quadratic in curvature gravity by using Coframe slicing within

the ADM decomposition of space-time in four dimensions.

Irrespective of classical or quantum computations, one of the key features of

a covariant action is to have a well-posed boundary condition. In particular, in

the Euclidean path integral approach - requiring such an action to be stationary,

one also requires all the boundary terms to disappear on any permitted varia-

tion. Another importance of boundary terms manifests itself in calculating the

black hole entropy using the Euclidean semiclassical approach, where the entire

contribution comes from the boundary term [104, 132, 133].

It is well known that the variation of the EH action leads to a boundary term

that depends not just on the metric, but also on the derivatives of the metric.

This is due to the fact that the action itself depends on the metric, along with

terms that depend linearly on the second derivatives. Normally, in Lagrangian

field theory, such linear second derivative terms can be introduced or eliminated,

by adding an appropriate boundary term to the action. In gravity, the fact that

the second derivatives arise linearly and also the existence of total derivative

indicates that the second derivatives are redundant in the sense that they can
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be eliminated by integrating by parts, or by adding an appropriate boundary

term. Indeed, writing a boundary term for a gravitational action schematically

confines the non-covariant terms to the boundary. For the EH action this ge-

ometrically transparent, boundary term is given by the Gibbons-Hawking-York

(GHY) boundary term [102]. Adding this boundary to the bulk action results in

an elimination of the total derivative, as seen for f(R) gravity [134, 135].

In the Hamiltonian formalism, obtaining the boundary terms for a gravita-

tional action is vital. This is due to the fact that the boundary term ensures that

the path integral for quantum gravity admits correct answers. As a result, ADM

showed [121] that upon decomposing space-time such that for the four dimen-

sional Einstein equation we have three-dimensional surfaces (later to be defined

as hypersurfaces) and one fixed time coordinate for each slices. We can there-

fore formulate and recast the Einstein equations in terms of the Hamiltonian and

hence achieve a better insight into GR.

In the ADM decomposition, one foliates the arbitrary region M of the space-

time manifold with a family of spacelike hypersurfaces Σt, one for each instant

in time. It has been shown by the authors of [136] that one can decompose a

gravitational action, using the ADM formalism and without necessarily moving

into the Hamiltonian regime, such that we obtain the total derivative of the

gravitational action. Using this powerful technique, one can eliminate this total

derivative term by modifying the GHY term appropriately.

The aim of this chapter is to find the corresponding GHY boundary term for

a covariant IDG. We start by providing a warm up example on how to obtain a

boundary term for an infinite derivative, massless scalar field theory. We then

briefly review the boundary term for EH term and introduce infinite derivative

gravity. We shall set our preliminaries by discussing the time slicing and reviewing

how one may obtain the boundary terms by using the 3+1 formalism. We finally

turn our attention to our gravitational action and find the appropriate boundary

terms for such theory.

69



4.1 Warming up: Infinite derivative massless scalar field theory

4.1 Warming up: Infinite derivative massless

scalar field theory

Let us consider the following action of a generic scalar field φ of mass dimension

2:

Sφ =

∫
d4xφ�nφ, (4.1.1)

where � = ηµν∇µ∇ν , where ηµν is the Minkowski metric 1 and n ∈ N>0. General-

ising, we have that �n =
∏n

i=1 η
µiνi∇µi∇νi . The aim is to find the total derivative

term for the above action. We may vary the scalar field φ as: φ→ φ+ δφ. Then

the variation of the action is given by

δSφ =

∫
d4x

[
δφ�nφ+ φδ(�nφ)

]
,

=

∫
d4x

[
δφ�nφ+ φ�nδφ

]
,

=

∫
d4x

[
(2�nφ)δφ+X

]
, (4.1.2)

where now X are the 2n total derivatives:

X =

∫
d4x

[
∇µ(φ∇µ�n−1δφ)−∇µ(∇µφ�

n−1δφ)

+ ∇λ(�φ∇λ�n−2δφ)−∇λ(∇λφ�
n−2δφ) + · · ·

+ ∇σ(�n−1φ∇σδφ)−∇σ(∇σ�
n−1φδφ)

]
. (4.1.3)

where “· · · ” in the above equation indicates the intermediate terms.

Let us now consider a more general case

Sφ =

∫
d4xφF(�)φ, (4.1.4)

1The � term comes with a scale �/M2. In our notation, we suppress the scale M in order
not to clutter our formulae for the rest of this chapter.
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4.2 Introducing Infinite Derivative Gravity

where F(�) =
∑∞

n=0 cn�
n, where the ‘cn’s are dimensionless coefficients. In this

case the total derivatives are given by

X =
∞∑
n=1

cn

∫
d4x

2n∑
j=1

(−1)j−1∇µ(∇(j−1)φ∇(2n−j)δφ), (4.1.5)

where the superscript ∇(j) indicate the number of covariant derivatives acting

to the right. Therefore, one can always determine the total derivative for any

given action, and one can then preserve or eliminate these terms depending on

the purpose of the study. In the following sections we wish to address how one

can obtain the total derivative for a given gravitational action.

4.2 Introducing Infinite Derivative Gravity

The gravitational action is built up of two main components, the bulk part and

the boundary part. In the simplest and the most well known case [102], for the

EH action, the boundary term are the ones known as Gibbons-Hawking-York

(GHY) term. We can write the total EH action in terms of the bulk part and the

boundary part simply as, (See Appendix C for derivation),

SG = SEH + SB

=
1

16πGN

∫
M

d4x
√
−gR +

1

8πGN

∮
∂M

d3y ε |h|1/2K , (4.2.6)

where R is the Ricci-scalar, and K is the trace of the extrinsic curvature with

Kij ≡ −∇inj, M indicates the 4-dimensional region and ∂M denotes the 3-

dimensional boundary region. h is the determinant of the induced metric on the

hypersurface ∂M and ε = nµnµ = ±1, where ε is equal to −1 for a spacelike

hypersurface, and is equal to +1 for a timelike hypersurface when we take the

metric signature is “mostly plus”; i.e. (−,+,+,+). A unit normal nµ can be

introduced only if the hypersurface is not null, and nµ is the normal vector to the

hypersurface.
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4.3 Time Slicing

Indeed, one can derive the boundary term simply by using the variational

principle. In this case the action is varied with respect to the metric, and it

produces a total-divergent term, which can be eliminated by the variation of

SB, [102]. Finding the boundary terms for any action is an indication that the

variation principle for the given theory is well posed.

As mentioned earlier on, despite the many successes that the EH action

brought in understanding the universe in IR regime, the UV sector of gravity

requires corrections to be well behaved. We shall recall the most general covari-

ant action of gravity, which is quadratic in curvature,

S = SEH + SUV

=
1

16πGN

∫
d4x
√
−g
[
R + α

(
RF1(�)R + RµνF2(�)Rµν

+RµνρσF3(�)Rµνρσ
)]
, with Fi(�) =

∞∑
n=0

fin�
n , (4.2.7)

where α is a constant with mass dimension −2 and the ‘fin ’s are dimensionless

coefficients. For the full equations of motion of such an action, see [111]. The

aim of this chapter is to seek the boundary terms corresponding to SUV , while

retaining the Riemann term.

4.3 Time Slicing

Any geometric space-time can be recast in terms of time like spatial slices, known

as hypersurfaces. How these slices are embedded in space-time, determines the

extrinsic curvature of the slices. One of the motivations of time slicing is to

evolve the equations of motion from a well-defined set of initial conditions set at

a well-defined spacelike hypersurface, see [137, 138].

4.3.1 ADM Decomposition

In order to define the decomposition, we first look at the foliation. Suppose that

the time orientable space-time M is foliated by a family of spacelike hypersurfaces
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4.3 Time Slicing

Σt, on which time is a fixed constant t = x0. We then define the induced metric

on the hypersurface as hij ≡ gij|
t
, where the Latin indices run from 1 to 3 1. Let

us remind the line element as given in section 3.4.1, [139]:

ds2 = −(N2 − βiβi)dt2 + 2βidx
idt+ hijdx

idxj (4.3.8)

where

N =
1√
−g00

is the “lapse” function, and

βi = − g
0i

g00

is the “shift” vector.

In the above line element Eq. (4.3.8), we also have
√
−g = N

√
h. The induced

metric of the hypersurface can be related to the 4 dimensional full metric via the

completeness relation, where, for a spacelike hypersurface,

gµν = hijeµi e
ν
j + εnµnν

= hµν − nµnν , (4.3.9)

where ε = −1 for a spacelike hypersurface, and +1 for a timelike hypersurface,

and

eµi =
∂xµ

∂yi
, (4.3.10)

are basis vectors on the hypersurface which allow us to define tangential tensors

on the hypersurface2. We note ‘x’s are coordinates on region M, while ‘y’s are

coordinates associated with the hypersurface and we may also keep in mind that,

hµν = hijeµi e
ν
j , (4.3.11)

1It should also be noted that Greek indices run from 0 to 3 and Latin indices run from 1
to 3, that is, only spatial coordinates are considered.

2We can use hµν to project a tensor Aµν onto the hypersurface: Aµνe
µ
i e
ν
j = Aij where Aij

is the three-tensor associated with Aµν .
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4.3 Time Slicing

where hij is the inverse of the induced metric hij on the hypersurface.

The change of direction of the normal n as one moves on the hypersurface

corresponds to the bending of the hypersurface Σt which is described by the ex-

trinsic curvature. The extrinsic curvature of spatial slices where time is constant

is given by:

Kij ≡ −∇inj =
1

2N
(Diβj +Djβi − ∂thij) , (4.3.12)

where Di = eµi∇µ is the intrinsic covariant derivative associated with the induced

metric defined on the hypersurface, and eµi is the appropriate basis vector which

is used to transform bulk indices to boundary ones.

Armed with this information, one can write down the Gauss, Codazzi and

Ricci equations, see [136]:

Rijkl ≡ KikKjl −KilKjk +Rijkl , (4.3.13)

Rijkn ≡ nµRijkµ = −DiKjk +DjKik , (4.3.14)

Rinjn ≡ nµnνRiµjν

= N−1
(
∂tKij −£βKij

)
+KikK

k
j +N−1DiDjN , (4.3.15)

where in the left hand side of Eq. (4.3.13) we have the bulk Riemann tensor, but

where all indices are now spatial rather than both spatial and temporal, and Rijkl

is the Riemann tensor constructed purely out of hij, i.e. the metric associated

with the hypersurface; and £β is the Lie derivative with respect to shift1.

4.3.1.1 Coframe Slicing

A key feature of the 3+1 decomposition is the free choice of lapse function and

shift vector which define the choice of foliation at the end. In this study we

stick to the coframe slicing. The main advantage for this choice of slicing is

the fact that the line element and therefore components of the infinite derivative

function in our gravitational action will be simplified greatly. In addition, [140]

1We have £βKij ≡ βkDkKij +KikDjβ
k +KjkDiβ

k.
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4.3 Time Slicing

has shown that such a slicing has a more transparent form of the canonical action

principle and Hamiltonian dynamics for gravity. This also leads to a well-posed

initial-condition for the evolution of the gravitational constraints in a vacuum by

satisfying the Bianchi identities. In order to map the ADM line element into the

coframe slicing, we use the convention of [140]. We define

θ0 = dt ,

θi = dxi + βidt , (4.3.16)

where xi and i = 1, 2, 3 is the spatial and t is the time coordinates.1 The metric

in the coframe takes the following form

ds2
coframe = gαβθ

αθβ = −N2(θ0)2 + gijθ
iθj , (4.3.17)

where upon substituting Eq. (4.3.16) into Eq. (4.3.17) we recover the original

ADM metric given by Eq. (4.3.8). In this convention, if we take g as the full

space-time metric, we have the following simplifications:

gij = hij, gij = hij, g0i = g0i = 0. (4.3.18)

The convective derivatives ∂α with respect to θα are

∂0 ≡
∂

∂t
− βi∂i ,

∂i ≡
∂

∂xi
. (4.3.19)

For time-dependent space tensors T , we can define the following derivative:

∂̄0 ≡
∂

∂t
−£β , (4.3.20)

where £β is the Lie derivative with respect to the shift vector βi. This is because

the off-diagonal components of the coframe metric are zero, i.e., g0i = g0i = 0.

1We note that in Eq. (4.3.16), the “i” for θi is just a superscript not a spatial index.
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4.3 Time Slicing

We shall see later on how this time slicing helps us to simplify the calculations

when the gravitational action contains infinite derivatives.

4.3.1.2 Extrinsic Curvature

A change in the choice of time slicing results in a change of the evolution of

the system. The choice of foliation also has a direct impact on the form of

the extrinsic curvature. In this section we wish to give the form of extrinsic

curvature Kij in the coframe slicing. This is due to the fact that the definition

of the extrinsic curvature is an initial parameter that describes the evolution of

the system, therefore is it logical for us to derive the extrinsic curvature in the

coframe slicing as we use it throughout the chapter. We use [140] to find the

general definition for Kij in the coframe metric. In the coframe,

γαβγ = Γαβγ + gαδCε
δ(βgγ)ε −

1

2
Cα

βγ , (4.3.21)

dθα = −1

2
Cα

βγθ
β ∧ θγ , (4.3.22)

where Γ is the ordinary Christoffel symbol and “∧” denotes the exterior or wedge

product of vectors θ. By finding the coefficients Cs and subsequently calculating

the connection coefficients γαβγ, one can extract the extrinsic curvature Kij in

the coframe setup. We note that the expression for dθα is the Maurer-Cartan

structure equation [144]. It is derived from the canonical 1-form θ on a Lie group

G which is the left-invariant g-valued 1-form uniquely determined by θ(ξ) = ξ for

all ξ ∈ g.

We can use differential forms (See Appendix H) to calculate the Cs, the coef-

ficients of dθ where now we can write,

dθk = −
(
∂iβ

k
)
θ0 ∧ θi +

1

2
Ck

ijθ
j ∧ θi , (4.3.23)

where k = 1, 2, 3. Now when we insert the Cs from Appendix H,

dθ1 = d
(
dx1 + β1dt

)
= dβ1 ∧ dt (4.3.24)
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4.3 Time Slicing

and

dθ0 = d(dt) = d2(t) = 0

dθi = dβi ∧ dt. (4.3.25)

From the definition of dθα in Eq. (4.3.22) and using the antisymmetric properties

of the ∧ product,

dθα = −1

2
Cα

βγθ
β ∧ θγ =

1

2
Cα

βγθ
γ ∧ θβ =

1

2
Cα

γβθ
β ∧ θγ, (4.3.26)

we get

Cα
βγ = −Cα

γβ . (4.3.27)

Using these properties, we find that Cm
0i = ∂βm

∂xi
, Cm

ij = 0 and C0
ij = 0. Using

Eq. (4.3.21), we obtain that

γ0
ij = − 1

2N2

(
hil∂j(β

l) + hjl∂i(β
l)− ∂̄0hij

)
. (4.3.28)

Since from Eq. (4.3.12)

Kij ≡ −∇inj = γµijnµ = −Nγ0
ij , (4.3.29)

the expression for the extrinsic curvature in coframe slicing is given by:

Kij =
1

2N

(
hil∂j(β

l) + hjl∂i(β
l)− ∂̄0hij

)
, (4.3.30)

where ∂0 is the time derivative and βl is the “shift” in the coframe metric

Eq. (4.3.17).
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4.3 Time Slicing

4.3.1.3 Riemann Tensor in the Coframe

The fact that we move from the ADM metric into the coframe slicing has the

following implication on the form of the components of the Riemann tensor.

Essentially, since in the coframe slicing in Eq. (4.3.17) we have g0i = g0i = 0,

therefore we also have, ni = ni = 0. Hence the non-vanishing components of the

Riemann tensor in the coframe, namely Gauss, Codazzi and Ricci tensor, become:

Rijkl = KikKjl −KilKjk +Rijkl ,

R0ijk = N(−DkKji +DjKki) ,

R0i0j = N(∂̄0Kij +NKikK
k
j +DiDjN ), (4.3.31)

with ∂̄0 defined in Eq. (4.3.20) and Dj = eµj∇µ. It can be seen that the Ricci

equation, given in Eq. (4.3.13) is simplified in above due to the definition of

Eq. (4.3.20). We note that Eq. (4.3.31) is in the coframe slicing, while Eqs.

(4.3.13-4.3.15) are in the ADM frame only.

4.3.1.4 D’Alembertian Operator in Coframe

Since we shall be dealing with a higher-derivative theory of gravity, it is therefore

helpful to first obtain an expression for the � operator in this subsection. To do

so, we start off by writing the definition of a single box operator in the coframe,

[146],

� = gµν∇µ∇ν

= (hµν + εnµnν)∇µ∇ν

= −nµnν∇µ∇ν + hµν∇µ∇ν

= −n0n0∇0∇0 + hijeµi e
ν
j∇µ∇ν

= − 1

N2
∇0∇0 + hijDiDj

= −(N−1∂̄0)2 +�hyp , (4.3.32)
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4.4 Generalised Boundary Term

where we note that the Greek indices run from 1 to 4 and the Latin indices

run from 1 to 3 (ε = −1 for a spacelike hypersurface). We call the spatial

box operator �hyp = hijDiDj, which stands for “hypersurface” as the spatial

coordinates are defined on the hypersurface meaning �hyp is the projection of

the covariant d’Alembertian operator down to the hypersurface, i.e. only the

tangential components of the covariant d’Alembertian operator are encapsulated

by �hyp. Also note that in the coframe slicing gij = hij. Generalising this result

to the nth power, for our purpose, we get

Fi(�) =
∞∑
n=0

fin
[
−(N−1∂̄0)2 +�hyp

]n
(4.3.33)

where the fins are the coefficients of the series.

4.4 Generalised Boundary Term

In this section, first we are going to briefly summarise the method of [136] for

finding the boundary term. It has been shown that, given a general gravitational

action

S =
1

16πGN

∫
M

d4x
√
−gf(Rµνρσ) , (4.4.34)

one can introduce two auxiliary fields %µνρσ and ϕµνρσ, which are independent of

each other and of the metric gµν , while they have all the symmetry properties

of the Riemann tensor Rµνρσ. We can then write down the following equivalent

action:

S =
1

16πGN

∫
M

d4x
√
−g [f(%µνρσ) + ϕµνρσ (Rµνρσ − %µνρσ)] . (4.4.35)

The reason we introduce these auxiliary fields is that the second derivatives of

the metric appear only linearly in Eq. (4.4.35). Note that in Eq. (4.4.35), the

terms involving the second derivatives of the metric are not multiplied by terms
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4.4 Generalised Boundary Term

of the same type, i.e. involving the second derivative of the metric, so when we

integrate by parts once, we are left just with the first derivatives of the metric;

we cannot eliminate the first derivatives of the metric as well - since in this study

we are keeping the boundary terms. Note that the first derivatives of the metric

are actually contained in these boundary terms if we integrate by parts twice,

see our toy model scalar field theory example in Eqs. (4.1.2,4.1.3) 1. Therefore,

terms which are linear in the metric can be eliminated if we integrate by parts;

moreover, the use of the auxiliary fields can prove useful in a future Hamiltonian

analysis of the action.

From [136], we then decompose the above expression as

ϕµνρσ (Rµνρσ − %µνρσ) = φijkl(Rijkl−ρijkl)−4φijk(Rijkn−ρijk)−2Ψij(Rinjn−Ωij) ,

(4.4.36)

where

Rijkl ≡ ρijkl ≡ %ijkl, Rijkn ≡ ρijk ≡ nµ%ijkµ, Rinjn ≡ Ωij ≡ nµnν%iµjν

(4.4.37)

are equivalent to the components of the Gauss, Codazzi and Ricci equations given

in Eq. (4.3.13), also,

φijkl ≡ ϕijkl, φijk ≡ nµϕ
ijkµ, Ψij ≡ −2nµnνϕ

iµjν , (4.4.38)

where φijkl, φijk and Ψij are spatial tensors evaluated on the hypersurface. The

equations of motion for the auxiliary fields ϕµνρσ and %µνρσ are, respectively given

by [136],

δS

δϕµνρσ
= 0⇒ %µνρσ = Rµνρσ and

δS

δ%µνρσ
= 0⇒ ϕµνρσ =

∂f

∂%µνρσ
, (4.4.39)

1This is because %µνρσ and ϕµνρσ are independent of the metric, and so although f(%µνρσ)
can contain derivatives of %µνρσ, these are not derivatives of the metric. Rµνρσ contains a second
derivative of the metric but this is the only place where a second derivative of the metric appears
in Eq. (4.4.35)
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4.4 Generalised Boundary Term

where Rµνρσ is the four-dimensional Riemann tensor.

One can start from the action given by Eq. (4.4.35), insert the equation of

motion for ϕµνρσ and recover the action given by Eq. (4.4.34). It has been shown

by [136] that one can find the total derivative term of the auxiliary action as

S =
1

16πGN

∫
M

d4x
(√
−gL− 2∂µ[

√
−g nµK ·Ψ]

)
, (4.4.40)

where K = hijKij, with Kij given by Eq. (4.3.30), and Ψ = hijΨij , where Ψij is

given in Eq. (4.4.43), are spatial tensors evaluated on the hypersurface Σt and L

is the Lagrangian density.

In Eq. (4.4.40), the second term is the total derivative. It has been shown

that one may add the following action to the above action to eliminate the total

derivative appropriately. Indeed Ψ can be seen as a modification to the GHY

term, which depends on the form of the Lagrangian density [136].

SGHY =
1

8πGN

∮
∂M

dΣµn
µΨ ·K , (4.4.41)

where nµ is the normal vector to the hypersurface and the infinitesimal vector

field

dΣµ = εµαβγe
α
1 e

β
2e

γ
3d

3y , (4.4.42)

is normal to the boundary ∂M and is proportional to the volume element of ∂M;

in above εµαβγ =
√
−g[µαβ γ] is the Levi-Civita tensor and y are coordinates

intrinsic to the boundary 1, and we used Eq. (4.3.10). Moreover in Eq. (4.4.41),

we have:

Ψij = −1

2

δf

δΩij

, (4.4.43)

where f indicates the terms in the Lagrangian density and is built up of tensors

%µνρσ, %µν and % as in Eq. (4.4.35); GN is the universal gravitational constant and

Ωij is given in Eq. (4.4.37). Indeed, the above constraint is extracted from the

1We shall also mention that Eq.(4.4.41) is derived from Eq.(4.4.40) by performing Stokes
theorem, that is

∫
M
Aµ;µ
√
−g ddx =

∮
∂M

Aµ dΣµ, with Aµ = nµK ·Ψ.
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4.5 Boundary Terms for Finite Derivative Theory of Gravity

equation of motion for Ωij in the Hamiltonian regime [136]. In the next section

we are going to use the same approach to find the boundary terms for the most

general, covariant quadratic order action of gravity.

4.5 Boundary Terms for Finite Derivative The-

ory of Gravity

In this section we are going to use the 3+1 decomposition and calculate the

boundary term of the EH term R, and

R�R, Rµν�R
µν , Rµνρσ�R

µνρσ,

as prescribed in previous section, as a warm-up exercise.

We then move on to our generalised action given in Eq. (4.2.7). To decompose

any given term, we shall write them in terms of their auxiliary field, therefore we

have R = %, Rµν ≡ %µν , and Rµνρσ ≡ %µνρσ, where the auxiliary fields %, %µν

and %µνρσ have all the symmetry properties of the Riemann tensor. We shall also

note that the decomposition of the � operator in 3+1 formalism in the coframe

setup is given by Eq. (4.3.32).

