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Abstract 

Fibre-reinforced composites have many outstanding advantages that attract 

commercial industries to use them such as, automotive industry, aerospace industry, 

marine industry, wind turbines, and sports goods. Fibre-reinforced composites 

characterised as a high strength/stiffness to weight ratio comparing with natural metals 

resulting in very lightweight structures which in turn reduce fuel consumed by aircraft, 

for instance. They also provide an excellent resistance to, corrosion, fatigue stress, 

impact force and chemical attack. The main concern in use of these materials is the 

complexity of damages that are taken place in different scale lengths starting from 

micro-scale level. With the development of computer power, however, the door is 

opened to enhance concepts such as a multi-scale analysis that can bridge micro-

scale to macro-scale. The new tools provide excellent substitutes of the costly and 

time-consuming experimental tests.   

In this thesis, Discrete Element Method (DEM) is developed for micromechanical 

modelling of fibre-reinforced composites. In Chapter 2, a new method is proposed for 

generating random fibre distribution. Unlike prior methods that have proposed, this 

method can be used to generate a high fibre volume fraction with any inter-fibres 

distance.  

The new method is then applied throughout the thesis. In Chapter 3, a 

Representative Volume Element (RVE) containing fibres distributed randomly 

subjected to uniaxial transverse tension is studied. The DEM is showed to a genuine 

tool to investigate damage propagation in fibre-reinforced composites.  

  Chapter 4 is dedicated to determining the elastic properties of the fibre-

reinforced composite using DEM. The results are then compared with selected 

analytical methods, namely Voigt and Mori-Tanaka methods, other numerical method 

such as Finite Element Method (FEM), and experimental results.  

The methodology developed in previous chapters are then adopted in Chapter 5 

to study the failure of fibre-reinforced composite under uniaxial compression, 
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transverse shear and biaxial transverse loads. Results are compared with experiments 

and analytical method such as Hashin and Puck models. 
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Chapter 1 

 

1. Literature Review 
1.1 Background 

Composite materials are defined as a material that are created by assembling 

two or more different materials, and each one has its mechanical and chemical 

identities that differs from other. Therefore, the term ‘composite material’ is label used 

for many materials, such as fibre-reinforced polymers FRPs, fibre-reinforced metals, 

concrete, mortar etc. 

Fibre reinforced composite materials are constituted from fibres of a high 

strength and stiffness that are embedded in a matrix with distinct boundaries that 

remain separated in the microstructure. The new-born material has highly specific 

mechanical properties that are normally not available in natural materials and are 

superior to those of the individual constituents. Its properties result from the nature 

and properties of the component materials, their geometry and distributions, and the 

interactions between them. FRPs are extensively used and can be classified into four 

categories according to the matrix type used to build them. These categories are 

polymer matrix composites, metal matrix composites, ceramic matrix composites and 

carbon matrix composites. Fibre-reinforced composites are also classified according 

to the arrangement of the fibres within the matrix; i.e. continuous or discontinuous. For 

high-strength applications, a laminate is made by assembling thin plies of 

unidirectional fibres or woven fibres in a matrix. Two typical plies (or lamina) with their 

fundamental material axes in line with the predefined co-ordinate system are shown 

in Figure 1.1a and b. Each ply is arranged so that the fibres in the ply follow some 

prescribed direction, which is usually called ply orientation, to fulfil the design 

requirements.  



 

5 

 

 

Figure 1.1: Two typical types of lamina. (a) Unidirectional lamina. (b) Woven 
lamina. (c) Laminate. 

The strength and stiffness of a single ply are higher in the longitudinal direction (along 

the fibre direction) compared to other directions. A group of lamina with different fibre 

orientations are bonded together in one stack to build a laminate, as shown in Figure 

1.1c. These plies are normally bonded together by the same matrix material that is 

used for an individual ply.   

Due to the outstanding mechanical properties of FRP composites, they are 

widely used nowadays to build the structures of airplanes and in the automotive 

industry. FRPs have a higher strength and stiffness, and a lower weight compared 

with conventional materials. Thus, using these materials to manufacture the structure 
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(c) 
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components of aircrafts will allow fuel to be saved and extend the range of flying. A 

noticeable example of using composite materials can be found in the Boeing 787 

aircraft. This aircraft is manufactured mainly from composite materials, which are used 

for the fuselage, wings and tail surfaces. It is also known that the Boeing 777 contains 

only 12% composites and 50% aluminium. Excellent tools are available nowadays for 

engineers to predict the stress state throughout the structures when material 

behaviour is linearly elastic. However, predicting the final failure of composite 

materials is quite difficult as it results from many damage modes that take place in 

different length scales.  

Due to the failure complexity of FRPs, it is important to track failures at different 

scales and to couple these scales. The methodology used in the past to tackle failures 

in the FRPs was based on performing a numerical analysis of the whole structure 

(usually using finite element method) to detect the critical regions in which damage is 

possibly to take place. This method, therefore, passes information from higher to lower 

scales and is called top-bottom (also known as global-to-local) analysis. Then, these 

regions were subjected to extra refined analyses, and non-linear constitutive equations 

based on phenomenological models for the composite behaviour were used to predict 

the material behaviour until final failure. While this methodology has been used 

successfully in industries and has proved to be useful from the engineering point of 

view, it has many critical limitations. Firstly, this strategy requires a wide range, and 

costly experimental tests are required to reproduce parameters involved in the models 

used in the critical regions. Secondly, optimisations and innovations of composite 

materials are limited in this method due to the absence of data to assess the failure 

onset and propagation in the materials at different scales. Finally, extending the results 

beyond the initial environmental/loading conditions is very difficult owing to the 

phenomenological nature of the composite material models (LLorca et al., 2013).  

Another approach that has been proposed recently to perform multi-scale 

simulation of composite material is called the bottom-top (also known as local-to-

global) method. In this method, the material is divided into three length scales, or 

levels, (ply, laminate and component) and taking the reality that composite structures 

are made up of laminates that in turn consist of stacking separate plies with different 

fibre orientation. The bottom level, or micro-scale level, is the first step in the multi-
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scale modelling. In this level, the ply properties are predicted from the thermo-

mechanical properties of the constituents (fibre, matrix and interface). Typically, in 

micromechanical analysis, dozens of fibres are distributed (regularly or randomly) in 

the matrix to generate the representative volume fraction (RVE), which is then used to 

study the behaviour of the ply. The effects of volume fraction of the fibres, the spatial 

distribution of fibres and the geometry of the fibres are considered explicitly in this 

level. After solving the equilibrium problem at the micro-scale, all information from this 

level is then passed to the upper scale in multi-scale modelling, the meso-scale level, 

which is used to determine the mechanical response of the lamina. Finally, the macro-

scale level is modelled to obtain the structure’s failure, which is the last step in multi-

scale simulation. It should be noted that this method still requires more improvement 

and development to find a robust strategy to bridge all levels. A variety of numerical 

techniques have been used to model aforementioned scales, such as the finite 

element method (FEM) (Fish and Yuan, 2005, Flores et al., 2011, Ghosh et al., 2001, 

Hund and Ramm, 2007, Ladeveze, 2004, Markovic and Ibrahimbegovic, 2004, Matsui 

et al., 2004, Miehe and Koch, 2002, Miehe et al., 1999a, Miehe et al., 1999b, Terada 

and Kikuchi, 2001), the boundary element method (BEM) (Benedetti and Aliabadi, 

2013, Mrozek et al., 2007, Sfantos and Aliabadi, 2007), combined FEM/BEM 

(Fernandes et al., 2015) and X-FEM (Belytschko et al., 2008, Loehnert and 

Belytschko, 2007). The overall multi-scale simulation strategy is shown in Figure 1.2.    
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Figure 1.2: Bottom-top multi-scale simulation scheme to perform virtual 
mechanical tests of composite materials. 

Numerous efforts have been made by researches in the past to glue scales in 

multi-scale models, as explained bellow: 

 First-order homogenisation method was developed in e.g. (Feyel and 

Chaboche, 2000, Ghosh et al., 1995, Ghosh et al., 1996, Miehe and Koch, 

2002, Terada and Kikuchi, 2001). In this method, the macroscopic 

deformation is uniformly distributed over macrostructure and captured for 

each point, which is then transferred to the associated RVE in order to 

define the boundary value problem (BVP). After solving of the BVP, the 

deformed RVE is obtained. The macro-structural stress is finally obtained 

by averaging the stress field over the RVE. This method neglects the 

length scale effects and is suitable in a classical continuum mechanics. 
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There are some limitations of this method which are mainly stemmed from 

neglecting the length scale effects.     

 

 Second-order homogenisation method was proposed by (Geers et al., 

2003, Kaczmarczyk et al., 2008, Kouznetsova et al., 2004, Kouznetsova 

et al., 2002). This model was developed to overcome the limitation arose 

from using the first-order model. The macroscopic deformation at each 

point is determined using Taylor series. The BVP remains same as the 

first-order and can be solved using a standard method. The method 

introduced the material length effects into the constitutive equations e.g. 

the size of RVE. Both first and second order methods cannot be handled 

for problems involve fracture, and thus many benefits of using 

computational power will miss out. 

 

 Continuous-discontinuous homogenisation method has been 

developed to study cracks in a masonry wall (Massart et al., 2007a, 

Massart et al., 2007b). The method incorporates first-order scheme twice 

to determine the response in the damaging and unloading material. 

1.2 Physical damage mechanism in fibre-reinforced composites 

Damage evolution in most structure materials is usually dominated by one 

physical failure mechanism upon applying deformation. For instance, damage in 

nearly all ductile materials is due to void nucleation, growth and coalescence this 

damage mechanism should only be included in micro-mechanism analysis. However, 

physical damage mechanisms in composites are very complex and not yet 

understood. Several damage mechanisms can occur upon applying deformation on 

composites; the dominant one depends on the loading direction with regard to fibres 

orientation, as depicted in Figure 1.3. Experimental and numerical studies have shown 

that the fracture in a ply loaded in transverse tension (perpendicular to the fibres) is 

mainly dominated by the matrix cracks and fibre/matrix interface debonding. Tensile 

fracture is brittle and propagated vertically between fibres (Parıs et al., 2003), as 

shown in Figure 1.3a.  A ply under transverse compression stress, on the other hand, 
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fails along an angle (α) perpendicular to the loading axis, which has been reported as 

having values α = 50-56⁰ for polymer matrix composites (González and LLorca, 2007a, 

Pinho et al., 2006), see Figure 1.3b. When longitudinal tensile stress applies on the 

ply (parallel to the direction of the fibres), the failure is primarily a result of fibre 

breakages whereas compressive failure is more complex and different failure modes 

are expected such as micro-buckling, kinking, and fibre failure (Schultheisz and Waas, 

1996). The failure mode, therefore, depends on the initial imperfections during the 

manufacturing process, such as fibre misalignment, residual stresses, and porosity, 

Figure 1.3c and d. The behaviour of fibre-reinforced composites subjected to shear 

loads has also been carried out recently by many researchers. Composites under pure 

transverse shear is difficult to be performed in laboratory, Figure 1.3e. Therefore, 

numerical simulation based on a micromechanical model is mostly used to study 

damage composites and to quantify the effect of fibre/matrix interface on the behaviour 

of composites. Vaughan and McCarthy (Vaughan and McCarthy, 2011b) studied the 

influence of intra-lamina properties on the transverse shear deformation of a carbon 

fibre/epoxy composite. The interface strength was found to control shear strength 

while interface fracture energy mainly affected on the transverse failure strain. Totry 

et al. (Totry et al., 2010) examined the impact of fibre, matrix, and interface properties 

on the in-plane shear response using the V-notched Rail Shear Test. They used two 

composites made up of either high strength or high modulus fibres to reinforce the 

epoxy matrix. It has been found that matrix yield strength and interface properties were 

significantly controlled the in-plane shear behaviour and the cracks organised parallel 

to the fibres, as shown in Figure 1.3f.  
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Figure 1.3: Failure micro-mechanisms in FRPs as a function of load conditions. 
(a) Transverse tension. (b) Transverse compression. (c) Longitudinal tension. (d) 
Longitudinal compression. (e) Out-of-plane shear. (f) In-plane shear. 

Due to the complexity of failure in fibre-reinforced composite as explained above, 

many methods have recently been developed to assess damage evolution in 

composites materials, e.g. acoustic emission sensing (Dzenis and Qian, 2001, Sihn et 

al., 2007), optical imaging (Pierron et al., 2007), scanning electron microscopy 

(Pagano, 1998), and synchrotron radiation computed tomography (SRCT) (Moffat et 

al., 2008, Scott et al., 2011, Wright et al., 2008). It has been found that in [90,0]s 

laminate plates subjected to tensile stress for instance, the transverse ply cracks occur 

first at low applied strain followed by 0⁰ splits. These crack modes are often the result 

of inter-lamina delamination between adjacent plies. All these cracks usually occur in 

advance of significant fibre breaks, which then lead to final failure. Figure 1.4 shows 

the damage evolution at different loading stages.    
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Figure 1.4: Matrix cracks and delamination occurring at 90/0 interface at 
different tensile loading stages. Adapted from Scott et al., 2011. 

1.3 Micromechanical strategies used in composite materials 

Micromechanical methods can be defined as prediction of macroscopical or 

global effective properties of the composites (such as elasticity, strengths, thermal 

expansion, etc.) from the properties of their constituents (or phases). The relation 

between homogeneous constituents and inhomogeneous materials is achieved either 

by relating relevant properties of the constituents or by geometry and topology of 

inclusions which referred to as continuum micromechanics. These relationships can 

be studied at different length scales ranging from atomic scales to any other suitable 

scale. However, most FRPs studies are carried out at microscopic level, as this scale 

can homogenise fibre and matrix. In addition, fractures and fibre/matrix debonding 

normally take place at this scale.    

In addition to prediction effective properties of composites, micromechanical 

methods can also be used to simulate the overall response of materials under simple 

loading conditions (e.g. uniaxial tensile, compression, and shear) or complex loading 

conditions (e.g. biaxial and triaxial). Moreover, micromechanical techniques are also 

used to provide the constitutive of structure components in framework of 

computational micromechanics. Computational micromechanics are significantly 
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important to identify the local stress, deformation and damage onset and evolution 

which in turn have significant repercussions on damages at higher length scales.  

Micromechanical study of composites is a complex and an extensive body of 

literature covering this topic. Micromechanical methods can fundamentally be divided 

into two groups as: 

 Analytical methods  

 

- Mean-field methods  

- Variational bounding methods 

 

 Computational methods 

 

- Periodic micro-field methods 

- Windowing methods 

- Embedding methods 

Analytical methods can be traced back to the classical bounds of Voigt (Voigt, 1889) 

and Reuss (Reuss, 1929) (see (Mishnaevsky Jr, 2007)). They have been used to 

determine the overall elastic properties of composites. Many disadvantages can be 

found in analytical approaches among these, for instance, extending them to non-

linear including (plasticity, creep, etc.) is quite complex and cannot always guarantee 

an accurate results (Castaneda and Suquet, 1998). However, due to the rapid 

development of computer power in the last few decades, computational methods have 

been rapidly employed to study the behaviour of composite materials and overcome 

limitations of analytical methods. Numerical methods have the advantage of high 

accuracy and provide useful insights into fracture onset and propagation.  
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1.4 Analytical methods 1 

1.4.1 Mean-field methods  

Mean-field methods are used to find the effective properties of the composite 

from its constituent properties and volume fraction. These methods have been 

successfully used to describe the elastic response of the inhomogeneous materials in 

general and, in particular, the composite materials. Perfect bonding between the fibres 

and matrix is assumed in all methods. Methods such as Eshelby (Eshelby, 1957) and 

Mori-Tanaka (Mori and Tanaka, 1973) are examples of mean field methods.  

1.4.2 Variational bounding methods 

These methods use variational principles to calculate upper and lower bounds 

on the overall elastic tensors, elastic properties, and other physical properties. Unlike 

mean field methods, which can be used for both homogenisation and localisation 

tasks, variational bounding methods are limited to homogenization. They can also be 

used as a tool to assess other methods. The simplest form of upper bounds were 

proposed by Voigt (Mishnaevsky Jr, 2007, Voigt, 1889). He made use of minimum 

potential energy and the minimum complementary energy with uniform stress and 

strain distribution to derive the equations.  

1.5 Representative volume element  

The mechanical behaviour of composite materials has been intensively studied 

(mainly in the last few decades due to the development of computer power) using 

different numerical methods (e.g. FEM and BEM) to analyse a RVE. The theory of 

RVE has been introduced by Hill (Hill, 1963) and referred to as a smallest sub-region 

of the composites contains sufficient information for describing the behaviour of 

composites.  

                                            

1 Details of the analytical methods used in the thesis will be introduced in Chapter 5. 
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In case of composite materials, the RVE must beat the minimum size in order to 

eliminate size effects and fluctuations of stress and stress fields due to the interactions 

between inclusions, fibres, or particles. Therefore, RVE size is particular important as 

it should be large enough to represent the composites behaviour; however very large 

RVE cannot be simulated and can become computationally expensive. Fortunately, 

recent numerical investigations have been done to study the micromechanical 

behaviour of composites found that a few dozen fibres or particles in the RVE were 

reasonably close to the exact solution (Eckschlager et al., 2002, Segurado and Llorca, 

2002, Segurado et al., 2002, Totry et al., 2010, Vaughan and McCarthy, 2011b).    

1.6 Boundary conditions 

The RVE together with its boundary conditions must be prescribed in such a way 

that provide valid deformed and unreformed states. Therefore, gaps and overlaps 

must be avoided between adjacent unit cells, as this may cause unreliable continuum 

mechanics. To attain this, the selected boundary conditions must cause a suitable 

RVE deformation mode for each load case under study. Two types of boundary 

conditions are commonly used to analyse the micromechanical model, namely 

symmetric and periodic boundary conditions.  

1.6.1 Symmetric boundary conditions 

Periodic unit cell approaches can be used to describe the micro-geometry of the 

composites. For example, a simple square and hexagonal fibres arrangement is a 

good approximation of the microstructure of FRPs in two dimensional studies. Figure 

1.5 shows possible unit cells2 that can be handled from a basic fibres arrangement. In 

these cases, it is possible to apply symmetry boundary conditions on the unit cell in 

which the faces of the cell coincide with symmetry planes of the phase arrangement, 

as shown in Figure 1.6a.  

Symmetric boundary conditions are usually useful to handle simple micro-

geometries with little effort of modelling and low computational cost. However, they 

                                            

2 The concept of unit cell will be properly introduced in chapter 4. 
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are obviously limited to only uniform thermal loads, mechanical loads act in directions 

normal to one or more pairs of edges, and combinations of these loads. 

 

 

Figure 1.5: Distribution of fibres in the matrix. (a) Periodic square. (b) 
Hexagonal. 

 

 

Figure 1.6: Deformation of (a) Symmetric boundary conditions under uniaxial 
loading for fibre A. (b) Periodic boundary conditions in a rectangular two-dimensional 
model. 
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1.6.2 Periodic boundary conditions  

To overcome the limitations arose from using symmetry boundary conditions, 

Periodic boundary conditions used to introduce far-field stress and strain into the 

edges of RVE. They are used mainly in the case of random fibre arrangements 

obtained from experimental techniques or other methods, Figure 1.6b. Several works 

can be found in literatures which either discuss periodic boundary conditions and their 

applications e.g. (Li, 2008, Sun and Vaidya, 1996, Xia et al., 2003, Xia et al., 2006) or 

aim to develop a new periodic boundary condition that can be used in conjunction with 

reduced unit cells to reduce computational time, see (De Carvalho et al., 2011).  

Periodic boundary conditions are actually computationally expensive, as they 

should link each node on edges with reference nodes and corresponding nodes on 

the opposite side, which indeed becomes more complex for tree-dimensional 

problems.  Another important drawback of both symmetry and periodic boundary 

conditions appear in multiscale models especially in accounting for the effects of 

locally non-periodic regions within the composite structures. For instance, one of these 

regions is a free-edges boundary which, is a common damage onset zone in many 

composite structures (Cater and Xiao, 2013).       

1.7 Computational methods 

1.7.1 Periodic micro-field approaches 

In these methods, an infinite volume of composites is simplified by assuming 

regularly distributed fibres in the space. Under such conditions, the composite 

materials can be characterised by a periodic unit cell to describe the micro-geometry 

of them, with periodic boundary conditions applying on the edges of the cell. An 

extensive number of unit cell models have been developed and varied primarily in the 

numerical techniques used to solve the boundary value problem. One of the first 

methods of periodic micro-fields is called method of cells, which was developed by 

Aboudi (Aboudi, 1989).  In his basic form, fibres were located in a corners of a square 

arrangement and then each cell is discretised into four sub-cells. The local stress and 

strain fields are calculated by very modest analytical expression. This method provides 

insufficient information of stress and strain fields. Therefore, many attempts have been 
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made to develop an algorithm and led to the proposal of a generalised method of cells 

by same author (Aboudi, 1996). The unit cell model for periodic micro-field methods 

can be extracted from a very simple arrangement of fibres. For example, in the case 

of two dimensional studies, a square or hexagonal arrangements of inhomogeneous 

are used as shown on Figure 1.5a and b, respectively. A unit cell model, which 

captures the overall behaviour of the composites, is indicated by solid a red line 

(Pettermann and Suresh, 2000). 

In addition to simple analytical expressions, numerical tools such as finite 

element, discrete element, and finite difference methods are employed to analyse 

complex cells. Despite the practical restrictions of numerical methods, they have been 

successfully used in recent years to obtain constitutive equations, analysing the 

mechanical properties and studying fracture onset and propagations within 

microstructures for composite materials (Li, 2001, Maheo et al., 2015, Zhang et al., 

2004, Zhang et al., 2005).  

1.7.2 Windowing approach 

Micromechanical modelling of composite materials by windowing method is 

based on the analysis of images obtained experimentally or using such methods to 

generate a random distribution of fibres. This method is used to estimate the overall 

response of composite materials by RVE. The windowing approach can be conducted 

by placing a window on a random position of image sample or generated 

microstructure and then subjecting the resulting sample to stress, as shown in Figure 

1.7a. The size of RVE must be adequate to ensure that it contains all relevant 

statistical information. However, due to computer power limitations, a small RVE is 

preferred in simulations. Due to the expansion of computer powers, the windowing 

approach has been intensively used in the last few years to estimate effective 

properties, stress-strain curves, and damage onset and propagation of composites 

with periodic boundary conditions applied on the RVE (Totry et al., 2008a, Vaughan 

and McCarthy, 2010, Vaughan and McCarthy, 2011a, Yang et al., 2015, Yang et al., 

2012).  
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Figure 1.7: Schematic sketch of a random fibre/matrix microstructure. (a) 
Window approach. (b) Embedded configuration. 

 

1.7.3 Embedding approaches 

The purpose of embedded cell approaches is to predict the micro-fields in 

composite materials at high spatial resolution. In these methods, the material is 

divided into two regions. The inner region, (the core) that contains details of the 

microstructure (fibre, matrix and fibre/matrix interface) is embedded into the outer 

region that mainly serves transmitting the applied load to the core, Figure 1.7b. Cell 

embedding approaches can avoid the drawback of the periodic field method 

regarding the periodic restrictions (Böhm, 1998) and the time required to build 

constrain equations representing periodic boundary conditions. However, similar to 

the periodic method, stress and stain perturbations at the interface between inner 

and outer regions may occur using embedding cell (Harper et al., 2012).   

Three types of embedded cell approaches are normally used depending on the 

outer region.  

 The first method employs discrete microstructures for both inner and outer 

regions with a finer element size used to discretise the former region (Sautter 

(a) (b) 

Inner region 

Outer region 
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et al., 1993). This strategy is simple and can be used to reproduce whole 

structures thus avoiding the influence of interface interaction. However, they 

tend to be computationally expensive.  

 

 In the second method of embedded cell, full details of composite microstructure, 

such as fibres, matrix, and their interface are resolved in the inner region 

whereas a simple constitutive law prescribed a priori base on any suitable 

empirical or micromechanical approximations is used for outer region. This 

approach has been used successfully to study crack propagation in composite 

materials (Canal et al., 2012, González and LLorca, 2007b, Wulf et al., 1996), 

stress strain concentrations around local defects (Xia et al., 2001) or near the 

crack tips (Aoki et al., 1996).  

 

 The third type of embedding schemes is based on the calibration process of the 

inner and outer material properties. Firstly, trial material properties are given to 

the outer region, which are used to compute the stress and strain fields of the 

inner microstructure region. Secondly, the homogeneous response of the inner 

region is used to build the constitutive behaviour of the surrounding medium. 

This procedure is repeated until convergence is achieved (Chen, 1997, 

Qingsheng et al., 1994). This method can be easily used for an elastic analysis 

but may lead to significant complexity when extended to the elasticplastic 

deformation case.  

