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 10 

Abstract 11 

 12 

Freshwater ecosystems sustain human society through the provision of a range of services. 13 

However, the status of these ecosystems is threatened by a multitude of pressures, including point 14 

sources of wastewater. Future treatment of wastewater will increasingly require new forms of 15 

decentralised infrastructure. The research reported here sought to enhance pollutant removal 16 

within a novel wastewater treatment technology, based on un-planted, artificially aerated, 17 

horizontal subsurface flow constructed wetlands. The potential for these systems to treat de-icer 18 

contaminated runoff from airports, a source of wastewater that is likely to grow in importance 19 

alongside the expansion of air travel and under future climate scenarios, was evaluated. A new 20 

configuration for the delivery of air to aerated treatment systems was developed and tested, based 21 

on a phased-aeration approach. This new aeration approach significantly improved pollutant 22 

removal efficiency compared to alternative aeration configurations, achieving > 90 % removal of 23 

influent load for COD, BOD5 and TOC. Optimised operating conditions under phased aeration were 24 

also determined. Based on a hydraulic retention time of 1.5 d and a pollutant mass loading rate of 25 
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0.10 kg d⁻¹ m⁻² BOD₅, > 95 % BOD5 removal, alongside final effluent BOD5 concentrations < 21 mg L-1, 26 

could be achieved from an influent characterised by a BOD5 concentration > 800 mg L-1. Key controls 27 

on oxygen transfer efficiency within the aerated treatment system were also determined, revealing 28 

that standard oxygen transfer efficiency was inversely related to aeration rate between 1 L and 3 L 29 

min-1 and positively related to bed media depth between 1,500 mm and 3,000 mm. The research 30 

reported here highlights the potential for optimisation and subsequent widespread application of 31 

the aerated wetland technology, in order to protect and restore freshwater ecosystems and the 32 

services that they provide to human society. 33 
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1. Introduction 52 

 53 

Freshwater ecosystems provide services that are critical for human society (Dodds et al., 2013, 54 

UNESCO, 2015, Durance et al., 2016). However, these ecosystems also face diverse pressures 55 

resulting from population growth, urbanisation, industrial development and a changing global 56 

climate (Vorosmarty et al., 2000, Ormerod et al., 2010, Vorosmarty et al., 2010, Matthews, 2016). In 57 

consequence, contemporary rates of degradation within freshwater ecosystems significantly exceed 58 

historical rates, but also contemporary rates of degradation within other ecosystems (Barnosky et 59 

al., 2011, Valiente-Banuet et al., 2015). The changes in ecosystem structure and function that are 60 

associated with degradation threaten the integrity of freshwater ecosystems, but also constrain the 61 

potential for human society to benefit from the services that could potentially be provided by 62 

freshwaters (Gleick, 1998, World Health Organization, 2015). 63 

Therefore, there is a growing imperative to protect and restore the status of freshwater 64 

ecosystems globally. Chemical water quality is a fundmanetal control on ecosystem status and 65 

remains subject to significant anthropogenic pressure (Smith and Schindler, 2009, Schindler, 2012, 66 

Malaj et al., 2014, Jekel et al., 2015, Van Meter et al., 2016). Point sources have been recognised as a 67 

major contributor of pollutants to freshwaters for several decades in many countries (EEA, 2007, 68 

DEFRA, 2012, EEA, 2015), with centralised or decentralised wastewater treatment systems being 69 

widely used to improve the quality of wastewater entering freshwaters from point sources. 70 

However, the energy demands, greenhouse gas emissions and whole life costs associated with many 71 

traditional wastewater treatment technologies are subject to increasing scrutiny (Henriques and 72 

Catarino, 2017, Rajasulochana and Preethy, 2016). Alternative treatment technologies, characterised 73 

by relatively low energy consumption, by simple operating principles and by minimal whole life costs 74 

are increasingly required. Such technologies provide a potentially more sustainable means of 75 

protecting or enhancing ecosystem services compared to conventional wastewater treatment 76 

technologies. Further, such technologies would support enhanced treatment of point sources in 77 
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countries where significant investment in centralised wastewater treatment infrastructure cannot be 78 

made, alongside the treatment of smaller, micro-point sources of wastewater for which traditional 79 

technologies may be inappropriate or disproportionately costly. In this context, the research 80 

reported here developed a novel treatment technology for wastewater, based on un-planted, 81 