4.5.1 R

For the Einstein-Hilbert term R, in terms of the auxiliary field % we find in

Appendix I.1

f = % = gµρgνσ%µνρσ

= (hµρ − nµnρ) (hνσ − nνnσ) %µνρσ

= (hµρhνσ − nµnρhνσ − hµρnνnσ) %µνρσ

= (ρ− 2Ω) , (4.5.44)
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4.5 Boundary Terms for Finite Derivative Theory of Gravity

where Ω = hijΩij and we used hijhklρijkl = ρ, and hijρiνjσn
νnσ = hijΩij and

% ≡ R in the EH action and the right hand side of Eq. (4.5.44) is the 3 + 1

decomposed form of the Lagrangian and hence ρ and Ω are spatial. We may note

that the last term of the expansion on the second line of Eq. (4.5.44) vanishes

due to the symmetry properties of the Riemann tensor. Using Eq. (4.4.43), and

calculating the functional derivative, we find

Ψij = −1

2

δf

δΩij

= hij. (4.5.45)

This verifies the result found in [136], and it is clear that upon substituting this

result into Eq. (4.4.41), we recover the well known boundary for the EH action,

as K = hijKij and Ψ ·K ≡ ΨijKij where Kij is given by Eq. (4.3.30). Hence,

SGHY ≡ S0 =
1

8πGN

∮
∂M

dΣµn
µK , (4.5.46)

where dΣµ is the normal to the boundary ∂M and is proportional to the volume

element of ∂M while nµ is the normal vector to the hypersurface.

4.5.2 Rµνρσ�Rµνρσ

Next, we start off by writing Rµνρσ�Rµνρσ as its auxiliary equivalent %µνρσ�%µνρσ

to obtain

%µνρσ�%
µνρσ = δαµδ

β
ν δ

γ
ρδ

λ
σ%αβγλ�%

µνρσ

=
[
hαµh

β
νh

γ
ρh

λ
σ −

(
hαµh

β
νh

γ
ρn

λnσ + hαµh
β
νn

γnρh
λ
σ + hαµn

βnνh
γ
ρh

λ
σ

+nαnµh
β
νh

γ
ρh

λ
σ

)
+ hαµn

βnνh
γ
ρn

λnσ + hαµn
βnνn

γnρh
λ
σ + nαnµh

β
νh

γ
ρn

λnσ

+ nαnµh
β
νn

γnρh
λ
σ

]
%αβγλ

(
−(N−1∂̄0)2 +�hyp

)
%µνρσ , (4.5.47)

where %µνρσ = δαµδ
β
ν δ

γ
ρδ

λ
σ%αβγλ (where δαµ is the Kronecker delta). This allowed us

to use the completeness relation as given in Eq. (4.3.9). In Eq. (4.5.47), we used
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the antisymmetry properties of the Riemann tensor to eliminate irrelevant terms

in the expansion. From Eq. (4.5.47), we have three types of terms:

hhhh, hhhnn, hhnnnn.

The aim is to contract the tensors appearing in Eq. (4.5.47) and extract those

terms which are Ωij dependent. This is because we only need Ωij dependent

terms to obtain Ψij as in Eq. (4.4.43) and then the boundary as prescribed in

Eq. (4.4.41).

A closer look at the expansion given in Eq. (4.5.47) leads us to know which

term would admit Ωij type terms. Essentially, as defined in Eq. (4.4.37), Ωij =

nµnν%iµjν , therefore by having two auxiliary field tensors as %αβγλ and %µνρσ in

Eq. (4.5.47) (with symmetries of the Riemann tensor) we may construct Ωij

dependent terms. Henceforth, we can see that in this case the Ωij dependence

comes from the hhnnnn term.

To see this explicitly, note that in order to perform the appropriate contrac-

tions in presence of the d’Alembertian operator, we first need to complete the

contractions on the left hand side of the � operator. We then need to commute

the rest of the tensors by using the Leibniz rule to the right hand side of the

components of the operator, i.e. the ∂̄0’s and the �hyp, and only then do we

obtain the Ωij type terms.

We first note that the terms that do not produce Ωij dependence are not in-

volved in the boundary calculation, however they might form ρijkl, ρijk, or their

contractions. These terms are equivalent to the Gauss and Codazzi equations

as shown in Eq. (4.4.37), and we will address their formation in Appendix I.2.

In addition, as we shall see, by performing the Leibniz rule one produces some

associated terms, the Xij’s, which appear for example in Eq. (4.5.48). Again we

will keep them only if they are Ωij dependent, if not we will drop them.

hhnnnn terms: To this end we shall compute the hhnnnn terms, hence we

commute the h’s and n’s onto the right hand side of the � in the hhnnnn term
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of Eq. (4.5.47):

hαµn
βnνh

γ
ρn

λnσ%αβγλ
(
−(N−1∂̄0)2 +�hyp

)
%µνρσ

=
(
hixe

α
i e

x
µ

)
nβnν

(
hjye

γ
j e
y
ρ

)
nλnσ%αβγλ

(
−(N−1∂̄0)2 +�hyp

)
%µνρσ

=
(
hixe

x
µ

)
nν
(
hjye

y
ρ

)
nσΩij

(
−(N−1∂̄0)2 +�hyp

)
%µνρσ

= −N−2Ωij

{
∂̄2

0

(
Ωij
)

−∂̄0

[
%µνρσ∂̄0

([(
hixe

x
µ

)
nν
(
hjye

y
ρ

)
nσ
])]
− ∂̄0

([(
hixe

x
µ

)
nν
(
hjye

y
ρ

)
nσ
])
∂̄0 (%µνρσ)

}
+Ωij

{
�hyp

[
Ωij
]
−Da

(
Da
[
exµnνe

y
ρnσ
]
hixh

j
y%
µνρσ

)
−Da

[
exµnνe

y
ρnσ
]
Da
(
hixh

j
y%
µνρσ

)}
= Ωij

(
− (N−1∂̄0)2 +�hyp

)
Ωij + ΩijX

ij
1

= Ωij�Ωij + ΩijX
ij
1 (4.5.48)

where Ωij ≡ hike
k
κhjme

m
λ nγnδ%

γκδλ = hikhjmnγnδ%
γkδm; we note that X ij

1 only

appears because of the presence of the � operator.

X ij
1 = N−2(∂̄0

[
%µνρσ∂̄0

([(
hixe

x
µ

)
nν
(
hjye

y
ρ

)
nσ
])]

+ ∂̄0

([(
hixe

x
µ

)
nν
(
hjye

y
ρ

)
nσ
])
∂̄0 (%µνρσ))

− Da

(
Da
[
exµnνe

y
ρnσ
]
hixh

j
y%
µνρσ

)
−Da

[
exµnνe

y
ρnσ
]
Da
(
hixh

j
y%
µνρσ

)
. (4.5.49)

The term ΩrsX
rs
1 will yield X ij

1 when functionally differentiated with respect to

Ωij as in Eq. (4.4.43). Also note X ij
1 does not have any Ωij dependence. Similarly

for the other X terms which appear later in the chapter. We shall note that when

we take � = 1 in Eq. (4.5.47), we obtain,

hαµn
βnνh

γ
ρn

λnσ%αβγλ%
µνρσ

=
(
hixe

α
i e

x
µ

)
nβnν

(
hjye

γ
j e
y
ρ

)
nλnσ%αβγλ%

µνρσ

=
(
hixe

x
µ

)
nν
(
hjye

y
ρ

)
nσΩij%

µνρσ

= Ωij

(
hixe

x
µ

)
nν
(
hjye

y
ρ

)
nσ%

µνρσ

= ΩijΩ
ij , (4.5.50)

where we just contract the indices and we do not need to use the Leibniz rule as

we can commute any of the tensors, therefore we do not produce any X ij terms
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at all 1. Finally, one can decompose Eq. (4.5.47) as

%µνρσ�%
µνρσ = 4Ωij�Ωij + 4ΩijX

ij
1 + · · · , (4.5.51)

where “· · · ” are terms such as ρijkl�ρijkl, ρijk�ρijk and terms that are not Ωij

dependent and are the results of performing the Leibniz rule (see Appendix I.2).

When we take M2 →∞, i.e., when we set �→ 0 (recall that � has an associated

mass scale �/M2), which is also equivalent to considering α → 0 in Eq. (4.2.7),

we recover the EH result.

When � → 1, we recover the result for RµνρσR
µνρσ found in [136]. At both

limits, � → 0 and � → 1, the X ij
1 term is not present. To find the boundary

term, we use Eq. (4.4.43) and then Eq. (4.4.41). We are going to use the Euler-

Lagrange equation and drop the total derivatives as a result. We have,

Ψij
Riem = −1

2

δf

δΩij

= −4

2

δ(Ωij�Ωij + ΩijX
ij
1 )

δΩij

= −2

{
∂(Ωij�Ωij)

∂Ωij

+�

(
∂(Ωij�Ωij)

∂(�Ωij)

)
+
∂(ΩijX

ij
1 )

∂Ωij

}
= −2(�Ωij +�Ωij +X ij

1 ) = −4�Ωij − 2X ij
1 . (4.5.52)

Hence the boundary term for Rµνρσ�Rµνρσ is,

S1 = − 1

4πGN

∮
∂M

dΣµn
µKij(2�Ωij +X ij

1 ). (4.5.53)

where Kij is given by Eq. (4.3.30).

1This is the same for �2 and �n.
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4.5.3 Rµν�Rµν

We start by first performing the 3+1 decomposition of Rµν�Rµν in its auxiliary

form %µν�%µν ,

%µν�%
µν = gρσ%ρµσν�g

µκgνλgγδ%γκδλ

= (hρσ − nρnσ) (hµκ − nµnκ)
(
hνλ − nνnλ

) (
hγδ − nγnδ

)
%ρµσν�%γκδλ

=
[
hρσhµκhνλhγδ −

(
nρnσhµκhνλhγδ + hρσnµnκhνλhγδ + hρσhµκnνnλhγδ

+hρσhµκhνλnγnδ
)

+ nρnσhµκhνλnγnδ + hρσnµnκnνnλhγδ
]
%ρµσν�%γκδλ ,

(4.5.54)

where we have used appropriate contractions to write the Ricci tensor in terms of

the Riemann tensor. As before, we then used the completeness relation Eq. (4.3.9)

and used the antisymmetric properties of the Riemann tensor to drop the van-

ishing terms. We are now set to calculate each term, which we do in more detail

in Appendix I.3. Again our aim is to find the Ωij dependent terms, by looking at

the expansion given in Eq. (4.5.54) and the distribution of the indices, the reader

can see that the terms which are Ωij dependent are those terms which have at

least two nns contracted with one of the %s such that we form nµnν%iµjν .

• hhhnn terms: We start with the hhhnn terms in Eq. (4.5.54). We calculate

the first of these in terms of Ωik and ρik also by moving the ‘h’s and ‘n’s
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onto the right hand side of the �,

nρnσhµκhνλhγδ%ρµσν

(
−
(
N−1∂̄0

)2
+�hyp

)
%γκδλ

= nρnσ(hijeµi e
κ
j )(h

kleνke
λ
l )(h

mneγme
δ
n)%ρµσν

(
−
(
N−1∂̄0

)2
+�hyp

)
%γκδλ

= nρnσ(hijeκj )(h
kleλl )(h

mneγme
δ
n)%ρiσk

(
−
(
N−1∂̄0

)2
+�hyp

)
%γκδλ

= Ωik(h
ijeκj )(h

kleλl )(h
mneγme

δ
n)
(
−
(
N−1∂̄0

)2
+�hyp

)
%γκδλ

= −N−2Ωik

{
∂̄2

0(ρik)− ∂̄0

(
%γκδλ∂̄0[hijeκjh

kleλl h
mneγme

δ
n]
)

−∂̄0[hijeκjh
kleλl h

mneγme
δ
n]∂̄0%γκδλ

}
+Ωik

{
�hyp(ρ

ik)−Da

(
%γκδλD

a[hijeκjh
kleλl h

mneγme
δ
n]
)

−Da[h
ijeκjh

kleλl h
mneγme

δ
n]Da%γκδλ

}
= Ωik�ρ

ik + ΩikX
ik
2(a) , (4.5.55)

where the contraction is hijeκjh
kleλl h

mneγme
δ
n%γκδλ = hijhklρjl = ρik, and

X ik
2(a) = N−2

{
∂̄0

(
%γκδλ∂̄0[hijeκjh

kleλl h
mneγme

δ
n]
)

+ ∂̄0[hijeκjh
kleλl h

mneγme
δ
n]∂̄0%γκδλ

}
−Da

(
%γκδλD

a[hijeκjh
kleλl h

mneγme
δ
n]
)
−Da[h

ijeκjh
kleλl h

mneγme
δ
n]Da%γκδλ .

(4.5.56)

• hhhnn trems: The next hhhnn term in Eq. (4.5.54) is

hρσhµκhνλnγnδ%ρµσν

(
−
(
N−1∂̄0

)2
+�hyp

)
%γκδλ

= (hijeρi e
σ
j )(hkleµke

κ
l )(h

mneνme
λ
n)nγnδ%ρµσν

(
−
(
N−1∂̄0

)2
+�hyp

)
%γκδλ

= ρkm(hkleκl )(h
mneλn)nγnδ

(
−
(
N−1∂̄0

)2
+�hyp

)
%γκδλ

= −N−2ρkm

{
∂̄2

0(Ωkm)− ∂̄0

(
%γκδλ∂̄0[hkleκl h

mneλnn
γnδ]

)
− ∂̄0[hkleκl h

mneλnn
γnδ]∂̄0%γκδλ

}
+ρkm

{
�hyp(Ω

km)−Da

(
%γκδλD

a[hkleκl h
mneλnn

γnδ]
)
−Da[h

kleκl h
mneλnn

γnδ]Da%γκδλ

}
= ρkm�Ωkm + · · · , (4.5.57)
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where we used hkleκl h
mneλnn

γnδ%γκδλ = hklhmnnγnδ%γlδn = Ωkm and we note

that “· · · ” are extra terms which do not depend on Ωkm.

• hhnnnn terms: The the next term in Eq. (4.5.54) is of the form hhnnnn:

nρnσhµκhνλnγnδ%ρµσν

(
−
(
N−1∂̄0

)2
+�hyp

)
%γκδλ

= nρnσ(hijeµi e
κ
j )(h

kleνke
λ
l )n

γnδ%ρµσν

(
−
(
N−1∂̄0

)2
+�hyp

)
%γκδλ

= Ωjleκj e
λ
l n

γnδ
(
−
(
N−1∂̄0

)2
+�hyp

)
%γκδλ

= −N−2Ωjl
{
∂̄2

0(Ωjl)− ∂̄0

(
%γκδλ∂̄0[eκj e

λ
l n

γnδ]
)
− ∂̄0[eκj e

λ
l n

γnδ]∂̄0%γκδλ

}
+Ωjl

{
�hyp(Ωjl)−Da

(
%γκδλD

a[eκj e
λ
l n

γnδ]
)
−Da[e

κ
j e
λ
l n

γnδ]Da%γκδλ

}
= Ωjl�Ωjl + ΩjlX2(b)jl , (4.5.58)

where eκj e
λ
l n

γnδ%γκδλ = nγnδ%γjδl = Ωjl, and

X2(b)jl = N−2
{
∂̄0

(
%γκδλ∂̄0[eκj e

λ
l n

γnδ]
)

+ ∂̄0[eκj e
λ
l n

γnδ]∂̄0%γκδλ

}
−Da

(
%γκδλD

a[eκj e
λ
l n

γnδ]
)
−Da[e

κ
j e
λ
l n

γnδ]Da%γκδλ . (4.5.59)

• hhnnnn terms: Finally, the last hhnnnn terms in Eq. (4.5.54) is

hρσnµnκnνnλhγδ%ρµσν

(
−
(
N−1∂̄0

)2
+�hyp

)
%γκδλ

= (hijeρi e
σ
j )nµnκnνnλ(hmneγme

δ
n)%ρµσν

(
−
(
N−1∂̄0

)2
+�hyp

)
%γκδλ

= Ωnκnλhmneγme
δ
n

(
−
(
N−1∂̄0

)2
+�hyp

)
%γκδλ

= −N−2Ω
{
∂̄2

0(Ω)− ∂̄0

(
%γκδλ∂̄0[nκnλhmneγme

δ
n]
)
− ∂̄0[nκnλhmneγme

δ
n]∂̄0%γκδλ

}
+Ω
{
�hyp(Ω)−Da

(
%γκδλD

a[nκnλhmneγme
δ
n]
)
−Da[n

κnλhmneγme
δ
n]Da%γκδλ

}
= Ω�Ω + ΩX2(c) , (4.5.60)
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where we used nκnλhmneγme
δ
n%γκδλ = hmnΩmn = Ω, and

X2(c) = N−2
{
∂̄0

(
%γκδλ∂̄0[nκnλhmneγme

δ
n]
)

+ ∂̄0[nκnλhmneγme
δ
n]∂̄0%γκδλ

}
−Da

(
%γκδλD

a[nκnλhmneγme
δ
n]
)
−Da[n

κnλhmneγme
δ
n]Da%γκδλ . (4.5.61)

Summarising this result, we can write Eq. (4.5.54), as

%µν�%
µν = Ω(�Ω +X2(c)) + Ωij(�Ωij +X ij

2(b))− ρij�Ωij

− Ωij(�ρ
ij +X ij

2(a)) + · · · , (4.5.62)

where “· · · ” are the contractions of ρijkl and ρijk (see Appendix I.3) and the terms

that are the results of performing Leibniz rule, which have no Ωij dependence.

When �→ 1, we recover the result for RµνR
µν found in [136].

At both limits, � → 0 and � → 1, the X2 terms are not present. Obtaining

the boundary term requires us to extract Ψij as it is given in Eq. (4.4.43). Hence

the boundary for Rµν�Rµν is given by,

S2 = − 1

8πGN

∮
∂M

dΣµn
µ
[
K�Ω +Kij�Ωij −Kij�ρ

ij
]

− 1

16πGN

∮
∂M

dΣµn
µ
[
KX2(c) +Kij(X

ij
2(b) −X

ij
2(a))

]
, (4.5.63)

where K ≡ hijKij and Kij is given by Eq. (4.3.30).

4.5.4 R�R

We do not need to commute any h’s, or n’s across the � here, we can simply

apply Eq. (4.5.44) to %�%, the auxiliary equivalent of the R�R term:

%�% = (ρ− 2Ω)� (ρ− 2Ω) , (4.5.64)
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whereupon extracting Ψij using Eq. (4.4.43), and using Eq. (4.4.41) as in the

previous cases, we obtain the boundary term for R�R to be

S3 = − 1

4πGN

∮
∂M

dΣµ n
µ
[
2K�Ω−K�ρ

]
, (4.5.65)

where K ≡ hijKij and Kij is given by Eq. (4.3.30). Again when � → 1, we

recover the result for R2 found in [136].

4.5.5 Full result

Summarising the results of Eq. (4.5.53), Eq. (4.5.63) and Eq. (4.5.65), altogether

we have

S =
1

16πGN

∫
M

d4x
√
−g
[
%+ α

(
%�%+ %µν�%

µν + %µνρσ�%
µνρσ

)
+ ϕµνρσ (Rµνρσ − %µνρσ)

]
− 1

8πGN

∮
∂M

dΣµ n
µ
[
−K + α

(
− 2K�%+ 4K�Ω +K�Ω + 4Kij�Ωij −Kij�ρ

ij +Kij�Ωij
)]

− 1

16πGN

∮
∂M

dΣµn
µα
[
KX2(c) +Kij(4X

ij
1 +X ij

2(b) −X
ij
2(a))

]
=

1

16πGN

∫
M

d4x
√
−g
[
%+ α

(
%�%+ %µν�%

µν + %µνρσ�%
µνρσ

)
+ ϕµνρσ (Rµνρσ − %µνρσ)

]
− 1

8πGN

∮
∂M

dΣµ n
µ
[
−K + α

(
− 2K�ρ+ 5K�Ω + 5Kij�Ωij −Kij�ρ

ij
]

− 1

16πGN

∮
∂M

dΣµn
µα
[
KX2(c) +Kij(4X

ij
1 +X ij

2(b) −X
ij
2(a))

]
. (4.5.66)

This result matches with the EH action [136], when we take the limit � → 0;

that is, we are left with the same expression for boundary as in Eq. (4.5.46):

SEH =
1

16πGN

∫
M

d4x
√
−g
[
%+ ϕµνρσ (Rµνρσ − %µνρσ)

]
+

1

8πGN

∮
∂M

dΣµ n
µK , (4.5.67)

since the X-type terms are not present when � → 0. When � → 1, we recover

the result for R + α(R2 + RµνR
µν + RµνρσR

µνρσ) found in [136]; that is, we are
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left with

S =
1

16πGN

∫
M

d4x
√
−g
[
%+ α

(
%2 + %µν%

µν + %µνρσ%
µνρσ

)
+ ϕµνρσ (Rµνρσ − %µνρσ)

]
− 1

8πGN

∮
∂M

dΣµ n
µ
[
−K + α

(
− 2Kρ+ 5KΩ + 5KijΩ

ij −Kijρ
ij
]

; (4.5.68)

again the X-type terms are not present when � → 1. We should note that the

X1 and X2 terms are the results of having the covariant d’Alembertian operator

so, in the absence of the d’Alembertian operator, one does not produce them at

all and hence the result found in [136] is guaranteed.

We may now turn our attention to the R�2R,Rµν�2Rµν and Rµνρσ�2Rµνρσ. Here

the methodology will remain the same. One first decomposes each term into its

3+1 equivalent. Then one extracts Ψij using Eq. (4.4.43), and then the boundary

terms can be obtained using Eq. (4.4.41). In this case we will have two operators,

namely

�2 =
(
−
(
N−1∂̄0

)2
+�hyp

)(
−
(
N−1∂̄0

)2
+�hyp

)
(4.5.69)

This means that upon expanding to 3 + 1, one performs the Leibniz rule twice

and hence obtains eight total derivatives that do not produce any Ωijs or its

contractions that are relevant to the boundary calculations and hence must be

dropped.

4.5.6 Generalisation to IDG Theory

We may now turn our attention to the infinite derivative terms; namely, RF1(�)R,

RµνF2(�)Rµν and RµνρσF3(�)Rµνρσ. For such cases, we can write down the

following relation (see Appendix I.4):

XD2nY = D2n(XY )−D2n−1(D(X)Y )−D2n−2(D(X)D(Y ))

−D2n−3(D(X)D2(Y ))− · · · −D(D(X)D2n−2(Y ))

−D(X)D2n−1(Y ) , (4.5.70)

92



4.5 Boundary Terms for Finite Derivative Theory of Gravity

where X and Y are tensorial structures such as %µνρσ, %µν , % and their con-

tractions, while D denotes any operators. These operators do not have to be

differential operators and indeed this result can be generalised to cover the case

where there are different types of operator and a similar (albeit more complicated)

structure is recovered.