1.8 Failure criteria in FRPs 

Failure criteria for composite materials are usually used to predict the failure 

initiation in a component while the whole structural parts should be tested 

experimentally in order to determine their design capacity. Therefore, several failure 

criteria have been proposed aiming to reduce the manufacturing time and costs of new 

components. In order to provide a comprehensive explanation of failure criteria and 

their capability to predict failures, a series of coordinates studies on these failure 

criteria have been carried out in World Wide Failure Exercise (WWFE) (Hinton et al., 

2004). WWFE assessed nineteen common criteria used to predict the response of 
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FRPs.  However, it shows the lack of confidence in the failure criteria at lamina or 

laminate level and no evidence to explain which of them can predict the failure 

accurately. The failure prediction difficulties is mainly due to the complexity of 

composites structure at all levels.  

Failure criteria in FRPs are often classified into two types based on the approach 

followed to derive them: 

1.8.1 Non-physical or not associate with the failure mode  

Known as non-phenomenological failure criteria, these criteria predict the failure 

modes taking place but use mathematical expressions to calculate failure envelope. 

The well-known non-physical failure criteria that can be found in existing literature are 

Tsai-Hill’s (Tsai, 1965), Hoffman’s (Hoffman, 1967) and Tsai-Wu’s (Tsai and Wu, 

1971) criteria. 

1.8.2 Physical or associate with the failure mode 

Known as phenomenological failure criteria, these criteria predict failure 

envelope in FRPs and describe the physical failure process, which in turn provides 

information on the failure modes. Hashin and Rotem (Hashin, 1980, Hashin and 

Rotem, 1973) were the pioneers that identified the heterogeneous nature of fibre-

reinforced composite materials, which means that the final failure is due to the 

combination of constituents and their interfaces. Therefore, they proposed first failure 

criterion that predicts failure of each constituent separately. However, this model 

neglects the determination of actual orientation of the fracture failure; rather, it 

assumes a quadratic interaction between tractions acting on the failure plane.   
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Figure 1.8: Stresses on the three-dimensional of unidirectional composite 
element. 

Many models, therefore, have been proposed to improve Hashin’s model, among 

them, the one proposed by Puck and Schürmann (Puck and Schürmann, 2002). They 

assumed that fracture occured due to the normal, σn, and tangential, 𝜏𝑡, stress acting 

on the failure plane and that is the key element of the model, as shown in Figure 1.8. 

Puck’s failure criteria were one of the best criteria in the WWFE for predicting 

composites experimental results. However, these criteria contain several non-physical 

parameters that need a significant experimental tests on a particular material to obtain 

them, which makes the criteria somehow impractical for engineers. To overcome this 

problem, Dávila et al. (Davila et al., 2005) proposed a new non-empirical set of criteria 

named LaRC03 that based on Hashin’s concepts and use the failure plane concept 

proposed by Puck. The LaRC03 criteria presented an important improvement of 

Hashin’s criteria and do not need experimental parameters but it fails to predict the 

failure of FRPs in some cases. This fact shows the need for further improvement of 

the existing criteria or another robust method to predict the failure.  
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1.9 Damage levels in composites 

In material science, the structural components are usually dimensioned 

according to their ability to withstand and resist the external events applied to them, 

such as mechanical loads (static or dynamic), environmental conditions (temperature, 

contact with chemical, humidity, i.e.) and impact load. All these events cause material 

degradation at the microscopic scale, which in the case of composite materials, a large 

number and different modes of degradations take place, as explained in Section 1.2.     

In broad terms, crack or fracture can be defined as displacement of surfaces 

within the structural component. Fracture mechanics assumes the presence of an 

initial crack in the component and studies the condition that may lead to crack 

propagation. Damage can be defined as permanent changes in the material due to 

crack the propagation, for example. Damage mechanics determines the conditions for 

the propagation of damage, assesses the damage and their effect on the structural 

integrity and durability and provides the input for structural analysis and design.   

Damage can be studied at different length scales. Mostly, in composites there is 

an initial damage in the form of micro cracks of the matrix that occurs in a lamina which 

does not, however, lead to the final failure, and is far away from the final failure. In 

other words, the micro cracks of the matrix does not change the stiffness of material. 

This initial damage is usually propagated within the lamina and is blocked by other 

adjacent layers of lamina with different fibre orientations, which in the end increases 

the strength of the laminate. As soon as the matrix micro crack tip reaches the interface 

of the adjacent lamina leads to further delamination. Therefore, damage in composites 

is studied in three different scale levels, as below.   

1.9.1  Damages at macro-scale 

A macro-scale model refers to the structure level in which the whole structure is 

considered as homogeneous continuum and the constitutive relations are assumed to 

be anisotropic and incorporated into the structural analysis tools (e.g. finite element 

method). Many macro-mechanical models have been developed to predict nonlinear 

stress-strain behaviour of laminates (Hahn and Tsai, 1973, Petit and Waddoups, 
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1969), plasticity models (Sun and Chen, 1989, Vaziri et al., 1991) and progressive 

damage theory coupled with elasticity (Allen et al., 1987).  

In this level, interlaminar stresses present at the interface between adjacent 

layers are the most important loads. This interface layer transfers loads and 

displacements from one layer to another. When this interface breaks, the adjacent 

layers are separated, leading to so called ‘delamination’. It has been found that 

delamination is the most important failure mode at the macro-scale level and 

significantly reduces the strength and stiffness of the structure. Furthermore, it causes 

stress concentration along the edges of the layers, which results in a progressive 

failure in the laminate. Fibre orientation of each lamina has an important influence on 

the laminate’s ability to prevent the propagation of delamination. In order to optimise 

laminate strength, the fibre orientations are changed to minimise the number of layer 

and increase the strength of the laminate (Ghiasi et al., 2010).   

1.9.1.1 Maximum stress criterion 

According to maximum stress criterion, the failure in occurs whenever one stress 

component along one of the principal material axes attains the corresponding limited 

value. This failure criterion ignores the interaction between stresses and thus comes 

under the non-interactive criteria category. It is mathematically expressed as: 

𝜎11 ≥ 𝑋𝑇 ,   (𝜎11 > 0) 

(1.1) 

𝜎11 ≥ −𝑋𝐶 ,   (𝜎11 < 0) 

𝜎22 ≥ 𝑌𝑇 ,   (𝜎22 > 0) 

𝜎22 ≥ −𝑌𝐶 ,   (𝜎22 < 0) 

𝜎33 ≥ 𝑍𝑇 ,  (𝜎33 > 0) 

𝜎33 ≥ −𝑍𝐶 ,   (𝜎33 < 0) 

|𝜏12| < 𝑆12  

|𝜏13| < 𝑆13  

|𝜏23| < 𝑆23  

where subscripts T and C refer to, respectively, tension and compression, X, Y and Z,  

are the longitudinal strength (along the fibre direction), transverse strength 

(perpendicular to the fibre) and through-thickness strength, respectively, S12, S13 and 
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S23 are the in-plane shear strength, transverse shear strength and through-thickness 

shear strength, respectively.   

1.9.1.2 Tsai-Hill criterion 

This criterion was derived at two stages: firstly Hill (see (Hill, 1998)) used the well 

know von Mises yield criterion of isotropic materials to anisotropic materials. Then Aziz 

and Tsai (Azzi and Tsai, 1965) extended the theory to unidirectional lamina. Therefore, 

the theory is known as the Tsai-Hill criterion. The criterion mathematically expressed 

as: 

(𝐺 + 𝐻)𝜎1
2 + (𝐹 + 𝐻)𝜎2

2 + (𝐹 + 𝐺)𝜎3
2 − 2𝐻𝜎1𝜎2 − 2𝐺𝜎1𝜎3 − 2𝐹𝜎2𝜎3

+ 2𝐿𝜏23
2 + 2𝑀𝜏13

2 + 2𝑁𝜏12
2 = 1 

(1.2) 

where F, G, H, L, M and N are the material strength parameters. According to 

this criterion, any stress state lying within the failure surface is safe and any lying on 

or outside the surface constitutes for failure.  Since this criterion has a quadratic form, 

it considers stress interaction. The theory assumes three independent shear strengths 

of unidirectional composites. For example, if only transverse shear τ23 acts on the 

body and the corresponding shear strength is S23, Eq. (1.2) becomes: 

2𝐿 =
1

𝑆
 (1.3) 

Similarly, by assuming 𝜏12, 𝜏13, 𝜎1, 𝜎2 and 𝜎3 ≠ 0 and solving simultaneous equations, 

one obtains: 

2𝑁 =  
1

𝑅
 

(1.4) 

2𝑀 =  
1

𝑇
 

2𝐻 =
1

𝑋2
+

1

𝑌2
−

1

𝑍2
 

2𝐹 =
1

𝑌2
+

1

𝑍2
−

1

𝑋2
 

2𝐺 =
1

𝑋2
+

1

𝑍2
−

1

𝑌2
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where X, Y, and Z are the longitudinal material strengths in directions x, y and y, and, 

S, R and T are the through-thickness shear strength, in-plane shear strength and 

transverse shear strength and, respectively. The main drawback of the criterion is that 

it does not distinguish between tension and compression normal strengths. In other 

words, the sign of normal strengths is always positive, which is different in the case of 

composite materials. 

1.9.1.3 Tsai-Wu failure criterion 

To overcome the drawback associated with using the Tsai-Hill criterion, Tsai and 

Wu (Tsai and Wu, 1971) proposed a tensor polynomial failure that is more general 

than the previous criterion. Unlike Tsai-Hill, Tsai-Wu considers both distortion energy 

and dilatation energy for predicting failure. Tsai-Wu is based on the expansion of the 

stress tensor. The criterion assumes that a failure envelope exists in the form: 

𝐹𝑖𝜎𝑖 + 𝐹𝑖𝑗𝜎𝑖𝜎𝑗 = 1                𝑖, 𝑗 = 1,2, … . ,6   (1.5) 

where Fi and Fij are the strength tensors and can be obtained from experimental 

tests with uniaxial loadings on a specimen. Eq. (1.5) is quite complicated, but can be 

simplified assuming orthotropic material and tensorial symmetry of the coordinates (Fij 

= Fji), and that there is no coupling between normal and shear stresses (σii × σjj = null). 

Thus, Eq. (1.5) is reduced to: 

𝐹1𝜎1 + 𝐹2𝜎2 + 𝐹3𝜎3 + 𝐹11𝜎1
2 + 𝐹22𝜎2

2 + 𝐹33𝜎3
2 + 𝐹44𝜎4

2 + 𝐹55𝜎5
2 + 𝐹66𝜎6

2

+ 2𝐹12𝜎1𝜎2 + 2𝐹13𝜎1𝜎3 + 2𝐹23𝜎2𝜎3 = 1 
  (1.6) 

F12, F13 and F23 are the coefficients of the product σi and σj in Eq. (1.6) and cannot 

be obtained by a uniaxial test. However, they are found to have little effect on the final 

results and are usually assumed null. Also, Eq. (1.6) considers that shear strengths in 

principal material coordinates are sign-independent of shear stresses, leading to 

vanish the first power shear stress terms, F4 = F5 = F6 = 0. 

Other failure criteria, such as Hoffman (Hoffman, 1967) and Chamis (Chamis, 

1969), were proposed in the 1960s. These failure criteria are quadratic criteria, similar 

to Tsai-Wu, varying the coefficients Fi and Fij to ensure a best curve-fitting failure 
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envelope to the experimental data. However, they added more difficulty to their criteria, 

which limited their application. Finally, it is important to note that the abovementioned 

criteria are purely mathematically based criteria, and use plasticity theory for their 

derivation. Another way to establish failure criteria is based on the physical reality of 

composite failure.  

1.9.1.4 Hashin’s criteria  

Hashin and Rotem (Hashin and Rotem, 1973) were considered pioneers in the 

development of physically based failure criteria. Their criteria are based on real 

laboratory observations of failure of composites with different fibre orientations, and 

they concluded that there are two failure mechanisms: one related to fibre failure and 

the other to matrix failure. Each failure mechanism is distinguished between tension 

and compression. The criteria are found to be sufficient for the composites under 

study. However, it may be argued that not all failure modes can be apparent in other 

composite materials. The Hashin-Rotem failure criteria is summarised below: 

 Hashin-Rotem criteria (Hashin and Rotem, 1973) 

- Fibre failure in tension, σ11 ≥ 0 

 

 𝜎11 =  𝑋𝑇   (1.7) 

 

- Fibre failure in compression, σ11 < 0; Xc > 1 

 

 −𝜎11 =  𝑋𝑐   (1.8) 

 

- Matrix failure in tension, σ22 ≥ 0 

 

 (
𝜎22

𝑌𝑇
)

2

+ (
𝜏12

𝑆𝐿
)

2

=  1   (1.9) 

 

- Matrix failure in compression, σ22 < 0 

 

 (
𝜎22

𝑌𝑐
)

2

+ (
𝜏12

𝑆𝐿
)

2

=  1 
  

(1.10) 

Hashin (Hashin, 1980) later proposed his own criteria under the three-dimensional 

stress state. In his new criteria, Hashin used a quadric interaction between stress 
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invariants, as a linear approach underestimates the material strength. It is assumed 

that failure initiates when one of the following condition is met: 

 Hashin criteria (Hashin, 1980) 

 

- Fibre failure in tension, σ11 ≥ 0 

 

 (
𝜎11

𝑌𝑇
)

2
+

1

𝑆𝐿
2 (𝜏12

2 + 𝜏13
2 ) =  1          or        𝜎11 =  𝑋𝑇 

  
(1.11) 

 

- Fibre failure in compression, 𝜎11 < 0 

 −𝜎11 =  𝑋𝑐 
  

(1.12) 

- Matrix failure in tension, (σ22 + σ33) ≥ 0 

 

 
1

𝑌𝑇
2

(𝜎22 + 𝜎33)2 +
1

𝑆𝑇
2

(𝜏23
2 − 𝜎22𝜎33) +

1

𝑆𝐿
2

(𝜏12
2 + 𝜏13

2 ) = 1 
  

(1.13) 

 

- Matrix failure in compression, (σ22 + σ33) < 0 

 

(𝜎22 + 𝜎33)

𝑌𝑐
[(

𝑌𝑐

2𝑆𝑇
)

2

− 1] + (
𝜎22 + 𝜎33

2𝑆𝑇
)

2

+
𝜏23

2 − 𝜎22𝜎33

𝑆𝑇
2 +

𝜏12
2 + 𝜏13

2

𝑆𝐿
2 = 1 

  
(1.14) 

where 𝑋𝐶 and 𝑋𝑇 are the longitudinal compressive and tensile strengths,  𝑌𝑐 and 𝑌𝑇 

are the transverse compressive and tensile strengths, and 𝑆𝑇  and 𝑆𝐿  are the 

transverse and longitudinal shear strengths, respectively. 

1.9.1.5 Puck’s criterion 

Despite the ability of Hashin’s failure criterion to predict the damage in the lamina 

under normal and transverse shear, numerous studies over the last decades have 

shown that it does not always agree accurately with experimental results, especially 

the failure envelope under combined transverse compression and in-plane shear. This 

drawback of the Hashin criterion is due to its neglecting the determination of the actual 

fracture plane and its orientation. In addition, using a quadratic approach to account 

for the interaction between the stress invariants may underestimate the material 

strength, whereas a higher polynomial degree would lead to more complicated 

expressions. With increasing computational capacity, many models have therefore 

been proposed to improve Hashin’s criterion including, the one proposed by Puck and 
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Schürmann (Puck and Schürmann, 2002). Puck’s model is based on the Mohr-

Coulomb hypothesis and assumes that fracture is triggered due to the normal stress 

σn and tangential stress 𝜏𝑡, acting on the failure plane with a specific inclination angle 

to the material plane, which is the key element of the model, as shown in Figure 1.9. 

Therefore, Puck’s criteria are also called ‘action plane strength criteria’.  

 

Figure 1.9: Puck’s action plane (image from (Davila et al., 2005)). 

The criterion is expressed as: 

√[(
1

𝑌𝑇
−

2𝑝⊥⊥(1 + 𝑝⊥⊥)

𝑌𝐶
) 𝜎𝑛(𝜉)]

2

+ [
2(1 + 𝑝⊥⊥)

𝑌𝐶
𝜏𝑡(𝜉)]

2

 

+
2𝑝⊥⊥(1 + 𝑝⊥⊥)

𝑌𝐶
𝜎𝑛(𝜉) = 1 

𝜎𝑛 ≥ 0 (1.15) 

√[(
2(1 + 𝑝⊥⊥)

𝑌𝐶
) 𝜏𝑛(𝜉)]

2

+ [
2𝑝⊥⊥(1 + 𝑝⊥⊥)

𝑌𝐶
𝜎𝑛(𝜉)]

2

 

+
2𝑝⊥⊥(1 + 𝑝⊥⊥)

𝑌𝐶
𝜎𝑛(𝜉) = 1 

𝜎𝑛 < 0 (1.16) 

with 

𝜎𝑛(𝜉) = 𝜎22

1 + cos (2𝜉)

2
+ 𝜏23sin (2𝜉) (1.17) 

𝜏𝑡(𝜉) = −𝜏23

sin (2𝜉)

2
+ 𝜏23cos (2𝜉) (1.18) 

where ξ is the fracture angle plane, and φ is friction angle. The fracture angle plane in 

the case of biaxial loading is slightly different from that for uniaxial compression and 

given by: 
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𝜉 = 45 +
𝜑 ∓ 𝛽

2
 (1.19) 

in which 𝛽 = arctan (2𝜏23 𝜎22⁄ ). Note that in case of uniaxial loading, 𝜏23 = 0, Eq. (1.19) 

is reduced to one of uniaxial loading, 𝑝⊥⊥ is the inclination coefficient which does not 

have a clear physical meaning and it is usually fitted to the (𝜎𝑛, 𝜏𝑡) failure slope angle 

that is experimentally deduced. However, Puck and Schürmann (Puck and 

Schürmann, 2002) recommended to use 𝑝⊥⊥  in the range of 0.2-0.25 for a typical 

glass-fibre/epoxy composites. 𝑝⊥⊥ = 0.22, a value in the middle of the range, is used 

in the study. 

1.9.2 Damages at micro-level 

In the simulation of composite materials at the micro-level, each constituent of 

the composite material (matrix, fibre and fibre/matrix interface) is considered as a 

homogeneous material and exhibits its own behaviour (see Chapter 2, 3 and 4). The 

experimental observations concluded that a composite matrix such as epoxy, which is 

known to be a pressure sensitive material, shows different yield stresses in tension 

and compression. Therefore, the traditional failure models, such as von Mises and 

Tresca may not accurately estimate the yield stress of this material.  

 Several failure criteria have been proposed to predict damage initiation and 

propagation of the constituents. Among the early attempts was developed by (Bowden 

and Jukes, 1972, Raghava et al., 1973). Their criteria were based on modification of 

the Tresca and von Mises failure model to account for hydrostatic stress. 

Asp et al. (Asp et al., 1996a, Asp et al., 1995) conducted experimental tests on 

three types of epoxy under uniaxial, biaxial and triaxial stress states. They suggested 

using their proposed dilatational energy density criterion when dilatational effects are 

dominant, and deviatoric effects (or known as distortional energy density) are zero or 

low. It is worth mentioning that deviatoric effects can be eliminated or reduced by 

applying equibiaxial or equitriaxial stress, as these stress states prevent the change 

of shape. The dilatational energy density criterion can be expressed as:  
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𝑈𝜈 =
1 − 2𝜈

6𝐸
(𝜎11 + 𝜎22 + 𝜎33)2  (1.20) 

where E and ν are the Young’s modulus and Poisson’s ratio, respectively, and 𝜎11, 𝜎22 

and 𝜎33   are the principal stresses. Later, Asp et al. (Asp et al., 1996b) used the 

criterion to simulate a unidirectional fibre composite subjected to transverse tension. 

They compared their results with the von Mises criterion and found that the strengths 

predicted by a dilatational energy density criterion corresponded more closely to 

experimental results than those predicted by von Mises. However, there are two major 

limitations of the criterion. Firstly, it is applicable only in the case of low effect of the 

distortional energy density, which is not possible to be achieved in a composite 

material with random fibre distribution. Secondly, it does not take into account the 

propagation of damage in the material.   

To overcome these limitations, Gosse and Christensen (Gosse and Christensen, 

2001) proposed strain invariant failure theory (SIFT) to predict the failure initiation of 

the matrix. The authors of the criterion used first invariant strain (volumetric strain 

invariant), J1, to represent the volume increase in the matrix material. The first invariant 

strain is defined as: 

𝐽1 = 𝜀𝑥𝑥 + 𝜀𝑦𝑦 + 𝜀𝑧𝑧  (1.21) 

where εxx, εyy and εzz are the strain components. The first invariant strain is valid only 

for tension-tension biaxial load where the failure is controlled by volume increase. The 

matrix in this situation fails by microcavitation (also known as crazing). To consider 

material yielding resulting from change of shape (distortional), a function of second 

deviatoric strain, 𝐽2́, is used. The second deviatoric strain is expressed as: 

𝐽2́ =
1

6
[(𝜀𝑥𝑥 − 𝜀𝑦𝑦)

2
+ (𝜀𝑦𝑦 − 𝜀𝑧𝑧)

2
+ (𝜀𝑥𝑥 − 𝜀𝑧𝑧)2] −

1

4
(𝜀𝑥𝑦

2 + 𝜀𝑦𝑧
2 + 𝜀𝑥𝑧

2 )  (1.22) 

The theory employed von Mises (or equivalent) strain as: 

𝜀𝑒𝑞𝑣 = √3𝐽2́  (1.23) 
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To define the matrix failure, the material properties required are the critical first 

invariant strain,  𝐽1
𝑐𝑟́ , the critical second deviatoric strain, 𝐽2

𝑐𝑟́  and critical equivalent 

strain, 𝜀𝑒𝑞𝑣́ . This method is close to those models used in meso-scale level as there is 

no direct influence of the properties of the individual constituents. However, to make 

use of the method at the micro-scale level, Tay et al. (Tay et al., 2005) amplified these 

strain invariants through FE analyses of a unit cell and determined ‘the strain 

amplification factor’, SAF.  

Swaminathan and Ghosh (Swaminathan and Ghosh, 2006) developed Voronoi 

cell finite element method to study damage initiation and propagation of a 

microstructure of an RVE. The fibre/matrix interface was simulated using a bilinear 

cohesive zone law. They assumed that there was no failure in the matrix.   

Bulsara et al. (Bulsara et al., 1999) used a finite element method to analyse an 

RVE with random fibre distribution. A simple maximum normal stress failure criterion 

was used to identify fibre/matrix debonding and radial matrix cracking.  

Parıs et al. (Parıs et al., 2003) used a boundary element method to study the 

fibre/matrix interface damage mechanism under uniaxial and biaxial loads applied to 

a single fibre embedded in a matrix. An initial crack at the fibre/matrix interface was 

assumed, which would progress to a certain length around the fibre. At this stage 

under transverse tension, the debonding angle was about 130° perpendicular to the 

load direction. Then the interface crack would kink towards the matrix and penetrate 

the matrix in a radial direction. The second failure mechanism (penetration of the 

interface crack into the matrix) was studied separately by París et al. (París et al., 

2007). Eventually, these cracks merge, causing final failure of the composite. Correa 

et al. (Correa et al., 2008) pursued similar concepts but applied transverse 

compression. Correa and co-workers found that the initial interface crack angle was 

almost 135°. They showed that this crack would propagate unstably up to 130° 

upwards and 206° downwards. Next, the interface crack would either continue along 

in the interface or change its direction and kink into the matrix. It has been 

demonstrated that the kinking crack inclination was between 50° and 58°.  
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Canal et al. (Canal et al., 2009) studied the mechanical behaviour of fibre-

reinforced composites made up of a ductile rubber-toughened epoxy matrix under 

transverse tension, transverse shear, and a biaxial load of  transverse tension and 

transverse shear. Since a rubber-modified matrix was used in the study, it was 

modelled with an elasto-viscoplastic constitutive model developed by Jeong (Jeong, 

2002). Interface damage propagation was also taken into account and modelled with 

cohesive elements. The results were compared with the Hashin (Hashin, 1980) and 

Puck (Puck and Schürmann, 2002) failure criteria. The comparison revealed the need 

to improve current failure criteria in order to include more realistic matrix and interface 

behaviour, especially a weak interface.  

González and LLorca (González and LLorca, 2006) analysed the behaviour of a 

polymer-matrix composite material subjected to transverse compression stress. The 

study was carried out using FEM and a square RVE with randomly distributed fibres. 

The matrix was assumed isotropic at the micro-scale level and modelled with elasto-

plastic constitutive model following the Mohr-Coulomb yield criterion. The fracture 

plane angle was assumed to be 52.5°, based on observations of an epoxy matrix 

laminate failure subjected to transverse compression. The fibre/matrix interface was 

also modelled by cohesive elements. Three interface strength cases were studied: 

weak, strong and perfect. The results showed that debonding was the dominant 

damage mechanism when a weak interface was used, while in the case of strong and 

perfect interface strength, shear band propagation in the matrix was the controlling 

failure mechanism.  