artificially aerated, horizontal subsurface flow (HSSF) constructed wetlands. It is recognised that the 82 

treatment systems considered in this research do not include the vegetation planting schemes that 83 

are common in many constructed wetland designs. This reflects the specific application of the 84 

technology to the treatment of wastewater at airports, for which planted systems are potentially 85 

inappropriate (see below). However, the HSSF constructed wetland terminology is used within this 86 

paper, reflecting the fact that in hydraulic, microbial and bed media geochemical terms, the 87 

treatment systems described here share many features that are common with planted HSSF 88 

constructed wetlands.   89 

Treatment technologies that rely on natural, passive pollutant degradation processes, including 90 

constructed wetlands, offer environmental and economic advantages over many traditional 91 

wastewater treatment systems (Castro et al., 2005, Vymazal et al., 2006, Kadlec and Wallace, 2009, 92 

Vymazal and Kröpfelová, 2009, Freeman et al., 2015, Wu et al., 2015). However, the availability of 93 

dissolved oxygen (DO) is frequently a fundmanetal limit on pollutant removal within traditional 94 

constructed wetland designs (Wallace et al., 2007, Kadlec and Wallace, 2009, Nivala et al., 2013). In 95 

saturated HSSF wetlands, 0.12 g m-2 d-1 – 12.11 g m-2 d-1 O2 may be transported into a system 96 

through the combination of direct diffusion from the atmosphere and diffusion from the sub-surface 97 

root network of wetland vegetation (Armstrong et al., 1990, Brix and Schierup, 1990, Brix, 1997, 98 

Bezbaruah and Zhang, 2005, Nivala et al., 2013). Vertical flow constructed wetlands achive higher 99 

diffusion rates of 28.4 g m-2 d-1  – 156 g m-2 d-1 O2 for saturated systems and up to 482 g m-2 d-1 O2 in 100 

fill and drain systems, primarily due to the draw down of air into the bed during sequential filling and 101 

draining of wastewater through the wetland substrate (Cooper, 2005, Fan et al., 2013a, Nivala et al., 102 

2013). However, the rate of DO supply via these mechanisms within traditional constructed wetland 103 
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designs is often negligible when compared to the rate of DO consumption associated with many raw 104 

wastewaters (Nivala et al., 2013). Whilst anaerobic respiration of some pollutants occurs, the 105 

resulting pollutant removal rates are often lower than under aerobic conditions, meaning that 106 

treatment efficiency is significantly reduced (Huang et al., 2005, Ouellet-Plamondon et al., 2006, Fan 107 

et al., 2013b, Nivala et al., 2013, Murphy et al., 2015, Uggetti et al., 2016). The need to improve rates 108 

of DO supply in order to enhance pollutant removal in traditional constructed wetlands has led to 109 

the development and commercialisation of aerated wetlands for a range of applications across the 110 

globe (Wallace, 2001). Aerated wetlands involve the active supply of DO into a self-contained, 111 

media-filled treatment bed, to maintain aerobic conditions within the wetland by meeting the DO 112 

demand exerted by wastewater. With sufficient DO supplied to the system through aeration, the 113 

role of wetland vegetation root transfer for this purpose is significantly reduced and systems can 114 

remain un-planted to serve applications in which attacting wildlife is undesirable. However, there is 115 

currently no recognised design standard for aerated wetlands (Nivala et al., 2013), alongside limited 116 

empirical data to support understanding of how factors such as the configuration of aeration 117 

devices, wetland bed depth or aeration rate impact the availability of DO and, ultimately, pollutant 118 

removal. In alternative aerobic wastewater treatment systems, such as activated sludge plants, the 119 

energy consumed by aeration devices typically accounts for 45 % to 80 % of the total operating cost 120 

(Stenstrom and Rosso, 2006, Zhou et al., 2013). Optimisation of aeration systems within wastewater 121 

treatment plants can typically achieve energy efficiency improvements of 20 % to 40 % (Henriques 122 

and Catarino, 2017). Therefore, the design and optimisation of aeration systems to ensure maximum 123 

O2 transfer from the gaseous to the liquid phase is central to achieving low cost, sustainable 124 

treatment solutions through the use of aerated wetlands.  125 

The research reported here developed and tested novel, artificially aerated HSSF constructed 126 

wetland designs to enhance pollutant removal efficiency from wastewater. The specific context for 127 

the research was the need for new technological approaches to treat surface water runoff from 128 

airports following contamination with chemical de-icers. At international hub airports, > 1 M L of 129 
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chemical de-icers are applied annually to aircraft, aprons, taxiways and runways to facilitate safe 130 

winter operations, potentially contaminating large volumes of storm water runoff (CAA, 2000, ACRP, 131 