From (4.5.70), one produces 2n total derivatives, analogous to the scalar toy

model case, see Eqs. (4.1.2,4.1.3). We can then write the 3 + 1 decompositions

for each curvature by generalising Eq. (4.5.53), Eq. (4.5.63) and Eq. (4.5.65) and

writing RµνρσF3(�)Rµνρσ, RµνF2(�)Rµν and RF1(�)R in terms of their auxiliary

equivalents %µνρσF3(�)%µνρσ, %µνF2(�)%µν and %F1(�)%. Then

%µνρσF3(�)%µνρσ = 4ΩijF3(�)Ωij + 4ΩijX
ij
1 + · · · , (4.5.71)

%µνF2(�)%µν = ΩF2(�)Ω + ΩijF2(�)Ωij − ρijF2(�)Ωij

− ΩijF2(�)ρij + ΩijX
ij
2 + · · · , (4.5.72)

%F1(�)% = (ρ− 2Ω)F1(�) (ρ− 2Ω) , (4.5.73)

where we have dropped the irrelevant terms, as we did before, while X ij
1 and X ij

2

are the analogues of Eqs. (4.5.49), (4.5.56), (4.5.59), (4.5.61). We now need to

use the generalised form of the Euler-Lagrange equations to obtain the Ψij in

each case:

δf

δΩij

=
∂f

∂Ωij

−∇µ

(
∂f

∂(∇µΩij)

)
+∇µ∇ν

(
∂f

∂(∇µ∇νΩij)

)
+ · · ·

=
∂f

∂Ωij

+
∞∑
n=1

�n
(

∂f

∂(�nΩij)

)
, (4.5.74)

where we have imposed that δΩij = 0 on the boundary ∂M.
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4.5 Boundary Terms for Finite Derivative Theory of Gravity

Hence, by using Ω = hijΩij and ρ = hijρij, we find in Appendix J that:

δ
(
ΩF(�)Ω

)
δΩij

= 2hijF(�)Ω,
δ
(
ΩijF(�)Ωij

)
δΩij

= 2F(�)Ωij

δ
(
ρF(�)Ω

)
δΩij

= hijF(�)ρ,
δ
(
ρijF(�)Ωij

)
δΩij

= F(�)ρij

δ
(
ΩF(�)ρ

)
δΩij

= hijF(�)ρ,
δ
(
ΩijF(�)ρij

)
δΩij

= F(�)ρij , (4.5.75)

and so using Eq. (4.4.43), the Ψijs are:

Ψij
Riem = −4F3(�)Ωij − 2X ij

1

Ψij
Ric = F2(�)ρij − hijF2(�)Ω− F2(�)Ωij − 1

2
X ij

2

Ψij
Scal = 2hijF1(�)

(
− 2Ω + ρ

)
≡ 2hijF1(�)% , (4.5.76)

where we have used Eq. (4.5.44) in the last line. Finally, we can use Eq. (4.4.41)

and write the boundary terms corresponding to our infinite-derivative action as,

Stot = Sgravity + Sboundary

=
1

16πGN

∫
M

d4x
√
−g
[
%+ α

(
%F1(�)%+ %µνF2(�)%µν

+ %µνρσF3(�)%µνρσ
)

+ ϕµνρσ (Rµνρσ − %µνρσ)
]

+
1

8πGN

∮
∂M

dΣµ n
µ
[
K + α

(
2KF1(�)ρ− 4KF1(�)Ω

−KF2(�)Ω−KijF2(�)Ωij +KijF2(�)ρij − 4KijF3(�)Ωij − 2X ij
1 −

1

2
X ij

2

)]
.

(4.5.77)

where Ωij = nγnδ%γiδj, Ω = hijΩij, ρij = hkmρijkm, ρ = hijρij, K = hijKij

and Kij is the extrinsic curvature given by Eq. (4.3.30). We note that when

we decompose the �, after we perform the Leibniz rule enough times, we can

reconstruct the � in its original form, i.e. it is not affected by the use of the

coframe. In this way, we can always reconstruct Fi(�). However, the form of

the X-type terms will depend on the decomposition and therefore the use of the
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coframe. In this regard, the X-type terms depend on the coframe but the Fi(�)

terms do not.

4.6 Summary

This chapter generalised earlier contributions for finding the boundary term for

a higher derivative theory of gravity. Our work focused on seeking the boundary

term or GHY contribution for a covariant infinite derivative theory of gravity,

which is quadratic in curvature.

Indeed, in this case some novel features distinctively filter through our anal-

ysis. Since the bulk action contains non-local form factors, Fi(�), the boundary

action also contains the non-locality, as can be seen from our final expression

Eq. (4.5.77). Eq. (4.5.77) also has a smooth limit when M → ∞, or � → 0,

which is the local limit, and our results then reproduce the GHY term corre-

sponding to the EH action, and when Fi(�)→ 1, our results coincide with that

of [136].
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Chapter 5

Thermodynamics of infinite

derivative gravity

In this chapter we will look at the thermodynamical aspects of the infinite deriva-

tive gravity (IDG). In particular, we are going to study the first law of thermo-

dynamics [106] for number of cases. In other words, we are going to obtain

the entropy of IDG and some other theories of modified gravity for static and

spherically symmetric, (A)dS and rotating background.

To proceed, we will briefly review how Wald [147, 148] derived the entropy

from an integral over the Noether charge. We will use Wald’s approach to find

the entropy for static and spherically symmetric and (A)dS backgrounds. For the

rotating case, we are going to use the variation principle and obtain the gener-

alised Komar integrals [149] for gravitational actions constructed by Ricci scalar,

Ricci tensor and their derivatives. By using the Komar integrals we will obtain

the energy and the angular momentum and finally the entropy using the first law.

We finally shall use the Wald’s approach for a non-local action containing inverse

d’Alambertian operators and calculate the entropy in such case.
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5.1 Wald’s entropy, a brief review

The Bekenstein-Hawking [107, 108] law states that the entropy of a black hole,

SBH , is proportional to its horizon’s area A in units of Newton’s constant. A

black hole in Einstein’s theory of gravity has entropy of,

SBH =
A

4GN

. (5.1.1)

The above relation indicates that the entropy as it stands is geometrical and

defined strictly by the black hole horizon. This relation shall satisfy the first law

of black hole mechanics,

THdS = dM, (5.1.2)

where M is the conserved or the ADM mass, and TH = κ/2π is the Hawking

temperature in terms of the surface gravity, κ. For the sake of simplicity, we

assumed that no charge or rotation is involved with the black hole. We shall

also note that the conserved mass and the surface gravity are well defined for

a stationary black hole and thus their definitions are free of modification when

considering various types of gravitational theories. The Wald entropy [147], SW ,

is also a geometric entropy and interpreted by Noether charge for space-time

diffeomorphisms. This entropy can be represented as a closed integral over a

cross-section of the horizon, H,

SW =

∮
H

sWdA , (5.1.3)

where sW is the entropy per unit of horizon cross-sectional area. For a D-

dimensional space-time with metric ds2 = gttdt
2 + grrdr

2 +
∑D−2

i,j=1 σijdxidxj ,

dA =
√
σdx1 . . . dxD−2 .

In order to derive (5.1.3), we start by varying a Lagrangian density L with

respect to all fields {ψ}, which includes the metric. In compact presentation,

(with all tensor indices suppressed),

δL = E · δψ + d[θ (δψ)], (5.1.4)
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5.1 Wald’s entropy, a brief review

where E = 0 are the equations of motion and the dot denotes a summation over

all fields and contractions of tensor indices. Also, d denotes a total derivative, so

that θ is a boundary term.

We shall now introduce £ξ to be a Lie derivative operating along some vector

field ξ. Due to the diffeomorphism invariance of the theory we have,

δξψ = £ξψ,

and

δξL = £ξL = d (ξ · L) .

with the help of the above identity and (5.1.4) we can identify the associated

Noether current, Jξ, as:

Jξ = θ (£ξψ)− ξ · L . (5.1.5)

In order to satisfy the equations of motion, i.e. E = 0, we should have dJξ = 0.

This indicates that, there should be an associated potential, Qξ, such that Jξ =

dQξ. Now, if D is the dimension of the space-time and S is a D− 1 hypersurface

with a D − 2 spacelike boundary ∂S, then∫
S

Jξ =

∫
∂S

Qξ , (5.1.6)

is the associated Noether charge.

Wald [147] proved in detail that the black holes’ first law can be satisfied by

defining the entropy in terms of a particular form of Noether charge. This is

to choose surface S as the horizon, H, and the vector field, ξ, as the horizon

Killing vector, χ (with appropriate normalisation to the surface gravity). Wald

represented such entropy as 1 ,

SW ≡ 2π

∮
H

Qχ . (5.1.7)

1Note that since χ = 0 on the horizon, the most right hand side term in (5.1.5) is not
contributing to the Wald entropy. See [147].
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To understand the charge let us begin with an example. Suppose we have a

Lagrangian that is L = L(gab,Rabcd) (This can be extended to the derivatives of

the curvatures too),

L =
√
−gL, (5.1.8)

the variation of the above Lagrangian density is,

δL = −2∇a

(
Xabcd∇cδgbd

√
−g
)

+ · · · , (5.1.9)

where dots indicates that we have dropped the irrelevant terms to the entropy.

Moreover,

Xabcd ≡ ∂L

∂Rabcd

. (5.1.10)

The boundary can then be expressed as,

θ = −2naX
abcd∇cδgbd

√
γ + · · · , (5.1.11)

where na is the unit normal vector and γab is the induced metric for the chosen

surface S. For an arbitrary diffeomorphism δξgab = ∇aξb+∇bξa , the associated

Noether current is given by

J = −2∇a

(
Xabcd∇c (∇bξa +∇aξb)na

√
h
)

+ · · · . (5.1.12)

We note that hab is the induced metric corresponding to the ∂S. Let us now assign

the following: the horizon S→ H and (normalised) Killing vector ξa → χa ; so

that na
√
h→ εa

√
σ with εa ≡ εabχ

b , also we have εab ≡ ∇aχb as the binormal

vector for the horizon. By noting that εab = −εba and also using the symmetries

of Xabcd which is due to the presence of Riemann tensor, we get

J = −2∇b

(
Xabcd∇cχdεa

√
σ
)

+ · · · . (5.1.13)

Finally the potential becomes:

Q = −Xabcdεabεcd
√
σ + · · · (5.1.14)
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and so

SW = −2π

∮
H

XabcdεabεcddA. (5.1.15)

5.2 Spherically symmetric backgrounds

In this section we are going to use the Wald’s approach [147] to obtain the entropy

for number of cases where the space-time is defined by a spherically symmetric

solution. In particular we will focus on a generic and homogenous spherically

symmetric background. We then extend our calculations to the linearised limit

and then to the (A)dS backgrounds.

5.2.1 Generic static and spherically symmetric background

Let us recall the IDG action given by (2.1.12). In D-dimensions we can rewrite

the action as:

I tot =
1

16πG
(D)
N

∫
dDx
√
−g
[
R

+ α
(
RF1(�)R +RµνF2(�)Rµν +RµνλσF3(�)Rµνλσ

)]
, (5.2.16)

where G
(D)
N is the D-dimensional Newton’s constant 1; α is a constant 2 with

dimension of inverse mass squared; and µ, ν, λ, σ run from 0, 1, 2, · · ·D−1. The

form factors given by Fi(�) contain an infinite number of covariant derivatives,

of the form:

Fi(�) ≡
∞∑
n=0

fin

(
�
M2

)n
, (5.2.17)

with constants fin , and � ≡ gµν∇µ∇ν being the D’Alembertian operator. The

reader should note that, in our presentation, the function Fi(�) comes with

1In D-dimensions G
(D)
N has dimension of [G

(D)
N ] = [G

(4)
N ]LD−4 where L is unit length.

2Note that for an arbitrary choice of F(�) at action level, α can be positive or negative
as one can absorbs the sign into the coefficients fin contained within F(�) to keep the overall
action unchanged, however α has to be strictly positive once we impose ghost-free condition (to
be seen later). [53]
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5.2 Spherically symmetric backgrounds

an associated D-dimensional mass scale, M ≤ MP = (1/

√
(8πG

(D)
N )), which

determines the scale of non-locality in a quantum sense, see [96].

In the framework of Lagrangian field theory, Wald [147] showed that one

can find the gravitational entropy by varying the Lagrangian and subsequently

finding the Noether current as a function of an assigned vector field. By writing

the corresponding Noether charge, it has been shown that, for a static black hole,

the first law of thermodynamics can be satisfied and the entropy may be expressed

by integrating the Noether charge over a bifurcation surface of the horizon. In so

doing, one must choose the assigned vector field to be a horizon Killing vector,

which has been normalised to unit surface gravity.

In order to compute the gravitational entropy of the IDG theory outlined

above, we take a D-dimensional, static, homogenous and spherically symmetric

metric of the form [141],

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
D−2 . (5.2.18)

For a spherically symmetric metric the Wald entropy given in (5.1.15) can be

written as,

SW = −2π

∮
δL

δRabcd

εabεcdr
D−2dΩ2

D−2 (5.2.19)

where we shall note that δ denotes the functional differentiation for a Lagrangian

that not only does it include the metric and the curvature but also the derivatives

of the curvature, i.e.

L = L(gµν , Rµνλρ,∇a1Rµνλρ, . . . ,∇(α1 . . .∇αm)Rµνλρ) (5.2.20)

Note that the parentheses denote symmetrisation. Moreover, the integral in

(5.2.19) is over D − 2 dimensional space-like bifurcation surface. The εab is the

binormal vector to the bifurcation surface. This normal vector is antisymmetric

under the exchange of a↔ b and normalised as εabε
ab = −2. For metric (5.2.18),

the bifurcation surface is at r = rH and t =constant. We note that dΩ2
D−2 is the
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5.2 Spherically symmetric backgrounds

spherical element 1. In the case of (5.2.18), the relevant Killing vector is ∂t and

εtr = 1. The ε’s vanish for a, b 6= t, r. We finally write the Wald entropy as,

SW = −8π

∮
δL

δRrtrt

rD−2dΩ2
D−2 . (5.2.21)

Subsequently, we shall define the area of the horizon [139], that is,

AH =

∮
rD−2dΩ2

D−2 =
2πn/2rn−1

Γ(n
2
)

, (5.2.22)

where n = D− 1. As an example for a 4-dimensional metric of the form given by

(5.2.18), we have,

AH =

∮
r2dΩ2

2 =

∫ 2π

0

dφ

∫ 2π

0

r2 sin(θ)dθ = 4πr2 ≡ 2π3/2r2

Γ(3
2
)
. (5.2.23)

It is now possible to use the generalised Euler-Lagrange equation and calculate

the functional differentiation given in (5.2.19). That is,

δL

δRabcd

=
∂L

∂Rabcd

−∇µ1

( ∂L

∂(∇µ1Rabcd)

)
+∇µ1∇µ2

( ∂L

∂(∇µ1∇µ2Rabcd)

)
− · · ·

+ (−1)m∇(µ1···∇µm)
∂L

∂(∇(µ1···∇µm)Rabcd)
, (5.2.24)

where we shall note that parentheses denote symmetrisation. Now we are set to

calculate the entropy for the IDG action, (5.2.16) via (5.2.21). To do so, we are

1In four dimensions we have dΩ2
2 = dθ + sin2 θdφ.
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required to calculate the quantity δL
δRrtrt

. We have,

δR

δRabcd

=
1

2
(gacgbd − gadgbc), (5.2.25)

δ(RF1(�)R)

δRabcd

= F1(�)(gacgbd − gadgbc)R, (5.2.26)

δ(RµνF2(�)Rµν)

δRabcd

=
1

2
F2(�)(gacRbd − gadRbc

− gbcRad + gbdRac), (5.2.27)

δ(RµνλσF3(�)Rµνλσ)

δRabcd

= 2F1(�)Rabcd, (5.2.28)

by assigning (a, b, c, d)→ (r, t, r, t) we obtain,

δR

δRrtrt

=
1

2
(grrgtt − grtgtr) = −1

2
, (5.2.29)

δ(RF1(�)R)

δRrtrt

= −F1(�)R, (5.2.30)

δ(RµνF2(�)Rµν)

δRrtrt

=
1

2
F2(�)(grrRtt + gttRrr), (5.2.31)

δ(RµνλσF3(�)Rµνλσ)

δRrtrt

= 2F1(�)Rrtrt, (5.2.32)

where we note that gttgrr = −1, and gtr = grt = 0. See Appendix L for detailed

derivation of the above functional differentiation. By using the Wald’s formula

given in (5.2.21) we have [118],

SW =
AH

4G
(D)
N

[
1+α(2F1(�)R−F2(�)×(grrRtt+grrRrr)−4F3(�)Rrtrt)

]
(5.2.33)

It is convenient, for illustrative purposes, to decompose the entropy equation into

its (r, t) and spherical components. For the metric given in (5.2.18) we denote the

r and t directions by the indices {a, b}; and the spherical components by {m,n}.
As such, we express the curvature scalar as follows

R = gµνRµν = gabRab + gmnRmn, (5.2.34)
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5.2 Spherically symmetric backgrounds

where gab is a 2-dimensional metric tensor accounting for the r, t directions and

gmn is a (D− 2)-dimensional metric tensor, corresponding to the angular compo-

nents, such that

gµνgµν ≡ gabgab + gmngmn = 2 + (D − 2) = D. (5.2.35)

Expanding the scalar curvature into Ricci and Riemann tensors, along with the

properties of the static, spherically symmetric metric (5.2.18), allows us to express

the relevant components of the entropy equation as follows:

grrRtt + grrRrr = −gttRtt − grrRrr = −gabRab. (5.2.36)

Moreover,

gabRab = gabRλ
aλb = gabgλτRτaλb = gabgcdRdacb + gabgmnRnamb, (5.2.37)

we can write above as,

− gabgcdRdacb = −gabRab + gabgmnRnamb, (5.2.38)

by assigning the coordinates we have,

−grrgrrRrrrr − gttgttRtttt − grrgttRtrtr − gttgrrRrtrt

= −gabRab + gabgmnRnamb, (5.2.39)

given that for metric (5.2.18), Rrrrr = Rtttt = 0, Rtrtr = Rrtrt and gttgrr = −1,

we have,

2Rrtrt = −gabRab + gabgmnRnamb, (5.2.40)

or,

− 4Rrtrt = 2gabRab − 2gabgmnRmanb. (5.2.41)

Substitution into Eq. (5.2.33), results in a decomposed D-dimensional entropy

104



5.2 Spherically symmetric backgrounds

equation for the action (5.2.16) in a static, spherically symmetric background :

SW =
AH

4G
(D)
N

[1 + α(2F1(�) + F2(�) + 2F3(�))gabRab

+ 2α(F1(�)gmnRmn − F3(�)gabgmnRmanb)]. (5.2.42)

5.2.2 Linearised regime

In this section we shall study an interesting feature of the entropy given in (5.2.42).

To begin, let us consider the perturbations around D-dimensional Minkowski

spacetime 1 with metric tensor ηµν , such that ηµνη
µν = D, and where the pertur-

bations are denoted by hµν so that gµν = ηµν + hµν . One should also note that

we are using mostly plus metric signature convention.

The O(h2) expressions for the Riemann tensor, Ricci tensor and curvature

scalar in D-dimensions are given by [111, 141]:

Rµνλσ =
1

2
(∂[λ∂νhµσ] − ∂[λ∂µhνσ])

Rµν =
1

2
(∂σ∂(ν∂

σ
µ) − ∂µ∂νh−�hµν)

R = ∂µ∂νh
µν −�h. (5.2.43)

Thus, the IDG action given in (5.2.16) can be written as [94],

S(2) =
1

32πG
(D)
N

∫
dDx

[
1

2
hµν�a(�̄)hµν + hσµb(�̄)∂σ∂νh

µν

+ hc(�̄)∂µ∂νh
µν +

1

2
h�d(�̄)h+ hλσ

f(�̄)

2�
∂σ∂λ∂µ∂νh

µν

]
, (5.2.44)

where we have �̄ ≡ �/M2. In above action we have [94],

RF1(�̄)R = F1(�̄)[h�2h+ hλσ∂σ∂λ∂µ∂νh
µν − 2h�∂µ∂νh

µν ], (5.2.45)

1Later we shall see that in linearised regime we can take f(r) = (1 + 2Φ(r)) and f(r)−1 =
(1− 2Ψ(r)), thus (5.2.18) will be of the form of (5.2.61).
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RµνF2(�̄)Rµν = F2(�̄)[
1

4
h�2h+

1

4
hµν�2hµν − 1

2
hσµ�∂σ∂νh

µν − 1

2
h�∂µ∂νh

µν

+
1

2
hλσ∂σ∂λ∂µ∂νh

µν ], (5.2.46)

RµνλσF3(�̄)Rµνλσ = F3(�̄)[hµν�2hµν − 2hσµ�∂σ∂νh
µν + hλσ∂σ∂λ∂µ∂νh

µν ].

(5.2.47)

As a result, a(�̄), b(�̄), c(�̄), d(�̄) and f(�̄) are given by [94],

a(�̄) = 1 +M−2
P (F2(�̄)�+ 4F3(�̄)�), (5.2.48)

b(�̄) = −1−M−2
P (F2(�̄)�+ 4F3(�̄)�), (5.2.49)

c(�̄) = 1−M−2
P (4F1(�̄)�+ F2(�̄)�), (5.2.50)

d(�̄) = −1 +M−2
P (4F1(�̄)�+ F2(�̄)�), (5.2.51)

f(�̄) = 2M−2
P (2F1(�̄)�+ F2(�̄)�+ 2F3(�̄)�). (5.2.52)

It can be noted that,

a(�̄) + b(�̄) = 0, (5.2.53)

c(�̄) + d(�̄) = 0, (5.2.54)

b(�̄) + c(�̄) + f(�̄) = 0, (5.2.55)

a(�̄)− c(�̄) = f(�̄). (5.2.56)

By varying (5.2.44), one obtains the field equations, which can be represented in

terms of the inverse propagator. By writing down the spin projector operators in

D-dimensional Minkowski space and representing them in terms of the momentum

space one can obtain the graviton D-dimensional propagator (around Minkowski
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space) as 1,

Π(D)(−k2) =
P2

k2a(−k2)
+

P0
s

k2[a(−k2)− (D − 1)c(−k2)]
. (5.2.57)

We note that, P2 and P0
s are tensor and scalar spin projector operators respec-

tively. Since we do not wish to introduce any extra propagating degrees of freedom

apart from the massless graviton, we are going to take f(�̄) = 0. Thus,

Π(D)(−k2) =
1

k2a(−k2)

(
P2 − 1

D − 2
P0
s

)
. (5.2.58)

To this end, the form of a(−k2) should be such that it does not introduce any

new propagating degree of freedom, and it was argued in Ref. [53, 68] that the

form of a(�) should be an entire function, so as not to introduce any pole in

the complex plane, which would result in additional degrees of freedom in the

momentum space.

Furthermore, the form of a(−k2) should be such that in the IR, for k →
0, a(−k2)→ 1, therefore recovering the propagator of GR in the D-dimensions.

For D = 4, the propagator has the familiar 1/2 factor in front of the scalar part

of the propagator. One such example of an entire function is [53, 68]:

a(�̄) = e−�̄ , (5.2.59)

which has been found to ameliorate the UV aspects of gravity while recovering

the Newtonian limit in the IR. We conclude that choosing f(�̄) = 0, yields

a(�̄) = c(�̄) and therefore we get the following constraint:

2F1(�̄) + F2(�̄) + 2F3(�̄) = 0. (5.2.60)

At this point, the entropy found in (5.2.42) is very generic prediction for the IDG

action. Indeed, the form of entropy is irrespective of the form of a(�̄). Let us

1Obtaining the graviton propagator for the IDG action is not in the scope of this thesis.
Such analysis have been done extensively and in detail by [94, 118].
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assume that the (t, r) component of the original spherically symmetric metric

given by (5.2.18) takes the form:

ds2 = −(1 + 2Φ(r))dt2 + (1− 2Ψ(r))dr2 + r2dΩ2
2 (5.2.61)

In fact, Φ and Ψ are the two Newtonian potentials. Note that we now took

D = 4 in the metric above for the sake of clarity. Considering the perturbation

gµν = ηµν + hµν , we have

htt = htt = −2Φ, hrr = hrr = −2Ψ, (5.2.62)

hθθ = hθθ = 0, hφφ = hφφ = 0. (5.2.63)

As we are in the spherical coordinate we shall take the spherical form of the

d’Alembertian operator,

�u =
1

r2
∂r(r

2∂ru) +
1

r2 sin θ
∂θ(sin θ∂θu) +

1

r2 sin2 θ
∂2
ϕu− ∂2

t u, (5.2.64)

where u is some variable at which we are operating the d’Alembertian operator

at. However, since Φ and Ψ are r-dependent, we are only left with the first term,

i.e.