A follow up study was conducted by Totry et al. (Totry et al., 2008a) to predict 

the failure envelope of fibre-reinforced composite lamina subjected to combined 

transverse compression and transverse shear stress. The results were compared with 

other failure criteria: namely (Hashin, 1980), Puck (Puck and Schürmann, 2002) and 

LaRC (Davila et al., 2005). Two interface strength cases were also investigated. The 

predicted failure envelopes agreed well with other failure models in the case of a strong 

interface. However, a week interface, the results were underestimates compared to 

other failure models. Later, Totry et al. (Totry et al., 2008c) used a three-dimensional 

RVE to predict the failure envelope of C/PEEK composites under transverse 

compression and longitudinal shear. Their results were compared with experimental 
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data available in (Vogler and Kyriakides, 1999).  The results gained from 

computational micromechanics were in excellent agreement with the experimental 

data. This also showed the potential of micromechanical analysis in the study of failure 

progression, to predict macroscopic properties of lamina, and could be used to assess 

the validity of current failure criteria.      

Yang et al. (Yang et al., 2012) studied the mechanical behaviour of fibre-

reinforced composites under transverse tension and compression. It has been 

assumed that matrix failure occurs in two stages: initial yielding and damage onset. 

They used the extended Drucker-Prager criterion to predict yield in the matrix, while 

the ductile criterion was used for damage onset prediction. The stress-strain response 

of the matrix used in this study is illustrated in Figure 1.10. The matrix response is 

initially linear elastic (a–b), followed by plastic yielding (b–c) which is predicted by the 

Drucker-Prager criterion. Beyond point c, there is a significant reduction of load-

carrying capability until the final failure, (c–d). Point c in the figure represents the 

damage onset and is predicted by the ductile damage criterion. Whereas the stress-

strain response (c–d) is governed by damage evolution, the dashed curve denotes the 

behaviour in the absence of damage.  

 

Figure 1.10: Stress–strain response of the matrix. 

In a follow-up study of (Yang et al., 2012),  Yang et al. (Yang et al., 2015) used 

the same matrix model to study the failure of UD fibre-reinforced composites under 
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transverse and longitudinal shear. The stress-strain curves obtained under 

longitudinal shear were compared with experimental results. The average predicted 

strength of five RVEs was almost 15% lower than the experimental results.  

 

1.10  Discrete element method 

The discrete element method DEM is based on explicit finite difference 

principles, introduced by Cundull (Cundall, 1971) for the analysis of rock mechanics 

problems, which then applied to soils by Cundull and Strack (Cundall and Strack, 

1979). With the continuous development of computer power over the last three 

decades, there has been a great accumulated body application of DEM in different 

science areas such as concrete (Hentz et al., 2004a, Hentz et al., 2004b), asphalt (Kim 

et al., 2008, Wu et al., 2010, You and Buttlar, 2004) and composites (Sheng et al., 

2010, Yang et al., 2011b, Yang et al., 2011a).  

To understand DEM, assume two circular discrete particles (named A and B) 

with radii of rA and rB, respectively, are in contact. In the DEM, the interaction of these 

particles is treated in a dynamic procedure mode with equilibrium state developing 

whenever the internal forces balance. The contact forces are calculated by tracing a 

group of particles within a measurement circle, while particle displacements are 

calculated by tracing the movement of an individual particle. Particles movement are 

performed by applying velocity or force on a group of particles or walls, which result in 

disturbances of the system. Since DEM is based on a dynamic process, the 

disturbance of an individual particle should not propagate further to its immediate 

neighbours. To satisfy the above constraints, the applied velocity on the system is kept 

constant, followed by determining the timestep based on the physical properties of the 

system.           

The calculations in the DEM swap between the application of Newton’s second 

law of motion on the particles and a force-displacement used for contacts between 

particles. Figure 1.11 illustrates the calculation that takes place in each timestep. At 

the beginning of each timestep, particles and walls position are updated. Next, force-

displacement law is applied to each contact to calculate contact forces. Then, equation 
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of motion is applied to each particle to update its position based on total forces acting 

on the particle that emerges from its contacts and calculated from the previous step 

and any external forces applied on it. There are different force-displacement contact 

models available in literature. Models used in this thesis are introduced in the next 

subsections.          

 

Figure 1.11: Calculation cycle in DEM. 

1.10.1 Force-displacement law  

Force-displacement law relates the relative displacement between two particles 

to the contact force acting on them. Many contact models are available in the 

existing literature; each one has its own behaviour and is used for solving different 

problems. For example, linear hysteretic model (Luding, 2008b, Luding, 2008a), local 

rupture criterion similar to Mohr-Coulomb criterion (Camborde et al., 2000, Hentz et 

al., 2004a) and Burger’s model (Abbas et al., 2007, Cai et al., 2013, Liu and You, 

2010). This section gives an overview of the contacts model used in this study.  

Start of timestep ∆t 

Force-displacement law 
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1.10.1.1 Contact-bond model 

In the DEM, the constitutive behaviour of the material is simulated by associating 

the contact model with each contact. The contact-bond model is one of the most 

popular models and can be formed to bond ball-to-ball or ball-to-wall. It can be 

envisaged as a pair of elastic springs with constant normal and shear stiffness acting 

at the contact point. These two springs have stated properties, namely contact tensile 

strength 𝐹𝑐
𝑛  [force], shear strength  𝐹𝑐

𝑠  [force], normal stiffness 𝑘𝑛 

[force/displacement], and shear stiffness 𝑘𝑠  [force/displacement]. A typical contact 

bond is shown schematically in Figure 1.12a. The contact normal strength and shear 

strength limit the total normal force and shear force that can be carried by the contact, 

respectively. When applied force on the contact exceeds the contact’s strength, the 

contact breaks. Since the contact bond acts over a vanishingly small area, it does not 

transmit the moment that develops between interacted particles. The stiffness of the 

contact consists of the contact stiffness arising from particle-particle overlap. The 

interparticle force, 𝐹𝑖, acting at the contact point represents the action of particles A 

and B and can be decomposed into normal, 𝐹𝑛, and shear, 𝐹𝑠, forces with respect to 

the contact plane:  

𝐹 = 𝐹𝑛 + 𝐹𝑠 (1.24) 

The normal contact force relates to relative displacements as: 

𝐹𝑛 = 𝑘𝑛𝑈𝑛𝑛𝑖 (1.25) 

And the increment shear force, ∆𝐹𝑠, is calculated using:  

∆𝐹𝑠 = −𝑘𝑠∆𝑈𝑠 (1.26) 
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Figure 1.12: Contact between particles. (a) Contact bond model in PFC2D 
(Itasca, 2003). (b) Notation used to describe particle-particle contact bond. 

where 𝑈𝑛 is the overlapping magnitude of two particles as shown in Figure 1.12b; 𝑛𝑖 

is the unit normal vector and ∆𝑈𝑠 is the increment shear displacement. The normal 

vector is a straight line along the shortest distance between the centre of two bonded 

particles. While in the case of particle to wall contact, the normal vector is defined as 

the shortest distance between the particle centre and the wall. It is important to note 

that the normal contact stiffness is a secant modulus because it relates the total force 

and the total normal displacement, whereas the shear stiffness is a tangent modulus 

because it relates shear force and increment shear displacement. When contacts are 

formed, shear forces are set to zero; at each subsequent timestep contact shear forces 

are calculated and are added to the current value to form the new shear force which 

is used for the next cycle as follows: 

Particle-Particle Particle-Wall Particle-Particle Particle-Wall 

𝑘𝑛 

𝑘𝑠 

𝑈𝑛 

A A 

A 

B B 

B 

𝑛𝑖 

(a) 

(b) 



 

39 

 

𝐹𝑠 = {𝐹𝑠}𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + ∆𝐹𝑠 (1.27) 

Contact forces update every cycle and are used to in the following cycle to determine 

the acceleration by means of Newton’s Second Law. The acceleration is then 

integrated to obtain the velocity and displacement of particles. The presence of contact 

bond superposes the slip that occurs between particles. Slip between particles, 

however, is important to mimic the real behaviour of the materials. In the DEM, slip is 

provides by the relationship between normal force, shear force and the friction 

coefficiency of balls μ [dimensionless]. The contact is checked for slipping by 

calculating the maximum allowable contact shear force, 𝐹𝑚𝑎𝑥
𝑠 :  

𝐹𝑚𝑎𝑥
𝑠 = μ|𝐹𝑛| (1.28) 

If |𝐹𝑠| > 𝐹𝑚𝑎𝑥
𝑠 , then slip is allowed to occur during the subsequent cycle by setting the 

value of 𝐹𝑠 equal to 𝐹𝑚𝑎𝑥
𝑠  via:  

𝐹𝑠 = −|𝐹𝑚𝑎𝑥
𝑠 |            if  𝐹𝑠 < 0 

 

𝐹𝑠 = |𝐹𝑚𝑎𝑥
𝑠 |               otherwise 

(1.29) 

The contact stiffness of the contact bond model is computed from the two 

contacting entities (particle-to-particle or particle-to-wall) by assuming that springs 

forming the contact act in series. The normal contact stiffness (secant stiffness) is 

given by: 

𝑘𝑛 =
𝑘𝑛

(𝐴)
𝑘𝑛

(𝐵)

𝑘𝑛
(𝐴)

+ 𝑘𝑛
(𝐵)

 (1.30) 

and the shear stiffness (tangent stiffness) is given by: 

𝑘𝑠 =
𝑘𝑠

(𝐴)
𝑘𝑠

(𝐵)

𝑘𝑠
(𝐴)

+ 𝑘𝑠
(𝐵)

 (1.31) 

where 𝑘𝑛
(𝐴)

, 𝑘𝑛
(𝐵)

, 𝑘𝑠
(𝐴)

 and 𝑘𝑠
(𝐵)

 [force/displacement] are the normal and shear stiffness 

of the contacted particles. Force-displacement laws for the contact bond model are 

shown in Figure 1.13. 
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Figure 1.13: Force-displacement laws for the contact bond model: (a) normal 
behaviour, and (b) shear behaviour. 

 

1.10.1.2 Parallel bond and moment resistance 

The parallel bond provides the force-displacement through a finite-sized piece of 

cementitious material deposited between two particles. It can be envisioned as a set 

of springs with constant normal and shear stiffness distributed over a circular disk or 

rectangular cross-section lying on the contact plane and centred at the contact point. 

Parallel bond acts in parallel with contact bond or slip described in the previous 

section, therefore the presence of parallel bond does not prevent the possibility of slip. 

Unlike contact bond, parallel bond can transmit both forces and moment that develop 

between particles and should only be installed between two balls. The total force and 

moment carried by the parallel bond are shown in Figure 1.14. The force vector can 

be resolved into normal and shear force components with the plane perpendicular to 

the straight line along particle centres as: 

�̅� = �̅�𝑛𝑛𝑖 + �̅�𝑠𝑛𝑗 (1.32) 

𝐹𝑐
𝑛 

𝐹𝑐
𝑠 Bond breaks 

Slip behaviour 

𝐹𝑛 
  (Tension) 

𝑈𝑛 (Overlap) 

1 

𝑘𝑛 

𝐹𝑠 
    (Shear) 

Bond breaks 

𝐹𝑚𝑎𝑥
𝑠  

Slip  
behaviour 

𝑈𝑠 

𝑘𝑠 

1 

(a) (b) 
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the parallel bond moment is resolved into a shear and normal moment as: 

�̅� = �̅�𝑠 + �̅�𝑛 (2D model: �̅�𝑛 = 0)  (1.33) 

where  �̅�𝑛, �̅�𝑠 and �̅�𝑠 are the normal and shear force and shear moment, respectively, 

𝑛𝑖 and 𝑛𝑗 are the unit vectors defining the contact plane. The parallel bond force and 

moment are set to zero when the parallel bond is formed. Each following relative 

displacement increment and rotation increment at the contact results in an increment 

of elastic force and moment that is added to the current values. Over a cycle with 

timestep ∆t, the elastic force increments are calculated by:  

∆�̅�𝑛 = (−�̅�𝑛𝐴∆�̅�𝑛)𝑛𝑖 (1.34) 

∆�̅�𝑠 = −�̅�𝑠𝐴∆𝑈𝑠 (1.35) 

with ∆𝑈 = 𝑉∆𝑡 (1.36) 

and the elastic moment increment is given by  

∆�̅�𝑠 = −�̅�𝑛𝐼∆𝜃𝑠 (1.37) 

with ∆𝜃 = (𝜔[𝐵] − 𝜔[𝐴])∆𝑡 (1.38) 

where �̅�𝑛 and �̅�𝑠 [stress/displacement] are normal and shear stiffness, respectively, V 

is the contact velocity, A is the area of the bond and 𝐼 is the moment of inertia of the 

disk cross section about an axis through the contact point and in the direction of ∆𝜃𝑠, 

they are given by   

𝐴 = 2�̅�𝑡 (1.39) 

𝐼 =
2

3
𝑡�̅�2 (1.40) 

where �̅� is the bond radius and calculated from the radius of the balls as: 
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�̅� = min (𝑅(𝐴),  𝑅(𝐵)) (1.41) 

The new force and moment vectors associated with the parallel bond are determined 

by adding elastic force and moment increment vectors in the new timestep to the 

existing values. This procedure should be done after rotating shear component vectors 

to account for the motion of the contact plane. It is important to note, since parallel 

bonds act in parallel with contact bonds, then the stiffness of the entire beam is 

equivalent to that for contact bond and parallel bond and given by: 

𝐾 = (𝑘𝑛/𝑠)
𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑏𝑜𝑛𝑑

+ (𝐴�̅�𝑛/𝑠)
𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑏𝑜𝑛𝑑

 (1.42) 
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Figure 1.14: Schematic diagram of the parallel bond. 

Failure in the parallel bond depends on the cross-sectional nature of the bond. 

The maximum tensile, �̅� [stress] and shear, �̅� [stress] stresses acting on the bond 

periphery are calculated using beam theory as:   

�̅� =
−�̅�𝑛

𝐴
+

|�̅�3|

𝐼
𝑅 (1.43) 

�̅� =
|�̅�𝑠|

𝐴
 (1.44) 

If the maximum tensile stress exceeds the normal strength (�̅� > �̅�𝑐), or the maximum 

shear stress exceeds the shear strength ( �̅� > �̅�𝑐 ) then the parallel bond breaks. 

Potyondy and Cundall  (Potyondy and Cundall, 2004) were the first to introduce the 

idea of a parallel bond to develop the bonded particle model (BPM) for rock. They 

simulated various virtual tests with different micro parameters and proved that the 

BPM is capable of representing all of the important behaviour mechanism in rock. 

p
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𝐹𝑠 

𝑛𝑖 
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Finally, the stress-displacement laws for the parallel bond model are shown in Figure 

1.15. 

 

Figure 1.15: Force-displacement laws for the parallel bond model: (a) normal 
behaviour, and (b) shear behaviour. 

 

1.10.1.3 Displacement-softening model 

The displacement softening model (DSM) in DEM is similar to the well-known 

cohesive model that is used in continuum. A Cohesive model is usually used to 

describe interfaces in composite materials such as fibre/matrix and interaction 

between plies. The DSM force-displacement curve is shown in Figure 1.16. The initial 

response of DSM is linear in absence of damage. Damage is assumed to initiate when 

the force applied in the contact reaches the initial contact bend strength, i.e. ∆𝐹𝑛 > 𝐹𝑐
𝑛 

or ∆𝐹𝑛/𝑠 > 𝐹𝑐
𝑠 . After this point, the applied force reduces linearly following a softening 

curve. If unloading occurs during the softening, the bond is rebounding along the 

elastic path. When the plastic displacement limit, 𝑈𝑝𝑚𝑎𝑥, reaches, then the contact 

removes from the model and assumes an inactive state.  

�̅�𝑐 
�̅�𝑐 Bond breaks 

�̅� 

(Tension) 

�̅�𝑛 (Overlap) 

1 

�̅�𝑛 

�̅� 

(Shear) 

Bond breaks 

𝑈𝑠 

�̅�𝑠 

1 

(a) (b) 
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The elastic normal and shear force increment, ∆𝐹𝑛/𝑠, calculated as a function of 

displacement, ∆𝑈𝑛/𝑠 via: 

∆𝐹𝑛/𝑠 = 𝑘𝑛/𝑠∆𝑈𝑛/𝑠 𝑛: normal, 𝑠: shear (1.45) 

And the resultant contact force determined as: 

𝐹 = √𝐹𝑛2 + 𝐹𝑠2 (1.46) 

In the case of mix mode fracture, the contact strength, 𝐹𝑚𝑎𝑥, is calculated from the two 

strength parameters (i.e. 𝐹𝑐
𝑛 and 𝐹𝑐

𝑠) as a function of the current orientation of the 

contact force. It is assumed that the contact strength is a linear function of the angle, 

α: 

𝐹𝑚𝑎𝑥 = (1 −
2𝛼

𝜋
) .  𝐹𝑐

𝑛  +
2𝛼

𝜋
 . 𝐹𝑐

𝑠 (1.47) 

The yielding of the bond in tension is determined by comparing the resultant contact, 

Eq. (1.46), with the contact strength, Eq. (1.47). If 𝐹 > 𝐹𝑚𝑎𝑥, then the contact yields. If 

the contact is under compression, failure may take place due to shear. The strength 

of the contact in this case is calculated as: 

𝐹𝑚𝑎𝑥 = 𝜇|𝐹𝑛| + 𝐹𝑐
𝑠 (1.48) 

where μ is the friction coefficient.  

The particle assembly is first generated with a linear contact law, then 

displacement softening contact models are assigned in interface. To get the complete 

DSM parameters, 𝑈𝑝𝑚𝑎𝑥  is calculated by assuming that the area under the force-

displacement curve represents the energy required to create a new crack, thus one 

has:  

𝐺𝐼 =
1

2
𝜎𝑚𝑎𝑥𝑈𝑝𝑚𝑎𝑥 (Mode I) (1.49) 
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𝐺𝐼𝐼 =
1

2
𝜏𝑚𝑎𝑥𝑈𝑝𝑚𝑎𝑥 (Mode II) (1.50) 

𝐺𝐼𝐼𝐼 =
1

2
𝜎𝑚𝑎𝑥𝑈𝑝𝑚𝑎𝑥 + 

1

2
𝜏𝑚𝑎𝑥𝑈𝑝𝑚𝑎𝑥 (Mix mode) (1.51) 

 

Figure 1.16: Constitutive behaviour of contact displacement-softening model: 
(a) normal behaviour, and (b) shear behaviour. 

where 𝐺𝐼 , 𝐺𝐼𝐼 and 𝐺𝐼𝐼𝐼 are the energy release rate, and 𝜎𝑚𝑎𝑥 and 𝜏𝑚𝑎𝑥 are the cohesive 

strength. In the DEM model, we assumed that the mechanical behaviour of the 

softening-displacement contact is equivalent to that of an elastic beam with its ends at 

the centres of two contacting balls, similar to the parallel bond in the previous section. 

Therefore, the stress acting over the cross section of the beam can be expressed as:  

𝜎𝑚𝑎𝑥 =
𝐹𝑐

𝑛

𝐴
 (1.52) 

𝜏𝑚𝑎𝑥 =
𝐹𝑐

𝑠

𝐴
 (1.53) 

1.10.2 Law of motion  

The motion of an individual particle is governed by the resultant force and 

moment acting upon it, and can be characterised in terms of translational motion and 

rotational motion of the centre of particles. The equation of motion can be expressed 

by two vector equations: one relates the resultant force to the translational motion of 

the particles and the other relates the resultant moment to the rotational motion as: 

𝐹𝑛 𝐹𝑠 

𝐹𝑐
𝑛 𝐹𝑐

𝑠 

𝑈𝑝𝑚𝑎𝑥
𝑛  𝑈𝑝𝑚𝑎𝑥

𝑠  

𝑈𝑝
𝑛 𝑈𝑝

𝑠 

(a) (b) 
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𝐹 = 𝑚 (�̈�𝑖  − 𝑔𝑖) Translational motion (1.54) 

�̅�3 = 𝐼�̇�3 Rotational motion (1.55) 

where 𝑖 = 1, 2, 3 indicates the component in the x-, y-, z-directions, F is the resultant 

force (sum of the all externally applied forces acting on the particle), �̈�𝑖  is the 

acceleration of the particle, 𝑚  is the mass of the particle, 𝑔𝑖  is the body force 

acceleration vector (i.e. gravity loading), �̅�3 is the component of the resultant moment 

in z-direction acting on the particle, �̇�3 is the angular velocity and 𝐼 is the moment of 

inertia of the particle. The equations of motion given in Eq. (1.54) and (1.55) are solved 

using a central finite difference procedure involving the timestep of ∆𝑡. The quantities 

�̈�𝑖 , �̇�3, 𝐹 and �̅�3 are computed at the primary interval of (𝑡 ± ∆𝑡). The translational 

and rotational accelerations are then calculated at time t as: 

�̈�𝑖
(𝑡)

=
1

∆𝑡
 (�̇�𝑖

(𝑡+ ∆𝑡 2⁄ )
−  �̇�𝑖

(𝑡− ∆𝑡 2⁄ )
) (1.56) 

�̇�3
(𝑡)

=
1

∆𝑡
 (𝜔3

(𝑡+ ∆𝑡 2⁄ )
−  𝜔𝑒

(𝑡− ∆𝑡 2⁄ )
) (1.57) 

The velocities at time (𝑡 +  ∆𝑡 2⁄ ) can be then solved by inserting Eq. (1.54) and (1.55) 

into Eq. (1.56) and (1.57). Hence,  

�̇�𝑖
(𝑡+∆𝑡 2⁄ )

=  �̇�𝑖
(𝑡− ∆𝑡 2⁄ )

+ (
𝐹(𝑡)

𝑚
 𝑔𝑖  ) ∆𝑡 (1.58) 

𝜔3
(𝑡+∆𝑡 2⁄ )

= 𝜔3
(𝑡− ∆𝑡 2⁄ )

+ (
𝑀3

(𝑡)

𝐼
  ) ∆𝑡 (1.59) 

Finally, the position of particle centre is updated by integrating velocities in (1.58) and 

(1.59) as  

𝑥𝑖
(𝑡+∆𝑡)

=  𝑥𝑖
(𝑡)

+ �̇�𝑖
(𝑡+∆𝑡 2)⁄

∆𝑡 (1.60) 

The calculation cycle for law of motion can be summarised as follows. Firstly, 

Eqs. (1.58) and (1.59) are used to obtain �̇�𝑖
(𝑡+∆𝑡 2⁄ )

 and 𝜔3
(𝑡+∆𝑡 2⁄ )

 based on given values 
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of �̇�𝑖
(𝑡− ∆𝑡 2⁄ )

, 𝜔3
(𝑡− ∆𝑡 2⁄ )

, 𝐹(𝑡)  and 𝑀3
(𝑡)

. Then, this value is used to obtain 𝑥𝑖
(𝑡+∆𝑡)

 by 

applying Eq. (1.60). The values of 𝐹𝑖
(𝑡+∆𝑡)

and 𝑀3
(𝑡+∆𝑡)

, to be used in the next cycle, are 

obtained by application of the force-displacement law (Itasca, 2003).  

1.10.3 Mechanical timestep  

As discussed earlier, DEM uses a central finite difference scheme to integrate 

the equations of motion, Eqs. (1.58) and (1.59). It is also assumed that the velocities 

and accelerations are constant during each timestep. The solution procedure of these 

equations remains stable only if the timestep does not exceed a critical value. In other 

words, the timestep should be small enough so the disturbance cannot propagate from 

any particle further that its immediate neighbours during each timestep. By default, the 

PFC (Itasca, 2003) automatically calculates the critical timestep at the start of each 

cycle and then the actual timestep is treated as a fraction of the calculated critical 

value.  

The way the approach uses by PFC to estimate the critical timestep is evaluated 

by considering a single one-dimensional mass spring system described by mass, 𝑚, 

and stiffness, 𝑘, as shown in Figure 1.17. For this single of freedom system, Bathe 

and Wilson (Bathe and Wilson, 1976) found that the critical timestep is simply given 

by: 

𝑡𝑐𝑟𝑖𝑡 =  
𝑇

𝜋
 (1.61) 

𝑇 = 2𝜋 √𝑚 𝑘⁄  (1.62) 

where 𝑇 is the period of free vibration of the degree of freedom.  
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Figure 1.17: Schematic of a single mass-spring system used by PFC to 
calculate the critical timestep. 

Next, consider an infinite series of point masses and springs, as shown in Figure 1.18, 

which illustrates particles and contacts in a system, respectively. The smallest period 

of this system occurs when the masses are moving synchronously in opposed 

directions so that no motion occurs at the centre of each spring. The motion of a single 

point mass can therefore be described by a two equivalent system as shown in Figure 

1.18b and c. Thus, the critical timestep for this system is found as: 

𝑡𝑐𝑟𝑖𝑡 = 2√
𝑚

4𝑘
= √𝑚 𝑘⁄ .  (1.63) 

It has also been suggested (Itasca, 2003) to multiply the critical time increment by a 

safety factor, which is by default being 0.8. 