2008, Erdogan, 2008, Association of European Airlines, 2012, ISO, 2012, Freeman et al., 2015). De-132 

icer application volumes at UK airports are forecast to increase in-line with an increase in aircraft 133 

movements of 1 % to 3 % annually up to 2050 (DFT, 2003, DFT, 2013). Simultaneously, expansion of 134 

airports to meet this demand alongside a changing global climate will likely generate increasing 135 

volumes of surface water runoff, placing unprecedented pressure on existing wastewater 136 

infrastructure and pollution prevention strategies, potentially threatening the status of freshwater 137 

ecosystems. 138 

The primary environmental concern associated with airport de-icing activities is DO depletion in 139 

surface waters that receive storm water runoff, due to the high DO demand exerted by propylene 140 

glycol (C3H8O2) or potassium acetate (C2H3KO2) contained within chemical de-icers (ACRP, 2008, 141 

ACRP, 2009). Both C3H8O2 and C2H3KO2 are associated with extremely high five-day biochemical 142 

oxygen demand (BOD5) and, when diluted within snow melt or rainfall, can potentially achieve BOD5 143 

concentrations > 20,000 mg L⁻¹ within storm water runoff (US EPA, 2000, Corsi et al., 2012). Coupled 144 

with high temporal variability in pollutant and hydraulic loads, de-icer contaminated storm water 145 

runoff from airports represents a significant threat to freshwater ecosystems if discharged without 146 

appropriate treatment (Corsi et al., 2001, ACRP, 2008, ACRP, 2012).  147 

De-centralised treatment of de-icer contaminated storm water runoff at airports using aerated 148 

constructed wetlands represents a novel and potentially sustainable approach to the treatment of 149 

this source of wastewater. Artificially aerated constructed wetlands appear to offer several 150 

advantages in the context of treating de-icer contaminated runoff compared to conventional 151 

wastewater treatment technologies, including: simple design; low maintenance; low operational and 152 

whole life costs; no regular sludge disposal requirements and resilience to fluctuating hydraulic and 153 

pollutant loads (Kadlec and Wallace, 2009, Freeman et al., 2015). The limitations of artificially 154 

aerated wetlands for airport applications include the large footprint required to manage large storm 155 
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water runoff volumes and the attraction of wildlife to wetland habitats which can pose a possible 156 

bird strike hazard for aircraft (Blackwell et al., 2008). Despite such limitations, many airports have 157 

large areas of land in close proximity to runways that could represent suitable sites for un-planted 158 

HSSF aerated wetlands (Wallace and Liner, 2011a, Wallace and Liner, 2011b). In order to inform the 159 

application of artificially aerated wetlands at airports, the objectives of the research reported here 160 

were: (i) to evaluate the impact of media depth and aeration rates on standard oxygen transfer 161 

efficiency (SOTE); (ii) to determine the impact of different aeration diffuser configurations on 162 

pollutant removal efficiency; and (iii) to determine optimal pollutant loading rates for effective 163 

treatment of de-icer contaminated runoff using aerated wetlands. 164 

 165 

2. Methodology and Materials 166 

 167 

2.1. Standard Oxygen Transfer Efficiency Tests 168 

 169 

Tests were conducted to determine standard oxygen transfer efficiency within four experimental 170 

columns filled with 10 mm to 20 mm washed angular limestone gravel, to depths of 1,500 mm, 2,000 171 

mm, 2,500 mm and 3,000 mm (Figure 1). Each individual column was constructed from 220 mm 172 

internal diameter medium density polyethylene gas pipe and included sample ports, sample valves, 173 

ceramic disc diffusers and airlines. The columns were sealed at the base with electrofusion couplings 174 

and bolted stainless steel end caps, with drain valves and 200 mm fine bubble ceramic disc diffusers 175 

positioned near to the base. Air was delivered into the columns using an Airmaster model 8/36, 1.5 176 

hp, 24 L oil-free compressor. A 0 – 15 L min⁻¹ flow meter was positioned on the compressor outlet 177 

and used to regulate the aeration rate delivered into each column. Paired 10 mm internal diameter 178 

sample ports were installed on opposite sides of the columns at elevations from the column base 179 
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equating to 25 %, 50 %, 75 % and 100 % of the total media depth. Sample ports protruded into the 180 

column by 20 mm, to avoid sampling water from the internal column wall. 181 

 182 

 183 

 184 

 185 

 186 

 187 

 188 

 189 

 190 

 191 

 192 

Figure 1. Cross-section of experimental column design for standard oxygen transfer efficiency tests, 193 

given the example of a 3,000 mm deep column (not to scale). S1 – S4 = sample locations comprising 194 