�u =
1

r2
∂r(r

2∂ru). (5.2.65)

Now let us take the Wald entropy found in (5.2.42) and calculate the relevant

components in the linearised limit,

Rab = Rtt +Rrr, (5.2.66)

expanding the (5.2.43) gives,

Rµν =
1

2
(∂σ∂µh

σ
ν + ∂ν∂σh

σ
µ − ∂ν∂µh−�hµν), (5.2.67)
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hence,

Rtt =
1

2
(∂σ∂th

σ
t + ∂t∂σh

σ
t − ∂t∂th−�htt)

= −1

2
�htt = �Φ = Φ′′ +

2Φ′

r
, (5.2.68)

where ‘prime’ is differentiation with respect to r. Next we have,

Rrr =
1

2
(∂σ∂rh

σ
r + ∂r∂σh

σ
r − ∂r∂rh−�hrr)

=
1

2
(∂r∂rh

r
r + ∂r∂rh

r
r − ∂r∂rh−�hrr)

=
1

2
(2∂2

rh
r
r − ∂r∂rh−�hrr)

=
1

2
(2∂2

r (η
rrhrr)− ∂2

r (η
tthtt + ηrrhrr)−�hrr)

=
1

2
(−4Ψ′′ − 2Φ′′ + 2Ψ′′ + 2Ψ′′ +

4Ψ′

r
)

= −Φ′′ +
2Ψ′

r
. (5.2.69)

We note that,

Rmn = Rθθ +Rφφ = 0. (5.2.70)

Moving to the Riemann tensor, we have,

Rρµσν =
1

2
(∂σ∂µhρν + ∂ν∂ρhµσ − ∂ν∂µhρσ − ∂σ∂ρhµν), (5.2.71)

and thus,

Rrtrt =
1

2
(∂r∂thrt + ∂t∂rhtr − ∂t∂thrr − ∂r∂rhtt) = Φ′′. (5.2.72)
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From (5.2.41), it follows that,

gabgmnRmanb = 2Rrtrt + gabRab

= 2Rrtrt + ηttRtt + ηrrRrr

= 2Φ′′ − Φ′′ − 2Φ′

r
− Φ′′ +

2Ψ′

r

= −2Φ′

r
+

2Ψ′

r
. (5.2.73)

Now let us look back at the entropy equation given in (5.2.42) , and plug in the

values,

SW =
AH

4GN

[
1− 2Φ + 2Ψ− 4αF3(�̄)

(Ψ′ − Φ′

r

)]
, (5.2.74)

where we used the constraint (5.2.60). Now if we take the Newtonian potentials

to be equal, i.e. Φ(r) = Ψ(r),

SW =
AH
4GN

. (5.2.75)

To sum up we have shown that, the entropy for a spherically symmetric back-

ground in the linearised regime and within the IDG framework is given only by

the area law. This is upon requiring that the massless graviton be the only prop-

agating mode in the Minkowski background. In other words, we required in the

linearised regime that 2F1(�̄) + F2(�̄) + 2F3(�̄) = 0.

5.2.3 D-Dimensional (A)dS Entropy

We now turn our attention to another class of solutions which contain an hori-

zon, such as the (A)dS metrics [118], where the D-dimensional non-local action

Eq. (5.2.16) must now be appended with a cosmological constant Λ to ensure
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that (A)dS is a vacuum solution,

I tot =
1

16πG
(D)
N

∫
dDx
√
−g
[
R− 2Λ + α

(
RF1(�)R +RµνF2(�)Rµν

+RµνλσF3(�)Rµνλσ
)]
. (5.2.76)

The cosmological constant is then given by

Λ = ±(D − 1)(D − 2)

2l2
, (5.2.77)

where the positive sign corresponds to dS, negative to AdS, and hereafter, the

topmost sign will refer to dS and the bottom to AdS. l denotes the cosmological

horizon. The (A)dS metric can be obtained by taking

f(r) =

(
1∓ r2

l2

)
, (5.2.78)

in Eq. (5.2.18). Recalling the D-dimensional entropy Eq. (5.2.42), we write,

S
(A)dS
W =

A
(A)dS
H

4G
(D)
N

[1 + α(2F1(�) + F2(�) + 2F3(�))gabRab

+ 2α(F1(�)gm̄n̄Rm̄n̄ − F3(�)gabgm̄n̄Rm̄an̄b)] , (5.2.79)

where now A
(A)dS
H ≡ lD−2AD−2, with AD−2 = (2π

D−1
2 )/Γ[D−1

2
]. Given the D-

dimensional definitions of curvature in (A)dS background,

Rµνλσ = ± 1

l2
g[µλgν]σ, Rµν = ±D − 1

l2
gµν , R = ±D(D − 1)

l2
, (5.2.80)

simple substitution reveals the gravitational entropy in (A)dS can be expressed

as:

S
(A)dS
W =

A
(A)dS
H

4G
(D)
N

(1± 2α

l2
{f10D(D − 1) + f20(D − 1) + 2f30}). (5.2.81)
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Note that fi0 ’s are now simply the leading constants of the functions Fi(�),

due to the nature of curvature in (A)dS. In particular, in 4-dimensions, the

combination 12f10 +3f20 +2f30 is very different from that of the Minkowski space

constraint, see Eq. (5.2.60), required for the massless nature of a graviton around

Minkowski. Deriving the precise form of the ghost-free constraint in (A)dS, is

still an open problem for the action given by (5.2.76).

5.2.4 Gauss-Bonnet entropy in (A)dS background

As an example, we will briefly check the entropy of Gauss-Bonnet gravity in D-

dimensional (A)dS. Recalling that the Lagrangian for the Gauss Bonnet (GB)

modification of gravity in four dimensions is given by,

LGB =
α

16πG
(D)
N

(
R2 − 4RµνR

µν +RµνλσR
µνλσ

)
. (5.2.82)

Hence, simply taking f10 = f30 = 1 and f20 = −4 in Eq. (5.2.81), recovers the

(A)dS entropy of the GB modification of gravity,

S
(A)dS
W =

A
(A)dS
H

4G
(D)
N

(1± α2(D − 2)(D − 3)

l2
). (5.2.83)

This result is also found by [150], showing the validity of our calculations. We

note that the first term corresponds to the Einstein-Hilbert term. It shall be

mentioned that l denotes the cosmological radius. In the limit l → ∞, the GB

modification to entropy vanishes and this corresponds to the fact that the horizon

is flat, so the GB term has no effect on the expression for the entropy, which is

simply the area of the event horizon.
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5.3 Rotating black holes and entropy of modified theories of gravity

5.3 Rotating black holes and entropy of modi-

fied theories of gravity

In this section, we show how to obtain the Kerr entropy when the modification

to the general relativity contains higher order curvatures up to Ricci tensor and

also covariant derivatives by modifying the Komar integrals accordingly. We

then obtain the entropy of the Kerr black hole for a number of modified theories

of gravity. We show the corrections to the area law which occurs due to the

modification of the general relativity and present an argument on how these

corrections can be vanishing.

It is well established that the black holes behave as thermodynamical sys-

tems [106]. The first realisation of this fact was made by Hawking, [107]. It is

discovered that quantum processes make black holes to emit a thermal flux of

particles. As a result, it is possible for a black hole to be in thermal equilibrium

with other systems. We shall recall the thermodynamical laws that govern black

holes: The zeroth law states that the horizon of stationary black holes have a

constant surface gravity. The first law states that when stationary black holes

are being perturbed the change in energy is related to the change of area, angular

momentum and the electric charge associated to the black hole. The second law

states that, upon satisfying the null energy condition the surface area of the black

hole can never decrease. This is the law which was realised by Hawking as the

area theorem and showed that black holes radiate. Finally, the third law states

that the black hole can not have vanishing surface gravity.

The second law of the black holes’ thermodynamics requires an entropy for

black holes. It was Hawking and Bekenstein, [108], who conjectured that black

holes’ entropy is proportional to the area of its event horizon divided by Planck

length. Perhaps, this can be seen as one of the most striking conjectures in

modern physics. Indeed, through Bekenstein bound, [151], one can see that the

black hole entropy, as described by the area law, is the maximal entropy that

can be achieved and this was the main hint that led to the holographic principle,

[152].
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The black hole entropy can be obtained through number of ways. For instance,

Wald [147] has shown that the entropy for a spherically symmetric and stationary

black hole can be obtained by calculating the Noether charge, see the previous

sections of this chapter for this approach. Equivalently, one can obtain the change

in mass and angular momentum by using the Komar formula and subsequently

use the definition of the first law of the black holes’ thermodynamics to obtain

the entropy. Normally, obtaining the entropy for non-rotating black holes is very

straightforward. In this case, one uses the Schwarzschild metric (for a charge-

less case) and follows the Wald’s approach to calculate the entropy. Also for

rotating black holes that are described by Kerr metric one can simply use the

Komar integrals to find the mass and angular momentum and finally obtain the

entropy. However, when we deviate from Einstein’s theory of general relativity

obtaining the conserved charge and hence the entropy can be challenging. See

[154, 155, 156, 157, 171] for advancement in finding the conserved charges.

In this section, we are going to briefly review the notion of Noether and Komar

currents in variational relativity. We show how the two are identical and then

we move to calculate the entropy of Kerr black holes for a number of examples,

namely f(R) gravity, f(R,Rµν) theories where the action can contain higher order

curvatures up to Ricci tensor and finally higher derivative gravity. The entropy

in each case is obtained by calculating the modified Komar integrals.

5.3.1 Variational principle, Noether and Komar currents

Variational principle is a powerful tool in physics. Most of the laws in physics

are derived by using this rather simple and straightforward method. Given a

gravitational Lagrangian,

L = L(gµν , Rµν ,∇a1Rµν , . . . ,∇(α1 . . .∇αm)Rµν), (5.3.84)

where the Lagrangian is a constructed by the metric, Ricci tensors and its deriva-

tives (This can be generalised to the case where Riemann tensors are involved,

however that is beyond the scope of this section). Note that the parentheses de-

note symmetrisation. We can obtain the equations of motion by simply varying
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the action with respect to the inverse metric, gµν and Rµν . In short form, this

can be done by defining two covariant momenta [148]:

πµν =
δL

δgµν
, (5.3.85)

and,

P µν =
δL

δRµν

=
∂L

∂Rµν

−∇α1

∂L

∂∇α1Rµν

+ · · ·+ (−1)m∇(α1 . . .∇αm)
∂L

∂∇(α1 . . .∇αm)Rµν

.

(5.3.86)

Thus the variation of the Lagrangian would be given by [153]:

δL = πµνδg
µν + P µνδRµν . (5.3.87)

It is simple to see that in the example of Einstein Hilbert (EH) action, the first

term admits the equations of motion (i.e. πµν = 0) and the second term will

be the boundary term. Since we are considering gravitational theories, the gen-

eral covariance must be preserved at all time. In other words, the Lagrangian,

L, is covariant with respect to the action under diffeomorphisms of space-time.

Infinitesimally, the variation can be expressed as:

δξL = d(iξL) = πµν£ξg
µν + P µν£ξRµν , (5.3.88)

where δξ denotes an infinitesimal variation of the gravitational action, d is the

exterior derivative, iξ is interior derivative of forms along vector field ξ and £ξ is

the Lie derivative with respect to the vector field. By expanding the Lie derivative

of the Ricci tensor, and noting that:

δξgαβ = £ξgαβ = ∇αξβ +∇βξα, (5.3.89)
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the Nother conserved current can be obtained. The way this can be done for

the EH action is demonstrated in Appendix M as an example. Furthermore, the

conserved Noether current associated to the general covariance of the Einstein-

Hilbert action is identical to the generalised Komar current. This can be seen

explicitly in Appendix N. In general, we define the Komar current1as [153]:

U = ∇αξ
[µP ν]αdsµν , (5.3.90)

where dsµν denotes the surface elements for a given background and is the stan-

dard basis for n− 2-forms over the manifold M (n = dim(M)).

5.3.2 Thermodynamics of Kerr black hole

A solution to the Einstein field equations describing rotating black holes was

discovered by Roy Kerr. This is a solution that only describes a rotating black

hole without charge. Indeed, there is a solution for charged black holes (i.e.

satisfies Einstein-Maxwell equations) known as Kerr-Newman. Kerr metric can

be written in number of ways and in this section we are going to use the Boyer-

Lindquist coordinate. The metric is given by [139]

ds2 = −(1− 2Mr

ρ2
)dt2 − 4Mar sin2 θ

ρ2
dtdφ+

Σ

ρ2
sin2 θdφ2 +

ρ2

∆
dr2 + ρ2dθ2,

(5.3.91)

where,

ρ2 = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2, Σ = (r2 + a2)2 − a2∆ sin2 θ.

(5.3.92)

1As a check it can be seen that for EH action we have,

PαβEH =
√
−ggαβ , UEH =

√
−g∇αξ[µgν]αdsµν

which is exactly the same as what we obtain in Eq. (M.0.6).
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The metric is singular at ρ2 = 0. This singularity is real1 and can be checked via

Kretschmann scalar2 3. The above metric has two horizons r± = m±
√
m2 − a2.

Furthermore, a2 ≤ m2 is a length scale. Let us define the vector:

ξα = tα + Ωφα. (5.3.93)

This vector is null at the event horizon. It is tangent to the horizon’s null gen-

erators, which wrap around the horizon with angular velocity Ω. Vector ξα is a

Killing vector since it is equal to sum of two Killing vectors. After all, the event

horizon of the Kerr metric is a Killing horizon. Using Eqs. (5.3.90) and (5.3.93)

we can define the Komar integrals for the general Lagrangian (5.3.84) describing

the energy and the angular momentum of the Kerr black hole as,

E = − 1

8π
lim
St→∞

∮
St

∇λP
αλξβ(t)dsαβ, (5.3.94)

J =
1

16π
lim
St→∞

∮
St

∇λP
αλξβ(φ)dsαβ, (5.3.95)

where the integral is over St, which is a closed two-surfaces4. We shall note that

St is an n−2 surface. In above definitions ξβ(t) is the space-time’s time-like Killing

vector and ξβ(φ) is the rotational Killing vector and they both satisfy the Killing’s

equation, ξα;β + ξβ;α = 0. Moreover, the sign difference in two definition has

its root in the signature of the metric. In this thesis we are using mostly plus

signature. The surface element is also given by,

dsαβ = −2n[αrβ]

√
σdθdφ, (5.3.96)

1This is different than the singularity at ∆ = 0 which is a coordinate singularity.
2The Kretschmann scalar for Kerr metric is given by: RαβγδRαβγδ =

48M2(r2−a2 cos2 θ)(ρ4−16a2r2 cos2 θ)
ρ12 .

3We shall note that scalar curvature, R, and Ricci tensor, Rµν are vanishing for the Kerr
metric and only some components of the Riemann curvature are non-vanishing.

4Note that we can write limSt→∞
∮
St

as simply
∮
H

where H is a two dimensional cross
section of the event horizon.

117



5.3 Rotating black holes and entropy of modified theories of gravity

where nα and rα are the time-like (i.e. nαn
α = −1) and space-like (i.e. rαr

α = 1)

normals to St. For Kerr metric in Eq. (5.3.91) the normal vectors are defined as:

nα = (− 1√
−gtt

, 0, 0, 0) = (−
√
ρ2∆

Σ
, 0, 0, 0), (5.3.97)

rβ = (0,
1√
grr

, 0, 0) = (0,

√
ρ2

∆
, 0, 0). (5.3.98)

Furthermore, the two dimensional cross section of the event horizon described by

t =constant and also r = r+ (i.e. constant), hence, from metric in Eq. (5.3.91)

we can extract the induced metric as:

σABdθ
AdθB = ρ2dθ2 +

Σ

ρ2
sin2 θdφ2. (5.3.99)

Thus we can write,

√
σ =
√

Σ sin θdθdφ. (5.3.100)

First law of black hole thermodynamics states that when a stationary black

hole at manifold M is perturbed slightly to M+ δM, the difference in the energy,

E, angular momentum, Ja, and area, A, of the black hole are related by:

δE = ΩaδJa +
κ

8π
δA = ΩaδJa +

κ

2π
δS, (5.3.101)

where Ωa are the angular velocities at the horizon. We shall note that S is the

associated entropy. κ denotes the surface gravity of the Killing horizon and for

the metric given in Eq. (5.3.91) the surface gravity is given by

κ =

√
m2 − a2

2mr+

. (5.3.102)
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The surface area [139] of the black hole is given by1:

A =

∮
H

√
σd2θ, (5.3.103)

where d2θ = dθdφ. Now by using Eq. (5.3.100), the surface area can be obtained

as,

A =

∮
H

√
σd2θ =

∫ π

0

sin(θ)dθ

∫ 2π

0

dφ(r2
+ + a2) = 4π(r2

+ + a2). (5.3.104)

Modified theories of gravity were proposed as an attempt to describe some of the

phenomena that Einstein’s theory of general relativity can not address. Examples

of these phenomena can vary from explaining the singularity to the dark energy.

In the next subsections, we obtain the entropy of the Kerr black hole for number

of these theories.

5.3.3 Einstein-Hilbert action

As a warm up exercise let us start the calculation for the most well knows case,

where the action is given by:

SEH =
1

2

∫
d4x
√
−gM2

PR, (5.3.105)

1We shall note that S = A/4 (with G = 1) denotes the Bekenstein-Hawking entropy.
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where M2
P is the Planck mass squared. For this case, as shown in footnote 1, the

Komar integrals can be found explicitly as [153], (see Appendix O for derivation)

E = − 1

8π

∮
H

∇αtβdsαβ

= − 1

8π

∫ 2π

0

dφ

∫ π

0

dθ(
1

2
sin(θ)

(
a2 cos(2θ) + a2 + 2r2

) 8m (a2 + r2) (a2 cos(2θ) + a2 − 2r2)

(a2 cos(2θ) + a2 + 2r2)3

)
= m.

(5.3.106)

We took ξα = tα, where tα = ∂xα

∂t
; xα are the space-time coordinates. So, for

instance, gµνξ
µξν = gµνt

µtν = gtt, that is after the contraction of the metric with

two Killing vectors, one is left with the tt component of the metric. In similar

manner, we can calculate the angular momentum as,

J =
1

16π

∮
H

∇αφβdsαβ

=
1

16π

∫ 2π

0

dφ

∫ π

0

dθ(
1

2
sin(θ)

(
a2 cos(2θ) + a2 + 2r2

)
× −8am sin2(θ) (a4 − 3a2r2 + a2(a− r)(a+ r) cos(2θ)− 6r4)

(a2 cos(2θ) + a2 + 2r2)3

)
= ma.

(5.3.107)

Now given Eq. (5.3.101), we have,

κ

2π
δS = δE− ΩaδJa = (1− Ωa)δm− Ωmδa. (5.3.108)

By recalling the surface gravity from Eq. (5.3.102) we have,

S = 2πmr+. (5.3.109)
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which is a well known result.

5.3.4 f(R) theories of gravity

There are numerous ways to modify the Einstein theory of general relativity, one

of which is going to higher order curvatures. A class of theories which attracted

attention in recent years is the f(R) theory of gravity [88]. This type of theories

can be seen as the series expansion of the scalar curvature, R, and one of the very

important features of them is that they can avoid Ostrogradski instability. The

action of this gravitational theory is generally given by:

Sf(R) =
1

2

∫
d4x
√
−gf(R), (5.3.110)

where f(R) is the function of scalar curvature and it can be of any order. In this

case the Komar potential can be obtained by,

Pαβ
f(R) =

δf(R)

δR

δR

δRαβ

=
1

2
f ′(R)

√
−ggαβ, (5.3.111)

and thus:

Uf(R) =
1

2
f ′(R)

√
−g∇αξ

[µgν]αdsµν . (5.3.112)

This results in modification of the energy and angular momentum as (see Ap-

pendix P for validation),

Ef(R) = − 1

8π

∮
H

f ′(R)∇αtβdsαβ = f ′(R)m, (5.3.113)

and

Jf(R) =
1

16π

∮
H

f ′(R)∇αφβdsαβ = f ′(R)ma. (5.3.114)

We know that the f(R) theory of gravity is essentially the power expansion in

the scalar curvature,

f(R) = M2
PR + α1R

2 + α2R
3 + · · ·+ αn−1R

n, (5.3.115)
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5.3 Rotating black holes and entropy of modified theories of gravity

where αi maintains the correct dimensionality, and thus,

f ′(R) = M2
P + 2α1R + 3α2R

2 + · · ·+ nαn−1R
n−1. (5.3.116)

As a result, the entropy of f(R) theory of gravity is given only by the Einstein

Hilbert contribution,

Sf(R) = SEH = 2πmr+. (5.3.117)

This is due to fact that the scalar curvature, R, is vanishing for the Kerr metric

given in Eq. (5.3.91) and so only the leading term in Eq. (5.3.116) will be

accountable.

5.3.5 f(R,Rµν)

After considering the f(R) theories of gravity, it is natural to think about the

more general form of gravitational modification. In this case: f(R,Rµν), the

action would contain terms like RµνR
µν , RµαR ν

α Rνµ and so on. Let us take a

specific example of,

SRµν =
1

2

∫
d4x
√
−g(M2

PR + λ1RµνR
µν + λ2R

µλR ν
λ Rνµ), (5.3.118)

where λ1 and λ2 are coefficients of appropriate dimension (i.e. mass dimension

L2 and L4 respectively where L denotes length). The momenta would then be

obtained as,

Pαβ
Rµν

=

√
−g
2

(M2
Pg

αβ + 2λ1R
αβ + 3λ2R

βλRα
λ). (5.3.119)

As before, the only contribution comes from the EH term since the Ricci tensor

is vanishing for the Kerr metric given in Eq. (5.3.91). So, without proceeding

further, we can conclude that in this case the entropy is given by the area law

only and with no correction.
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5.3 Rotating black holes and entropy of modified theories of gravity

5.3.6 Higher derivative gravity

Another class of modified theories of gravity are the higher derivative theories.

We shall denote the action by S(g,R,∇R,∇Rµν , · · · ). In this class, there are

covariant derivatives acting on the curvatures. Moreover, there are theories that

contain inverse derivatives acting on the curvatures [115]. These are known as

non-local theories of gravity.

A well established class of higher derivative theory of gravity is given by [53]

where the action contains infinite derivatives acting on the curvatures. It has

been shown that having infinite derivatives can cure the singularity problem [68].

This is achieved by replacing the singularity with a bounce. Moreover, this class

of theory preserves the ghost freedom. This is of a very special importance,

since in other classes of modified gravity, deviating from the EH term and going

to higher order curvature terms means one will have to face the ghost states.

Having infinite number of derivatives makes it extremely difficult to find a metric

solution which satisfies the equations of motion. Moreover, infinite derivative

theory is associated with singularity freedom and Kerr metric is a singular one.

As a result, in this section we wish to consider a finite derivative example as a

matter of illustration, let us define the Lagrangian of the form:

LHD =
√
−g
[
M2

PR +RF1(�̄)R +RµνF2(�̄)Rµν
]
, (5.3.120)

where F1(�̄) =
∑m1

n=1 f1n�̄
n, F2(�̄) =

∑m2

n=1 f2n�̄
n while � = gµν∇µ∇ν is

d’Alembertian operator and �̄ = �/M2 to ensure the correct dimensionality.