 

Figure 1.18: Schematic of a multiple mass-spring system used by PFC to 
calculate the critical timestep. 
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For the quasi-static discrete element simulations analysis, which is usually 

considered in the geotechnical, to be as the same conditions as in laboratory would 

be computationally expensive. Therefore, the timestep bound can be alleviated slightly 

by either particle density, mass scaling or the strain rate. For example, Thornton 

(Thornton, 2000) used a strain rate equal to that of experimental and increased the 

particle density in order to increase the critical timestep determined in Eq. (1.62) and 

limit the quasi-static effects. While Plassiard et. al. (Plassiard et al., 2009) kept the 

density at a constant value and increased the strain rate without generating inertial 

effects. Finally, it is important to note that for when simulations with high frequency 

response are necessary, then the mass scaling is not recommended (O'Sullivan and 

Bray, 2004).   

1.10.4 Loading methods 

The external forces in DEM can be either applied by walls or by velocity/force 

applied on a set of particles. The first method can be done by moving walls at a 

constant velocity and the resulting forces and moments acting on the walls are then 

recorded. This method is appropriate for many tests, such as the uniaxial compression 

test and Brazilian test. However, it cannot be used for uniaxial and shear tests and the 

second method, therefore, is frequently used to conduct these tests. It is started by 

creating a ‘string’ of particles, usually those touching walls. Then, these particles are 

fixed and given a constant velocity, after removing the walls.  

1.10.5 Biaxial loading methods  

There are some simulations (e.g. the biaxial test and the constant creep test) that 

require stress-control during the test. This can be achieved in many ways based on 

the loading methods discussed in the previous section.  

1.10.5.1 Servo-control mechanism 

The numerical servo-control mechanism is a function that controls the walls 

velocity in order to maintain a constant confining stress throughout the simulation. This 

function is called in every cycle to determine the current wall stress and to compare it 

with required wall stress. Then, it adjusts the wall velocity to reduce the difference 
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between current measured wall stress and target wall stress. The wall velocity is given 

by: 

�̇�(𝑤𝑎𝑙𝑙) = 𝐺(𝜎(𝑤𝑎𝑙𝑙) − 𝜎(𝑡𝑎𝑟𝑔𝑒𝑡)) = 𝐺∆𝜎 (1.64) 

where 𝐺 is the “gain” parameter which is estimated using the following reasoning and 

𝜎(𝑤𝑎𝑙𝑙) is the wall stress at each cycle and arises from the particle assembly that is in 

contact with the wall as: 

𝜎(𝑤𝑎𝑙𝑙) =
∑ 𝐹(𝑤𝑎𝑙𝑙)

𝑁𝑐

𝐴
 (1.65) 

where 𝐹(𝑤𝑎𝑙𝑙) is the force applied to a particle on the wall, and calculated as in Eq. 

(1.66), A is the area of the wall that is in contact with the particle assembly, and the 

summation is taken over all particle-wall contacts, 𝑁𝑐.  

∆𝐹(𝑤𝑎𝑙𝑙) = 𝑘𝑛
(𝑤)

�̇�(𝑤𝑎𝑙𝑙)∆𝑡 (1.66) 

where 𝑘𝑛
(𝑤)

 is the sum of the contact stiffness of all contacts with wall. Hence, the 

change in wall stress is   

𝜎(𝑤𝑎𝑙𝑙) =
𝑘𝑛

(𝑤)
 �̇�(𝑤𝑎𝑙𝑙)∆𝑡

𝐴
 (1.67) 

For stability reasons, the absolute change in wall stress must be less than the absolute 

difference between the measured and required stress. This avoids overshooting of the 

required stress, which then leads to an oscillation about the required stress and grows 

in an unbounded manner and leads to instability. Therefore, it is important that the wall 

stress reaches the required stress in as smoothly a manner as possible. To fulfil this 

stability requirement, a relaxation factor, α, is introduced such that the stability 

requirement becomes: 

|∆𝜎(𝑤𝑎𝑙𝑙)| < 𝛼 |∆𝜎| (1.68) 

 Substituting Eqs. (1.64) and (1.67) into Eq. (1.68) gives: 
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𝑘𝑛
(𝑤)

 𝐺|∆𝜎|∆𝑡

𝐴
 <  𝛼 |∆𝜎| (1.69) 

and then: 

𝐺 ≤
𝛼 𝐴

𝑘𝑛∆𝑡
 (1.70) 

Before each cycle, the wall velocity is adjusted by substituting Eq. (1.70) into Eq. (1.64) 

to achieve the target wall stress in numerical servo-control.  

1.10.5.2 Applied forces to boundary particles 

Another method for the biaxial test is based on switching between velocity and 

forces applied on a set of particles on the edge. This approach is initially similar to 

uniaxial loading, in that we fix particles on the boundary and then apply velocity. Once 

target stress is achieved, force applies on each boundary particle equal and opposite 

to the unbalanced force. All particles on the boundary are then freed of any constraint. 

At this point, the assembly would be in equilibrium under a force boundary condition. 

This method can be used to perform tension load combined with another (e.g. shear 

load), which cannot be done using the method explained in Section 1.10.5.1.   
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Chapter 2 

 

2 Generating random fibre distributions  

In this chapter, a novel approach is presented for generating random distribution 

of fibres in the representative volume element (RVE) of fibre reinforced composite 

laminates. The approach is based on discrete element method (DEM) and 

experimental data of fibre diameter distribution. It overcomes the jamming limit 

appeared in previous methods and is capable for generating high volume fractions of 

fibres with random distributions and any specified inter-fibre distances. Statistical 

analysis is then carried out on the fibre distributions generated within the RVEs which 

show good agreement with experiments in all statistics analysed. The effective elastic 

properties of the generated RVEs is finally analysed by finite element method, which 

results show more reasonable agreement with the experimental results than previous 

methods.  

2.1 Introduction  

Several approaches have been reported in the literature for generating 

statistically equivalent RVEs (SERVEs) of composite materials with non-uniform 

distributions of fibres. A SERVE has the smallest volume size but can still maintain the 

same stress-strain relationship as that of the entire composite (Swaminathan et al., 

2006). Usually the hard-core model (also called random sequential absorption model) 

was used to generate a SERVE. In a 2D hardcore model the fibres are represented 

by discs randomly distributed in a square domain without any overlap. The hard-core 

model is natural and simple, and its only disadvantage is that it has difficulties in 

generating a random distribution of fibres with a volume fraction higher than 50% due 

to a jamming limit (Buryachenko et al., 2003). This limitation was later eliminated by 

Wongsto and Li (Wongsto and Li, 2005) who proposed a method that generated 

random distribution by shaking an initial hexagonal packing of the fibres. Therefore 

this approach was also called initially periodic shacking model (IPSM) (Yang et al., 
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2013b). However, no statistics analysis was performed on this algorithm and the initial 

periodic arrangement might not be fully changed by the shaking procedure. Melro et 

al.,(Melro et al., 2008) developed a hard-core shaking model (HCSM) in which the 

classical hard-core model was used to generate an initial fibre distribution and then 

small arbitrary displacements were assigned to the fibres to enable random motions. 

During the process matrix rich regions were created in certain areas where more fibres 

could be placed in order to achieve higher volume fractions. Because the hard-core 

model involves uncertainties in generating the initial configuration, it requires a 

relatively complex algorithm for the fibres to move. A simpler algorithm, random 

sequential expansion (RSE), was recently developed by Yang et al., (Yang et al., 

2013b). The algorithm was still based on hard-core model and the inter-fibre distances 

were controllable. However, the fibre diameters in this algorithm were assumed to be 

uniform, and the inter-fibre distance had to be zero in order to achieve a volume 

fraction of 68%. This zero inter-fibre distance could cause numerical difficulties when 

analysing RVE using FEM because there has to be a sufficient distance between two 

neighbouring fibre surfaces to ensure adequate elements to cover those areas as 

matrix (González and LLorca, 2007a). 

Besides the above mentioned numerical approaches, there are also some 

experimental image based models. The idea of those models is to obtain digital 

images of transverse sections using scanning electronic microscopic (SEM) or high-

resolution optical microscopic and then use a computer software to locate the fibre 

centroids by detecting a colour ‘threshold’ of the fibres. For instance, Vaughan and 

McCarthy (Vaughan and McCarthy, 2010) measured the diameter distribution and 

used a nearest neighbour algorithm (NNA) to define the inter-fibre distances for 

generating a SERVE of high strength composite laminates. The obvious benefit of 

image-based method is that it can be used to generate a microstructure exactly the 

same as the original cross section area of the composite material. However, this is 

time-consuming and requires specific computer software to process the images in 

order to identify the locations of the fibres. 
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2.2 Algorithm development using DEM 

In this section an algorithm is developed in DEM to generate random distributions 

of fibres with high volume fractions, which is combining experimental and shaking 

approaches. 

A variable fibre diameters were drawn from the experimentally measured data 

and used for fibre generation in DEM software package PFC2D (Itasca, 2003). The 

diameters of the fibre in this study conform to normal distribution with mean fibre 

diameter of 6.6 μm and standard deviation of 0.3106 (Vaughan and McCarthy, 2010), 

as shown by the solid curve in Figure 2.1. The fibre volume fraction used in this case 

is 60%, the same as used in (Vaughan and McCarthy, 2010). The new method is 

explained bellow and illustrated in Figure 2.2. 

 

Figure 2.1: Size distribution of fibres. 

(i) Using the mean fibre diameter, �̅�𝑓, the required number of fibres, Nf, is 

approximately determined by the following simple calculation: 
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𝑁𝑓 =
4𝑉𝑓𝐿2

𝜋�̅�𝑓
2  (2.1) 

Once the number of fibres is known, a random number, α, between -1 and 1 is created 

in DEM software PFC2D and used to calculate the diameter of each fibre to be 

generated, 𝐷𝑓, following the Gaussian normal distribution function: 

𝐷𝑓 = �̅�𝑓 + 𝛼𝛿𝑓 (2.2) 

In the 2D DEM modelling, each fibre is represented by a disc in PFC2D. The diameter 

distribution of discs/fibres in the DEM model is also plotted in Figure 2.1, which 

matches the distribution function extracted from experimental data. The discs/fibres 

are initially placed in a regular cubic arrangement, as shown in Figure 2.2a. 

(ii) Since the fibre diameters are not identical, in some cases the resultant fibre volume 

fraction could be smaller than the target fibre volume fraction. Therefore, more 

discs/fibres are added one by one in random places and overlap with those generated 

earlier in order to achieve the target volume fraction, as shown in Figure 2.2b. The 

instant volume fraction is re-calculated after every single disc is added, and the 

process terminates when the target fibre volume fraction is reached. 

(iii) Random velocity is applied simultaneously to each of the discs that moves in a 

way similar to the Brownian motion. The motion of the discs is governed by the 

Newton’s Second Law and the collisions between any two discs are according to a 

Hertz contact law (Itasca, 2003). In this step there are two major groups of discs, as 

shown in Figure 2.2c. The grey ones are the internal discs staying within the RVE, and 

the red ones are those moving across the RVE boundary from the inside. As a 

consequence of the motion of the red discs, the fibre volume fraction of the RVE is 

reduced. To compensate this loss and maintain the initial fibre volume fraction, paired 

discs, denoted by the blue ones, are added along the opposite boundary mapping the 

respective positions of the red outgoing red discs. This is achieved using periodic 

boundary condition available in PFC2D (Itasca, 2003). The velocity of each disc is 

then set to zero after a sufficient period of time of free motion, and the whole model 

gradually reaches a static equilibrium state. 
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Figure 2.2: Procedure for generating random fibre distributions using DEM. (a) 
Initial fibre distribution in regular cubic arrangement. (b) More discs are added in. (c) 
Periodic boundary condition is applied to maintain the constant fibre volume fraction. 

(iv) At this stage, there might exist overlaps between some discs, while in reality there 

are normally small distances between fibre surfaces. To resolve this issue, the radii of 

all the discs are increased by half of the minimum required distance between two 

neighbouring fibre surfaces. By Hertz contact law, there will be repulsive forces at the 

contact between any two particles with an overlap to produce relative displacement 

and consequently increase the distance between them. After this additional 

redistribution, the whole model reaches an equilibrium state again and the radii of all 

the discs are reduced back to their initial values. 

( (
(a) (b) 

(c) 
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This algorithm can be used to generate high fibre volume fractions with any 

specified inter-fibre distances. Examples of fibre distributions with fibre volume 

fractions of 60%, 65% and 68%, and a minimum inter-fibre distance of 0.8 µm are 

shown in Figure 2.3. The results have demonstrated that the presented algorithm is 

capable of generating microstructures of composites with required high fibre volume 

fractions. The method is conducted using PFC2D (Itasca, 2003) and the codes can be 

found in Appendix A. 

 

Figure 2.3: Three fibre distributions with high volume fractions: (a) 60%, (b) 
65%, and (c) 68%. 

2.3 Statistical characterisation 

This section is dedicated to the statistical analysis of the fibre distributions 

generated by the present algorithm. The statistical methods employed here are 

normally used to quantitatively describe the random point distributions in the space. 

For the purpose of comparison, exactly the same statistical descriptors used in 

(Vaughan and McCarthy, 2010, Yang et al., 2013b) are adopted in this study and  the 

positions of all fibres are considered as a spatial point pattern (Illian et al., 2008). 

Four statistical descriptors are adopted, i.e., nearest neighbour distribution 

function, cumulative distribution function, second-order intensity function and pair 

distribution function. Several parameters are considered such as the side length of 

RVE, L, volume fraction, Vf and fibre radius, rf. The RVE size can be described by the 

variable δ, which defines the relationship between the side length of RVE and the fibre 

radius as: 

(a) (b) (c) 
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𝛿 =
𝐿

𝑟𝑓
 (2.3) 

The size of RVE needs to be sufficiently large to characterise the behaviour of a 

bulk material. For a typical composite material such as carbon fibre reinforced polymer 

(CFRP) with a fibre volume fraction of 50%, Trias et al., (Trias et al., 2006) found that 

the minimum size of RVE was δ=50. The values used for the input variables in this 

study were same as those used in (Melro et al., 2008, Vaughan and McCarthy, 2010, 

Yang et al., 2013b), i.e., δ=50, Vf=60% and the fibre diameters were obtained from a 

normal distribution. A total of twenty-five RVEs were generated and each of them had 

the same size of 165 μm × 165 μm. Results of the four statistical functions were 

compared with the experimental data reported by Vaughan and McCarthy (Vaughan 

and McCarthy, 2010) and the recent RSE algorithm proposed by Yang et al.,(Yang et 

al., 2013b). MATLAB (MATLAB, 2012) was used to calculate all statistical descriptors 

explained later in this section.  

2.3.1 Nearest neighbour distribution 

As one of the basic functions to characterise a system of interacting points in the 

space, nearest neighbour distribution is defined as the probability density of finding a 

nearest neighbour of a reference point. Therefore it can be used as an indicator to 

assess whether the fibres in a RVE are random, regular or clustered. Figure 2.4a and 

4b show the results of the 1st and 2nd nearest neighbour distributions of twenty-five 

RVEs, respectively.  
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(a) 
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(b) 

Figure 2.4: Results of near neighbour distributions compared with experimental 
data and RSE results. (a) 1st Nearest neighbour distribution. (b) 2nd Nearest 
neighbour distribution function 

2.3.2 Second-order intensity function 

The second-order intensity function, also called Ripley’s K function, is another 

statistical tool that has been extensively used to analyse a spatial pattern (Pyrz, 1994). 

The function is defined as the number of more points to be added within a radial 

distance, r, of an arbitrary point divided by the number of points per unit area, N. Unlike 

the 1st and 2nd nearest neighbour distributions which depend on the local information 

of the points, the edge of the domain, w, and overlap effects are taken into account by 

the Ripley’ K function because they have a significant effect when calculating this 

function. The Ripley’s K function is estimated by: 

𝐾(𝑟) =
𝐴

𝑁2
∑ ∑ 𝜔𝑖𝑗

−1𝐼(rij ≤ r),

𝑖≠𝑗𝑖

 (2.4) 
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where A is the area of the domain, N is the total number of points (fibres) in the 

domain, I(.) is the indicator function with the value of 1 if the expression between the 

brackets is true, otherwise it is 0, rij is the distance between points i and j, and ωij is a 

weight function for edge effects and defines as the ratio of the circumference contained 

within the domain to the whole circumference of the circle rij. For example, if a sample 

with radius, r, is completely within the observed area, ωij equal to 1. Figure 2.5 

graphically explains the variables used in Eq. (2.4), variables value also given on the 

figure for two samples.  

 

Figure 2.5: An explanation of the variables in the second-order intensity (or 
Ripley’s K) function. 

Point fields are usually compared with the complete spatial randomness (CSR) 

pattern, and the Ripley’s K function computed by (Illian et al., 2008): 

𝐾(𝑟) = 𝜋𝑟2. (2.5) 
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The comparison between the shape of K(r) and the shape of CSR patterns 

provides important information for assessing the fibre distribution. For instance, when 

the K(r) curve of is below the CSR curve , it gives an indication that the distribution is 

somehow regular, otherwise it means that some fibres are clustered in the area (Melro 

et al., 2008). Shown in Figure 2.6 are the mean second-order intensity functions for 

twenty-five RVEs generated using the present method, experimental, RSE and CSR 

results. The results can be split into two areas. When distances are shorter (i.e., 𝑟 ≤

15), the curve obtained from the present work is close and above the experimental 

and both show stair-shape-likes, as shown in the zoom-in view of  Figure 2.6. The 

curve is also above the CSR, which indicates the fibre distribution is regular at these 

distances as explained above, but it is gradually separating from the other two at larger 

distances (i.e.,𝑟 > 15), as a result of the long range clustering. 

 

Figure 2.6: Second-order intensity function, compared with experimental, RSE 
method and CSR. 
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2.3.3 Radial distribution function 

The radial distribution function is an important statistical tool that is mostly used 

to study a system of particles such as atoms or molecules. The function describes the 

change of the average fibre density as a function of distance from a reference point 

which, in our case, is a given fibre centre. It is mathematically related to K(r) (Eq. (2.4)) 

as (Swaminathan et al., 2006): 

𝑔(𝑟) =
1

2𝜋𝑟

d𝐾(𝑟)

d𝑟
, (2.6) 

where g(r) is the intensity of the fibre distances and K(r) is the second-intensity 

function. This function is also defined as the probability of finding an additional points 

(fibres) within an annulus area of inner radius, r, and outer radius r + dr. Figure 2.7 

visually explains the variables used in Eq. (2.6) variables value also given on the 

figure. 
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Figure 2.7: An explanation of the variables in the radial distribution function 
containing four points in the annulus area. 

 

Figure 2.8 shows the mean radial distribution functions for the microstructures 

generated by the present DEM method, together with the experimental and RSE 

microstructures. Again, excellent agreement is found between the present method and 

experimental data and this can be seen at larger distances when both tend to 1, which 

confirms the randomness distributions of fibres. Therefore, it is proved that the 

developed algorithm using DEM is a useful tool for generating random fibre 

distributions in RVEs of composite materials for micromechanical analysis.   
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Figure 2.8: Radial distribution function for present method and compared with 
experimental RSE method. 

2.4 Prediction of mechanical properties 

As done for other algorithms (Vaughan and McCarthy, 2010, Yang et al., 2013b), 

the present algorithm is used to generate the RVEs of the transverse section of a 

composite lamina. The effective elasticity from the properties of their constituents is 

then evaluated by finite element models. 

2.4.1 Finite element analysis 

In this chapter, two materials have been chosen to study, the first is E-glass 

embedded in MY750/HY917/DY063 epoxy matrix, as well as AS4 carbon combined 

with 3501-6 epoxy matrix. The properties have been reported in the World Wide 

Failure Exercise (WWFE) (Soden et al., 1998b) and used by (Melro et al., 2008, Yang 

et al., 2013b). Both the matrix and the fibre are treated as isotropic for the 2D model. 
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The elastic properties of the fibre and the matrix for both material are given in in Table 

2.1. 

Table 2.1: Material elastic properties. 

Material Em (GPa) νm Ef (GPa) νf 

E-Glass/MY750/HY917/DY063 3.35 0.35 74 0.2 

AS4/3501-6 4.2 0.34 15 0.2 

Finite element (FE) analysis was carried out using ABAQUS (ABAQUS, 2010) 

under plane strain condition. In the ABAQUS model both the matrix and the fibres 

were meshed using free meshing technique with quad-dominated element shapes. 

The two-dimensional 4-node bilinear plane strain quadrilateral elements (CPE4) were 

chosen to mesh the fibre and the matrix. There were also a relatively small amount of 

3-node linear plane strain triangle elements (CPE3) due to the free meshing technique 

used. Since each model has about 500 fibres, it is difficult and time consuming to 

generate each RVE manually. Therefore, python scripts have been written to generate 

and distribute fibres in the FE models of the RVEs in ABAQUS (ABAQUS, 2010). 

Twenty RVEs spatial distributions with Vf=60% were generated, each containing 

approximately 55,000 elements. 

Periodic boundary conditions were applied on the RVEs to ensure the 

compatibility of strain and stress at macro level, similar to those used by (Van der Sluis 

et al., 2000, Yang et al., 2013b). These consist of a series of constrains in which, the 

deformation of each pair of nodes on the opposing edge of the RVE were subject to 

the same amount of displacements, i.e.: 

𝑢23 − 𝑢𝑣2 = 𝑢14 − 𝑢𝑣1 (2.7) 

𝑢43 − 𝑢𝑣4 = 𝑢12 − 𝑢𝑣1 (2.8) 

where uij is the y or z displacement of nodes on the edges and uvi is the 

displacement of vertex node, i. Nodes in Eqs. (2.7) and (2.8) are connected by the 

“equation” constrains available in ABAQUS (ABAQUS, 2010). High number of 

equations required to build the periodic boundary, which cannot be done manually. 

Therefore, a python script containing the mesh information, such as node coordinates, 
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are firstly written in the scrip. Then equations are converted in a set of keywords and 

also written in the script in order to implement them into the ABAQUS model. 

Figure 2.9a and Figure 2.9b show the periodic boundary conditions for tension 

and shear, respectively. E2 and ν23 are determined by applying a horizontal 

displacement on node 2 while to determine E3 and ν32 a vertical displacement is 

applied on node 4, as shown in Figure 2.9a. G23 is determined by applying a horizontal 

displacement on node 4, as shown in Figure 2.9b. 

 

Figure 2.9: Periodic boundary constraints applied to the RVEs. (a) Tension, and 
(b) Shear. 

The elastic properties were evaluated based on volumetric homogenisation 

procedure using the following equations (Melro et al., 2008): 

𝐸𝑘 =
∑ 𝜎𝑘𝑘

𝑖 𝐴𝑖𝑁
𝑖=1

∑ 𝜀𝑘𝑘
𝑖 𝐴𝑖𝑁

𝑖=1

 𝜀𝑗𝑘 = −
∑ 𝜀𝑘𝑘

𝑖 𝐴𝑖𝑁
𝑖=1

∑ 𝜀𝑗𝑗
𝑖 𝐴𝑖𝑁

𝑖=1

 𝐺23 = −
∑ 𝜎23

𝑖 𝐴𝑖𝑁
𝑖=1

∑ 𝜀23
𝑖 𝐴𝑖𝑁

𝑖=1

, (2.9) 

where N is the total number of FE elements in the RVE,  𝜎𝑘𝑘
𝑖 and 𝜀𝑘𝑘

𝑖  are the 

average k-components of stress and strain of element i respectively, and 𝐴𝑖 is the area 

of element i.  
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2.4.2 Analysis and results 

2.4.2.1 Calculating mechanical elastic properties 

The pattern of stress distribution in the RVEs is examined first, in case of using 

E-Glass/MY750/HY917/DY063 composite. To this end, a displacement of 3 μm is 

applied on the RVEs for both tension and shear cases (see Figure 2.9). The von Mises 

stress contour plot for a RVE is shown in Figure 2.10. The von Mises stress varies 

from 24.1 MPa to 505 MPa under transverse tension while the stress varies from 16.7 

MPa to 353.8 MPa under transverse shear, as illustrated in Figure 2.10. In addition, it 

seems that the most of the high stresses area are located at interfaces especially 

where the distances between fibres are small. This is mainly due to the large 

differences of the mechanical properties between fibres and matrix.  

 

Figure 2.10: Von Mises stress distribution in a RVE under. (a) Tension and (b) 
Shear. 

(a) (b) 
(b) Shear  (b) Tension  
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Effective properties are calculated numerically for generated twenty 

microstructures using Eq. (2.9) and shown in Table 2.2, where their mean values and 

the standard deviations are also presented. The table also contains mechanical 

properties of the unidirectional lamina measured experimentally (Soden et al., 1998b) 

and by other methods (Melro et al., 2008, Yang et al., 2013b).   