10 mm diameter rigid sample ports protruding externally by 50 mm and internally by 20 mm. 195 

 196 

Standard oxygen transfer efficiency tests were conducted following procedures described within 197 

the ASCE standard (ASCE, 2007). Briefly, DO concentration profiles were generated for each test, 198 

which first involved purging nitrogen gas through the column to deoxygenate the potable water 199 

within the media pore spaces in the column to < 0.5 mg L⁻¹ DO (Ghaly and Kok, 1988). The time 200 

taken for DO concentrations to reach the steady-state saturation point during re-aeration via an 201 

aeration device at a pre-calibrated flow rate was subsequently measured (Figure 2). The DO 202 

S1 

S2 

S3 

S4 
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concentration data from the point of re-aeration to steady state saturation were analysed using the 203 

ASCE-approved DOPar3-0-3 programme non-linear regression model and standardised to conditions 204 

of 20 °C water temperature and 1,000 mbar barometric pressure (Stenstrom et al., 2006, ASCE, 205 

2007). 206 

 207 

 208 

 209 

 210 

 211 

 212 

 213 

Figure 2. Example dissolved oxygen (DO) profile demonstrating the changing DO concentration 214 

during standard oxygen transfer efficiency tests. Example shows the DO profile at sample location S1 215 

(see Figure 1) within the 3,000 mm deep column. 216 

 217 

Dissolved oxygen concentrations were measured at ten-second intervals simultaneously at the 218 

four sample locations (S1 – S4) using optical multi-parameter probes installed within flow cells 219 

(Figure 3). Water was pumped through each flow cell at a rate of approximately 16 ml min⁻¹ using a 220 

peristaltic pump to create a sealed, self-contained sample loop through which the test water was 221 

continuously circulated. Pump tubing was purged prior to each test to remove any trapped air 222 

resulting from filling of the column or calibration of the probes. Each probe was calibrated prior to 223 

each test following a two-stage calibration procedure for DO, involving the atmospheric saturation 224 

point followed by a zero-point calibration within a 1000 mg L⁻¹ Na2SO3 and 1 mg L⁻¹ CoSO4 solution. 225 

Three aeration rates (1 L min⁻¹, 2 L min⁻¹ and 3 L min⁻¹) were tested with each of the four media 226 
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depths, to assess the impact of aeration rate and total media depth on SOTE (Table 1). Tests were 227 

conducted between 15/11/2014 – 05/01/2015, with each combination of media depth and aeration 228 

rate repeated in triplicate. Temperature, DO, redox potential and total dissolved solids 229 

concentration were recorded within the potable water prior to the start of each test, confirming that 230 

no significant changes in the quality of the potable water occurred between individual tests. 231 

 232 

 233 

 234 

 235 

 236 

 237 

 238 

 239 

 240 

Figure 3. Photograph of an experimental column and the low flow recirculation pump, Smartroll ™ 241 

RDO ® multi-parameter probe and flow cell setup to ensure a closed, self-contained flow loop. This 242 

setup was replicated at each of the four sample locations during testing to obtain representative DO 243 

concentrations at different depths within the column. 244 

 245 
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Table 1. Experimental design for standard oxygen transfer efficiency tests in 

media-filled columns with total depths of 1,500 mm to 3,000 mm, operating 

at aeration rates of 1 L min⁻¹ to 3 L min⁻¹ 

Test No. Total media depth (mm) 
Aeration rate                 

(L min⁻¹) 

1 1,500 1 

2 1,500 2 

3 1,500 3 

4 2,000 1 

5 2,000 2 

6 2,000 3 

7 2,500 1 

8 2,500 2 

9 2,500 3 

10 3,000 1 

11 3,000 2 

12 3,000 3 

 251 

2.2. Pilot-Scale Aerated Wetland Tests 252 

 253 

Aeration configuration and optimisation tests were conducted within an un-planted, pilot-scale 254 

system that closely replicated an artificially aerated HSSF constructed wetland (Figure 4), located at 255 