Note that fin are the coefficient of the expansion. We also note that m1 and m2

are some finite number. In this case, we have the Lagrange momenta as,

Pαβ
HD =

√
−g

[
M2

Pg
αβ + 2f1ng

αβ

m1∑
n=1

�̄nR + 2f2n

m2∑
n=1

�̄nRαβ

]
. (5.3.121)

As mentioned previously for the Kerr metric: R = Rαβ = 0, this is to conclude

that the only non-vanishing term which will contribute to the entropy will be the

first term, in the above equation, which corresponds to the EH term in the action

given in Eq. (5.3.120).
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5.3 Rotating black holes and entropy of modified theories of gravity

5.3.7 Kerr metric as and solution of modified gravities

After providing some examples of the modified theories of gravity, the reader

might ask wether the Kerr metric is the solution of these theories. In this section

we are going to address this issue by considering the higher derivative action. This

is due to the fact that the higher derivative action given in (5.3.120) contains Ricci

scalar and Ricci tensor and additionally their derivatives and hence the arguments

can be applied to other theories provided in this section.

Let us consider (5.3.120), the equations of motion is given by [111],

Gαβ + 4GαβF1(�̄)R + gαβRF1(�̄)R− 4
(
Oα∇β − gαβ�

)
F1(�̄)R

−2Ωαβ
1 + gαβ(Ω σ

1σ + Ω̄1) + 4Rα
µF2(�̄)Rµβ

−gαβRµ
νF2(�̄)Rν

µ − 4OµO
β(F2(�̄)Rµα) + 2�(F2(�̄)Rαβ)

+2gαβOµOν(F2(�̄)Rµν)− 2Ωαβ
2 + gαβ(Ω σ

2σ + Ω̄2)− 4∆αβ
2 = 0 ,(5.3.122)

we have defined the following symmetric tensors [111]:

Ωαβ
1 =

∞∑
n=1

f1n

n−1∑
l=0

∇αR(l)∇βR(n−l−1), Ω̄1 =
∞∑
n=1

f1n

n−1∑
l=0

R(l)R(n−l),

Ωαβ
2 =

∞∑
n=1

f2n

n−1∑
l=0

Rµ;α(l)
ν Rν;β(n−l−1)

µ , Ω̄2 =
∞∑
n=1

f2n

n−1∑
l=0

Rµ(l)
ν Rν(n−l)

µ ,

∆αβ
2 =

1

2

∞∑
n=1

f2n

n−1∑
l=0

[Rν(l)
σ R(β|σ|;α)(n−l−1) −Rν;(α(l)

σ Rβ)σ(n−l−1)];ν , (5.3.123)

Also note that R(m) ≡ �mR and that we absorbed the mass dimension in fin ’s

where it was necessary. For the Kerr metric, the Ricci tensor and, consequently,

the Ricci scalar vanish identically. Therefore, any quantity with covariant deriva-

tives acting on the Ricci tensor and the Ricci scalar would also be equal to zero; as

a result, each of the five quantities defined in (5.3.123) would also vanish. Hence,

one may observe that each of the terms in the left-hand side of (5.3.122) becomes

equal to zero. Thus, the Kerr metric satisfies the equation of motion (5.3.122), im-

plying that the Kerr metric can be regarded as a solution of the action (5.3.120).
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5.4 Non-local gravity

This has been shown explicitly by [159]. However, the same can not be said in

the presence of the Riemann tensors.

5.4 Non-local gravity

For higher derivative theories of gravity, it is possible to write the action in terms

of auxiliary fields. Doing so results in converting a non-local action [115] to a

local one. We use this approach to find the entropy for a non-local gravitational

action.

Indeed, Einstein’s theory of general relativity can be modified in number of

ways to address different aspects of cosmology. Non-local gravity is constructed

by inversed d’Alembertian operators that are accountable in the IR regime. In

particular, they could filter out the contribution of the cosmological constant to

the gravitating energy density, possibly providing the key to solving one of the

most notorious problems in physics [160], see also [163].

Moreover, such modification to the theory of general relativity arises naturally

as quantum loop effect [115] and used initially by [64] to explain the cosmic

acceleration. Non-local gravity further used to explain dark energy [116]. Since

such gravity is associated with large distances, it is also possible to use it as an

alternative to understand the cosmological constant [160]. Additionally, non-local

corrections arise, in the leading order, in the context of bosonic string [161].

It is argued in [162] that, non-locality may have a positive rule in under-

standing the black hole information problem. Recently, the non-local effect was

studied in the context of Schwarzschild black hole [163, 164]. In similar manner,

the entropy of some non-local models were studied in [165].
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5.4 Non-local gravity

5.4.1 Higher derivative gravity reparametrisation

Let us take the following higher derivative action,

I0 + I1 =
1

16πG
(D)
N

∫
dDx
√
−g
[
R +RF (�̄)R

]
,

with: F (�̄) =
m∑
n=0

fn�̄
n, (5.4.124)

where G
(D)
N is the D dimensional Newton’s gravitational constant, R is scalar

curvature, � = ∇µ∇µ is the d’Alembertian operator and �̄ ≡ �/M2, this is due

to the fact that � has dimension mass squared and we wish to have dimensionless

F (�̄), we shall note that fn’s are dimensionless coefficients of the series expansion.

In the above action we denoted the EH term as I0. Finally, m is some finite

positive integer. The above action can be written as [99],

I0 + Ĩ1 =
1

16πG
(D)
N

∫
dDx
√
−g
[
R +

m∑
n=0

(
Rfnηn +Rχn(ηn − �̄nR)

)]
,

(5.4.125)

where we introduced two auxiliary fields χn and ηn. This is the method which

we used in the Hamiltonian chapter. By solving the equations of motion for χn,

we obtain: ηn = �̄nR, and hence the original action given in Eq. (5.4.124 ) can

be recovered. This equivalence is also noted in [99].

We are now going to use the Wald’s prescription given in (5.2.21) over the

spherically symmetric metric (5.2.18). We know from (5.2.33) that the entropy

for action (5.4.124) is given by,

S0 + S1 =
AH

4G
(D)
N

(
1 + 2F (�̄)R

)
, (5.4.126)

where we denoted the entropy by S. Now let us obtain the entropy for Ĩ1 ,
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5.4 Non-local gravity

following the entropy Eq. (5.2.21), we have,

S̃1 = − AH

2G
(D)
N

×
m∑
n=0

(−1

2
fnηn −

1

2
χnηn + χn�̄

nR)

= − AH

2G
(D)
N

×
m∑
n=0

(−1

2
fnηn −

1

2
χnηn + χnηn)

=
AH

4G
(D)
N

×
m∑
n=0

(2fnηn) =
AH
4G

(2F (�̄)R). (5.4.127)

Where we fixed the lagrange multiplier as χn = −fn. It is clear that both I1 and

Ĩ1 are giving the same result for the entropy as they should. This is to verify that

it is always possible to use the equivalent action and find the correct entropy.

This method is very advantageous in the case of non-local gravity, where we have

inversed operators.

Before proceeding to the non-local case let us consider Ĩ1,

Ĩ1 =
1

16πG
(D)
N

∫
dDx
√
−g

m∑
n=0

(
Rfnηn +Rχn(ηn − �̄nR)

)
, (5.4.128)

It is mentioned that solving the equations of motion for χn results in:

ηn ≡ �̄nR. (5.4.129)

We shall mention that in order to form

F (�̄) =
m∑
n=0

fn�̄
n, (5.4.130)

in the second term of (5.4.128) we absorbed the fn into the Lagrange multiplier,

χn. Let us consider the fixing χn = −fn. We do so by substituting the value of

127



5.4 Non-local gravity

the Lagrange multiplier,

Ĩ1 =
1

16πG
(D)
N

∫
dDx
√
−g

m∑
n=0

(
Rfnηn −Rfn(ηn − �̄nR)

)
=

1

16πG
(D)
N

∫
dDx
√
−g

m∑
n=0

Rfn�̄
nR ≡ 1

16πG
(D)
N

∫
dDx
√
−gRF (�̄)R.

(5.4.131)

As expected Ĩ1 and I1 are again equivalent. Thus the fixation of the Lagrange

multiplier is valid.

5.4.2 Non-local gravity’s entropy

The non-local action can be written as,

I0 + I2 =
1

16πG
(D)
N

∫
dDx
√
−g
[
R +RG(�̄)R

]
,

with: G(�̄) =
m∑
n=0

cn�̄
−n. (5.4.132)

In this case the inversed d’Alembertian operators are acting on the scalar curva-

ture. In order to localise the above action we are going to introduce two auxiliary

fields ξn and ψn and rewrite the action in its local form as,

I0 + Ĩ2 =
1

16πG
(D)
N

∫
dDx
√
−g
[
R +

m∑
n=0

(
Rcnψn +Rξn(�̄nψn −R)

)]
.

(5.4.133)

Solving the equations of motion for ξn, results in having:

�̄nψn = R or ψn = �̄−nR. (5.4.134)
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5.4 Non-local gravity

Thus, the original action given in Eq. (5.4.132) can be recovered. This equivalence

is also noted by [165, 166].

Finding the Wald’s entropy for the non-local action as stands in (5.4.132)

can be a challenging task, this is due to the fact that for an action of the form

Eq. (5.4.132), the functional differentiation contains inversed operators acting on

the scalar curvature and Wald’s prescription for such case can not be applied.

However, by introducing the equivalent action and localising the gravity as given

in Eq. (5.4.133), one can obtain the entropy as it had been done in the previous

case. We know that the contribution of the EH term to the entropy is S0 =

AH/4G. Thus we shall consider the entropy of Ĩ2:

S̃2 = − AH

2G
(D)
N

×
m∑
n=0

(−1

2
cnψn −

1

2
ξn�̄

nψn + ξnR)

= − AH

2G
(D)
N

×
m∑
n=0

(−1

2
cnψn −

1

2
ξn�̄

nψn + ξn�̄
nψn)

=
AH

4G
(D)
N

×
m∑
n=0

(cnψn + cn�̄
nψn)

=
AH

4G
(D)
N

×
m∑
n=0

(cn(�̄−nR) + cn�̄
n(�̄−nR))

=
AH

4G
(D)
N

×
m∑
n=0

(cn�̄
−nR + cnR), (5.4.135)

where we took ξn = −cn. Furthermore, we used the fact that �̄n(�̄−nR) = R,

[115].
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5.5 Summary

As before let us check the validity of the ξn = −cn by considering Ĩ2,

Ĩ2 =
1

16πG
(D)
N

∫
dDx
√
−g

m∑
n=0

(
Rcnψn +Rξn(�̄nψn −R)

)
=

1

16πG
(D)
N

∫
dDx
√
−g

m∑
n=0

(
Rcnψn −Rcn(�̄nψn −R)

)
=

1

16πG
(D)
N

∫
dDx
√
−g

m∑
n=0

(
Rcnψn −Rcn(ψn − �̄−nR)

)
≡ 1

16πG
(D)
N

∫
dDx
√
−gRG(�̄)R, (5.4.136)

where used the property of (5.4.134) and recovered the non-local action in (5.4.132).

Thus the fixation of ξn = −cn is valid.

5.5 Summary

In this chapter we have shown how Wald’s approach can be used to find the

entropy for a static, spherically symmetric metric. It is shown that deviation

from GR results in having correction to the entropy. However, in the framework

of IDG, we have shown that one can recover the area law by going to the linearised

regime for a spherically symmetric background. Linearisation means perturbation

around Minkowski background and obtaining a constraint, required to have the

massless graviton as the only propagating degree of freedom.

We then used Wald’s formulation of entropy to find the corrections around

the (A)dS background. We verified our result by providing the entropy of the

Gauss-Bonnet gravity as an example. It has been shown that the constraint found

in the linearised regime (around Minkowski background) is not applicable to the

(A)dS case. This is due to the fact that the form of the propagator for (A)dS

background is an open problem and thus there is no known ghost free constraint.

We continued our study to a rotating background described by the Kerr met-

ric. For this case, we modified Komar integrals appropriately to calculate the

entropy for the Kerr background in various examples. It has been shown that
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5.5 Summary

deviating from the EH gravity up to Ricci tensor will have no effect in the amount

of entropy, and the entropy is given solely by the area law. This is because the

scalar curvature and Ricci tensor are vanishing for the Kerr metric given in Eq.

(5.3.91) (see [159] on rigorous derivation of this).

In the presence of the Riemann tensor and its derivatives, the same conclusion

can not be made. This is due to number of reasons: i) The Riemann tensor for

the Kerr metric is non-vanishing, ii) In the presence of the Riemann tensor and

its derivatives, the Ricci-flat ansatz illustrated by [159] may not hold and thus

Kerr background may not be an exact solution to the modified theories of gravity.

iii) Variation of the action and obtaining the appropriate form of Komar integral

is technically demanding and requires further studies.

Finally, we have provided a method to obtain the entropy of a non-local action.

Gravitational non-local action is constructed by inversed d’Alembertian operators

acting on the scalar curvature. The Wald approach to find the entropy can not

be applied to a non-local action. Thus, we introduced an equivalent action via

auxiliary fields and localised the non-local action. We then obtained the entropy

using the standard method provided by Wald. In the case of higher derivative

gravity we have checked that both, the original higher derivative action and its

equivalent action, are producing the same results for the entropy. However, such

check can not be done in the non-local case. As a future work, it would be

interesting to obtain the Noether charge such that one can calculate the entropy

for a non-local action without the need of localisation and check wether the

entropies agree after localisation.
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Chapter 6

Conclusion

In this thesis some of the classical aspects of infinite derivative gravitational

(IDG) theories were considered. The aim was mainly to build an appropriate

machinery which can be used later to build upon and further understanding of

infinite derivative theories of gravity. The main focus of this thesis was a ghost-

and singularity-free infinite derivative theory of gravity. This theory is made up

of covariant derivatives acting on Riemannian curvatures, we represented this in-

finite series of derivatives as function F (�̄). We found that upon choosing specific

form of F (�̄), that is an exponential of an entire function, the theory is ghost

free and singularity free.

Outline of results

In Chapter 3 we performed the Hamiltonian analysis for wide range of higher

derivatives and infinite derivatives theories. We started our analysis by consid-

ering some toy models: homogeneous case and infinite derivative scalar model

and then we moved on and applied the Hamiltonian analysis to infinite derivative

gravitational theory (IDG). The aim of our analysis were to find the physical de-

grees of freedom for higher derivative theories from the Hamiltonian formalism.

As for the IDG action, we truncated the theory such that the only modification

would be RF1(�̄)R term. Such action is simpler than the general IDG containing
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higher order terms such as RµνF2(�̄)Rµν and RµνλσF3(�̄)Rµνλσ. Adding higher

curvature terms would lead to further complexities when it comes to the ADM

decomposition and we shall leave this for future studies.

From Lagrangian formalism, the number of degrees of freedom is determined

via propagator analysis. In other words, calculating number of degrees of free-

dom is associated with the number of poles arising in the propagator for a given

theory. As for the case of IDG is it known that for a Gaussian kinetic term

in the Lagrangian, the theory admits two dynamical degrees of freedom. This

can be readily obtained by considering the spin-0 and spin-2 components of the

propagator. In order to maintain the original dynamical degrees of freedom and

avoiding extra poles (and thus extra propagating degrees of freedom), one shall

demand that the propagator be suppressed by the exponential of an entire func-

tion. This is due to the fact that an entire function does not produce poles in the

infinite complex plain. Thus, it is reasonable to modify the kinetic term in the

Lagrangian for infinite derivative theories. Such modification in the case of scalar

toy model would take the form of F (�̄) = �e−�̄ and in the context of gravity

the modification would be F (�̄) = M2
P�
−1(e−�̄ − 1). It is clear that one must

expect the same physical results from Lagrangian and Hamiltonian analysis for

a given theory.

To obtain the number of degrees of freedom in Hamiltonian regime, one starts

with first identifying the configuration space variables and computing the first

class and second class constraints. In the case of IDG, there exist infinite number

of configuration space variables and thus first class and second class constraints.

However, for a Gaussian kinetic term, F (�̄), the number of degrees of freedom

are finite. This holds for both scalar toy models and gravitational Hamiltonian

densities.

In Chapter 4, the generalised Gibbons-Hawking-York (GHY) boundary term,

for the IDG theory, was obtained. It has been shown that in order to find the

boundary term for the IDG theory one shall use the ADM formalism and in

particular coframe slicing to obtain the appropriate form of the extrinsic curva-

ture. Moreover, in coframe slicing d’Alembertian operators are fairly easy to be
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handled when in comes to commutation between derivatives and tensorial com-

ponents. It should be noted that the conventional way of finding the surface

contribution is using the variation principle. However, for an infinite derivative

term that would not be a suitable approach. This is due to the fact that for a

theory with n number of covariant derivatives we will have 2n total derivatives,

and clearly extracting a GHY type surface term to cancel these total derivatives

is not a trivial task. Indeed, it is not clear, in the case of IDG, how from the

variation principle one would be extracting a neat extrinsic curvature to cancel

out the surface contribution. To this end, we took another approach, namely to

recast the IDG action to an equivalent form where now we have auxiliary fields.

We then decomposed the equivalent action and used it to calculate the gener-

alised GHY term for the IDG theory. To validate our method it can be seen that,

for the case of �→ 0 our result would recover the GR’s boundary term as given

by the GHY action and for � → 1 one shall recover the well known results of

Gauss-Bonnet gravity upon substituting the right coefficients.

In Chapter 5 we considered the thermodynamical aspects of the IDG theory.

In GR it is well known that the entropy of a stationary black hole is given by

the area law. Given different solutions to the Einstein-Hilbert action the area

law would be modified yet the proportionality of the entropy to the area remains

valid. The deviation from GR results in correction to the entropy. In the context

of IDG we performed entropy calculation and obtained the corresponding correc-

tions. We began our analysis by considering a static and spherically symmetric

background. We shall note that in this metric we have not defined any value for

f(r). This is to keep the metric general. We then used Wald’s description and

obtained the corrections. We extended our discussion to the linearised regime

and found that in the weak field limit the entropy of the IDG action is solely

given by the area law and thus the higher order corrections are not affecting the

entropy. It is important to remind that in order to achieve this result we im-

posed the constraint 2F1(�̄) + F2(�̄) + 2F3(�̄) = 0, which ensures that the only

propagating degree of freedom is the massless graviton. Moreover, we imposed

Φ(r) = Ψ(r), in other words we demanded that the Newtonian potentials to be

the same.
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We then moved to the (A)dS backgrounds and compute the entropy for the

IDG theory using the Wald’s approach and obtained the corrections. (A)dS

backgrounds admit constant curvatures. This leads to have constant corrections

to the entropy. In this regime, we have shown that upon choosing the appropriate

coefficients, the IDG entropy reduces to the corresponding Gauss-Bonnet gravity.

After, we turned our attention to a rotating background and used variational

principle to find the generalised Komar integrals for theories that are constructed

by the metric tensor, Ricci scalar, Ricci tensor and their derivatives. We then

used the first law of thermodynamics and computed the entropy for number

of cases: f(R), f(R,Rµν) and finally higher derivative theories of gravity. We

used the Ricci flatness ansatz found in [159] and concluded that for a rotating

background described by the Kerr metric we have R = Rµν = 0 regardless of the

modified theory of gravity one is considering; thus the only contribution to the

entropy comes from the Einstein-Hilbert term. This holds true as long as we do

not involve the Riemann contribution to the gravitational action. Furthermore,

the generalised form of Komar integrals are unknown for the case where the

gravitational action contains Riemann tensor and its derivatives.

Finally, we wrapped up the chapter by considering an infinite derivative action

where we have inverse d’Alembertian operators (�−1), the entropy of such action

using the Wald approach can not be found. This is due to the fact that the func-

tional differentiation is not known for inverse derivatives. For instance, terms like

δ(R(�̄)−1R)/δRµνλσ can not be differentiated using the normal Euler-Lagrange

functional differentiation. The non-locality of such action can be localised by

introducing auxiliary fields and rewriting the non-local action in its localised

equivalent form. This allows to compute the entropy using the Wald’s prescrip-

tion. We verified our method for an already known theory where the Lagrangian

density is given by L ∼ R +RF1(�̄)R.

Future work

• IDG is now know to address the black hole singularity in the weak field
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regime. It would be interesting to see wether the singularities can be avoided

in the case of astrophysical black holes.

• The form of Wald entropy for non-local theories of gravity, where there

is �−1 in the action, is not known. It would be interesting to formulate

the charge for such theories and to check wether they reproduce the same

results as if one was to localise the theory by introducing auxiliary fields.

• Addressing the cosmological singularity issue in the presence of matter

source is an open question. The exact cosmological solutions were only

obtained in the presence of a cosmological constant. A realistic cosmolog-

ical scenario must include an appropriate exit from the inflationary phase.

So far such transition is unknown and any progress in that direction is

useful.

• So far IDG is studied around Minkowski background. It would be inter-

esting to discover the classical and quantum aspects of IDG over other

backgrounds.

• Establishing unitarity within the framework of IDG is another open problem

where a novel prescription shall be found. This would be a major step

towards construction of a fully satisfactory theory of quantum gravity.

• Deriving IDG or any other modified theories of gravity from string theory

is another open problem, despite the fact that they are stringy inspired.

It is of great interest to know how any of the modified theories of gravity

can be derived from string theory and not just by writing down an effective

gravitational action.

• There are many other aspects of IDG which can be studied using the current

knowledge built by others and us. An example of that would be obtain-

ing the holographic entanglement entropy for an IDG in the context of

AdS/CFT (see for instance [167, 168]). Another example would be study-

ing the IDG action in other dualities such as Kerr/CFT, where one can gain

great knowledge about the CFT in the context of higher derivative theories

(see the Gauss-Bonnet example [169]).
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• In the cosmological sense, non-local theories can be promising in studying

some phenomenological aspects such as dark energy (see [116] as an exam-

ple). It would be interesting to look at other phenomenological aspects of

IDG.

• As for Hamiltonian formalism, it would be interesting to obtain the physical

degrees of freedom for the full IDG action, containing the higher order

curvatures. This would be a good check to make sure one recovers the same

results from the Lagrangian analysis.
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Appendix A

A.1 Useful formulas, notations and conventions

The metric signature used in this thesis is,

gµν = (−,+,+,+). (A.1.1)

In natural units (~ = c = 1). We also have,

MP = κ−1/2 =

√
~c

8πG
(D)
N

, (A.1.2)

where MP is the Planck mass and G
(D)
N is Newton’s gravitational constant in

D-dimensional space-time.