Table 2.2: Calculated effective properties (E-Glass/MY750/HY917/DY063). 

 E2 (GPa) E3 (GPa) ν23 ν32 G23 (GPa) 

Mean values 13.914 13.964 0.401 0.403 4.992 

Standard deviations 0.661 0.794 0.031 0.022 0.251 

Variation coefficient 0.048 0.057 0.077 0.056 0.050 

Ref (Melro et al., 2008) 13.367 13.387 0.370 0.371 4.851 

Ref (Yang et al., 

2013b) 

13.047 13.068 0.405 0.405 4.673 

Experimental (Soden 

et al., 1998b) 

16.2 16.2 0.4 0.4 5.786 

Error (%, compared to 

experimental) 

14.11 13.80 0.23 0.74 13.72 

As seen from the table the average predicted Young’s modulus and shear 

modulus of all RVEs are higher than those attained by (Melro et al., 2008, Yang et al., 

2013b) and much closer to the experimental results, i.e., the shear modulus shows 

13.7% smaller than the experimental one in comparison with Yang’s et al., (Yang et 

al., 2013b) prediction of 19% smaller.  

The predicted effective properties of AS4/3501-6 are also calculated and are 

summarised in Table 2.3. The error associated with the predicting elastic properties 

for this material was slightly higher than previous one. The error for this case are 

increased by almost 3%.  
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Table 2.3: Calculated effective properties (AS4/3501-6). 

 E2 (GPa) E3 (GPa) ν23 ν32 G23 (GPa) 

Mean values 9.039 9.032 0.379 0.387 3.263 

Standard deviations 0.097 0.102 0.022 0.003 0.048 

Variation coefficient 0.011 0.011 0.059 0.009 0.015 

Experimental (Soden 

et al., 1998b) 

11 11 0.4 0.4 3.928 

Error (%, compared to 

experimental) 

17.82 17.82 5.14 3.36 16.93 

 

As the material is assumed to be transverse isotropic in the x-z plane, the well-

known consistent relationships which relate five independent elastic constants exist. 

The relationship between Young’s modulus and Poisson’s ratio is described as:  

𝐸2

𝜈23
=

𝐸3

𝜈32
 (2.10) 

The transverse isotropy is determined by the following relationships: 

𝐸2 = 𝐸3,  𝜈23 = 𝜈32, �̅�23 =
𝐸2

2(1 + 𝜈23)
. (2.11) 

Table 2.4: Proof of transverse isotropy. 

Material 

𝐸2𝜈32

𝐸3𝜈23
 

𝐸3

𝐸2
 

𝜈23

𝜈32
 G̅23

G23
 

E-Glass/ 

MY750/HY917/DY063 

1.002 0.996 1.005 0.995 

AS4/3501-6 1.020 1.001 1.019 1.004 

The mean values of the elastic properties that provide in Table 2.2 and Table 2.3 are 

used as the input for Eqs. (2.10) and (2.11). Table 2.4 shows the transverse isotropy 

of Eqs. (2.10) and (2.11) are approximately satisfied using the predicted values in 

Table 2.2. It shows that all ratios are very close to 1 which concludes that the 

generated random fibre distributions have almost the same transverse isotropy as the 

real material. 
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2.4.2.2 RVE with continuous and non-continuous distributed fibres over edges 

In order to effectively use periodic boundary conditions given in Eqs. (2.7) and 

(2.8), it is important that the number of nodes on each edges equal to those on the 

opposite side. However, this task may not be straightforward in case of using RVE 

with continuously distributed fibres over edges as shown in Figure 2.11a. Fortunately, 

the proposed method in the work can also generate RVE with non-continuous 

distributed fibres over edges, in which all fibres are accommodated within the RVE as 

shown in Figure 2.11b.  

   

Figure 2.11: RVE with different distributed fibres style over edges. (a) 
Continuous. (b) Non-continuous. 

Effective properties using non-continuous distributed fibres are calculated 

numerically for generated twenty microstructures for both materials use in this study 

and shown in Table 2.5 and Table 2.6, where their mean values and the standard 

deviations are also presented. It can be seen that the percentage of error for material 

properties for E-Glass/MY750/HY917/DY063 composite has increased significantly 

compare to continuous edges case given in Table 2.2.  The elastic properties for 

AS4/3501-6 are almost identical in both cases, unless shear modulus that is increased 

slightly using non-continuous edges, Table 2.6. 

 

(a) (b) 
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Table 2.5: Calculated effective properties for non-continuous distributed fibres 
(E-Glass/MY750/HY917/DY063). 

 E2 (GPa) ν23 G23 (GPa) 

Mean values 12.918 0.380 4.153 

Standard deviations 0.222 0.022 0.203 

Variation coefficient 0.017 0.058 0.049 

Experimental (Soden 

et al., 1998b) 

16.2 0.4 5.786 

Error (%, compared to 

experimental) 

20.27 4.92 28.23 

Table 2.6: Calculated effective properties for non-continuous distributed fibres 
(AS4/3501-6). 

 E2 (GPa) ν23 G23 (GPa) 

Mean values 9.119 0.378 3.189 

Standard deviations 0.060 0.006 0.047 

Variation coefficient 0.007 0.017 0.015 

Experimental (Soden 

et al., 1998b) 

11 0.4 3.928 

Error (%, compared to 

experimental) 

17.10 5.62 18.81 
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Chapter 3 

 

3 Discrete element modelling of unidirectional fibre-

reinforced polymers under transverse tension 

 

The mechanical behaviour of unidirectional fibre-reinforced polymer composites 

subjected to transverse tension was studied using a two dimensional discrete element 

method. The Representative Volume Element (RVE) of the composite was idealised 

as a polymer matrix reinforced with randomly distributed parallel fibres. The matrix and 

fibres were constructed using disc particles bonded together using parallel bonds, 

while the fibre/matrix interfaces were represented by a displacement-softening model. 

The prevailing damage mechanisms observed from the model were interfacial 

debonding and matrix plastic deformation. Numerical simulations have shown that the 

magnitude of stress is significantly higher at the interfaces, especially in the areas with 

high fibre densities. Interface fracture energy, stiffness and strength all played 

important roles in the overall mechanical performance of the composite. It was also 

observed that tension cracks normally began with interfacial debonding. The merge of 

the interfacial and matrix micro-cracks resulted in the final catastrophic fracture. 

3.1 Introduction 

Micromechanics has been one of the major tools that have been used to study 

the failure of lamina, since its mechanical behaviour cannot be characterised 

accurately by a simple homogenization approach, particularly when it is subject to a 

transverse loading. Also, micromechanical models are capable of predicting failure as 

a function of the properties of each material constituent are capable of predicting 

failure as a function of the properties of each material constituent (González and 

LLorca, 2007a). 



 

75 

 

Computational micromechanics using the finite element method (FEM) has 

become the most widely used method to predict the strength of composites as well as 

the damage progression. This includes the studies on the effect of particle morphology 

(Chawla et al., 2006) and reinforcement spatial distribution on tensile deformation 

(Segurado et al., 2003, Segurado and LLorca, 2006) of particle reinforced composite 

materials. Zhang et al. (Zhang et al., 2005) developed a micromechanical model for 

damage initiation and growth of FRP laminates, where the nonlinear viscoelastic and 

cohesive models were used, respectively, to stimulate the deformation of matrix and 

the progressive interface de-cohesion. Failure locus and mechanical behaviour of 

composite lamina under transverse compression, tension, shear and the combined 

loadings were also computed by using micromechanical FEM models (Zhang et al., 

2006, Zhang et al., 2013, Ye and Zhang, 2012, Totry et al., 2010, Totry et al., 2008a, 

Moraleda et al., 2009, Canal et al., 2009). Vaughan and McCarthy (Vaughan and 

McCarthy, 2011a, Vaughan and McCarthy, 2011b) presented a comprehensive study 

to examine the effect of fibre–matrix properties on the transverse behaviour of a 

unidirectional of fibre/epoxy composites. They highlighted the respective roles played 

by the intra-ply debonding and the matrix plasticity on the macroscopic response of 

the composite. All the above-mentioned papers have used FEM as the computational 

framework to analyse the microstructure of RVEs. 

In this chapter, a Discrete Element Method (DEM) is used to simulate the 

damage progression of FRP lamina subjected to transverse tension. Unlike a FEM 

model, in which the nonlinear behaviour of matrix phase is often accounted by Mohr–

Coulomb or Drucker–Prager yield criteria, bond breakages in DEM are responsible for 

the non-linear stress–strain response through continuous decrease of modulus until a 

failure load is reached. Therefore, bonds in DEM are assigned with random breaking 

thresholds for matrix and interface to represent a non-linear response (Wittel et al., 

2003). The displacement-softening model, which is similar to the cohesive zone model 

(CZM) (Xie and Waas, 2006), is used to predict the onset of fibre/matrix debonding. A 

parametrical study is carried out to examine the detailed effects of interfacial properties 

on the transverse mechanical behaviour. 
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3.2 RVE generation and discretisation 

A square RVE, which contains a random and homogeneous distribution of 

circular fibres embedded in a polymeric matrix, was selected to study the behaviour of 

a lamina under transverse loading. The RVE of the microstructure is large enough to 

possess the same properties with macroscopic material. Random and homogeneous 

distributions of 28 monosized fibres of radius R = 3.3 μm were generated in a square 

RVE of dimensions L0 by L0 (L0 = 40 μm) as shown in Figure 3.1. The RVE of DEM 

model is generated using the approach developed in previous chapter which can 

overcome jamming limit and can be used for fibres with any inter distances. Previous 

studies have shown that this size is sufficient in order to produce the overall 

macroscopic response of a composite (González and LLorca, 2007a). The RVE was 

discretised using a hexagonal packing arrangement as shown in Figure 3.1b. For 

regular packing such as square and hexagonal packing arrangement, the contact 

stiffness (see Figure 3.1c) can be related to the engineering material properties such 

as Young’s modulus and Poisson’s ratio. For instance, (Kim et al., 2008, Sawamoto 

et al., 1998, Tavarez and Plesha, 2007) derived formulae to relate contact parameters 

and material properties for isotropic material. Liu and Liu (Liu and Liu, 2006) extended 

these formulae to include anisotropic materials. One most drawback of these formulae 

their restriction to Poisson’s ratio of 1/3 and 1/4 for plane stress and plane strain, 

respectively. In this work,  the general expressions developed in (Kačianauskas and 

Vadluga, 2009) for anisotropic materials used. Thus for a 2D homogeneous isotropic 

continuum, the contact stiffness are: 

𝑘𝑛 =  2𝐾𝑁 , (3.1) 

𝑘𝑠 =  2𝐾𝑆. (3.2) 

where 

𝐾𝑛1 =
√3

36
(9𝑑11 − 6𝑑12 + 𝑑22) 𝜆 

 
 

 

 

 

 

 

 

  (3.3) 

𝐾𝑠1 =
√3

18
(3𝑑12 − 𝑑22 − 3√3𝑑13 + √3𝑑23) 𝜆 

𝐾𝑛2 =
√3

9
(𝑑22 + 2√3𝑑23 + 3𝑑33) 𝜆 

𝐾𝑠2 =
√3

18
(3𝑑12 − 𝑑22 + 3√3𝑑13 − √3𝑑23) 𝜆 
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𝐾𝑛3 =
√3

9
(𝑑22 + 2√3𝑑23 + 3𝑑33) 𝜆 

 

𝐾𝑠3 =
√3

9
(𝑑22 − 3𝑑33) 𝜆 

 

In the above equations, E is the modulus of elasticity; the superscripts n and s 

denote normal and shear stiffness, respectively. Kn1  and Ks1 are the normal and the 

tangential spring constants between disc 0 and disc 1, and between disc 0 and disc 4, 

respectively;Kn2 and Ks2 are the normal and the tangential spring constants between 

disc 0 and disc 2, and between disc 0 and disc 5, respectively; Kn3  and Ks3 are the 

normal and the tangential spring constants between disc 0 and disc 3,and between 

disc 0 and disc 6, respectively (see Figure 3.2); 𝜆 is the element thickness and𝑑𝑖𝑗 (i=3, 

j=3) are the elastic coefficients of the stiffness matrix for plane stress as follows, 

[𝐷] = [

𝑑11 𝑑12 𝑑13

𝑑22 𝑑23

𝑠𝑦𝑚 𝑑33

], (3.4) 

In which 𝑑11 = 𝑑22 = 𝐸 (1 − 𝜈2)⁄ , 𝑑12 = 𝜈𝐸 (1 − 𝜈2)⁄ , 𝑑33 = 𝐸 2(1 + 𝜈)⁄  and 

𝑑13 = 𝑑23 = 0. 

For a 2D homogeneous isotropic continuum, 𝐾𝑛1 =  𝐾𝑛2 = 𝐾𝑛2 = 𝐾𝑁 and 𝐾𝑠1 =

𝐾𝑠2 = 𝐾𝑠3 = 𝐾𝑆, Eqs. (3.1) and (3.2) is simplified, respectively, as 

𝑘𝑛 =
2𝐸𝜆

2√3 (1 + 𝑣)
(1 +

2

3(1 − 𝑣)
) (3.5) 

𝑘𝑠 =  
2|(3𝑣 − 1)|𝐸𝜆

6√3(1 − 𝑣2)
, (3.6) 

Since this chapter focuses only on transverse behaviour of uniaxially reinforced 

lamina, the 2D cross-section and the chosen RVE can be modelled by an assembly 

of two groups of distinctive isotropic particles, representing the fibres and the matrix, 

respectively. Therefore, Eqs. (3.5) and (3.6) will be used to determine the bond 

stiffness between particles of the same constituent material. It is important to note that 

in previous works (González and LLorca, 2007a, Vaughan and McCarthy, 2011b, 

Yang et al., 2012, Yang et al., 2013a) plane strain conditions were assumed within the 

framework of the finite element deformations theory. However, In DEM the 
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deformability and strength parameters and equations discussed in this section relate 

deformability mico-parameters to material properties and thus assuming plane stress 

would not alter the strength. 

 

Figure 3.1: Fibre distribution and discrete element discretisation. (a) 
Representative area element. (b)  Hexagonal packing arrangement. (c) Contact 
between particles. 

 

Figure 3.2: Hexagonal packing and contact stiffness. 
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3.3 Contact models 

Particles in a DEM model of fibres and matrix are bonded together at contacts 

using the parallel bonds. The constitutive law of parallel bond is shown in Figure 1.14 

and more details are described in Chapter 1. In this chapter, the fibres are assumed 

to be linear elastic and no fibre damage occurs when the loading is applied 

transversely. It is often shown that a polymer matrix is sensitive to hydrostatic stresses 

(Fiedler et al., 2001), therefore, Mohr–Coulomb criterion is normally used to predict its 

yielding (González and LLorca, 2007a), where the cohesion stress and the internal 

friction angle can be related to tensile strength by: 

𝜎𝑚𝑡 = 2𝑐
cos (𝜃)

1 + sin (𝜃)
, (3.7) 

where 𝜃 is the angle of internal friction, c is the cohesion yield stress and 𝜎𝑚𝑡 is 

the matrix tensile strength. Once 𝜃 was fixed for a given simulation, the corresponding 

cohesion is calculated from Eq. (3.7) using the matrix tensile strength given in Table 

3.1.  

Table 3.1: Constituent material properties (González and LLorca, 2007a). 

 Fibre Matrix Interface 

Modulus,  𝐸𝑓/𝑚 (GPa) 40 4  

Poisson's ratio, 𝜈𝑓/𝑚 0.25 0.35  

Friction angle, 𝜃  15  

Tensile strength, 𝜎𝑚𝑡 (MPa)  60  

Fracture energy, G (J m2)⁄    100 

Since this chapter only focuses on the failure mechanism of fibre-reinforces 

composite under transverse tension therefore only tensile strength of the matrix is 

used.  

The behaviour of the fibre–matrix interface was modelled using the 

displacement-softening model, explained in Chapter 1. The principle of this model is 

similar to the discrete cohesive zone model DCZM (Xie and Waas, 2006). The 

constitutive law of the displacement-softening model is shown in Figure 1.16. The 

mechanical properties of the fibres, matrix and interface used in the analysis are given 

in Table 3.1. 
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Since DEM has only recently been used to model fibre reinforced composites 

(Yang et al., 2011b, Yang et al., 2011a), there are no well-established and robust 

relationships between the micro and macro strength parameters. Attempts were made 

in this chapter to calibrate the contact tensile strength against macro tensile strength 

by using particle assemblies with different number of particles for isotropic matrix 

materials. As a hexagonal arrangement was used in this study, it was assumed that 

the relationships between micro and macro strength was linear and the following 

formula could be used: 

𝜎𝑚𝑖𝑐𝑟𝑜 = 𝛽 𝜎𝑚𝑎𝑐𝑟𝑜 (3.8) 

where β is a constant factor. Figure 3.3 shows how an overall macro strength of a 

matrix material (σmacro = 60 MPa) was achieved through factorization for using different 

number of particles. It is important to note that the shear strength of the parallel bond 

for the matrix was assumed to be high enough to prevent any shear failure before 

tension failure occurred. It was found that when the number of particles is more than 

5530, a factor of β = 1.7 yielded an almost constant macro strength close to 60 MPa. 

Therefore, 1.7 was used throughout this chapter to estimate the micro strength of the 

bonds. 

 



 

81 

 

 

Figure 3.3: Macro strength σmacro versus number of particles. 

3.4 Results and discussions 

3.4.1 Stress distributions 

Stress is a continuum quantity and, thus, does not exist at each point in a particle 

assembly due to the discrete medium. In order to calculate stresses, the RVE is 

divided to small elements and the contact forces and particles displacements in each 

element are calculated and transferred to continuum stresses using the following 

averaging procedure, 

𝜎𝑖𝑗 = (
1 − 𝑛

∑ 𝑉(𝑝)
𝑁𝑝

) (∑ ∑(𝑥𝑖
(𝑐)

− 𝑥𝑖
(𝑝)

)

𝑁𝑐
(𝑝)𝑁𝑝

𝐹𝑗
(𝑐 ,𝑝)

) , 𝑖 = {1,2} (3.9) 

where 𝑉(𝑝)  is the volume of particle, 𝑛 is the porosity of the element region, 

𝑥𝑖
(𝑝)

and 𝑥𝑖
(𝑐)

 are the locations of a particle centroid and its contact, respectively, 

𝑁𝑝 and 𝑁𝑐
(𝑝)

  are the number of particles in the element region and the contacts along 

the surface of a particle, respectively and 𝐹𝑗
(𝑐 ,𝑝)

 is the force acting on particle (p) at the 

contact (c) (Itasca, 2003). Figure 3.4 shows the local microscopic stress state of the 
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matrix and at the fibre-matrix interface when a transverse tensile stress of 5 MPa is 

applied to the RVE with a volume ratio of 60%. From Figure 3.4, it can be seen that 

the stresses at the interfaces are significantly higher than those at other locations. This 

becomes more obvious in the area of high fibre density. This is attributed to the smaller 

relative deformation of the fibres due to their higher stiffness. 

 

Figure 3.4: Von Mises stress (MPa) distribution in the random model resulting 
from applying macro stress of 5 MPa. 

3.4.2 Damage progression 

It should be mentioned that since the hexagonal packing is used in this paper for 

both fibres and matrix, any topological disorder of the composite system would be 

neglected and the final failure is similar to the failure of a brittle-like material. Therefore, 

disorders in contact strengths were considered by introducing a normal distribution of 

the tensile strength of the parallel bonds and interfaces, as: 

𝜎𝑚𝑖𝑐𝑟𝑜 = 𝛽(𝜎𝑚𝑎𝑐𝑟𝑜 + 𝑚 × 𝑔𝑟𝑎𝑛𝑑) (3.10) 

where m is the standard deviation of normal strength and grand is the random number 

drawn from the normal (Gaussian) distribution, with a mean of 0.0 and a standard 

deviation of 1.0. Figure 3.5 shows an example of a strength distribution obtained in the 
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case of 9000 contacts with the mean strength, σmacro, being 60 MPa and two different 

standard deviations. 

 

Figure 3.5: Examples of a distribution obtained in the case of 9000 contacts. 

Since the contact strength is distributed randomly throughout the RVE, one can 

expect that the stress–strain curves will not be the same in each run of calculation 

because a different random number grand is generated by computer. The model 

containing approximately 11,000 particles and the computational analysis was carried 

out using a personal computer. A typical run time was in the region of 12 h on a Dual 

Core Processor 2.30 GHz. The stress–strain curves of the three runs under the same 

transverse tension are shown in Figure 3.6. It can be seen from the figure that the 

elastic parts of all the curves are almost identical and the discrepancies occur after the 

onset of damage. For all the three runs, the mean tensile strength is 55.5 MPa, which 

is a bit smaller than the given macro matrix strength (60 MPa). 
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Figure 3.6: Stress–strain curves of the RVE compared with the experimental 
result 

The most important feature of the current model is the prediction of damage 

initiation and progression. Moreover, the damage states at different loading levels can 

be clearly identified. Figure 3.7 shows the damage progression of the composite RVE 

subject to transverse tension at different strain stages, and the comparisons with the 

microscopic images from experiments (Yang et al., 2012). The initial elastic response 

is followed by a non-linear hardening region started from a strain of about 0.7% (see 

Figure 3.6 and Figure 3.7a). Matrix cracks were observed to concentrate in the vicinity 

of the debonded fibre/matrix interfaces (Figure 3.7b). However, a few random matrix 

cracks were observed as a result of the statistical distribution of contact strength. 

Finally, the failed interfacial bonds joined with matrix cracks, resulting in the final 

fracture failure of the lamina (Figure 3.7c). 
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Figure 3.7: Damage initiation and progression under transverse tension and 
different strain. (a) strain of 0.007. (b) strain of 0.01. (c) strain of 0.014. (red lines 
represent the matrix cracks and black lines represent interface debonding). (c) 
Experimental results (Yang et al., 2012). 

3.4.3 Sensitivity study of interface parameters on interfacial debonding 

Computational simulations of interfacial debonding in fibre-reinforced 

composites require input data such as interfacial strength and interfacial fracture 

energy. Unfortunately, these data are not accurately known because they are difficult 

(b) (a) 

(c) (d) 
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to measure from simple laboratory experiments. The effect of interfacial strength using 

a displacement-softening model for the fibre–matrix interfaces was first examined 

(Yang et al., 2012, Zhou et al., 2001). Assuming a constant interfacial fracture energy 

𝐺𝐼 =  𝐺𝐼𝐼 = 100 J m2⁄  (González and LLorca, 2007a). Two cases i.e., strong interfaces 

(𝐹𝑐
𝑛 = 𝐹𝑐

𝑠 = 2𝑐) and weak interfaces (𝐹𝑐
𝑛 = 𝐹𝑐

𝑠 = 0.5𝑐); were studies, where 𝐹𝑐
𝑛 and 𝐹𝑐

𝑠 

are tensile and shear strengths of the displacement-softening contact, respectively, as 

shown in Figure 1.16, and c is the cohesion yield stress calculated in Section 3.3. The 

influence of interfacial strength on the stress–strain curves in transverse tension is 

shown in Figure 3.8. It is apparent that the fibre–matrix interface strength considerably 

affects the stress– strain curves, and the tensile strength decreased remarkably by 

15% when a weak interface was considered. For the strong interface, the damage 

starts at the peak point in the form of matrix cracking without obvious interfacial 

debonding. This continues to spread until the ultimate failure occurs. However the 

tensile strength is increased only by 6% when interfacial strength is doubled, as shown 

in Figure 3.8. 

 

Figure 3.8: Effect of interface strength on the stress-strain response. 

The effect of interfacial fracture energy on the stress–strain response was 

studied for 𝐺 = 10 J m2⁄  and 𝐺 = 100 J m2⁄ . Figure 3.9 shows the stress–strain curves 
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of the RVE with the above fracture energies and a fixed interfacial strength of 39.1 

MPa. It can be seen from Figure 3.9 that despite of reducing the interfacial fracture 

energy by 90%, the two curves are still very close. With a fixed interfacial strength, 

lower fracture energy leads to a smaller softening strain (Upmax in Figure 1.16) and 

thus the interface becomes more brittle and damage occurs earlier (region A in Figure 

3.9) 

 

 

Figure 3.9: Effect of interface fracture energy on the stress-strain response. 

Various values of the interfacial stiffness have been used for fibre/matrix 

interface, e.g., Yang et al., and González and Llorca (Yang et al., 2012, González and 

LLorca, 2007a) used a large value of K = 108 GPa/m, while Vaughan and McCarthy 

(Vaughan and McCarthy, 2011b, Vaughan and McCarthy, 2011a) used a much 

smaller value of K = 105 GPa/m. To examine the effect of the interfacial stiffness on 

the damage behaviour of the composites, Figure 3.10 shows the stress–strain 

relationship of the two RVEs in which two different values were used for fibre/matrix 

stiffness, i.e., matrix stiffness and fibre stiffness. It is shown that though the overall 
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stiffness of the composite RVEs exhibits notable differences, the ultimate strength of 

the material is not affected. 

 

Figure 3.10: Effect of interfacial stiffness on the stress-strain response. 
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Chapter 4 

4 A DEM model for predicting elasticity of composite 

lamina  

In the chapter, a methodology is developed to determine the elastic properties of 

a composite lamina using DEM. The algorithm developed in chapter 2 is used to 

generate a random distribution of fibres with different volume fractions. The present 

chapter starts by reviewing of two well-known analytical methods and numerical 

method (e.g. FEM) that are used to compute the elastic properties of the composite 

materials found in the literatures. The results obtained by DEM are finally compared 

with FEM analytical methods.  

4.1 Introduction    

When dealing with an isotropic homogeneous material (e.g. metal and 

aluminium), It is obvious that the elastic properties are independent and their 

determination is straightforward. However, composite materials are assumed to be 

heterogeneous materials, as they are constituted of two or more phases, and each 

phase has its own mechanical properties. Consequently, it is difficult to obtain their 

properties experimentally. 

In order to overcome this difficulty, many analytical and numerical methods have 

been developed over the last century. All methods are, essentially, based on the 

separation of the constituents of the composite material, and all of the methods 

assume that each constituent has its own elastic properties. The geometric information 

at micromechanical level (e.g. size of RVE, fibre volume fraction inter-fibre distances), 

which is usually variable, can be explicitly taken into account when using numerical 

methods. 
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4.2 Analytical methods used in this chapter  

4.2.1 The rule of mixtures (RoM) 

The rule of mixture (RoM) model (also known as the Voigt model) was derived 

by Woldemar Voigt in 1889 (Mishnaevsky Jr, 2007, Voigt, 1889) . This approach is 

based on the assumption that the average strain of each constituent (fibre and matrix) 

is equal to the applied stain on the material, thus: 

𝜀𝑓 = 𝜀𝑚 = 𝜀𝑐 (4.1) 

 where 𝜀𝑓 , 𝜀𝑚 and 𝜀𝑐 are the strains at fibre, matrix and composite, respectively. 

Thus the composite effective stiffness tensor, Cijkl, can be determined as: 

𝐶𝑖𝑗𝑘𝑙 =  𝑉𝑓𝐶𝑖𝑗𝑘𝑙
𝑓

+ 𝑉𝑚𝐶𝑖𝑗𝑘𝑙
𝑚  (4.2) 

where Vf and Vm are the fibre and matrix volume fraction, respectively. Eq. (4.2) states, 

in other words, that each individual engineering constant of a lamina can be 

determined from the engineering constant of the fibre and the matrix made from 

(Herakovich, 1998). 

4.2.2 The Mori-Tanaka method 

The Mori-Tanaka method was proposed by Mori and Tanaka (Mori and Tanaka, 

1973). This method (as is the case for typical mean-field models) assumes that fourth 

order concentration tensors relate the average strain tensor in the fibre to the average 

strain tensor in the matrix. This tensor states the relation between the uniform strain 

in a single fibre embedded in an infinite matrix and the lamina that subjects to uniform 

strain at the boundary. The equations linking the overall moduli to the elastic moduli 

of the fibre, kf, mf and pf, and elastic moduli of the matrix, km, mm and pm as:   

𝑚 =
𝑚𝑚𝑚𝑓(𝑘𝑚+2𝑚𝑚)+𝑘𝑚𝑚𝑚(𝑉𝑓𝑚𝑓+𝑉𝑚𝑚𝑚)

𝑘𝑚𝑚𝑚+(𝑘𝑚+2𝑚𝑚)+(𝑉𝑓𝑚𝑚+𝑉𝑚𝑚𝑓)
  (4.3) 
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𝑝 =
2𝑉𝑓𝑝𝑓𝑝𝑚 + 𝑉𝑚(𝑝𝑓𝑝𝑚 + 𝑝𝑚

2 )

2𝑉𝑓𝑝𝑚 + 𝑉𝑚(𝑝𝑓 + 𝑝𝑚)
 

𝑙 =
𝑉𝑓𝑙𝑓(𝑘𝑚 + 𝑚𝑚) + 𝑉𝑚𝑙𝑚(𝑘𝑓 + 𝑚𝑚)

𝑉𝑓(𝑘𝑚 + 𝑚𝑚) + 𝑉𝑚(𝑘𝑓 + 𝑚𝑚)
 

𝑛 = 𝑉𝑓𝑛𝑓 + 𝑉𝑚𝑛𝑚 + (𝑙 − 𝑉𝑓𝑙𝑓 − 𝑉𝑚𝑙𝑚)
𝑙𝑓 − 𝑙𝑚

𝑘𝑓 − 𝑘𝑚
 

𝑘 =
𝑘𝑓𝑘𝑚 + 𝑚𝑚(𝑉𝑓𝑘𝑓 + 𝑉𝑚𝑘𝑚)

𝑉𝑓𝑘𝑚 + 𝑉𝑚𝑘𝑓 + 𝑚𝑚
 

The relationship between overall moduli and the engineering moduli are given as: 

𝑚 = 𝐺23 

(4.4) 

𝑝 = 𝐺12 

𝑙 = 2𝑘𝜈12 

𝑛 = 𝐸1 + 4𝑘𝜈12
2  

𝑘 = [
1

𝐺23
−

4

𝐸2
+

4𝜈1
2

𝐸1
]

−1

 

with  

𝐸2 = 2(1 + 𝜈23)𝐺23 =
4𝑘𝑚

(𝑘 + 𝑞𝑚)
 

(4.5) 𝜈23 =
(𝑘 − 𝑞𝑚)

𝑘 + 𝑞𝑚)
 

𝑞 = 1 +
4𝑘𝜈12

2

𝐸1
 

If the constituent is isotropic with bulk modulus, k, and shear modulus, G, then: 

𝑘 =
𝐺

(1 − 2𝜈)
 

(4.6) 

𝑙 = 𝑘 −
2𝐺

3
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𝑛 = 𝑘 +
4𝐺

3
 

𝑚 = 𝑝 = 𝐺 

4.3 Numerical methods 

Improvements in computer speed over the last few decades have led 

researchers to put a considerable amount of effort into determining the effective 

properties of composite materials by means of micromechanics using numerical 

methods (e.g. boundary element method BEM and FEM). In the following subsections, 

the methodologies for simulating the composite material at the micromechanical level, 

which have been intensively used by others researchers, are presented. The proposed 

DEM model for determining the elasticity of composite is then outlined. 

4.3.1 Finite element method 

The simplest way of representing the heterogeneity of material is by assuming 

that the fibres are periodically distributed in the matrix. This method is easy, and 

performing the analysis does not require enormous amounts of time or resources. 

Different types of periodic distribution have been found in the literatures; the two types 

that are most frequently used are square and hexagonal (see Figure 1.5). Due to the 

periodicity of the fibres, only a small portion of the composite can be chosen to 

represent the FEM model; this is indicated by the letter “A” in Figure 1.5. Li (Li, 2001) 

presented an extensive summary of the features of two unit cells produced from 

square and hexagonal fibres arrangements for unidirectional fibre-reinforced 

composites. He established equations for displacement and traction boundary 

conditions and defined the application of loads in terms of macroscopic stresses and 

effective properties. The macroscopic strains are then taken as independent degrees 

of freedom and applied on the edge nodes. Aghdam et al. (Aghdam et al., 2001) 

performed axial, longitudinal, transverse and off-axis loads on 2D and 3D cell unit of 

SiC/Ti composites with different fibre orientation in the range of 0°–90°. Symmetric 

boundary conditions were used for the 2D model while periodic boundary conditions 

were considered for the 3D model. Coulomb friction was used to model the fibre/matrix 

interface. However, there is some doubt whether this model is acceptable to represent 
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the interface as there is no information on the friction coefficient on the interface. The 

friction coefficient plays an important role in the amount of shear stress transferring 

between matrix and fibre. In other words, the interface is perfectly debonded when the 

friction coefficient tends to zero, which in turn reduces the strength of the composite, 

while a high level of friction increases the strength significantly. Ha et al. (Ha et al., 

2008) determined the  failure envelope of a composite lamina under biaxial loads by 

modelling unit cells of square and hexagonal fibre arrangement. A good agreement 

was achieved in the prediction of biaxial failure envelopes and the stress-strain curve. 

Van der Sluis et al. (Van der Sluis et al., 2000) carried out a comparative study of unit 

cells with mixed and periodic conditions. They studied the stress distribution in a 

square unit cell with centred and off-centred fibre. It was concluded that periodic 

boundary conditions are more appropriate.  

In real life, however, it is very difficult to manufacture composite materials with 

periodic fibre arrangements. Consequently, considering periodicity of fibre 

arrangements may lead to incorrect results in the prediction of mechanical properties 

and the detection of fracture progress. Therefore, many researchers have used 

another approach to analysis the composites, by considering an RVE with several 

dozen of randomly distributed fibres. Intensive studies have been carried out to find 

the effects of RVE size, the position of fibres, and the internal distance between fibres 

on the elastic properties as well as the strength of FRP composite lamina. For 

instance, Trias et al., (Trias et al., 2006) concluded that the minimum size of carbon 

fibre reinforced polymer with a volume fraction of 50%  is 𝛿 = 𝐿 𝑟𝑓⁄ , where L is the side 

of the element and 𝑟𝑓 is the fibre radius. Yang et al. (Yang et al., 2013a) found that  

inter-fibre spacing has a significant impact on the transverse strength of composites 

especially when thermal residual stress is taken into account. 

For comparison, FE analysis was carried out on three different models in this 

work; these are unit cells with square and hexagonal fibre packing Figure 4.1 as well 

as RVEs with random fibre distribution. Fibre and matrix were meshed using two-

dimensional 4-node bilinear plane strain quadrilateral elements (CPE4). Periodic 

boundary conditions were applied to unit cells and RVEs to ensure the compatibility of 
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strain and stress at macro level, similar to those in Chapter 2. Eq. (4.7) gives the 

relationship between side length and volume fraction, Vf. 

𝑏 = 𝑟√
𝜋

𝑉𝑓
 Square  

(4.7) 

𝑏 = 𝑟√
𝜋

2√3𝑉𝑓

 hexagonal 

 

Figure 4.1: Appropriate unit cells (a) Square (b) Hexagonal packing. 

4.4 Discrete element model 

The objective of this section is to explain the methodology of the DEM which is 

used to determine the elastic properties of the composite from its constitutes material 

properties. RVEs studied contains fibres distributed randomly, with similar 

configuration used both DEM and FEM. Particles represent fibres and matrix are 

connected together using parallel bond, while displacement-softening model used to 

model fibre/matrix interface. These contact models are explained in Section 1.10.1.2 

and 1.10.1.3, respectively. Throughout this chapter, RVEs were generated by 

assembly of arbitrary sized particles. Therefore, micro-parameters must be related to 

a set of relevant material properties using calibration procedure.  
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4.4.1 Calibration of DEM model 

In continuum mechanics based models, the input properties such as modulus 

and strength can be obtained directly from tests performed on laboratory samples. 

However, in a DEM model with arbitrarily sized particles, there is no rigorous formula 

to correlate the micro-parameters (contact and particle stiffness as well as bond 

strength) in DEM with the real material properties. In general, the relation between 

micro-parameters that characterise a DEM model and macro-properties (such as 

elastic constant and peak strength) is found by means of virtual calibration tests such 

as uniaxial compression test and tension test. Each mico-parameter is related to a 

relevant material property and the DEM parameter is trialled in order to match the 

virtual macro-properties of the DEM specimen with those of the real material. This 

process is repeated in different virtual tests until all the necessary macro-properties 

are matched.  

4.4.2 DEM model generation 

As discussed in Section 4.4.1, sample preparation is a step of particular 

importance in DEM modelling. Many packing methods have been proposed in 

previous studies. Methods available in the literature can be fundamentally classified 

into two groups: dynamic and constructive. The dynamic method is based on dynamic 

simulations to fill the domain with particles. The main dynamic methods described in 

the literature are DEM, molecular dynamic growth algorithm (Kansal et al., 2002, 

Lubachevsky and Stillinger, 1990) and isotropic compression (Martin et al., 2003).  

One of the earliest method so called Lubachevsky-Stillinger algorithm (Lubachevsky 

and Stillinger, 1990) which is a molecular dynamic growth method developed to 

produce a dense packing. In this method, particles are firstly distributed randomly 

positions. Then, they are given linear or angular velocities and they expanded 

uniformly at a certain expansion rate until jammed packing reaches. However, these 

methods are computationally expensive and controlling material properties such as 

density is hard.  

Therefore, constitutive approaches have been used excessively in both 

academic and industrial purposes. They are based on the geometrical computations, 

and as thus they are also known as geometric methods. The majority of the methods 
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compute the position of new particles randomly base on the information particles 

previously inserted. For example, Feng et al. (Feng et al., 2003) are along those that 

first proposed the constitutive packing method. The method starts by adding three 

particles randomly in the centre of the domain. Then new particles are inserted by 

continuously advancing the front until the domain is filled.  Another approach uses 

random sequential addition (RSA) technique to disperse particles in the required area. 

This method is purely relying on randomness principles and has been used to 

generate disks (Hinrichsen et al., 1986), spheres (Cooper, 1988) and ellipsoids 

(Sherwood, 1997). The volume fraction, φ, of the generated disks was found to be 

φ=0.547, while for three-dimensional spheres φ=0.385 (Williams and Philipse, 2003). 

In the present chapter, a radii expansion procedure is used (Itasca, 2003) to 

generate two dimensional square samples with dimension of 63 μm × 63 μm. This 

method starts with placing an initial set of particles with artificially small radii in a 

square area enclosed by four rigid frictionless walls (see Figure 4.2a). The particle 

sizes varies from 0.1 μm to 0.166 μm according to a uniform distribution, which 

ensuring adequate particles cover the region between fibres. Then particles are 

expanded by a multiplier factor until the desired porosity is achieved. The formula 

bellow is used to calculate the radii multiplier, m, in order to change the porosity of the 

space from initial assumed porosity, 𝑛0, to the desired, n.  

𝑚 = √
1 − 𝑛

1 − 𝑛0
 (4.8) 

Finally, a number of simulation cycles are applied to bring the system into 

equilibrium. This method has been used by many researches (Boutt and McPherson, 

2002, Nguyen et al., 2009, Yan et al., 2009) to generate densely packed particle 

assemblies and readers can refer to (Itasca, 2003) for more details. The assembly 

representing the numerical specimen studied in the section consists of 16,451 particle 

and the histogram of the particle sizes are shown in Figure 4.2b. 
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(a)                                                                       (b) 

Figure 4.2: The DEM model: (a) model geometry and particle assembly, and (b) 
particle size distribution. 

4.4.3 DEM simulation  

Once the sample is prepared, numerical tests are conducted to find the 

relationship between the micro-parameters and the macro-properties as shown in 

Figure 4.3. The uniaxial compression test is conducted by moving the right and left 

rigid walls at a constant and very small velocity (see Figure 4.3a). Whilst in the direct 

shear test, the boundary particles are first identified and then assigned with a constant 

velocity to produce shear displacement, as shown in Figure 4.3b. The loading rate 

needs to be slow enough to ensure the sample remains in quasi-static equilibrium 

throughout the test and should be stable so as to not induce any possible dynamic 

strains (Cho et al., 2007). On the other hand, too small loading rate would be 

computationally expensive. If not indicated otherwise, the loading rate used in this 

paper is chosen to “5 mm/s” which could be considered as a fast one in the real 

experimental tests. However, since discrete element method is based on small time 

integration scheme, thus timestep ∆t is chosen in each cycle to be very small (i.e.,1 ×

10−9s). In other words, the velocity of 5 mm/s used in this paper can be translated to 
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2.5 × 10−12 mm/step which means it requires more than 80,000 steps to move the 

loading walls to a distance of 0.22 mm. 

 

Figure 4.3: Virtual uniaxial tests of a DEM model: (a) compression and (b) 
shear. 

4.4.4 Parametric study of contact stiffness 

Generally the mechanical properties of an elastic material can be characterised 

by its elasticity (i.e., elastic modulus, shear modulus and Poisson’s ratio) and strength 

(i.e., compressive strength, tensile strength and shear strength). It has been found that 

local elastic parameters of particles and the contacts between particles, e.g., particle 

stiffness and parallel bond stiffness, play a major role in the macroscopic elastic 

response of the entire DEM model, and thus calibrations are required (Itasca, 2003). 

As the DEM model of a composite material consists of two constituents (fibre and 

matrix) with different properties, each constituent is calibrated individually before 

combined together with interface stiffness which is assumed equal to that of fibres 

similar to that in Chapter 3. Usually the macroscopic Young’s modulus of the matrix is 

directly proportional to the stiffness of particles (𝑘𝑛,  𝑘𝑠) and those of parallel bonds 

(�̅�𝑛, �̅�𝑠). While the macroscopic Poisson’s ratio is directly proportional to ratios of 

𝑘𝑛/𝑘𝑠 and  �̅�𝑛/�̅�𝑠 (Itasca, 2003). The material is E-glass/MY750/HY917/DY063 which  

Walls 

L 

(a) (b) 



 

99 

 

is chosen from the World Wide Failure Exercise (WWFE) (Soden et al., 1998b). Both 

fibre and matrix are considered isotropic with mechanical properties given in Table 

4.1. 

Table 4.1: Mechanical properties of fibre and matrix. 

Fibre Transverse modulus, Ef (GPa) 74 
 Poisson’s ratio, νf 0.2 

Matrix Modulus, Em (GPa) 3.35 
 Shear Modulus, Gm (GPa) 1.24 
 Poisson’s ratio, νm 0.35 
 Compressive strength, Ymc (MPa) 120 
 Tensile strength, Ymt (MPa) 80 

The elastic properties given in Table 4.1 are measured under plane stress 

condition (Davila et al., 2005) and they can be converted to properties under plane 

strain condition, under which the DEM models are carried out in this work, by (Ugural 

and Fenster, 2003): 

�̅�𝑓,𝑚 =
𝜈𝑓,𝑚

1 + 𝜈𝑓,𝑚
 

(4.9) 

�̅�𝑓,𝑚 = 𝐸𝑓,𝑚(1 − �̅�𝑓,𝑚
2 ) (4.10) 

Using Eqs. (4.9) and (4.10) together with the material properties in Table 4.1, the 

Poisson’s ratio and Young’s modulus for both fibre and matrix under plane strain 

condition are calculated as �̅�𝑓 = 0.166, �̅�𝑓 = 71.96 GPa, �̅�𝑚 = 0.259 and �̅�𝑚 =

3.12 GPa, respectively. 

In the calibration process, it is convenient to define a ratio between the normal 

and tangential stiffness for both particles and parallel bonds as: 

𝛼 ≡ (𝑘𝑛
(𝐴),(𝐵)

𝑘𝑠
(𝐴),(𝐵)

⁄ )
𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

 and (�̅�𝑛 �̅�𝑠⁄ )
𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑏𝑜𝑛𝑑𝑠

 (4.11) 

Figure 4.4a and Figure 4.5a show the relationship between the ratio, α, and 

macroscopic elastic properties obtained from axial compressive tests of the DEM 
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model of matrix and fibre when normal stiffness for particles and parallel bonds are 

kept constant at 3.12 GPa 71.9 GPa, respectively. It can be seen that as α increases the 

Young’s modulus decreases while Poisson’s ratio increases for the chosen range of 

values. As both elastic modulus and Poisson’s ratio vary with α, the calibration is 

carried out as follows. First, the value of α is chosen for the matrix and the fibre from 

Figure 4.4a and Figure 4.5a to produce the desired value of Poisson’s ratio. Then, α 

is kept constant and a series of simulation tests are conducted with a range of normal 

stiffness (Ḵ𝑛 = 𝑘𝑛
(𝐴),(𝐵)

= �̅�𝑛) as shown in Figure 4.4b and Figure 4.5b. As can be seen 

from these figures the  Poisson ratio is independent of Ḵ𝑛 and remains constant for all 

chosen Ḵ𝑛, whereas Young’s modulus increases with the Ḵ𝑛. The target value of Em 

and Ef can then be found.  
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(b) 

Figure 4.4: Calibration of matrix elastic properties; (a) Influence of normal 
stiffness to shear stiffness ratio, α, on the Young’s modulus and Poisson’s ratio; (b) 
Effect of normal stiffness on Young’s modulus and Poisson’s ratio. 
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(b) 

Figure 4.5: Calibration of fibre elastic properties; Influence of normal stiffness to 
shear stiffness ratio, α, on the Young’s modulus and Poisson’s ratio; (b) Effect of 
normal stiffness on Young’s modulus and Poisson’s ratio. The microscopic 
parameters obtained are provided in Table 4.2 

 

Table 4.2: Micro-parameters for particles and parallel bonds. 

  Fibre Matrix 

Particles 𝑘𝑛
(𝐴),(𝐵)

𝑘𝑠
(𝐴),(𝐵)

⁄  2.5 5 

 𝑘𝑛
(𝐴),(𝐵)

 (GPa) 70 4 

Parallel bond �̅�𝑛 �̅�𝑠⁄  2.5 5 

 �̅�𝑛 (GPa) 70 4 

 

In order to make sure that these parameters are correct and to verify the DEM 

model, a numerical shear test is also performed to predict the shear modulus, 𝐺𝑚, of 

the matrix. The elastic properties for both fibre and matrix obtained from DEM are 

compared with those from experimental (Soden et al., 1998b) in Table 4.3. It can be 
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seen that the predicted elastic properties are very close to those from experiments. 

However, it is important to note that the results obtained are valid for only this particles 

packing.  

  

Table 4.3: DEM predictions of the elastic properties of fibre and matrix. 

 Experimental (Soden 
et al., 1998b) 

DEM Error (%) 

Ef (GPa) 71.96 72.2 0.33 
νf 0.166 0.170 2.3 
Em (GPa) 3.12 3.16 1.2 
νm 0.259 0.262 1.1 
Gm (GPa) 1.24 1.21 2.4 

 

4.4.5 Effect of particle size on the Young’s modulus and Poisson’s ratio 

Particle size sensitivity test was also conducted in this study to ensure that the 

particle size used in the previous section was adequate. Since this chapter is solely 

devoted to study the elasticity only, therefore the particle number was drawn as a 

function of Young’s modulus and Poisson’s ratio. Six models with different particle size 

range from 2,628-25,667 particles are chosen. The contact and particle parameters 

are kept constant and equivalent to those for matrix listed in Table 4.2. Figure 4.6 

show the variation of Young’s modulus with particle size for the RVE size of 63 µm × 

63 µm. Overall, it can be seen that Young’s modulus has slightly effected by changing 

particles size. The models with particle number less than 15,000 particles show 

considerable diversion while models with dense particles converge well.  
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Figure 4.6: DEM predictions of matrix Young’s modulus using different number 
of particles. 

The effect of particle size on Poisson’s ratio is also considered and shown in Figure 

4.7. Poisson’s ratio is fluctuated with particles size and ranges from 0.27-0.29. The 

elastic mechanical properties predicted in this section are different from those in 

previous section this due to altering particles packing arrangement. 
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Figure 4.7: DEM predictions of matrix Poisson’s ratio using different number of 
particles. 

 

4.5 Results and comparison of methods  

4.5.1 Effect of volume fraction on the elastic properties 

After presenting the different numerical and analytical methods to estimate the 

elastic properties of composite materials, a comparison of estimates is then perform. 

The material used here is E-glass fibre with MY750/HY917/DY063 epoxy matrix, with 

constituents properties are given in Table 2.2. A typical RVE of DEM model under 

transverse compression and transverse shear is illustrated in Figure 4.8. As can be 

seen, the RVE consists of three phases, i.e., matrix, fibre and interface. Micro 

parameters of matrix and fibres are calibrated in the previous section and given in 

Table 4.2. Micro parameters of interface are assumed to be same as those of the 

fibres. Regarding the size of RVE, González and LLorca (González and LLorca, 

2007a) have suggested that an RVE size of 63 µm × 63 µm is adequate to represent 

the macroscopic material. This suggestion is adopted first and the effective elastic 
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properties are then computed for a range of volume fraction from 45% to 65% as 

shown in Figure 4.9-4.11. The figures also include results of two analytical methods, 

Voigt and Mori-Tanaka, and FEM of two unit cells using a square and hexagonal 

periodic fibre distribution (as explained Figure 4.1). The experimental data given in 

Table 4.4 are also plotted on the figures after converted to plane strain using Eqs. (4.9) 

and (4.10). 

It can be seen that the transverse Young’s modulus and shear modulus predicted 

by DEM model are well agree with FEM and Mori-Tanaka for volume fraction less than 

55%. However, DEM model has slightly overestimate the moduli properties for volume 

fraction greater than 55%. The most obvious difference in estimating moduli properties 

can be seen between DEM model and Voigt model. On the other hand, the results of 

DEM provide very close estimation of Young’s and shear modulus comparing with 

experimental data. This outcome is expected as numerical methods are taking into 

account the geometry of the microstructure, and thus there results must be more 

accurate.   