The relevant mass dimensions are:

[dx] = [x] = [t] = M−1, (A.1.3)

[∂µ] = [pµ] = [kµ] = M1, (A.1.4)

[velocity] =
[x]

[t]
= M0. (A.1.5)

As a result,

[d4x] = M−4. (A.1.6)
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A.2 Curvature

The action is a dimensionless quantity:

[S] = [

∫
d4xL] = M0. (A.1.7)

Therefore,

[L] = M4. (A.1.8)

A.2 Curvature

Christoffel symbol is,

Γλµν =
1

2
gλτ (∂µgντ + ∂νgµτ − ∂τgµν). (A.2.9)

The Riemann tensor is,

Rλ
µσν = ∂σΓλµν − ∂νΓλµσ + ΓλσρΓ

ρ
νµ − ΓλνρΓ

ρ
σµ, (A.2.10)

Rρσµν = gρλR
λ
σµν = gρλ(∂µΓλνσ − ∂νΓλµσ), (A.2.11)

Rµνλσ = −Rνµλσ = −Rµνσλ = Rλσµν , (A.2.12)

Rµνλσ +Rµλσν +Rµσνλ = 0. (A.2.13)

The Ricci tensor is given by,

Rµν = Rλ
µλν = ∂λΓ

λ
µν − ∂νΓλµλ + ΓλλρΓ

ρ
νµ − ΓλνρΓ

ρ
λµ, (A.2.14)

The Ricci tensor associated with the Christoffel connection is symmetric,

Rµν = Rνµ. (A.2.15)
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A.2 Curvature

The Ricci scalar is given by,

R = Rµ
µ = gµνRµν = gµν∂λΓ

λ
µν − ∂µΓλµλ + gµνΓλλρΓ

ρ
νµ − gµνΓλνρΓ

ρ
λµ. (A.2.16)

The Weyl tensor is given by,

Cµ
ανβ ≡ Rµ

ανβ−
1

2
(δµνRαβ−δµβRαν+Rµ

νgαβ−R
µ
βgαν)+

R

6
(δµν gαβ−δ

µ
βgαν), (A.2.17)

Cλ
µλν = 0. (A.2.18)

The Einstein tensor is given by,

Gµν = Rµν −
1

2
gµνR. (A.2.19)

Varying the Einstein-Hilbert action,

SEH =
1

2

∫
d4x
√
−g(M2

PR− 2Λ), (A.2.20)

where Λ is the cosmological constant of mass dimension 4, leads to the Einstein

equation,

M2
PGµν + gµνΛ = Tµν , (A.2.21)

where Tµν is the energy-momentum tensor. When considering the perturbations

around the Minkowski space-time, the cosmological constant is set to be zero.

The Bianchi identity is given by,

∇κRµνλσ +∇σRµνκλ +∇λRµνσκ = 0. (A.2.22)

This results from the sum of cyclic permutations of the first three indices. We

note that the antisymmetry properties of Riemann tensor allows this to be written

as,

∇[κRµν]λσ = 0. (A.2.23)
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A.3 Useful formulas

Contracting (A.2.22) with gµλ results in the contracted Bianchi identity,

∇κRνσ −∇σRνκ +∇λRλνσκ = 0. (A.2.24)

Contracting (A.2.24) with gνκ, we obtain,

∇κR
κ
σ =

1

2
∇σR, (A.2.25)

which similarly implies,

∇σ∇κR
κ
σ =

1

2
�R, (A.2.26)

and,

∇µG
µ
ν = 0. (A.2.27)

A.3 Useful formulas

The commutation of covariant derivatives acting on a tensor of arbitrary rank is

given by:

[∇ρ,∇σ]Xµ1...µk
ν1...νl

= −T λ
ρσ ∇λX

µ1...µk
ν1...νl

+ Rµ1

λρσX
λµ2...µk
ν1...νk

+Rµ2

λρσX
µ1λ...µk
ν1...νk

+ · · ·

− Rλ
ν1ρσ

Xµ1...µk
λν2...νl

−Rλ
ν2ρσ

Xµ1...µk
ν1λ...νl

− · · · ,(A.3.28)

where the Torsion tensor is given by,

T λ
µν = Γλµν − Γλνµ = 2Γλ[µν]. (A.3.29)

Covariant derivative action on a tensor of arbitrary rank is given by,

∇σX
µ1µ2...µk
ν1ν2...νl

= ∂σX
µ1µ2...µk
ν1ν2...νl

+ Γµ1

σλX
λµ2...µk
ν1ν2...νl

+ Γµ2

σλX
µ1λ...µk
ν1ν2...νl

+ · · ·

− Γλσν1
Xµ1µ2...µk

λν2...νl
− Γλσν2

Xµ1µ2...µk
ν1λ...νl

− · · · . (A.3.30)
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A.3 Useful formulas

The Lie derivative along V on some arbitrary ranked tensor is given by,

£VX
µ1µ2...µk
ν1ν2...νl

= V σ∂σX
µ1µ2...µk
ν1ν2...νl

− (∂λV
µ1)Xλµ2...µk

ν1ν2...νl
− (∂λV

µ2)Xµ1λ...µk
ν1ν2...νl

− · · ·

+ (∂ν1V
λ)Xµ1µ2...µk

λν2...νl
+ (∂ν2V

λ)Xµ1µ2...µk
ν1λ...νl

+ · · · . (A.3.31)

In similar manner the Lie derivative of the metric would be,

£V gµν = V σ∇σgµν + (∇µV
λ)gλν + (∇νV

λ)gµλ = 2∇(µVν). (A.3.32)

Symmetric and anti-symmetric properties, respectively, are,

X(ij)k... =
1

2
(Xijk... +Xjik...), (A.3.33)

X[ij]k... =
1

2
(Xijk... −Xjik...). (A.3.34)
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Appendix B

Newtonian potential

Let us consider the Newtonian potential in the weak-field regime. The Newtonian

approximation of a perturbed metric for a static point source is given by the

following line element,

ds2 = (ηµν + hµν)dx
µdxν

= −[1 + 2Φ(r)]dt2 + [1− 2Ψ(r)](dx2 + dy2 + dz2) (B.0.1)

where the perturbation is given by,

hµν =


−2Φ(r) 0 0 0

0 −2Ψ(r) 0 0
0 0 −2Ψ(r) 0
0 0 0 −2Ψ(r)

 . (B.0.2)

The field equations for the infinite derivative theory of gravity is given by,

−κTµν =
1

2
[a(�̄)�hµν + b(�̄)∂σ(∂µh

σ
ν + ∂νh

σ
µ) + c(�̄)(∂ν∂µh+ ηµν∂σ∂τh

στ )

+ d(�̄)ηµν�h+
f(�̄)

�
∂µ∂ν∂σ∂τh

στ ], (B.0.3)
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where κ = 8πG
(D)
N = M−2

P and Tµν is the stress-energy tensor. By using the

definitions of the linearised curvature, we can rewrite the field equations as,

κTµν = a(�̄)Rµν −
1

2
ηµνc(�̄)R− f(�̄)

2
∂µ∂νR. (B.0.4)

It is apparent how the modification of Einstein-Hilbert action changed the field

equations. The trace and 00-component of the field equations are given by,

−κT00 =
1

2
[a(�̄)− 3c(�̄)]R,

κT00 = a(�̄)R00 +
1

2
c(�̄)R, (B.0.5)

where T00 gives the energy density. In the static, linearised limit, � = ∇2 =

∂i∂
i. In other words, the flat space d’Alembertian operator becomes the Laplace

operator. This leads to,

−κT00 = (a(�̄)− 3c(�̄))(2∇2Ψ−∇2Φ),

κT00 = (a(�̄)− c(�̄))∇2Φ + 2c(�̄)∇2Ψ. (B.0.6)

We note that,

R = 2(2∇2Ψ−∇2Φ), R00 = ∇2Φ. (B.0.7)

The Newtonian potentials can be related as,

∇2Φ = −a(�̄)− 2c(�̄)

c(�̄)
∇2Ψ, (B.0.8)

and therefore,

κT00 =
a(�̄)(a(�̄)− 3c(�̄))

a(�̄)− 2c(�̄)
∇2Φ = κmgδ

3(~r). (B.0.9)

We note that T00 is the point source and T00 = mgδ
3(~r), mg is the mass of the

object generating the gravitational potential and δ3 is the three-dimensional Dirac
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delta-function; this is given by,

δ3(~r) =

∫
d3k

(2π)3
eik~r. (B.0.10)

Thus, with noting that �→ −k2, we can take the Fourier components of (B.0.9)

and obtain,

Φ(r) = − κmg

(2π)3

∫ ∞
−∞

d3k
a(−k̄2)− 2c(−k̄2)

a(−k̄2)(a(−k̄2)− 3c(−k̄2))

eik~r

k2

= − κmg

2π2r

∫ ∞
0

dk
a(−k̄2)− 2c(−k̄2)

a(−k̄2)(a(−k̄2)− 3c(−k̄2))

sin(kr)

k
, (B.0.11)

and,

Ψ(r) = − κmg

2π2r

∫ ∞
0

dk
c(−k̄2)

a(−k̄2)(a(−k̄2)− 3c(−k̄2))

sin(kr)

k
. (B.0.12)

In order to avoid extra degrees of freedom in the scalar sector of the propagator

and to maintain massless graviton as the only propagating degree of freedom, we

shall set a(k̄2) = c(k̄2), this leads to,

Φ(r) = Ψ(r) = − κmg

(2π)2r

∫ ∞
0

dk
sin(kr)

a(−k̄2)k
. (B.0.13)

Taking a(�̄) = e−�̄, we obtain,

Φ(r) = Ψ(r) = − κmg

(2π)2r

∫ ∞
0

dk
sin(kr)

e
k2

M2 k
= −

κmgErf[Mr
2

]

8πr
. (B.0.14)

As r →∞, then Erf[Mr
2

]→ 1 and we recover the −r−1 divergence of GR. When

r → 0, we have,

lim
r→0

Φ(r) = lim
r→0

Ψ(r) = −κmgM

8π3/2
(B.0.15)

which is constant. Thus the Newtonian potential is non-singular. See Fig. B.1.
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Figure B.1: Newtonian potentials. The orange line denotes the non-singular
potential while the blue line indicates the original GR potential.
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Appendix C

Gibbons-York-Hawking

boundary term

Let us take the Einstein Hilbert action,

S =
1

2κ

(
SEH + SGYH

)
, (C.0.1)

where,

SEH =

∫
V

d4x
√
−gR, (C.0.2)

SGYH = 2

∮
∂V

d3y ε
√
|h|K, (C.0.3)

Gibbons-York-Hawking boundary term is denoted by SGYH . Also, κ = 8πGN .

We are considering the space-time as a pair (M, g) with M a four-dimensional

manifold and g a metric on M. Thus, V is a hyper-volume on manifold M, and

∂V is its boundary. h the determinant of the induced metric, K is the trace of

the extrinsic curvature of the boundary ∂V, and ε is equal to +1 if ∂V is time-like

and −1 if ∂V is space-like. We shall derive the SGYH in this section. To start we

fix the following condition,

δgαβ

∣∣∣∣
∂V

= 0, (C.0.4)
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We also have the following useful formulas,

δgαβ = −gαµgβνδgµν , δgαβ = −gαµgβνδgµν , (C.0.5)

δ
√
−g = −1

2

√
−ggαβδgαβ, (C.0.6)

δRα
βγδ = ∇γ(δΓ

α
δβ)−∇δ(δΓ

α
γβ), (C.0.7)

δRαβ = ∇γ(δΓ
γ
βα)−∇β(δΓγγα). (C.0.8)

Let us now vary the Einstein-Hilbert action,

δSEH =

∫
V

d4x
(
Rδ
√
−g +

√
−g δR

)
. (C.0.9)

The variation of the Ricci scalar is given by,

δR = δgαβRαβ + gαβδRαβ. (C.0.10)

using the Palatini’s identity (C.0.8),

δR = δgαβRαβ + gαβ
(
∇γ(δΓ

γ
βα)−∇β(δΓγαγ)

)
,

= δgαβRαβ +∇σ

(
gαβ(δΓσβα)− gασ(δΓγαγ)

)
, (C.0.11)

where the metric compatibility indicates ∇γgαβ ≡ 0 and dummy indices were

relabeled. Plugging back this result into the action variation, we obtain,

δSEH =

∫
V

d4x
(
Rδ
√
−g +

√
−g δR

)
,

=

∫
V

d4x

(
−1

2
Rgαβ

√
−g δgαβ +Rαβ

√
−gδgαβ +

√
−g∇σ

(
gαβ(δΓσβα)− gασ(δΓγαγ)

))
,

=

∫
V

d4x
√
−g
(
Rαβ −

1

2
Rgαβ

)
δgαβ +

∫
V

d4x
√
−g∇σ

(
gαβ(δΓσβα)− gασ(δΓγαγ)

)
.

(C.0.12)
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We are going to name the divergence term as δSB, i.e.

δSB =

∫
V

d4x
√
−g∇σ

(
gαβ(δΓσβα)− gασ(δΓγαγ)

)
, (C.0.13)

and define,

V σ = gαβ(δΓσβα)− gασ(δΓγαγ), (C.0.14)

yielding,

δSB =

∫
V

d4x
√
−g∇σV

σ. (C.0.15)

The Gauss-Stokes theorem is given by,∫
V

dnx
√
|g|∇µA

µ =

∮
∂V

dn−1y ε
√
|h|nµAµ, (C.0.16)

where nµ is the unit normal to ∂V. W shall use this and rewrite the boundary

term as,

δSB =

∮
∂V

d3y ε
√
|h|nσV σ, (C.0.17)

with V σ given in (C.0.14). The variation of the Christoffel symbol is given by,

δΓσβα = δ

(
1

2
gσγ
[
∂βgγα + ∂αgγβ − ∂γgβα

])
,

=
1

2
δgσγ

[
∂βgγα + ∂αgγβ − ∂γgβα

]
+

1

2
gσγ
[
∂β(δgγα) + ∂α(δgγβ)− ∂γ(δgβα)

]
.

(C.0.18)

From the boundary conditions δgαβ = δgαβ = 0. Thus,

δΓσβα

∣∣∣
∂V

=
1

2
gσγ
[
∂β(δgγα) + ∂α(δgγβ)− ∂γ(δgβα)

]
, (C.0.19)

and so,

V µ
∣∣∣
∂V

= gαβ
[

1

2
gµγ
[
∂β(δgγα) + ∂α(δgγβ)− ∂γ(δgβα)

]]
− gαµ

[
1

2
gνγ∂α(δgνγ)

]
,

(C.0.20)
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we can write

Vσ

∣∣∣
∂V

= gσµV
µ
∣∣∣
∂V

= gσµg
αβ

[
1

2
gµγ
[
∂β(δgγα) + ∂α(δgγβ)− ∂γ(δgβα)

]]
− gσµgαµ

[
1

2
gνγ∂α(δgνγ)

]
=

1

2
δγσg

αβ
[
∂β(δgγα) + ∂α(δgγβ)− ∂γ(δgβα)

]
− 1

2
δασg

νγ
[
∂α(δgνγ)

]
= gαβ

[
∂β(δgσα)− ∂σ(δgβα)

]
. (C.0.21)

Let us now calculate the term nσVσ
∣∣
∂V

. We note that,

gαβ = hαβ + εnαnβ, (C.0.22)

then

nσVσ

∣∣∣
∂V

= nσ(hαβ + εnαnβ)[∂β(δgσα)− ∂σ(δgβα)],

= nσhαβ[∂β(δgσα)− ∂σ(δgβα)], (C.0.23)

where we use the antisymmetric part of εnαnβ with ε = nµnµ = ±1. Since

δgαβ = 0 on the boundary we have hαβ∂β(δgσα) = 0. Finally we have,

nσVσ

∣∣∣
∂V

= −nσhαβ∂σ(δgβα). (C.0.24)

Hence, the variation of the Einstein-Hilbert action is,

δSEH =

∫
V

d4x
√
−g
(
Rαβ −

1

2
Rgαβ

)
δgαβ −

∮
∂V

d3y ε
√
|h|hαβ∂σ(δgβα)nσ.

(C.0.25)

The variation of the Gibbons-York-Hawking boundary term is,

δSGYH = 2

∮
∂V

d3y ε
√
|h|δK. (C.0.26)

150



Using the definition of the trace of extrinsic curvature,

K = ∇αn
α,

= gαβ∇βnα,

= (hαβ + εnαnβ)∇βnα,

= hαβ∇βnα,

= hαβ(∂βnα − Γγβαnγ), (C.0.27)

and subsequently its variation,

δK = −hαβδΓγβαnγ,

= −1

2
hαβgσγ

[
∂β(δgσα) + ∂α(δgσβ)− ∂σ(δgβα)

]
nγ,

= −1

2
hαβ
[
∂β(δgσα) + ∂α(δgσβ)− ∂σ(δgβα)

]
nσ,

=
1

2
hαβ∂σ(δgβα)nσ, (C.0.28)

where we used hαβ∂β(δgσα) = 0, hαβ∂α(δgσβ) = 0 on the boundary; The variation

of the Gibbons-York-Hawking becomes,

δSGYH =

∮
∂V

d3y ε
√
|h|hαβ∂σ(δgβα)nσ. (C.0.29)

We see that the second term of (C.0.25) is matching with (C.0.29). In other words,

this term exactly cancel the boundary contribution of the Einstein-Hilbert term.
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Appendix D

Simplification example

in IDG action

Let us consider the following terms from (2.1.4),

RF1(�)R +RF2(�)∇ν∇µR
µν +Rν

µF4(�)∇ν∇λR
µλ, (D.0.1)

we can recast above as,

RF1(�)R +
1

2
RF2(�)�R +

1

2
Rν

µF4(�)∇ν∇µR, (D.0.2)

by having the identity ∇µR
µν = 1

2
∇νR and also ∇ν∇µR

µν = 1
2
�R, which occurs

due to contraction of Bianchi identity, we can perform integration by parts on

the final term and obtain,

RF1(�)R +
1

2
RF2(�)�R +

1

2
∇µ∇νR

ν
µF4(�)R

= RF1(�)R +
1

2
RF2(�)�R +

1

4
RF4(�)�R

≡ RF1(�)R, (D.0.3)
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where we redefined the arbitrary function F1(�) to absorb F2(�) and F4(�). We

simplified (2.1.4) in similar manner to reach (2.1.8).
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Appendix E

Hamiltonian density

Hamiltonian density corresponding to action Eq. (3.3.44) is explicitly given by,

H = pAȦ+ pχ1χ̇1 + pχlχ̇l + pηl−1
η̇l−1 − L

= −(Aχ̇1Ȧ+ Ȧχ1Ȧ)−
∞∑
l=2

(Ȧχlη̇l−1)

− (AȦ)χ̇1 − (Aη̇l−1)χ̇l − (Aχ̇lη̇l−1 + χlȦη̇l−1)

−

(
A(f0A+

∞∑
n=1

fnηn) +
∞∑
l=1

Aχlηl

− (A∂0χ1∂0A+ χ1∂0A∂0A) + gij(A∂iχ1∂jA+ χ1∂iA∂jA)

−
∞∑
l=2

(A∂0χ1∂0ηl−1 + χl∂0A∂0ηl−1) + gij
∞∑
l=2

(A∂iχl∂jηl−1 + χl∂iA∂jηl−1)

)

= −
∞∑
l=2

(Ȧχlη̇l−1)− (AȦ)χ̇1 − (Aη̇l−1)χ̇l +

(
A(f0A+

∞∑
n=1

fnηn)−
∞∑
l=1

Aχlηl

(E.0.1)

− gij(A∂iχ1∂jA+ χ1∂iA∂jA)− gij
∞∑
l=2

(A∂iχl∂jηl−1 + χl∂iA∂jηl−1)

)
(E.0.2)

= A(f0A+
∞∑
n=1

fnηn)−
∞∑
l=1

Aχlηl

− (gµνA∂µχ1∂νA+ gijχ1∂iA∂jA)− gµν
∞∑
l=2

(A∂µχl∂νηl−1 + χl∂µA∂νηl−1) .

(E.0.3)
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Appendix F

Physical degrees of freedom via

propagator analysis

We have an action of the form [53]

S =
1

2

∫
d4x
√
−g
[
M2

PR +RF
(
�̄
)
R
]

(F.0.1)

or, equivalently,

S =
1

2

∫
d4x
√
−g
[
M2

PA+ AF
(
�̄
)
A+B(R− A)

]
. (F.0.2)

A and B have mass dimension 2.

The propagator around Minkowski space-time is of the form [68, 93]

Π(−k2) =
P2

k2a(−k2)
+

P0
s

k2(a(−k2)− 3c(−k2))
, (F.0.3)

where a(�) = 1 and c(�) = 1 +M−2
P F

(
�̄
)
�. Hence,

Π(−k2) =
P2

k2
+

P0
s

k2(−2 + 3M−2
P k2F(−k2/M2))

(F.0.4)
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We know that [68, 93]

F(�̄) = M2
P

c(�̄)− 1

�
. (F.0.5)

Only if c(�) is the exponent of an entire function can we decompose into partial

fractions and have just one extra pole.

The upshot is that, in order to have just one extra degree of freedom, we have

to impose conditions on the coefficients in F
(
�̄
)
. In order to avoid �−1 terms

appearing in F(�̄), we must have that

c(�̄) =
∞∑
n=0

cn�̄
n (F.0.6)

and c0 = 1. Hence,

F(�̄) =

(
MP

M

)2 ∞∑
n=0

cn+1�̄
n . (F.0.7)

To get infinitely many poles and, hence, degrees of freedom, one could have, for

instance, that

c(�̄) = cos(�̄) , (F.0.8)

so that c0 = 1. Then Eq. (F.0.2) becomes

S =
1

2

∫
d4x
√
−g
[
M2

PA+M2
PA

(
cos(�̄)− 1

�

)
A+B(R− A)

]
. (F.0.9)

Using (F.0.4), apart from the k2 = 0 pole, we have poles when

cos

(
k2

M2

)
=

1

3
. (F.0.10)

Eq. (F.0.10) has infinitely many solutions due to the periodicity of the cosine

function and, therefore, the propagator has infinitely many poles and, hence, de-

grees of freedom. We can write the solutions as k̄2 = 2mπ, where m = 0, 1, 2, · · · ,
one can also write:

cos(k̄2) =
∞∏
l=1

(
1− 4k̄4

(2l − 1)2π2

)
(F.0.11)
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or

cos(�̄) =
∞∏
l=1

(
1− 4�̄2

(2l − 1)2π2

)
(F.0.12)

Now, to get just one extra degrees of freedom, one can make, for instance, the

choice c(�̄) = e−�̄, then

F(�̄) =
∞∑
n=0

fn�̄
n , (F.0.13)

where

fn =

(
MP

M

)2
(−1)n+1

(n+ 1)!
. (F.0.14)

Using (F.0.4), apart from the k2 = 0 pole, we have poles when

ek
2/M2

=
1

3
. (F.0.15)

There is just one extra pole and, hence, degrees of freedom. In total, there are 3

degrees of freedom.
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Appendix G

Form of F(�̄) and constraints

We have shown in section 3.4.6 that the primary constraints are built as follow:

σ1 = η1 −�A ≈ 0, · · · , σl = ηl −�ηl−1 ≈ 0. (G.0.1)

We also mentioned that they are first class constraints due to their Poission

brackets vanishing weakly. The number of the degrees of freedom are related to

the form of F(�̄). Expanding on this, we shall consider the case when: F(�̄) =

�e−�̄. Then for an action of the form,

S =

∫
d4xAF(�̄)A. (G.0.2)

The equation of motion for A is given by

2F(�̄)A = 0. (G.0.3)

For the case when F(�̄) = �e−�̄, the equation of motion becomes,

Θ = η1 = 0. (G.0.4)
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Moreover, F(�̄) cannot be written in the form

F(�̄) = (�+m2
2)(�+m2

1)G1(�̄), (G.0.5)

where m2
1, m2

2 are arbitrarily chosen parameters and G1 has no roots. This is a

constraint, which can be written as follows:

Ξ2 = F(�̄)A− (�+m2
2)(�+m2

1)G1(�̄)A 6≈ 0. (G.0.6)

Moreover, we have the constraint

Ξ3 = F(�̄)A− (�+m2
3)(�+m2

2)(�+m2
1)G2(�̄)A 6≈ 0, (G.0.7)

where m2
1, m2

2, m2
3 are arbitrarily chosen parameters and G2 has no roots. This

goes on and on.

Regarding degrees of freedom and given that the constraints are first-class,

we have,

2A ≡ 2× {(A, pA), (η1, pη1), (η2, pη2), . . . } = 2× (2 +∞) = 4 +∞,

B = 0,

2C ≡ 2× (Θ,Ξ2,Ξ3, . . . ) = 2(1 +∞) = 2 +∞,

N =
1

2
(2A−B− 2C) =

1

2
(4 +∞− 2−∞) = 1, (G.0.8)

as expected.