Finally, results discrepancies between all models were very notable in the 

prediction of Poisson’s ratio. From an overview of the results, It can be concluded that 

DEM, Voigt and FEM (square) are predicted the Poisson’s ratio very well for volume 

fraction 60%. While other methods significantly overestimated it.      

Table 4.4: Mechanical properties for E-glass/MY750. 

 Experimental (Soden et al., 
1998b) 

E22 (GPa) 16.2 
G23 (GPa) 5.7 
ν23 0.4 
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Figure 4.8: A RVE of DEM model subjected to: (a) transverse compression and 
(b) transverse shear (arrows indicate the loading directions). 

 

Figure 4.9: DEM predictions of transverse Young’s modulus of different volume 
fraction compared to other analytical, numerical and experimental results (Soden et 
al., 1998b). 
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Figure 4.10: DEM predictions of transverse shear modulus of different volume 
fraction sizes compared to other analytical, numerical and experimental results 
(Soden et al., 1998b). 
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Figure 4.11: DEM predictions of transverse Poisson’s ratio of different volume 
fraction compared to other analytical, numerical and experimental results (Soden et 
al., 1998b). 

 

4.5.2 Effect of RVE size on the elastic properties 

To study the effect of the RVE on the three independent engineering elastic 
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were selected.  Identifying the smallest valid RVE is quite important as it helps to 

reduce DEM computational time. The same constituents were used in this analysis as 

previous section. The volume fraction and the inter-fibre distance between two 

neighbour fibres are kept constant in this section at 60% and 0.8µm for all RVEs, 

respectively. Figure 4.12-Figure 4.14 show the elastic properties calculated using 

different RVE sizes. The RVE of each size is tested five times, and each time the RVE 

has a different random distribution of fibres. The secondary horizontal axis 𝑟𝑓 on the 

top represents the relationship between the side length of RVE, L, and the mean fibre 
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Figure 4.12: DEM predictions of Young’s modulus of different RVE sizes 
compared to experimental results (Soden et al., 1998b). 

 

Figure 4.13:  DEM predictions of shear modulus of different RVE sizes 
compared to experimental results (Soden et al., 1998b). 
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Figure 4.14: DEM predictions of Poisson’s ratio of different RVE sizes 
compared to experimental results (Soden et al., 1998b). 

As can be seen from the Figure 4.12 and Figure 4.13, both Young’s modulus and 

shear modulus of the RVE with a size of 63μm × 63 μm are close to the experimental 

results with little differences from one model to another. The discrepancy is likely 

caused by the change of fibre arrangements, which leads to increase or decrease of 

the number of contacts and particles representing the fibres, matrix and interface. 

However, the DEM model still gives good predictions of Young’s modulus and shear 

modulus, compared with FEM using the same approach for generating random fibre 

distributions. In this study, the predicted Poisson’s ratio, Figure 4.14, seems more 

sensitive to RVE size and the variation could reach 19%. Similar findings from other 

numerical models have also been reported. For instance, Wongsto and Li (Wongsto 

and Li, 2005) found that the predicted effective properties using various theoretical 

and numerical methods were smaller than the experimental data. 
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Chapter 5 

 

5 A DEM model for predicting fracture of composite 

lamina  

In this present chapter, a two dimensional particle model based on the discrete 

element method (DEM) is developed for micromechanical modelling of fibre reinforced 

polymer (FRP) composite lamina under uniaxial transverse compression, transverse 

shear and biaxial transverse loads. Random fibre distribution within representative 

volume element (RVE) is considered for the micromechanical DEM simulations. In 

addition to predicting the stress-strain curves under transverse compression and 

transverse shear against the experimental results and other numerical methods, the 

model is able to capture the initiation and propagation of all micro damage events. 

Fibre distribution is found to have a significant influence on the ultimate failure of 

composite lamina under transverse shear, while it has much less effect in the case of 

transverse compression. The failure envelope of composite lamina under biaxial 

transverse compression and transverse shear is predicted and compared with Hashin 

and Puck failure criteria, showing a reasonable agreement. The predicted failure 

envelope is correlated with the damage evolution and the quantitative analysis of 

failure events, which improves the understanding of the failure mechanisms.  

5.1 Introduction 

Despite the wide use of fibre-reinforced polymer (FRP) composite laminates over 

the past 30 years in the aerospace industry, and the great success that has resulted 

from the estimation of the elastic properties of these composites, there is yet no 

universal model or approach to predict accurately the failure strength of FRP 

composite laminates under biaxial or triaxial loads in real applications (Kaddour and 

Hinton, 2013). A large number of experimental tests need to be carried out to obtain 

the failure strength of FRP composite laminates, which are usually designed with a 
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strength that is much greater than required under real loading conditions. This means 

that in many cases FRP composites are over-safely designed and their advantages of 

light weight and design flexibility have not been maximised. In addition, experimental 

tests are affected by the testing environment and the results are very diverse, 

especially when materials are subjected to a system of loads, including transverse 

load that is very difficult to reproduce. Therefore, an accurate and universal approach 

for predicting the strength of FRP composite laminates is always highly in demand.  

Generally composite laminates present five different failure mechanisms 

depending on the loading conditions (Hinton et al., 2004), as explained in Section 1.2. 

There are a few theoretical failure criteria available for predicting the failure modes 

separately as well as the failure envelope of composite lamina/laminates under 

different loading conditions. Among them, physically based phenomenological failure 

criteria (Hashin, 1980, Matzenmiller et al., 1995, Puck and Schürmann, 2002, Davila 

et al., 2005) are capable of predicting accurately the failure envelope of composite 

lamina/laminates  under certain loading conditions (Kaddour and Hinton, 2013).  In 

particular, Puck’s failure criteria are some of the best in the WWFE for predicting 

composite laminate failure. However, these criteria contain several non-physical 

parameters that need to be obtained from specific experimental tests, which makes 

their application quite difficult. 

It has been shown that the predictions of failure strength under some loading 

conditions (in particular biaxial and triaxial loads) by existing failure criteria are not 

sufficiently accurate. One of the main reasons is that those criteria have not 

considered the effects of heterogeneous material microstructure and the interaction, 

as well as the progression, between different failure modes. In theoretical analysis it 

is not straightforward to correlate dynamically the different failure modes during the 

failure process as the random and heterogeneous microstructure of composite 

lamina/laminates are difficult to consider. Computational micromechanics is a useful 

tool to study the mechanical behaviour of FRP composite laminates and to understand 

their damage process and failure strength. Within the framework of micromechanical 

modelling, the macroscopic properties are obtained through a representative volume 

element (RVE) of the microstructure. As compared to conventional homogenisation 

techniques, micromechanical modelling can take into account the influence of the 
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geometry and spatial distribution of fibres and also compute the stress and strain 

microfields throughout the microstructure, leading to precise estimations of the onset 

and propagation of damage, and accurate predictions of the failure strength (González 

and LLorca, 2007a).    

Apart from FEM modelling, the discrete element method (DEM) has been 

recently introduced in previous work to model the initiation and propagation of damage 

in composites. For instance, the crack propagation and stress-strain curves of 

composite materials under transverse tensile loading have been  simulated by DEM 

(Sheng et al., 2010). It was concluded that DEM has the advantages of tracing the 

crack path within the microstructures in addition to predicting the final failure strength. 

Yang et al. (Yang et al., 2011b, Yang et al., 2011a) also investigated the transverse 

cracks and delamination in cross-ply laminates and predicted the crack density using 

two-dimensional DEM. With the growth of computer power DEM becomes more 

beneficial to study crack propagation at the microscopic scale, even in three 

dimensions. For instance, Maheo et al., (Maheo et al., 2015) used three-dimensional 

DEM to model the failure of a composite material under uniaxial tension.  

5.2 Discrete element model to study the failure 

5.2.1 Parametric study of bond strength 

In order to enable the DEM model to predict the failure behaviour of a material, 

it is also necessary to correlate the local bond strength parameters to the DEM model’s 

macro strength. Normally two failure modes are predominating in composite lamina 

under transverse loading, i.e., matrix cracks and fibre/matrix debonding. The material 

used in this chapter is same as that in the previous chapters and the mechanical 

properties in given in Table 5.1. Mohr-Coulomb failure criterion has been widely used 

by to describe the plastic deformation of the epoxy matrix (González and LLorca, 

2007a, Totry et al., 2008a, Totry et al., 2010), and is adopted to determine the strength 

of the parallel bonds for the matrix in the DEM model. When using the contact 

softening model to represent the fibre/matrix interface, both interfacial strength and 

fracture energy must be known. Unfortunately, these properties are difficult to obtain 

from simple laboratory experiments (Ogihara and Koyanagi, 2010). In this study, the 
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interfacial strength is assumed to be equal to the cohesion of the matrix, c, and 

according to the Mohr-Coulomb failure criterion the relationship between the cohesion 

and matrix strength is given by: 

 

𝑐 =  𝑌𝑚𝑐

1 − sin 𝜑

2 cos 𝜑
 (5.1) 

here φ is the friction angle and can be related to the fracture surface angle 𝜉 

by: 

𝜉 = 45 + 𝜑 2⁄  (5.2) 

Typically 50⁰ < 𝜉 < 60⁰  is found for epoxy matrices (González and LLorca, 

2007a), and thus 𝜑 is between 10⁰ and 30⁰. Assuming 𝜑 = 23⁰ gives a cohesion c of 

39.7 MPa. Wang and Tonon (Wang and Tonon, 2010) found that micro tensile strength 

of the bond directly determines the strength of material regardless the magnitude of 

bond shear strength. Therefore, for simplicity 𝜎𝑐 = 𝜏�̅� is assumed. Then a series of 

uniaxial compression tests are carried out with different bond strength values to find 

the relationship between bond strength and material strength, as shown in Figure 5.1. 

The macro strength of the DEM model is the maximum value of axial stress acting on 

the walls at peak load. Figure 5.1 indicates that macro strength increases linearly with 

the bond strength. At this stage, the smallest timestep ∆𝑡1  is used. The effect of 

timestep on macro compressive strength is studied in the next section.  

Table 5.1: Mechanical properties of fibre and matrix. 

Fibre Transverse modulus, Ef (GPa) 74 
 Poisson’s ratio, νf 0.2 

Matrix Modulus, Em (GPa) 3.35 
 Shear Modulus, Gm (GPa) 1.24 
 Poisson’s ratio, νm 0.35 
 Compressive strength, Ymc (MPa) 120 
 Tensile strength, Ymt (MPa) 80 
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Figure 5.1: Influence of bond strength and timestep on the macro compressive 
strength of a DEM model. 

5.2.2 Parametric study of timestep 

An important consideration in the DEM modelling is the timestep. DEM uses a 

central difference time integration approach to solve the equations of particle motion, 

and to maintain a stable integration the timestep must not exceed the critical timestep 

∆𝑡𝑐𝑟𝑖𝑡: 

∆𝑡𝑐𝑟𝑖𝑡 < √𝑚 𝐾⁄  (5.3) 

where K is the contact stiffness and m is the particle mass. Choosing a suitable 

timestep is of particular importance because it has direct effect on the total 

computational time. The effect of timestep on the macro strength is therefore 

investigated, trying to find a large but still valid timestep and thus reduce the 

computational time. Three values of timestep are chosen, ∆𝑡1 = 9.3 × 10−11s, ∆𝑡2 =
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1 × 10−10 s and ∆𝑡3 = 1 × 10−09s. The first one is the default value calculated by the 

software itself (Itasca, 2003) based on mass of particles and contact stiffness 

according to Eq. (5.3). Note that, for all timesteps, the loading velocity is kept constant 

at 5 mm/s. Figure 5.1 shows the macro strength of the sample under these three 

different timesteps, with matrix compressive strength and cohesion also plotted. It is 

demonstrated that the strength values are almost identical for all timesteps for low 

bond strength. The two cases with ∆𝑡2 and ∆𝑡3 almost give the same strength while 

they are both diverted from ∆𝑡1 about 10% at bond strength of 85 MPa. Thus the 

choice of timestep needs to be further investigated by plotting out the complete stress-

strain curves in the later section of modelling failure process. 

5.2.3 Effect of particle size on the strength 

Particle size sensitivity test was also investigated in this thesis. Similar to what 

has been done in the previous chapter, six models with different particle size range 

from 2,628-25,667 particles are chosen. The contact and particle parameters are kept 

constant and equivalent to those for matrix listed in Table 4.2. Figure 5.2 shows that 

the variation of strength with particle size for the RVE size of 63 µm × 63 µm. It can be 

seen that the strength has considerably effected by number of particles. However, the 

strength has almost converged for dense models that contain than 15,000 particles.  
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Figure 5.2: DEM predictions of strength using different number of particles. 

The final fracture patterns for each case has also studies and plotted in Figure 5.3. It 

found that during early stage of loading, a few scattered cracks form and distribute 

throughout the model. These cracks are eventually integrated to form one or more 
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Figure 5.3: Crack patterns under uniaxial compression with different particles 
dense. (a) 2,628 particles. (b) 4,106. (c) 7,300. (d) 16,426. (e) 20,280. (f) 25,667. 

5.2.4 Prediction of stress-strain curves and damage progression under 

transverse compression 

In this section the failure of RVEs subjected to transverse compression is studied. 

The RVEs used in this section and next section have an identical size of 63 μm ×

63 μm. The effect of timestep on the stress-strain curve of a typical RVE, which is of 

particular importance for saving computational time, is examined in Figure 5.4. Within 

the elastic region (under 20 MPa), the simulation results are almost identical and agree 

well with the experimental one. The final failure appears to become more brittle when 

timesteps are reduced, confirming that small timesteps lead to better redistribution of 

the stress within the system and the model is more stable. Also, as DEM is a dynamic 

method therefore higher strength is obtained with increasing strain rate applies on the 

sample (Gilat et al., 2002). For all the DEM simulations in Figure 5.4, the mean 

compressive strength is 156.3 MPa which is greater than experimental result by 7%. 

Therefore, the timestep of ∆𝑡 =  1 × 10−9𝑠  will be used in later simulations. The 

nonlinear mechanical response of the stress-strain of the DEM model is not well 

captured comparing with experimental data. The nonlinear behaviour of the curve 

(a)  

(b)  (c)  

(d)  (e)  (f)  
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would be more obvious in case of longitudinal shear and off-axis loading. However, 

the nonlinear contact law could be introduced in the future to solve the problem. While 

geometric nonlinearity (e.g. fibre rotation) is not important under transverse loading. 

 

Figure 5.4: Stress-strain curves from DEM simulations using different timesteps 
compared to experimental results (Soden et al., 1998b). 

The influence of fibres distribution in the RVEs on the mechanical response is 

also studied by comparing the results obtained from five different fibre arrangements. 

The stress-strain curves of all five RVEs under transverse compression are shown in 

Figure 5.5. It can be seen that the failure strength ranges from 151 MPa to 167 MPa 

giving the smallest and the largest differences of 4% and 14%, respectively, in 

comparison with the experimental results. An interesting outcome of using DEM is that 

the transverse compressive failure strains of the RVEs are also obtained whilst they 

have not been reasonably achieved in previous studies using FEM due to numerical 

convergence difficulties (González and LLorca, 2007a, Vaughan and McCarthy, 

2011b, Vaughan and McCarthy, 2011a). To show the accuracy of the DEM modelling, 

0

20

40

60

80

100

120

140

160

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

St
re

ss
  (

M
P

a)

Strain  (%)

∆t = 9.3x10⁻¹¹ (default)

∆t = 1x10⁻¹⁰

∆t = 1x10⁻⁰⁹

Experimental



 

121 

 

the results are also compared with two recent FEM models (Yang et al., 2012, 

González and LLorca, 2007a) in Figure 5.5.  

 

Figure 5.5:  Stress–strain curves of five RVEs under uniaxial compression. 

Another major feature of DEM modelling is its capability to predict and visualise 

the damage initiation and propagation process. Taking RVE #3 as an example, Figure 

5.6 shows the damage progression in the composite under transverse compression, 

where a stress-strain curve and the damage profiles corresponding to the three 

characteristic loading points are also included. Point (a) in the stress-strain curve 

represents the state of a loading strain of 0.7% and its corresponding damage pattern 

is shown in Figure 5.6b. It can be seen that the fibre/matrix debonding (indicated by 

red dots) appears to be the major damage mechanism at this stage. After this point, 

the matrix cracks starts to appear, especially in the highly stressed areas where fibres 

are too close. The cracking leads to certain fluctuations in the stress-strain curve as 

indicated from the figure. Then, interfacial debonding and matrix cracks are emerged 

throughout the RVE before reaching the peak strength, as shown in Figure 5.6c. The 
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inclination angle αc of the critical plane is about 53⁰ at this point, and it is a little smaller 

than the failure plane angle ξ=56.5⁰ calculated from Eq. (5.2).  

 

Figure 5.6: Damage evolution under transverse compression at different 
loading strains: (a) stress-strain of RVE #3 showing three characteristic loading 
points damage studied at (b) 0.7% (c) 1.3% (d) 1.7%. (Red dots are fibre/matrix 
debonding and black dots are matrix cracks). 

Finally, more matrix cracks appear with further increase of loading and the final 

failure is shown in Figure 5.6d. From the last graph one can see that there are several 

possibilities for developing a critical plane across the RVE. The failure mode shown in 
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Figure 5.6d is similar to the final accumulated failure of the RVE in FEM when perfectly 

plastic matrix assumption is used (Romanowicz, 2014). However, it is quite different 

from those models using other failure criteria to represent matrix yielding, such as 

Mohr-Coulomb model (González and LLorca, 2007a) and Drucker-Prager (Yang et al., 

2012). 

5.2.5 Prediction of stress-strain curves and damage progression under 

transverse shear 

It is very difficult to carry out a laboratory test on a composite lamina/laminate 

under transverse shear. Finding a robust numerical method to simulate the test is then 

always beneficial, in particular, to capture the behaviour of the lamina until failure. 

Many factors could alter the damage behaviour of a lamina under transverse shear 

including fibre arrangements and fibre/matrix interface properties. Attempts have been 

made by researchers to find a relationship between the transverse shear strength and 

transverse compressive strength. Some researchers assumed the transverse shear 

strength, 𝑆𝑇, to be half of the compressive strength, 𝑌𝐶, i.e., 𝑆𝑇 = 0.5 𝑌𝐶 (Davila et al., 

2005), where 𝑌𝐶  is the transverse compressive strength of the lamina. This is also 

adopted in this study. The transverse compressive strength of the lamina is 145 MPa 

(see experimental stress-strain curve in Figure 5.4), therefore, we assume that 𝑆𝑇 =

72.5 MPa.  

The transverse shear of five different RVEs with different fibre distribution is 

modelled and the stress-strain curves are shown in Figure 5.7, along with the FEM 

results extracted from (Romanowicz, 2014) and (Yang et al., 2015) for comparisons. 

The figure shows that all the stress-strain curves from DEM modelling are almost 

identical and linear before reaching a loading stress of 35 MPa. A short line depicts 

the experimental initial shear modulus is also plotted. It is evident that the current 

simulation results are closer to the experimental shear modulus. After this point, the 

stress-strain curves of the RVEs start to divert from each other. This discrepancy is 

attributed to the development of micro-cracks that, similar to what was observed from 

the simulations of transverse compression described in the previous section, depends 

on the fibre distributions. The shear failure strength slightly varies for different fibre 

arrangements. In addition, for all the RVEs in Figure 5.7 the mean shear strength is 
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70 MPa, which is just slightly smaller than experimental result of 𝑆𝑇 = 72.5 MPa, and 

about 9% less than the strength predicted in (Romanowicz, 2014) and about 19% 

higher than that from (Yang et al., 2015). 

 

Figure 5.7: Transverse shear stress-strain curve using five different fibre 
arrangements compared with (Romanowicz, 2014) and (Yang et al., 2015) 

While the stress-strain curve and damage evolution in RVE #3 under transverse 

shear is shown in Figure 5.8. The stress-strain curve drops at point (a) (Figure 5.8b) 

due to matrix cracking at the right-bottom of the RVE close to the edge. However, this 

crack does not propagate longer because it is constrained by the two surrounding 

fibres. After this point, more interfacial debonding occurs until the peak point (b), (see 

Figure 5.8c). Afterwards, matrix cracks appear mainly in the middle of the RVE and 

propagate fast and diagonally between fibres, leading to the ultimate failure at point 

(c), Figure 5.8d. 
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Figure 5.8: Damage evolution under transverse shear at different strain stages: 
(a) stress-strain of RVE #3 showing three characteristic loading points damage 
studied at (b) 0.87%, (c) 1.51%, and (d) 2.13%. (Red dots are fibre/matrix debonding 
and black dots are matrix cracks). 

5.2.6 Effect of RVE size on failure strength and failure strain 

As an attempt to reduce the computational cost, RVEs with sizes smaller than 

63 μm × 63 μm are simulated. Variations of compressive strength for five different 

RVE sizes are shown in Figure 5.9a. The results show that the size of RVE has slight 

influences on the failure strength and there is no obvious trend of convergence for the 

RVE size. The smallest RVE of 30 μm × 30 μm is most diverted away from the 

experimental result, while the RVE of 50 μm × 50 μm, has a mean compressive 

(b) 
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strength closer to the experimental result than 63 μm × 63 μm. Figure 5.9b shows the 

failure strains for the RVEs of different sizes. The overall trend of results tends to be 

higher than the experimental one and the smallest RVE has the largest difference.  
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(b) 

Figure 5.9: Variation of compressive strengths and transverse compressive 
failure strains with RVE size, compared with experimental data (Soden et al., 1998b): 
(a) compressive strengths, and (b) transverse compressive failure strains. 

Figure 5.10 shows the variation of transverse shear strength with RVE sizes. As 

can be seen from the figure, the mean values of shear strength of the five RVEs show 

fluctuations rather than clear convergence towards 𝑆𝑇 = 0.5 𝑌𝐶, although the closest 

mean shear strength is from the largest RVE of 63 μm × 63 μm. In summary, the RVEs 

of 63 μm × 63 μm give overall better predictions of failure strength and failure strains, 

and this further confirms an RVE size of 63 μm × 63 μm should be used in the next 

sections of DEM simulations of biaxial loading. 
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Figure 5.10: Transverse shear strength of RVEs with different sizes. 

5.3 DEM modelling of RVEs under biaxial loads 

The ultimate goal of this chapter is to visualise the damage evolution and predict 

the failure envelop of composite lamina under biaxial loads. An accurate and reliable 

failure criteria have been pursued for the past few decades, and an effort has been 

made by the organisers of the first (Hinton et al., 2004, Soden et al., 1998a) and 

second (Kaddour and Hinton, 2013) WWFE to compare the experimental results with 

the predictions from different failure criteria. 19 failure criteria were evaluated and 

ranked according to their capability to predict the stress-strain curves under different 

uniaxial loading as well as the failure envelope in a series of test cases including biaxial 

loading. The comparisons revealed that the predictions of many failure criteria varied 

considerably from experimental results. WWFE also highlighted the importance of 

capturing the progressive failure in composite laminates. Generally, it was found that 

most failure criterions performed well when damage initiates in a single ply followed 

intimately by the catastrophic failure, or brittle failure. However, most criterions were 

not accurate enough when noticeable nonlinearity occurred before the final 
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catastrophic failure. Therefore, it is important to develop a suitable numerical method 

to capture and visualise the entire process of damage initiation and progression in 

composite laminates.     

5.3.1 DEM prediction of the failure envelope 

For the purpose of modelling biaxial loads using DEM, the RVEs are subjected 

to a combination of transverse normal stress, 𝜎22, and transverse shear, 𝜏23, to obtain 

σ22-τ23 failure envelope. The RVEs have a size of 63 μm × 63 μm. The DEM results 

are compared with predictions from two theoretical criteria developed by Hashin 

(Hashin, 1980) and Puck and Schürmann (Puck and Schürmann, 2002). Assuming 

isotropic composite lamina in the y-z (or 23) plane, the three dimensional Hashin 

failure theory in Eqs. (1.13) and (1.14) are reduced for two dimensional under 

combined transverse normal stress and transverse shear, respectively, as: 

(
𝜎22

𝑌𝑇
)

2

+ (
𝜏23

𝑆23
)

2

= 1 𝜎22 ≥ 0 (5.4) 

(
𝜎22

2𝑆23
)

2

+ [(
𝑌𝐶

2𝑆23
)

2

− 1]
𝜎22

𝑌𝐶
+ (

𝜏23

𝑆23
)

2

= 1 𝜎22 < 0 (5.5) 

The Puck model used in this section is given in Eqs. (1.15) and (1.16).  

To use these two failure criteria, the material failure strengths are required. In this 

study, the input failure strengths are those obtained from DEM simulations of RVE #1, 

given in Table 5.2.  

 

Table 5.2: Failure strength used in Hashin and Puck failure criteria. 

𝑌𝑐 (MPa) 159.5 

𝑌𝑇 (MPa) 35 

𝑆𝑇 (MPa) 71.5 

 

For biaxial loading, there are certain possible loading paths. For example, the 

normal and shear loads may be applied proportionally at the same time, or the loading 
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could start by applying uniaxial compression until a required compressive stress, then 

transverse shear is applied while the compressive stress is kept constant, or vice 

versa. The effect of loading path on the failure envelope has been investigated 

experimentally in (Vogler and Kyriakides, 1999) and numerically using FEM in (Hsu et 

al., 1999, Totry et al., 2008b), and all concluded that the loading path did not affect or 

change the failure envelope significantly. However, the influence of loading path in 

DEM modelling is not studied.  

Two loading paths are used in this study to simulate a biaxial test in DEM, as 

shown in Figure 5.11. The first path (Figure 5.11a and b) is used to apply transverse 

tension and shear on the RVE, the results of which are shown in Part-A of Figure 5.12. 

Following the same procedure as described in Section 4.4.3 for the pure shear test, 

the particles on the right- and left-hand side edges of the RVE are taken as boundary 

particles that are subsequently subjected to a constant velocity tangent to the edges 

until the desired shear stress is reached. Once the target shear stress is reached, the 

unbalanced force of each particle on the boundary is replaced by an external force of 

equal magnitude but in the opposite direction, see Figure 5.11b. Finally, a velocity 

normal to the edge is taken by the right- and left-hand side boundary particles to apply 

transverse normal load until the final failure, as shown in Figure 5.11b. By varying the 

initial shear stress applied on the boundary particles, the failure envelope of Part-A in 

Figure 5.12 is constructed. The second loading process is used to simulate transverse 

compression and shear quadrant only, i.e., Part-B in Figure 5.12. In this loading 

method, the right- and left-hand side walls act as loading platens and their horizontal 

moving velocity is controlled by a servo-mechanism to maintain a constant transverse 

compression stress, see Figure 5.11c. Then, a constant velocity is applied on the right 

and left boundary particles until the final shear failure, as shown in Figure 5.11d.  



 

131 

 

 

Figure 5.11: Loading schemes used to perform biaxial tests (arrows      
represent external force and arrows      represent velocity applied): (a)-(b) shear and 
tension in Part-A, and (c)-(d) shear and compression in Part-B. 

In the DEM simulations, the strength is the peak value on the stress-strain curve 

and the final failure takes place when the curve drops by 20% of the peak point, (e.g., 

point c in Figure 5.6a). The corresponding failure envelope is then generated and 

plotted in Figure 5.12 together with the predictions from Hashin (Hashin, 1980) and 

Puck and Schürmann (Puck and Schürmann, 2002) failure criteria.  

It can be seen that the strength of the material predicted by DEM is generally 

lower than that predicted by the two failure criteria when the material is subjected to 

transverse tension and shear (in Part-A region), while it is higher when the material is 

subjected to transverse compression and shear (in Part-B region). This is expected 

since the current DEM modelling has considered residual strength attributed to any 

friction and contact between the fractured surfaces that occurs after a bond is broken. 
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The particle-particle interaction force depends on the friction coefficient as well as the 

stiffness of these two particles. Therefore, collectively the material can sustain more 

compression and shear and this leads to an increase of the ultimate failure strength of 

the RVE. The friction and sliding free contact behaviour clearly emerges only in 

presence of compression, which explains why a better comparison of the strength is 

observed in Part-A. In fact, the post-failure friction and contact behaviour in 

compression and/or shear is closer to physical tests whilst the analytical methods 

usually cannot take it into account. However, Puck’s criterion was among the theories 

that performed well for predicting the strength of unidirectional lamina subjected to 

transverse normal stress and in-plane shear as compared with experimental results 

(Soden et al., 2004). In this study the criteria is further validated against our virtual 

modelling results for another type of biaxial loading scenario of transverse normal and 

transverse shear loading. 

 

Figure 5.12: Failure envelope of a fibre-reinforced composite lamina in the 
𝜎22 − 𝜏23 stress space. 
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5.3.2 DEM visualisation of damage evolution 

In Puck’s model failure under transverse normal and transverse shear depends 

on the orientation of failure plane which in turn depends on the magnitude of the 

normal and shear stresses acting on the failure plane surface. Thus, it is important to 

investigate the final failure planes of a RVE. The crack paths discussed in this section 

is for RVE #1 under different loading combinations (or 𝜏23/𝜎22 ratio) as shown in Figure 

5.13. Each subfigure is associated with a loading combination along the failure 

envelope shown in Figure 5.12, such as C1, A1, A2, etc.  

 

 

Figure 5.13: Accumulation of damages in the composite under different loading 
combinations in Part-A. (Each subfigure represents a data point on the failure 

envelope according to its label; Red dots represent fibre/matrix debonding and black 
dots represent matrix cracks.) 
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Figure 5.13C1, which is for the RVE under uniaxial transverse tension (point C1 

in Figure 5.12), shows that the failure plane is found to be perpendicular to the loading 

axis and propagates between fibres in the middle of the RVE. After applying transverse 

shear (i.e., 𝜏23/𝜎22 = 2.1 at A1), the failure plane is still about 90° but not literally in the 

middle, and another failure path also appears as shown by the circle ‘E’ in  Figure 

5.13A1. By increasing 𝜏23/𝜎22 ratio to 2.13 and 4.63, it has been found that the second 

failure path propagates longer in the RVE and eventually two vertical crack paths 

present, as shown in Figure 5.13A2 and A3. Finally, the accumulated failure of the 

RVE subjected to pure transverse shear is plotted in Figure 5.13C2 where the plane 

angle is found to be around 45°, and the failure path is somehow diverted when fibres 

are present at the crack tip. 
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Figure 5.14: Accumulated cracks in the composite under different loading 
combinations. (Each subfigure represents a data point on the failure envelope 

according to its label; Red dots represent fibre/matrix debonding and black dots 
represent matrix cracks). 
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The accumulated cracks in the composite subjected to combined transverse 

shear and transverse compression as well as pure transverse compression (Part-B of 

Figure 5.12) are shown in Figure 5.14. Similar to what has been used above, each 

subfigure in Figure 5.14 is associated with one data point in Figure 5.12.   

For low compression load (i.e. 𝜏23/𝜎22 = 2.5 or load case B1) in Figure 5.14B1, the 

critical failure plane is oriented at an angle of about 50° to the loading axis (i.e. y-axis), 

as indicated by the arrow R1. However, this fracture band cannot propagate through 

the fibres, the orientation alters slightly at the end and this variation is mainly caused 

by the fibre distribution, see arrow R2.  

For smaller transverse shear and compression ratio, i.e., point B2 in Figure 5.12, the 

initial fracture angle is almost the same as the previous case. However, another 

fracture band (which is indicated by the arrow R5) appears and follows the first one, 

see Figure 5.14B2.  

In Figure 5.14B3, the orientation angle of fracture plane is reduced more to become 

about 42° and also more cracks take place just before the final failure as indicated by 

the elliptic E1. According to Eq. (1.19), the fracture angle decreases when τ23 σ22⁄  is 

reduced, and this is confirmed by our DEM simulation results, i.e., the fracture angle 

is reduced from 50° to 42° with increasing compression stress σ22.  

Failure patterns in Figure 5.14B4 and B5 are similar to that in Figure 5.14B3 except a 

new fracture path appears (indicated by the arrow R7) and has a small slope with y-

axis.  

Finally, it is found that with increasing transverse compression stress in Figure 5.14B6 

and B7 more intensive cracks tend to occur between fibres which reduce the average 

fracture angle, In addition, more diverse crack paths appear (indicated by the arrow 

R8 in Figure 5.14B6) and the failure band becomes bigger than above cases.  

The final failure of uniaxial compression stress is also included in and shown in the 

Figure 5.14C3. The damage evolution of this loading case is similar to the one that 

has already been discussed in Section 5.2.4. As can be seen from Figure 5.14C3, two 

main failure paths, R9 and R10, are present. The crack path R8 runs through the RVE 
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until it is constrained by fibre F1 and leads to new cracks occurring almost 

perpendicular to the initial path.     

5.3.3 Quantitative analysis of damage events 

A quantitative analysis of fibre/matrix debondings and matrix cracks is also 

carried out for each loading case in Part-A and Part-B of Figure 5.12, and the results 

are plotted in Figure 5.15 and Figure 5.16, respectively. Each column of the figure 

shows the number of interfacial debonding and matrix cracks of the corresponding 

loading case in Figure 5.12. The matrix cracking includes both normal and shear 

breaking of bonds between the particles that represent the matrix. Columns labelled 

from A1 to A3 represent biaxial loads and are located in Part-A, whereas columns B1 

to B7 are for those in Part-B and columns C1, C2 and C3 are for uniaxial transverse 

tension, shear and compression, respectively.  

As shown in Figure 5.15 for the loading cases in Part-A, the number of 

fibre/matrix debondings is significantly high in the case of pure transverse tension (i.e., 

column C1) and more matrix cracks are found in transverse shear, (i.e., column C2). 

While for combined transverse tension and shear, fibre/matrix and matrix cracks 

number increase steadily with increasing ratio of 𝜏23 𝜎22⁄  from A1 to A3. It is important 

to mention that in all loading cases the fibre/matrix interfacial debonding is the main 

damage mechanism before the peak stress as the bond strength of the fibre/matrix 

interface is much smaller than that of the matrix. While the matrix cracks mostly 

happen after the ultimate stress and leads to the final failure. 
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Figure 5.15: Number of fibre/matrix debonding and matrix cracks in loading 
cases in Part-A. 

For Part-B of the failure envelope, it is found that the number of cracks in matrix 

has increased significantly with increasing compression loads from B1 to B6, as shown 

in Figure 5.16. Afterwards, the cracks number is almost the same as that in uniaxial 

compression loading case, C3. The number of fibre/matrix debonding also increases 

with load, but not as fast as matrix cracking. These results are reasonable as by 

increasing the confining compression load applied on the RVE in the first step (see 

Figure 5.11) would certainly leads to more cracks before the second step. In addition 

by increasing the initial stress in the bonds (that are not broken yet) before applying 

shear load on the RVE in the second step, would make them more susceptible to break 

in the subsequent shear load. High confining stress also increases strain softening 

which continues until the final failure, and thus more normal and shear cracks would 

occur. This explains the increase of the total number of damage events from B1 to B7 

in Figure 5.16.  
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Figure 5.16: Number of fibre/matrix debonding and matrix cracks in loading 
cases in Part-B. 
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Chapter 6 

 

6 Conclusions and future work 

This chapter provides a summary of achievements of the present thesis. The 

results of the current these laid the ground for future work in the field of using DEM to 

study the failure of composite materials. A list of activities that can be achieved based 

on current work is outlined, some of them easy to perform while others are difficult.   

6.1 Conclusions  

This work devoted to study the damage initiation, evolution and visualising in 

fibre reinforced polymer composite using discrete element method. This method also 

used to develop a novel approach for generating random fibre distributions in chapter 

2. The approach is capable of generating random distributions of fibres with high 

volume fractions and any specified inter-fibre distances. Varied fibre diameters were 

assigned by extracting the experimentally measured diameter distribution. The reason 

for not using identical diameter is to avoid regular distribution of fibres and to ensure 

they are distributed randomly. The generated fibre distributions have been statistically 

analysed, and it was found that the approach was adequately capable of generating 

fibre distributions which was statistically equivalent to the real microstructure. Finite 

element analysis was carried out to predict the effective elasticity of the generated 

microstructures, the results of which were compared with experimental and other 

methods. The predicted effective properties were found to be close to those measured 

from experiments and calculated using other algorithms. Especially, the predicted 

Poisson’s ratios have shown excellent agreement with the experimental data. The 

developed algorithm will be particularly suitable for following chapters of DEM 

micromechanical modelling and will be used to generate RVEs to study the elasticity, 

strength and damage evolution of the composite materials using DEM. Also the 



 

141 

 

method can be easily combined with conventional FEM micromechanical modelling of 

damage progression in composite materials. 

Chapter 3 presented a DEM model that has been developed and 

micromechanical analysis was carried out to examine the microscopic failure 

mechanisms of unidirectional fibre-reinforced polymer composites under transverse 

tension. The RVE of the lamina was discretised using the hexagonally packed particles 

that were bonded together using the parallel bond for the fibres and the matrix, and 

the displacement-softening model for the fibre/matrix interface. The simulation results 

clearly revealed a similar trend of initiation and propagation of the micro cracks to 

those observed in experiments. For example, the interfacial debonding occurred first 

at the regions where the inter-fibre distances were small. This was attributed to the 

stress concentration due to a high ratio of the fibres and matrix stiffness. Matrix cracks 

started to appear next mostly near the debonded areas. It was observed also that a 

few matrix cracks occurred in random places due to the introduction of random 

weakness of the material strength. Eventually the interfacial deboning joined the matrix 

cracks throughout the RVE and the final fracture occurred. Parametric studies were 

conducted to investigate the influence of microscopic properties, such as interfacial 

stiffness, strength and fracture energy on the ultimate failure of the composite RVE. It 

was concluded that the interface strength had a significant effect on the transverse 

strength of the composite, and the matrix cracking was the dominant damage when 

the interfaces were strong. Fibre– matrix interface fracture energy had no significant 

effect on the ultimate failure strength, but on the one-set of damage. Finally, interfacial 

stiffness affected only the stiffness but had less effect on the strength of the lamina. 

In chapter 4 and 5, a 2D particle model based the discrete element method 

(DEM) has been developed to study the microscopic behaviour of unidirectional fibre 

reinforced composite lamina under different loading conditions. Calibration process is 

first carried out (in chapter 4) to relate micro parameters of the DEM models of fibre 

and matrix to macro properties of the materials. The critical size of RVE using DEM is 

investigated that a reasonable RVE size of 63 𝜇𝑚 × 63 𝜇𝑚 can be used provided that 

the material constituents are previously calibrated. This method shows good prediction 

of the elastic modulus of composite materials as compared with FEM models and other 
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analytical methods such as Voigt and Mori-Tanaka using the same approach for 

generating random fibre distributions. 

Based on the micro parameters calibrated in chapter 4, a micromechanical 

analysis is then carried out to investigate the microscopic failure mechanisms of a 

composite lamina of MY750 matrix reinforced by E-glass fibres under transverse 

compression and shear loading in chapter 5. The stress-strain curves are also 

produced for five different RVEs with different fibre distributions, from which 

compressive and shear strength has been obtained in together with the failure strains. 

It is found that DEM can better predict the stress-strain response of the composite 

under transverse compression than FEM as it clearly shows the compressive strength 

and compressive failure strain on the stress-strain curve. The shear strength has also 

been predicted. Previous FEM work, such as (Romanowicz, 2014), shows more 

nonlinear behaviour of the stress-strain under transverse shear loads than DEM.  

The DEM simulations have shown the microscopic failure mechanisms of the 

composite and the detailed damage evolution in the RVEs. For both transverse 

compression and shear loads, interfacial debonding occurs first and then matrix cracks 

become dominating in areas where inter-fibre distances are small. Eventually, 

interfacial debonding and matrix cracks are merged together to form the catastrophic 

failure of the RVEs. 

The failure envelope of the composite is computed from DEM simulations under 

transverse compression and transverse shear. The results presented in this study 

show that DEM can be used as a useful tool to predict the failure envelope of a general 

composite lamina subjected to complex biaxial combination of transverse normal and 

transverse shear loads. Although the results tend to be underestimated for transverse 

tension and shear whilst overestimated for transverse compression and shear when 

compared with Hashin and Puck failure criteria, they are still reasonable as the post 

failure mechanism in the DEM modelling is closer to that in real experimental tests. 

The capability of DEM to accurately predict the macroscopic response as well as 

microscopic failure mechanisms makes it a very useful tool to explore the effect of 

constituent properties on the behaviour of composite lamina. This is important from a 

material viewpoint to choose critical parameters to improve and optimize lamina 
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stiffness as well as strength which are very difficult and expensive to obtain through 

experiments.  

6.2 Future work 

The capability of DEM to accurately predict the macroscopic response as well as 

microscopic failure mechanisms makes it a very interesting tool to explore the effect 

of constituent properties on the behaviour of composite lamina. This is important from 

a material viewpoint to choose critical parameters to improve and optimise lamina 

stiffness as well as strength which are very difficult and expensive to obtain through 

experiments.  

Extending the current 2D DEM model to 3D is essential in the future when 

modelling composite laminates under more complex triaxial loads. Composite 

laminates under different triaxial loads can be modelled by conducting the 

methodology developed in Chapter 4 and 5. For example, failure envelopes under 

hydrostatic pressure (σ₁₁ = σ₂₂ = σ₃₃) versus in-plane shear (𝜏₁₂), case 2 in WWFE-II 

(Kaddour and Hinton, 2013) (Figure 6.1), and under axial loads (σ₁₁, σ₂₂ and σ₃₃), 

case 5 in WWFE-II (Figure 6.2). Undoubtedly, it is essential to use 3D RVE with fibre 

failure strength must be introduced.  
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Figure 6.1: Experimental results of failure envelope of a fibre-reinforced 
composite lamina under  𝜎11 = 𝜎22 = 𝜎33 versus 𝜏12  stresses (Kaddour and Hinton, 
2013).  
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Figure 6.2: Experimental results of failure envelope of a fibre-reinforced 
composite lamina under 𝜎11 = 𝜎33 versus 𝜎22 stresses (Kaddour and Hinton, 2013). 

As this work used 2D DEM to study composite material at the micro-scale level, 

thus only two failure modes were studied, namely matrix cracking and fibre/matrix 

debonding. There are, however, a variety failure mechanisms that can be appeared in 

composite materials in the micro-scale level, such as fibre pull-out, fibre kinking, fibre 

fracture and fibre splitting. These failure modes can be taken into account only if the 

3D model is used.  

One of the most important aspects in the micromechanical analysis of composite 

material is to choose a right model to represent matrix and fibre/matrix interface. 

Previous researchers found that matrix material is pressure dependent and the stress-

strain curve is extremely nonlinear under longitudinal shear. Therefore, it is important 

in the future to develop a new contact model that can capture this effect.  

Delamination, as well as transverse cracking of a laminate consisting of several 

layers, can be visualised if a fully developed 3D DEM model is used to predict the 

damage evolution the failure envelope of for other cases in WWFE-II (Kaddour and 
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Hinton, 2013). Due to a large number of particles that require modelling the whole 

laminate, it is important to use regulate particle packing such as, cubic close packing 

(CCP), body-centred cubic (BCC), (face-centred cubic FCC) and hexagonal close 

packing (HCP), to reduce the computational time. Unlike 2D DEM in which relationship 

between contact parameters and material properties has been reported in the previous 

literature for cubic or hexagonal bonded particles of both isotropic and orthotropic 

materials, as discussed in Chapter 3. However, to the authors’ best knowledge, there 

is no such a formulation for 3D DEM models of anisotropic or transversely isotropic 

materials reported in the literature. Therefore, as a first attempt to extend 2D DEM 

model to 3D is to derive relationships between contact parameters and material 

properties. By using 3D DEM to study failure envelopes, one can identify the reasons 

for which the existing failure criterions are not accurate in certain loading cases and 

subsequently modify them or develop a new universal failure criterion that takes into 

account the damage progression for higher accuracy. 
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Appendix A: DEM script to generate random fibre 

distributions 

NEW 

set logfile output.log 

set dt 1 

set extra ball 1 

set log on 

set Echo off 

;------------------------------------------- 

def setdata 

  array br_pnt1(dim) 

  array br_pnt2(dim) 

  L = 165.0            ;Lenght 

  W = 165.0           ;Width 

  R_fibre = 3.3       ;Radius 

  Vol_fibre = 0.60  ;Volume fraction 

  command 

   set PERIODIC ON 0.0 @L 0.0 @W  

  endcommand 

end 

;-------------------------------------------- 

def et2_setup 

  _rc   = R_fibre 

  _r2   = 2.0 * _rc 

  _b = sqrt(pi*_rc^2/(2*sqrt(3)*Vol_fibre)) 

  _b2 = 2.0*_b  

  yinc  = _b/sqrt(3.0) + _b2/sqrt(3.0) 

  _xc = _rc 

  _yc = _rc 

  _idc = 1  

  n_row = int(W/yinc)   ;Number of balls in x-directions 

  n_col = int(L/_b2)    ;Number of balls in y-directions 

  loop row (1,n_row) 

    loop col (1,n_col) 

      _rnd = 0.5*(6.6+0.3106*grand) 

      command 

        ball id=@_idc x=@_xc y=@_yc rad=@_rnd 

      endcommand 

      _idc = _idc + 1 

      _xc  = _xc + _b2 

    endloop 
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    _yc = _yc + yinc 

 _xc = _rc  

  endloop 

end 

;------------------------------------ 

def plots_preprocessig 

  command 

    plot create mg_Sample 

 plot add fish Model_Boundary 

    plot add fish percolor 

    plot add ball yellow red green  

    plot set background white 

    plot show 

  end_command 

end 

;-------------------------------------- 

def Model_Boundary 

  ;Draw model boundary 

  plot_item 

  br_pnt1(1) = 0 

  br_pnt1(2) = 0 

  br_pnt2(1) = L 

  br_pnt2(2) = 0 

  _crk_draw2d_line = draw_line(br_pnt1, br_pnt2) 

  ; 

  br_pnt1(1) = L 

  br_pnt1(2) = 0 

  br_pnt2(1) = L 

  br_pnt2(2) = W 

  _crk_draw2d_line = draw_line(br_pnt1, br_pnt2) 

  ; 

  br_pnt1(1) = L 

  br_pnt1(2) = W 

  br_pnt2(1) = 0 

  br_pnt2(2) = W 

  _crk_draw2d_line = draw_line(br_pnt1, br_pnt2) 

  ; 

  br_pnt1(1) = 0 

  br_pnt1(2) = W 

  br_pnt2(1) = 0 

  br_pnt2(2) = 0 

  _crk_draw2d_line = draw_line(br_pnt1, br_pnt2) 

end  

;-------------------------------------- 

def percolor 

  plot_item 

  bp = ball_head 

  loop while bp # null 

    b_color(bp) = 0 
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    if and(b_perflag(bp),1) # 0 

      b_color(bp) = 1    ;controller 

   b_extra(bp, 1) = 1 

    else 

      if and(b_perflag(bp),14) # 0 

        b_color(bp) = 2  ;slave 

  b_extra(bp, 1) = 2 

      endif 

    endif 

    bp = b_next(bp) 

  endLoop 

end 

;-------------------------------------- 

def N_ball1 

  idd=1000 

  n1 = 0 

  At_ = 0.0 

  bp = ball_head          ;---- 

  loop while bp # null        ;| 

    n1 = n1+1                 ;| 

 brdd = b_rad(bp)          ;| Cacualte volume fraction 

 At_ = At_ + pi*brdd^2     ;| 

 bp = b_next(bp)           ;| 

  endloop                     ;| 

  Vf1 = At_/(L*W)         ;---- 

  ; 

  ;Add balls until reaching target volume fraction  

  loop while 1#0 

 if Vf1 > Vol_fibre then 

   ii = out('Pause: please read the message bellow ...') 

   ii = out('Volume fraction reached = '+string(Vf1)) 

   exit 

 else 

      idd=idd+1 

   _rnd = 0.5*(6.6+0.3106*grand) 

      command 

     ball id=@idd x=30 y=30 rad=@_rnd 

   endcommand 

   At_ = At_ + pi*_rnd^2 

   Vf1 = At_/(L*W) 

   n1 = n1+1 

    endif 

  endloop 

end 

;-------------------------------------- 

def BVelocity 

  ;Apply random velocity to each ball 

  bp = ball_head 

  loop while bp # null 
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    b_xvel(bp) = grand 

 b_yvel(bp) = grand 

    bp = b_next(bp) 

  endLoop  

  _cycle = abs(int(grand*1000)) 

  ii = out('Number of cycle = '+string(_cycle)) 

  command 

    pause  ;Pause to read the message 

  endcommand 

end 

;-------------------------------------- 

def N_ball 

  ;Print out ball coordinations 

  bp = ball_head 

  loop while bp # null 

 bx3 = b_x(bp) 

 by3 = b_y(bp) 

 brdd = b_rad(bp) 

 oo = out(string(bx3)+'    '+string(by3)+'   '+string(brdd)) 

 bp = b_next(bp) 

  endloop 

end 

;-------------------------------------- 

setdata 

et2_setup 

plots_preprocessig 

property density 1500  kn=1000000  ks=1000000  fric=0.2 

pause 

N_ball1 

property density 1500  kn=1000000  ks=1000000  fric=0.2 

BVelocity 

ini rad mul 1.12121212 

cycle _cycle 

ini rad mul 0.891891  

N_ball 

set log off 

return 
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