A similar prescription can be applied in infinite derivative gravity. Now as

a final clarification we shall reparametrise these constraints (i.e. Θ,Ξ2,Ξ3, . . . ),

into σ’s. From (G.0.6) we have,

Ξ2 = F(�̄)A− (�+m2
2)(�+m2

1)R1(�̄)A ≈ 0, (G.0.9)
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where R1(�̄) has no roots and contains �−1 terms. Then

F(�̄)

R1(�̄)
A ≈ (�+m2

2)(�+m2
1)A = η2 + (m2

1 +m2
2)η1 +m2

1m
2
2A (G.0.10)

Redefining η2 and η1 appropriately, (G.0.10) can be written in the form η2−�η1 =

0. Similarly for Ξ3 and so on. Hence, the constraints are equivalent.
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Appendix H

Kij in the Coframe Metric

In this section we wish to use the approach of [140] and find the general definition

for Kij in the coframe metric. Given,

γαβγ = Γαβγ + gαδCε
δ(βgγ)ε −

1

2
Cα

βγ , (H.0.1)

dθα = −1

2
Cα

βγθ
β ∧ θγ , (H.0.2)

where Γ is the ordinary Christoffel symbol, ∧ is the ordinary wedge product and

the Cs are coefficients to be found. By comparing the values given in [140] with

the ordinary Christoffel symbols, we can see that

Ci
00 = C0

0i = C0
i0 = C0

00 = 0 ,

Ci
0k = Ci

k0 + 2∂kβ
i ,

Ci
jk = Ck

i
j + Cj

i
k , (H.0.3)
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Now in the coframe metric in Eq. (4.3.17),

g0δCε
δ(igj)ε ,

= − 1

N2

[
Cε

0(igj)ε
]
,

= − 1

2N2
[Cε

0igjε + Cε
0jgiε] ,

= − 1

2N2
[Cm

0igjm + Cm
0jgim] ,

= − 1

2N2
[Cj0i + Ci0j] (H.0.4)

and Cj0i = gαjC
α

0i = gjkC
k

0i. In the coframe and using the conventions in [140]

Kij = −∇inj =
1

2N

(
Diβj +Djβi − ḣij

)
, (H.0.5)

and

∂0hij = ∂thij − βl∂lhij . (H.0.6)

In general, for a p-form α and a q-form β,

α ∧ β = (−1)pqβ ∧ α , (H.0.7)

d(α ∧ β) = (dα) ∧ β + (−1)pα ∧ (dβ) . (H.0.8)

Hence, if p is odd,

α ∧ α = (−1)p
2

α ∧ α = −α ∧ α = 0 . (H.0.9)
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From Eq. (H.0.2) and Eq. (H.0.3) we can see that

dθ1 = −1

2
C1

βγθ
β ∧ θγ ,

= −1

2
C1

0iθ
0 ∧ θi − 1

2
C1

i0θ
i ∧ θ0 − 1

2
C1

ijθ
i ∧ θj ,

= −1

2

[
C1

i0 + 2∂iβ
1
]
θ0 ∧ θi +

1

2
C1

i0θ
0 ∧ θi +

1

2
C1

ijθ
j ∧ θi ,

= −
(
∂iβ

1
)
θ0 ∧ θi +

1

2
C1

ijθ
j ∧ θi . (H.0.10)

We get a similar result for dθ2 and dθ3, so we can say that

dθk = −
(
∂iβ

k
)
θ0 ∧ θi +

1

2
Ck

ijθ
j ∧ θi , (H.0.11)

where k = 1, 2, 3. Now from the definition of θ in Eq. (4.3.22),

dθ1 = d
(
dx1 + β1dt

)
= dβ1 ∧ dt , (H.0.12)

and

dθ0 = d(dt) = d2(t) = 0 ,

dθi = d
(
dxi + βidt

)
,

= d
(
dxi
)

+ d
(
βi ∧ dt

)
,

= d
(
βi ∧ dt

)
,

= dβi ∧ dt . (H.0.13)
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Let us point out that βidt = βi ∧ dt.

θ0 ∧ θi = dt ∧
(
dxi + βi ∧ dt

)
,

= dt ∧ dxi

θi ∧ θj =
(
dxi + βidt

)
∧
(
dxj + βjdt

)
,

= dxi ∧ dxj + dxi ∧
(
βjdt

)
+
(
βidt

)
∧ dxj +

(
βidt

)
∧
(
βj ∧ dt

)
,

= dxi ∧ dxj + dxi ∧ βj ∧ dt+ βi ∧ dt ∧ dxj ,

= dxi ∧ dxj + βj ∧ dxi ∧ dt− βi ∧ dxj ∧ dt . (H.0.14)

Now using Eq. (H.0.11) and Eq. (H.0.13),

dθk = dβk ∧ dt ,

=

(
∂βk

∂x1
dx1 +

∂βk

∂x2
dx2 +

∂βk

∂x3
dx3

)
∧ dt ,

= −
(
∂iβ

k
)
dt ∧ dxi − 1

2
Ck

ij

[
dxi ∧ dxj + βj ∧ dxi ∧ dt− βi ∧ dxj ∧ dt

]
,

(H.0.15)

where k = 1, 2, 3. From the definition of dθα in Eq. (H.0.2) and using the anti-

symmetric properties of the ∧ product from Eq. (H.0.9),

dθα = −1

2
Cα

βγθ
β ∧ θγ ,

= −1

2
Cα

γβθ
γ ∧ θβ ,

=
1

2
Cα

γβθ
β ∧ θγ , (H.0.16)

and therefore

Cα
βγ = −Cα

γβ , (H.0.17)
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we can then write

Cα
00 = Cα

11 = Cα
22 = Cα

33 = 0 ,

Cα
0i = −Cα

i0 . (H.0.18)

Combining Eq. (H.0.2), Eq. (H.0.13), Eq. (H.0.15) and utilising Eq. (H.0.17)

0 = dθ0 = −1

2
C0

βγθ
γ ∧ θβ ,

= −1

2
C0

0iθ
0 ∧ θi − 1

2
C0

i0θ
i ∧ θ0 − 1

2
C0

ijθ
i ∧ θj(for i 6= j) ,

= −C0
0iθ

0 ∧ θi − C0
ijθ

i ∧ θj(for i < j) ,

= −C0
01θ

0 ∧ θ1 −−C0
02θ

0 ∧ θ2 − C0
03θ

0 ∧ θ3 − C0
12θ

1 ∧ θ2 − C0
13θ

1 ∧ θ3

−C0
23θ

2 ∧ θ3 ,

= −C0
01dt ∧ dx1 − C0

02dt ∧ dx2 − C0
03dt ∧ dx3 ,

−C0
12

[
dx1 ∧ dx2 + β2dx1 ∧ dt− β1dx2 ∧ dt

]
,

−C0
13

[
dx1 ∧ dx3 + β3dx1 ∧ dt− β1dx3 ∧ dt

]
,

−C0
23

[
dx2 ∧ dx3 + β3dx2 ∧ dt− β2dx3 ∧ dt

]
. (H.0.19)

In order for this to be satisfied, each term must vanish separately as the dxα∧dxj

are linearly independent and so the coefficient of each must be zero and thus

C0
12 = C0

13 = C0
23 = C0

01 = C0
02 = C0

03 = 0 and thus C0
αβ = 0. Similarly

using Eqs. (H.0.2), (H.0.13), (H.0.15) and (H.0.17)

dβ1 ∧ dt =
∂β1

∂dx1
dx1 +

∂β1

∂dx2
dx2 +

∂β1

∂dx3
dx3 ,

= dθ1 = −C1
0iθ

0 ∧ θi − C1
ijθ

i ∧ θj ,

= −C1
01dt ∧ dx1 − C1

02dt ∧ dx2 − C1
03dt ∧ dx3 ,

−C1
12

[
dx1 ∧ dx2 + β2dx1 ∧ dt− β1dx2 ∧ dt

]
,

−C1
13

[
dx1 ∧ dx3 + β3dx1 ∧ dt− β1dx3 ∧ dt

]
,

−C1
23

[
dx2 ∧ dx3 + β3dx2 ∧ dt− β2dx3 ∧ dt

]
. (H.0.20)

Again, in order for this relation to be satisfied, C1
12 = C1

13 = C1
23 = 0 and
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C1
01 = ∂β1

∂x1 , C1
02 = ∂β1

∂x2 , C1
03 = ∂β1

∂x3 . We deduce that Cm
0i = ∂βm

∂xi
, Cm

ij = 0 and

C0
ij = 0. Using Eq. (H.0.2) and that in the coframe Γ0

ij = 1
2

1
N2 ∂̄0hij, we obtain

that

γ0
ij = − 1

2N2

(
hil∂j(β

l) + hjl∂i(β
l)− ∂̄0hij

)
. (H.0.21)

Since from Eq. (4.3.12)

Kij ≡ −∇inj = γµijnµ = −Nγ0
ij , (H.0.22)

Eq. (H.0.1) becomes

Kij =
1

2N
(hil∂j(β

l) + hjl∂i(β
l)− ∂̄0hij) . (H.0.23)
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Appendix I

3+1 Decompositions

I.1 Einstein-Hilbert term

We can write the Einstein-Hilbert term R as its auxiliary equivalent %. Then we

can use the completeness relation Eq. (4.3.9) to show that

% = gµρgνσ%µνρσ ,

= (hµρ − nµnρ) (hνσ − nνnσ) %µνρσ ,

= (hµρhνσ − nµnρhνσ − hµρnνnσ + nµnρnνnσ) %µνρσ ,

= (hµρhνσ − nµnρhνσ − hµρnνnσ) %µνρσ ,

= (ρ− 2Ω) , (I.1.1)

noting that the term with four nαs vanishes due to the antisymmetry of the

Riemann tensor in the first and last pair of indices (recall that %µνρσ has the same

symmetry properties as the Riemann tensor)
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I.2 Riemann Tensor

I.2 Riemann Tensor

In this section we wish to show the contraction of the rest of the terms in

Eq. (4.5.47) for the sake of completeness. We have, from hhhh,

hαµh
β
νh

γ
ρh

λ
σ%αβγλ

[
−(N−1∂̄0)2 +�hyp

]
%µνρσ

=
(
hiµe

α
i

) (
hjνe

β
j

) (
hkρe

γ
k

) (
hlσe

λ
l

)
%αβγλ

[
− (N−1∂̄0)2 +�hyp

]
%µνρσ

=
(
hiµ
) (
hjν
) (
hkρ
) (
hlσ
)
ρijkl

[
− (N−1∂̄0)2 +�hyp

]
%µνρσ

= −N−2
[(
hime

m
µ

) (
hjne

n
ν

) (
hkxe

x
ρ

) (
hlye

y
σ

)]
ρijkl

[
− (N−1∂̄0)2 +�hyp

]
%µνρσ

= −N−2ρijkl

{
∂̄2

0

(
ρijkl

)
−∂̄0

[
%µνρσ∂̄0

([(
hime

m
µ

) (
hjne

n
ν

) (
hkxe

x
ρ

) (
hlye

y
σ

)])]
−∂̄0

([(
hime

m
µ

) (
hjne

n
ν

) (
hkxe

x
ρ

) (
hlye

y
σ

)])
∂̄0 (%µνρσ)

}
+ρijkl

{
�hyp

[
ρijkl

]
−Da

(
Da
[
emµ e

n
νe
x
ρe
y
σ

]
himh

j
nh

k
xh

l
y%
µνρσ

)
−Da

[
emµ e

n
νe
x
ρe
y
σ

]
Da
(
himh

j
nh

k
xh

l
y%
µνρσ

)}
(I.2.2)

which produced ρijkl�ρijkl and the terms which are the results of Leibniz rule.

Next in Eq. (4.5.47) is,

hαµh
β
νh

γ
ρn

λnσ%αβγλ
(
−(N−1∂̄0)2 +�hyp

)
%µνρσ

=
(
hiµe

α
i

) (
hjνe

β
j

) (
hkρe

γ
k

)
nλnσ%αβγλ

(
−(N−1∂̄0)2 +�hyp

)
%µνρσ

=
(
hime

m
µ

) (
hjne

n
ν

) (
hkxe

x
ρ

)
nλnσ%ijkλ

(
−(N−1∂̄0)2 +�hyp

)
%µνρσ

=
(
hime

m
µ

) (
hjne

n
ν

) (
hkxe

x
ρ

)
nσρijk

(
−(N−1∂̄0)2 +�hyp

)
%µνρσ

= −N−2ρijk

{
∂̄2

0

(
ρijk
)

−∂̄0

[
%µνρσ∂̄0

([
hime

m
µ h

j
ne
n
νh

k
xe
x
ρnσ
])]
− ∂̄0

([
hime

m
µ h

j
ne
n
νh

k
xe
x
ρnσ
])
∂̄0 (%µνρσ)

}
+ρijk

{
�hyp

[
ρijk
]
−Da

(
Da
[
emµ e

n
νe
x
ρnσ
]
himh

j
nh

k
x%

µνρσ
)

−Da

[
emµ e

n
νe
x
ρnσ
]
Da
(
himh

j
nh

k
x%

µνρσ
)}

(I.2.3)
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I.3 Ricci Tensor

with ρijk ≡ nµρijkµ. Here we produced ρijk�ρijk and the extra terms which are

the results of the Leibniz rule. Similarly we can find the contractions for different

terms in Eq. (4.5.47).

I.3 Ricci Tensor

In similar way as we did in the Riemann case we can find all the other contractions

in the expansion of Eq. (4.5.54) which we omitted. They are:

hρσhµκhνλhγδ%ρµσν�%γκδλ

= (himeρi e
σ
m)(hjneµj e

κ
n)(hkxeνke

λ
x)(h

lyeγl e
δ
y)%ρµσν

(
−
(
N−1∂̄0

)2
+�hyp

)
%γκδλ

= (hjneκn)(hkxeλx)(h
lyeγl e

δ
y)ρjk

(
−
(
N−1∂̄0

)2
+�hyp

)
%γκδλ

= −N−2ρjk

{
∂̄2

0(ρjk)− ∂̄0(%γκδλ∂̄0[(hjneκn)(hkxeλx)(h
lyeγl e

δ
y)])

−∂̄0[(hjneκn)(hkxeλx)(h
lyeγl e

δ
y)]∂̄0%γκδλ

}
+ρjk

{
�hyp(ρ

jk)−Da(%γκδλD
a[(hjneκn)(hkxeλx)(h

lyeγl e
δ
y)])

−Da[(h
jneκn)(hkxeλx)(h

lyeγl e
δ
y)]D

a%γκδλ

}
(I.3.4)

with (hjneκn)(hkxeλx)(h
lyeγl e

δ
y)%γκδλ = ρjk. Above we produced ρjk�ρjk plus other

terms that are results of the Leibniz rule. And,

hρσnµnκhνλhγδ%ρµσν

(
−
(
N−1∂̄0

)2
+�hyp

)
%γκδλ

= (hijeρi e
σ
j )nµnκ(hkleνke

λ
l )(h

mneγme
δ
n)%ρµσν

(
−
(
N−1∂̄0

)2
+�hyp

)
%γκδλ

= nκ(hkleλl )(h
mneγme

δ
n)ρk

(
−
(
N−1∂̄0

)2
+�hyp

)
%γκδλ

= −N−2ρk

{
∂̄2

0(ρk)− ∂̄0

(
%γκδλ∂̄0[nκhkleλl h

mneγme
δ
n]
)
− ∂̄0[nκhkleλl h

mneγme
δ
n]∂̄0%γκδλ

}
+ρk

{
�hyp(ρ

k)−Da

(
%γκδλD

a[nκhkleλl h
mneγme

δ
n]
)
−Da[n

κhkleλl h
mneγme

δ
n]Da%γκδλ

}
(I.3.5)
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I.4 Generalisation from � to F(�)

where we used nµ%µk = ρk and nκhkleλl h
mneγme

δ
n%γκδλ = nκhkl%κl = ρk. We

produced ρk�ρk plus other terms that are results of the Leibniz rule. We may

also note that one can write, ρij ≡ hklρikjl, ρ ≡ hikhilρijkl and ρi ≡ hjkρjik.

I.4 Generalisation from � to F(�)

In Eq. (4.5.48) for �2, we have,

Ωij

[
hixe

x
µnνh

j
ye
y
ρnσ
]
�2%µνρσ

= Ωij

[
hixe

x
µnνh

j
ye
y
ρnσ
] (
−(N−1∂̄0)2 +�hyp

) (
−(N−1∂̄0)2 +�hyp

)
%µνρσ ,

= N−4Ωij

[
hixe

x
µnνh

j
ye
y
ρnσ
]
∂̄4

0%
µνρσ

−N−2Ωij

[
hixe

x
µnνh

j
ye
y
ρnσ
]
∂̄2

0DaD
a%µνρσ

+Ωij

[
hixe

x
µnνh

j
ye
y
ρnσ
]
DaD

a
[
−
(
N−1∂̄0

)2
]
%µνρσ

+Ωij

[
hixe

x
µnνh

j
ye
y
ρnσ
]
DaD

aDbD
a%µνρσ . (I.4.6)

As a general rule we can write,

XDDDDY = D (XDDDY )−D(X)DDD(Y ) ,

= D (D(XDD(Y ))−D(X)DD(Y ))−D(X)DDD(Y ) ,

= DD(XDD(Y ))−D(D(X)DD(Y ))−D(X)DDD(Y ) ,

= DD (D(XD(Y ))−D(X)D(Y ))−D(D(X)DD(Y ))−D(X)DDD(Y ) ,

= DDD(XD(Y ))−DD(D(X)D(Y ))−D(D(X)DD(Y ))−D(X)DDD(Y ) ,

= DDD (D(XY )−D(X)Y )−DD(D(X)D(Y ))−D(D(X)DD(Y ))

−D(X)DDD(Y ) ,

= DDDD(XY )−DDD(D(X)Y )−DD(D(X)D(Y )) ,

−D(D(X)DD(Y ))−D(X)DDD(Y ) , (I.4.7)
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I.4 Generalisation from � to F(�)

where X and Y are some tensors and D is some operator. Applying this we can

write,

N−4Ωij

[
hixe

x
µnνh

j
ye
y
ρnσ
]
∂̄4

0%
µνρσ

= N−4Ωij{∂̄4
0(Ωij)− ∂̄4

0

[
hixe

x
µnνh

j
ye
y
ρnσ
]
%µνρσ − ∂̄3

0

[
hixe

x
µnνh

j
ye
y
ρnσ
]
∂̄0%

µνρσ

−∂̄2
0

[
hixe

x
µnνh

j
ye
y
ρnσ
]
∂̄2

0%
µνρσ − ∂̄0

[
hixe

x
µnνh

j
ye
y
ρnσ
]
∂̄3

0%
µνρσ}+ · · · , (I.4.8)

where we dropped the irrelevant terms. We moreover can generalise the result of

(I.4.7) and write,

XD2nY = D2n(XY )−D2n−1(D(X)Y )−D2n−2(D(X)D(Y )) ,

−D2n−3(D(X)D2(Y ))− · · · −D(D(X)D2n−2(Y ))−D(X)D2n−1(Y ) .

(I.4.9)
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Appendix J

Functional Differentiation

Given the constraint equation

2Ψij +
δf

δΩij

= 0, (J.0.1)

suppose that f = ΩF(�)Ω and F(�) =
∑∞

n=0 fn�
n, where the coefficients fn are

massless 1. Then, using the generalised Euler-Lagrange equations, we have in the

1Recall that the � term comes with an associated scale �/M2.
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coframe (and imposing the condition that δΩij = 0 on the boundary ∂M)

δf

δΩij

=
∂f

∂Ωij

−∇µ

(
∂f

∂(∇µΩij)

)
+∇µ∇ν

(
∂f

∂(∇µ∇νΩij)

)
+ · · ·

=
∂f

∂Ωij

+�

(
∂f

∂(�Ωij)

)
+�2

(
∂f

∂(�2Ωij)

)
+ · · ·

=
∂f

∂Ωij

+
∞∑
n=1

�n
(

∂f

∂(�nΩij)

)
= f0

∂(Ω2)

∂Ωij

+ f1
∂(Ω�Ω)

∂Ωij

+ f1�

(
∂(Ω�Ω)

∂(�Ωij)

)
+ f2�

2

(
∂Ω�2Ω

∂(�2Ωij)

)
+ · · ·

= 2f0h
ijΩ + f1h

ij�Ω + f1�(hijΩ) + · · ·

= 2f0h
ijΩ + f1

[
hij�Ω + (�Ω)hij

]
+ · · ·

= 2f0h
ijΩ + 2f1h

ij�Ω + · · ·

= 2hij (f0 + f1�+ · · · ) Ω

= 2hijF(�)Ω , (J.0.2)

where we have used that �gij = �hij = 0. Note also that:

f1�

(
∂(Ω�Ω)

∂(�Ωij)

)
= f1�

(∂(Ω�[hmnΩmn])

∂(�Ωij)

)
. (J.0.3)

So we can summarise the results and write,

δ(Ω�Ω)

δΩij

=
∂(Ω�Ω)

∂Ωij

+�

(
∂(Ω�Ω)

∂(�Ωij)

)
= hij�Ω +�(hijΩ) =

[
hij�Ω +�Ωhij

]
= 2hij�Ω . (J.0.4)

δ(Ωij�Ωij)

δΩij

=
∂(Ωij�Ωij)

∂Ωij

+�

(
∂(Ωij�Ωij)

∂(�Ωij)

)
= �Ωij +�Ωij = 2�Ωij . (J.0.5)
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δ(ρ�Ω)

δΩij

= �

(
∂(ρ�Ω)

∂(�Ωij)

)
= �(ρhij) = hij�ρ . (J.0.6)

δ(ρij�Ωij)

δΩij

= �

(
∂(ρij�Ωij)

∂(�Ωij)

)
= �ρij . (J.0.7)

δ(Ω�ρ)

δΩij

=
∂(Ω�ρ)

∂Ωij

= hij�ρ . (J.0.8)

δ(Ωij�ρij)
δΩij

=
∂(Ωij�ρij)

∂Ωij

= �ρij . (J.0.9)

and generalise this to:

δ
(
ΩF(�)Ω

)
δΩij

= 2hijF(�)Ω,
δ
(
ΩijF(�)Ωij

)
δΩij

= 2F(�)Ωij , (J.0.10)

δ
(
ρF(�)Ω

)
δΩij

= hijF(�)ρ,
δ
(
ρijF(�)Ωij

)
δΩij

= F(�)ρij , (J.0.11)

δ
(
ΩF(�)ρ

)
δΩij

= hijF(�)ρ,
δ
(
ΩijF(�)ρij

)
δΩij

= F(�)ρij . (J.0.12)
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Appendix K

Riemann tensor components in

ADM gravity

Using the method of [145], we can find the Riemann tensor components. The

Christoffel symbols for the ADM metric in Eq. (4.3.8) are

Γij0 = Γi0j = −NKij +Djβi

Γijk = (3)Γijk

Γ0
00 =

1

N

(
Ṅ + βi∂iN − βiβjKij

)
Γ0

0i = Γ0
i0 =

1

N

(
∂iN − βjKij

)
Γi0j = Γij0 = −β

i∂jN

N
−N

(
hik − βiβk

N2

)
Kkj +Djβ

i

Γ0
ij = − 1

N
Kij

Γijk = (3)Γijk +
βi

N
Kjk (K.0.1)

where Kij is the extrinsic curvature given by (4.3.12) and in the ADM metric,

N is the lapse, βi is the shift and hij is the induced metric on the hypersurface.
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Now we can find the Riemann tensor components

Rijkl = giρ∂kΓ
ρ
lj − giρ∂lΓ

ρ
kj + ΓikρΓ

ρ
lj − ΓilρΓ

ρ
kj

= −βi∂k
(

1

N
Kjl

)
+ him∂k

(
(3)Γmjl +

βm

N
Kjl

)
− 1

N
Kjl (−NKik +Dkβi)

+(3)Γikm

(
(3)Γmlj +

βm

N
Klj

)
− (k ↔ l)

= Rijkl +KikKjl −KilKjk

(K.0.2)

where Rijkl is the Riemann tensor of the induced metric on the hypersurface.

Then

nµR
µ
ijk = −N

(
∂jΓ

0
ki + Γ0

jρΓ
ρ
ki

)
− (j ↔ k)

= ∂jKki + (3)ΓmkiKjm − (j ↔ k)

= DjKki −DkKji (K.0.3)

Relabelling the indices, we obtain that

nµRijkµ = DjKki −DiKjk (K.0.4)

Finally, we have that

nµR
µ
i0j = nµ

(
∂0Γµji − ∂jΓ

µ
0i + Γµ0ρΓ

ρ
ji − ΓµjρΓ

ρ
0i

)
= K̇ij +DiDjN +NKi

kKkj −Dj

(
Kikβ

k
)
−KkjDiβ

k (K.0.5)
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K.1 Coframe

Hence

nµnνRµiνj = n0nµRµi0j + nknµRµikj

=
1

N

(
K̇ij +DiDjN +NKi

kKkj −Dj

(
Kikβ

k
)
−KkjDiβ

k
)

+
βk

N2
(DjKki −DkKji)

=
1

N

(
K̇ij +DiDjN +NKi

kKkj −£βKij

)
(K.0.6)

where £βKij ≡ βkDkKij +KikDjβ
k +KjkDiβ

k. Therefore overall, we have

Rijkl ≡ KikKjl −KilKjk +Rijkl , (K.0.7)

Rijkn ≡ nµRijkµ = DjKik −DiKjk , (K.0.8)

Rinjn ≡ nµnνRiµjν = N−1
(
∂tKij −£βKij

)
+KikK

k
j +N−1DiDjN ,

(K.0.9)

K.1 Coframe

Since in the coframe slicing Eq. (4.3.17) we have g0i = g0i = 0, therefore from

ni = ni = 0 . Then the Christoffel symbols become 1

Γ0
00 =

1

2
g0µ
(
∂̄0gµ0 + ∂̄0g0µ − ∂µg00

)
=

1

2
g00∂0g00 =

1

2

(
− 1

N2

)
∂0

(
−N2

)
=

∂0N

N
, (K.1.10)

1In the coframe slicing when we write ∂µ we mean that ∂µ is ∂̄0 when µ = 0 and ∂µ is ∂i
when µ = i.
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K.1 Coframe

Γ0
0i = Γ0

i0 =
1

2
g0µ
(
∂̄0gµi + ∂igµ0 − ∂µgi0

)
=

1

2
g00∂ig00 =

1

2

(
−1

N2

)
∂i
(
−N2

)
(K.1.11)

=
∂iN

N
,

Γi00 =
1

2
giµ
(
∂̄0gµ0 + ∂̄0gµ0 − ∂µg00

)
= −1

2
gij∂jg00 = −1

2
hij∂j

(
−N2

)
= Nhij∂jN, (K.1.12)

Γij0 =
1

2
giµ
(
∂̄0gµj + ∂jgµ0 − ∂µgj0

)
(K.1.13)

=
1

2
gik
(
∂̄0gkj

)
=

1

2
hik∂̄0hjk, (K.1.14)

Γ0
ij =

1

2
g0µ (∂jgµi + ∂igµj − ∂µgij)

= −1

2
g00∂̄0gij = −1

2

(
−1

N2

)
∂̄0hij

=
1

2

1

N2
∂̄0hij, (K.1.15)

Γijk =
1

2
giµ (∂jgµk + ∂kgµj − ∂µgkj)

=
1

2
hil (∂jhlk + ∂khlj − ∂lhjk) . (K.1.16)
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K.1 Coframe

To summarise

Γ0
00 =

∂0N

N
, Γ0

0i =
∂iN

N
,

Γi00 = Nhij∂jN, Γij0 =
1

2
hik∂̄0hjk,

Γ0
ij =

1

2

1

N2
∂̄0hij, Γijk =

1

2
hil (∂jhlk + ∂khlj − ∂lhjk) . (K.1.17)

Then using Eq. (4.3.21) and Eq. (4.3.22), we can find the γµνρs, the analogues of

the Christoffel symbols in the coframe.

γijk = Γijk, γi0k = −NKi
k, γij0 = −NK i

k + ∂jβ
i, γ0

ij = −N−1Kij,

γi00 = N∂iN, γ0
0i = γ0

i0 = ∂i logN, γ0
00 = ∂0 logN (K.1.18)

Then using the same method as in Eq. (K.0.2),

Rijkl = giρ∂kγ
ρ
lj − giρ∂lγ

ρ
kj + γikργ

ρ
lj − γilργ

ρ
kj

= Rijkl +KikKjl −KilKjk (K.1.19)

Next

R0ijk = −N2
(
∂jγ

0
ki + γ0

jργ
ρ
ki

)
− (j ↔ k)

= N (DjKki −DkKji) (K.1.20)

Finally we have that in the coframe,

R0i0j = −N2
(
∂̄0γ

0
ji − ∂jγ0

0i + γ0
0ργ

ρ
ji − γ0

jργ
ρ
0i

)
= N

(
∂̄0Kij +NKi

kKkj +DiDjN
)

(K.1.21)
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K.1 Coframe

Hence the non-vanishing components of the Riemann tensor in the coframe,

namely the Gauss, Codazzi and Ricci tensor, become:

Rijkl = KikKjl −KilKjk +Rijkl ,

R0ijk = N(DjKki −DkKji) ,

R0i0j = N(∂̄0Kij +NKikK
k
j +DiDjN ), (K.1.22)

where Kij is the extrinsic curvature of the hypersurface, given in the coframe

by Eq. (4.3.30) and Rijkl is the Riemann tensor of the induced metric on the

hypersurface.
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Appendix L

Entropy and functional

differentiation

For the scalar curvature which corresponds to the Einstein-Hilbert term we have,

δR

δRµνρσ

=
δ(gβξgαγRαβγξ)

δRµνρσ

= gβξgαγδ
[µ
[αδ

ν]
β]δ

[ρ
[γδ

σ]
ξ]

= gβξgαγδ[µ
α δ

ν]
β δ

[ρ
γ δ

σ]
ξ

= gρ[µgν]σ. (L.0.1)

The next term we shall consider is RF (�)R, to do so we shall use the generalised

Euler-Lagrange equation given in (5.2.24),

δ(RF (�)R)

δRµνρσ

= f0
∂(R2)

∂Rµνρσ

+ f1
∂(R�R)

∂Rµνρσ

+ f1�
∂(R�R)

∂(�Rµνρσ)
+ f2�

2 ∂(R�2R)

∂(�2Rµνρσ)
+ · · · , (L.0.2)
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where · · · are the terms up to infinity. Term by term we have,

f0
∂(R2)

∂Rµνρσ

= f0
∂(gβξgαγgbdgacRαβγξRabcd)

∂Rµνρσ

= gβξgαγgbdgacδ
[µ
[αδ

ν]
β]δ

[ρ
[γδ

σ]
ξ]Rabcd

+ gβξgαγgbdgacδ
[µ
[aδ

ν]
b] δ

[ρ
[c δ

σ]
d]Rαβγξ

= 2gρ[µgν]σR, (L.0.3)

f1
∂(R�R)

∂Rµνρσ

= f1
∂(gacgbdRabcd�R)

∂Rµνρσ

= f1g
acgbdδ[µ

a δ
ν]
b δ

[ρ
c δ

σ]
d �R

= f1g
ρ[µgν]σ�R, (L.0.4)

f1�
∂(R�R)

∂(�Rµνρσ)
= f1�

∂(gacgbdR�Rabcd)

∂(�Rµνρσ)

= f1�(gacgbdδ[µ
a δ

ν]
b δ

[ρ
c δ

σ]
d R)

= f1g
ρ[µgν]σ�R. (L.0.5)

Thus, we can summarise as,

δ(RF (�)R)

δRµνρσ

= 2gρ[µgν]σR + f1g
ρ[µgν]σ�R + f1g

ρ[µgν]σ�R + · · ·

= 2gρ[µgν]σ(f0 + f1�+ f2�
2 + · · · )R = 2gρ[µgν]σF (�)R.

(L.0.6)

In similar manner we shall consider the next term,

δ(RαβF (�)Rαβ)

δRµνρσ

= f0
∂(RαβR

αβ)

∂Rµνρσ

+ f1
∂(Rαβ�Rαβ)

∂Rµνρσ

+ f1�
∂(Rαβ�Rαβ)

∂(�Rµνρσ)
+ f2�

2∂(Rαβ�2Rαβ)

∂(�2Rµνρσ)
+ · · · ,

(L.0.7)
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again, term by term we have:

f0
∂(RαβR

αβ)

∂Rµνρσ

= f0
∂(gηζgγλgακgβωRηαζβRγκλω)

∂Rµνρσ

= f0g
ηζgγλgακgβωδ

[µ
[η δ

ν]
α]δ

[ρ
[ζ δ

σ]
β]Rγκλω

+ f0g
ηζgγλgακgβωδ

[µ
[γ δ

ν]
κ]δ

[ρ
[λδ

σ]
ω]Rηαζβ

= 2f0g
ηζgακgβωδ[µ

η δ
ν]
α δ

[ρ
ζ δ

σ]
β Rκω

= 2f0g
κ[νgµ][ρgσ]ωRκω, (L.0.8)

f1
∂(Rαβ�Rαβ)

∂Rµνρσ

= f1
∂(gηζgγλgακgβωRηαζβ�Rγκλω)

∂Rµνρσ

= f1
∂(gηζgακgβωRηαζβ�Rκω)

∂Rµνρσ

= f1g
ηζgακgβωδ[µ

η δ
ν]
α δ

[ρ
ζ δ

σ]
β �Rκω

= f1g
κ[νgµ][ρgσ]ω�Rκω, (L.0.9)

f1�
∂(Rαβ�Rαβ)

∂(�Rµνρσ)
= f1�

∂(gηζgγλgακgβωRηαζβ�Rγκλω)

∂(�Rµνρσ)

= f1�(gγλgακgβωδ[µ
γ δ

ν]
κ δ

[ρ
λ δ

σ]
ω Rαβ)

= f1�(gα[νgµ][ρgσ]αβRαβ), (L.0.10)

thus:

δ(RαβF (�)Rαβ)

δRµνρσ

= 2f0g
κ[νgµ][ρgσ]ωRκω + 2f1g

κ[νgµ][ρgσ]ω�Rκω + · · ·

= 2gκ[νgµ][ρgσ]ω(f0 + f1�+ f2�
2 + · · · )Rκω

= 2gκ[νgµ][ρgσ]ωF (�)Rκω. (L.0.11)
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Finally we can consider the Riemann tensor contribution,

δ(RαβγηF (�)Rαβγη)

δRµνρσ

= f0
∂(RαβγηR

αβγη)

∂Rµνρσ

+ f1
∂(Rαβγη�Rαβγη)

∂Rµνρσ

+ f1�
∂(Rαβγη�Rαβγη)

∂(�Rµνρσ)
+ f2�

2∂(Rαβγη�2Rαβγη)

∂(�2Rµνρσ)
+ · · · ,

(L.0.12)

as before, we consider the leading order terms and then generalise the results:

f0
∂(RαβγηR

αβγη)

∂Rµνρσ

= f0
∂(gαξgβλgγκgηωRαβγηRξλκω)

∂Rµνρσ

= f0g
αξgβλgγκgηωδ

[µ
[αδ

ν]
β]δ

[ρ
[γδ

σ]
η]Rξλκω

+ f0g
αξgβλgγκgηωδ

[µ
[ξ δ

ν]
λ]δ

[ρ
[κδ

σ]
ω]Rαβγη

= 2f0δ
[µ
α δ

ν]
β δ

[ρ
γ δ

σ]
η R

αβγη = 2f0R
µνρσ, (L.0.13)

f1
∂(Rαβγη�Rαβγη)

∂Rµνρσ

= f1δ
[µ
α δ

ν]
β δ

[ρ
γ δ

σ]
η �R

αβγη = f1�R
µνρσ, (L.0.14)

f1�
∂(Rαβγη�Rαβγη)

∂(�Rµνρσ)
= f1�

∂(gαξgβλgγκgηωRαβγη�Rξλκω)

∂(�Rµνρσ)

= f1�
∂(Rξλκω�Rξλκω)

∂(�Rµνρσ)

= f1�(δ
[µ
ξ δ

ν]
λ δ

[ρ
κ δ

σ]
ω R

ξλκω) = f1�R
µνρσ. (L.0.15)

We can conclude that,

δ(RαβγηF (�)Rαβγη)

δRµνρσ

= 2f0R
µνρσ + f1�R

µνρσ + f1�R
µνρσ + · · ·

= 2(f0 + f1�+ f2�
2 + · · · )Rµνρσ = 2F (�)Rµνρσ.

(L.0.16)
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Appendix M

Conserved current for

Einstein-Hilbert gravity

Given the EH action to be of the form,

SEH =
M2

P

2

∫
d4x
√
−gR. (M.0.1)

we can imply the variation principle infinitesimally by writing,

δξSEH =
M2

P

2

∫
d4xδξ(

√
gR) =

M2
P

2

∫
d4x
√
g
(
Gµνδξg

µν + gµνδξ(Rµν)
)

=
M2

P

2

∫
d4x
√
g∇α(ξαR) = 0, (M.0.2)

where Gµν is the Einstein tensor and given by Gµν = Rµν − 1
2
gµνR. The term

involving the Einstein tensor can be expanded further as,

Gµνδξg
µν = Gµν(∇µξν +∇νξµ) = 2Gµν∇µξν = ∇µ(−2Rµ

ν + δµνR)ξν , (M.0.3)
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where we used Eq. (5.3.89) and performed integration by parts. Then we move

on to the next term and expand it as,

gµνδξRµν = (∇µ∇ν − gµν�)δξgµν = ∇λ

(
(gλαgνβ − gλνgαβ)∇ν(∇αξβ +∇βξα)

)
,

(M.0.4)

by substituting Eq’s. (M.0.3) and (M.0.4) into (M.0.2) we obtain,

δξSEH =
M2

P

2

∫
d4x
√
−g∇µ

(
− 2Rµ

νξ
ν + (gµαgνβ − gµνgαβ)∇ν(∇αξβ +∇βξα)

)
= 0,

(M.0.5)

and hence for any vector field ξµ one obtains the conserved Nöether current,

Jµ(ξ) = Rµ
νξ

ν +
1

2
(gµαgνβ − gµνgαβ)∇ν(∇αξβ +∇βξα) ≡ ∇ν(∇[µξν]). (M.0.6)
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Appendix N

Generalised Komar current

It can be shown that the Nöether current that was obtained in Eq. (M.0.6) is

identical to generalised Komar current via

Jµ(ξ) =
1

2
∇ν(∇µξν −∇νξµ) = ∇ν∇µξν − 1

2
∇ν(∇νξµ +∇µξν)

= [∇ν ,∇µ]ξν +∇µ(∇νξ
ν)− 1

2
∇ν(∇νξµ +∇µξν)

= Rµ
νξ

ν +
1

2
(gµαgνβ − gµνgαβ)∇ν(∇αξβ +∇νξβ), (N.0.1)

where we used: [∇ν ,∇µ]ξν = Rµ
λµνξ

λ = Rλνξ
λ.
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Appendix O

Komar integrals in

Boyer-Linquist coordinate

In Boyer-Linquist coordinate the kerr metric is given by,

gµν =



2Mr
r2+a2 cos2(θ) − 1 0 0 − 2aMr sin2(θ)

r2+a2 cos2(θ)

0 r2+a2 cos2(θ)
a2+r2−2Mr 0 0

0 0 r2 + a2 cos2(θ) 0

− 2aMr sin2(θ)
r2+a2 cos2(θ) 0 0

sin2(θ)
(
(a2+r2)

2−a2(a2+r2−2Mr) sin2(θ)
)

r2+a2 cos2(θ)


(O.0.1)

Given,

n1 = (1, 0, 0, 0), n2 = (0, 1, 0, 0). (O.0.2)

the only surviving components of normal vectors would be,

n1
[αn

2
β] = n1

[tn
2
r] =

1

2
(n1

tn
2
r − n1

rn
2
t ) =

1

2
, (O.0.3)

n1
[αn

2
β] = n1

[rn
2
t] =

1

2
(n1

rn
2
t − n1

tn
2
r) = −1

2
. (O.0.4)
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We now want to calculate the Komar integrals:

M = − 1

8π

∮
H

∇αtβdsαβ, (O.0.5)

lets us take:

∇αtβdsαβ =
√
−g∇αtβn1

[αn
2
β]dθdφ

=
√
−g(gαλ∇λt

β)n1
[αn

2
β]dθdφ

=
√
−ggαλ(∂λtβ + Γβλρt

ρ)n1
[αn

2
β]dθdφ

=
√
−ggαλΓβλρt

ρn1
[αn

2
β]dθdφ

=
√
−g
(
gtλΓrλtn

1
[tn

2
r] + grλΓtλtn

1
[rn

2
t]

)
dθdφ

=
1

2

√
−g
(
gtλΓrλt − grλΓtλt

)
dθdφ

=
1

2

√
−g
(
gttΓrtt + gtφΓrφt − grrΓtrt

)
dθdφ.

(O.0.6)

We have:

gttΓrtt + gtφΓrφt − grrΓtrt =
8m (a2 + r2) (a2 cos(2θ) + a2 − 2r2)

(a2 cos(2θ) + a2 + 2r2)3 , (O.0.7)

√
−g =

1

2
sin(θ)

(
a2 cos(2θ) + a2 + 2r2

)
. (O.0.8)

Thus,

M = − 1

8π

∮
H

∇αtβdsαβ

= − 1

8π

∫ 2π

0

dφ

∫ π

0

dθ(
1

2
sin(θ)

(
a2 cos(2θ) + a2 + 2r2

) 8m (a2 + r2) (a2 cos(2θ) + a2 − 2r2)

(a2 cos(2θ) + a2 + 2r2)3

)
= m.

(O.0.9)
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Now let us look at the angular momentum:

J =
1

16π

∮
H

∇αφβdsαβ, (O.0.10)

∇αφβdsαβ =
√
−g∇αφβn1

[αn
2
β]dθdφ

=
√
−g(gαλ∇λφ

β)n1
[αn

2
β]dθdφ

=
√
−ggαλ(∂λφβ + Γβλρφ

ρ)n1
[αn

2
β]dθdφ

=
√
−ggαλΓβλρφ

ρn1
[αn

2
β]dθdφ

=
√
−g
(
gtλΓrλφn

1
[tn

2
r] + grλΓtλφn

1
[rn

2
t]

)
dθdφ

=
1

2

√
−g
(
gtλΓrλφ − grλΓtλφ

)
dθdφ

=
1

2

√
−g
(
gttΓrtφ + gtφΓrφφ − grrΓtrφ

)
dθdφ, (O.0.11)

we have:

gttΓrtφ + gtφΓrφφ − grrΓtrφ

= −8am sin2(θ) (a4 − 3a2r2 + a2(a− r)(a+ r) cos(2θ)− 6r4)

(a2 cos(2θ) + a2 + 2r2)3 .

(O.0.12)

Hence,

J =
1

16π

∮
H

∇αφβdsαβ

=
1

16π

∫ 2π

0

dφ

∫ π

0

dθ(
1

2
sin(θ)

(
a2 cos(2θ) + a2 + 2r2

)
× −8am sin2(θ) (a4 − 3a2r2 + a2(a− r)(a+ r) cos(2θ)− 6r4)

(a2 cos(2θ) + a2 + 2r2)3

)
= ma.

(O.0.13)
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Note: ξα = tα + ΩHφ
α.

192



Appendix P

f (R) gravity conserved current

Variation of the f(R) action given in (5.3.110) would follow as,

δξI =

∫
d4xδξ

(√
−gf(R)

)
=

∫
d4xδξ

(
δξ(
√
−g)f(R) +

√
−gδξ(f(R))

)
=

∫
d4x
√
−g
(

[f ′(R)Rµν −
1

2
gµνf(R)]δξg

µν + f ′(R)gµνδξ(Rµν)
)

=

∫
d4x
√
−g∇α

(
ξαf(R)

)
. (P.0.1)

Now let Gµν = f ′(R)Rµν − 1
2
gµνf(R), then:

Gµνδξg
µν = Gµν£ξg

µν = Gµν(∇µξν +∇νξµ) = 2Gµν∇µξν

= −2∇µG
µνξν = −2∇µG

µ
νξ

ν = ∇µ(−2f ′(R)Rµ
ν + δµν f(R)R)ξν .

(P.0.2)
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And,

f ′(R)gµνδξRµν = f ′(R)(∇λ(g
µνδξΓ

λ
µν)−∇ν(g

µνδξΓ
λ
λµ))

= f ′(R)∇λ

(
gµνδξΓ

λ
µν − gµλδξΓννµ

)
= f ′(R)(∇µ∇ν − gµν�)δξgµν

= f ′(R)(gµαgνβ − gµνgαβ)∇µ∇νδξgαβ

= f ′(R)∇λ

(
(gλαgνβ − gλνgαβ)∇νδξgαβ

)
= f ′(R)∇λ

(
(gλαgνβ − gλνgαβ)∇ν(∇αξβ +∇βξα)

)
.

(P.0.3)

Thus,

δξI =

∫
d4x
√
g
(
Gµνδξg

µν + gµνδξ(Rµν)
)

=

∫
d4x
√
g
(
∇µ(−2f ′(R)Rµ

νξ
ν + δµν f(R)Rξν)

+ f ′(R)∇µ

(
(gµαgνβ − gµνgαβ)∇ν(∇αξβ +∇βξα)

))
=

∫
d4x
√
g∇α(ξαf(R)) = 0. (P.0.4)

Which reduces to

δξIEH =

∫
d4x
√
g∇µ

(
− 2f ′(R)Rµ

νξ
ν + f ′(R)(gµαgνβ − gµνgαβ)∇ν(∇αξβ +∇βξα)

)
= 0.

(P.0.5)

Thus the conserved Noether current is:

Jµ(ξ) = f ′(R)Rµ
νξ

ν+
1

2
f ′(R)(gµαgνβ−gµνgαβ)∇ν(∇αξβ+∇βξα) = f ′(R)∇ν(∇[µξν]).

(P.0.6)
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Moreover,

Jµ(ξ) =
1

2
f ′(R)∇ν(∇µξν −∇νξµ) = f ′(R)∇ν∇µξν − 1

2
f ′(R)∇ν(∇νξµ +∇µξν)

= f ′(R)[∇ν ,∇µ]ξν + f ′(R)∇µ(∇νξ
ν)− 1

2
f ′(R)∇ν(∇νξµ +∇µξν)

= f ′(R)Rµ
νξ

ν +
1

2
f ′(R)(gµαgνβ − gµνgαβ)∇ν(∇αξβ +∇νξβ). (P.0.7)

Now the Komar Integrals modified by,

M = −f
′(R)

8π

∮
H

∇αtαdsαβ = f ′(R)m, (P.0.8)

J =
f ′(R)

16π

∮
H

∇αφαdsαβ = f ′(R)ma. (P.0.9)

As appeared in (5.3.113) and (5.3.114).
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