Manchester Airport, UK (53.356235 °N -2.282445 °W). The pilot-scale system comprised a 1,000 L 256 

mixing tank and three cylindrical tanks (1,600 mm deep x 1,400 mm diameter) each of 2,500 L 257 

capacity, replicating three aerated wetland treatment cells. A Marlow Watson 520R peristaltic pump 258 

was used to dose wastewater from the mixing tank into the first treatment cell. The three treatment 259 

cells were positioned in series and connected with 50 mm internal diameter flexi-hose. The elevation 260 

of each successive cell decreased by 250 mm, allowing gravity to drive water flow through the 261 

treatment system. Each cell comprised a non-insulated narrow inlet distribution zone containing 40 262 

mm to 100 mm diameter crushed brick and a main treatment zone containing the same 10 mm to 20 263 

mm diameter angular limestone gravel media used within the SOTE tests described in Section 2.1. 264 

Media within the main treatment zone of each cell was separated from the inlet zone by a slotted 265 

mesh screen. As an alternative to wetland vegetation, the media was capped with a porous 266 

membrane and a 200 mm deep layer of bark chippings to provide insulation. The total media depth 267 
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within each cell was 1,400 mm, corresponding to a total media volume of 6.45 m³ across the three 268 

treatment cells. Three 30 mm internal diameter piezometers with 50 mm long screens at the base 269 

were installed within each treatment cell to depths of -250mm, -750mm and -1,250mm below the 270 

gravel media surface, enabling measurement of physicochemical conditions within each cell. A 210 w 271 

Charles Austen ET200 linear diaphragm blower was used to deliver up to 200 L min¯¹ (45 L min¯¹ m¯³ 272 

of media) of air into the system at 0.15 bar of pressure. Braided PVC airlines of 10 mm internal 273 

diameter connected the blower to uniformly distributed tubular fine bubble membrane diffusers, 274 

which were positioned at the base of each cell. A manifold system was fitted to the aeration line to 275 

control the delivery and spatial distribution of aeration volumes into each treatment cell. Prior to 276 

undertaking each individual aeration configuration and optimisation test, the system was 277 

conditioned for twice the hydraulic retention time (HRT) using the test mass loading rate (MLR) to 278 

promote steady-state conditions and microbial acclimatisation. Each aeration configuration and 279 

optimisation test was repeated in triplicate. 280 

 281 

 282 

Figure 4. Cross-section of the un-planted pilot-scale system, replicating an artificially aerated 283 

horizontal subsurface flow constructed wetland, used for aeration configuration and optimisation 284 

tests. 285 

 286 

 287 
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2.2.1. Procedures for Aeration Configuration and Optimisation Tests 288 

 289 

Synthetic influent was created to replicate typical chemical oxygen demand (COD), BOD5 and 290 

total organic carbon (TOC) concentrations within winter storm water runoff from airports. The 291 

synthetic influent comprised base-flow runoff from the airfield catchment at Manchester Airport 292 

containing minimal masses of de-icers and consequently relatively low mean background pollutant 293 

concentrations (Table 2).  294 

 295 

Table 2. Characteristics and composition of baseflow runoff for Manchester Airport’s airfield 
catchment and aircraft (ADF) and pavement (PDF) de-icers which were combined to create the 
synthetic influent used within the aerated wetland tests  

Parameter Unit 
Base-flow runoff 

(a) 
ADF (b) PDF (c) 

Experiment synthetic influent 

L M H 

BOD mg/l 52.4 354,000 270,000 831 1,355 1,853 

COD mg/l 109 834,000 330,000 1,206 2,405 3,404 

TOC mg/l 40.6 - - 424 1,104 1,534 

TSS mg/l 21.9 - - 61 123 162 

pH   7.6 7 10.6 7.1 6.8 7 
(a) Data recorded from samples collected from Manchester Airport’s airfield catchment 
12/11/2014 - 27/03/15 during baseflow conditions, defined as catchment discharge volume < 
1.00 L sec⁻¹ (n = 123) (b) Values for neat Kilfrost ABC-S Plus aircraft de-icing fluid recorded from 
material data safety sheet. Active ingredient is propylene glycol (c) Values for neat Safegrip 
pavement de-icing fluid recorded from material data safety sheet. Active ingredient is potassium 
acetate plus corrosion inhibitors. L, M, H = low, medium and high respectively, defined as 0.2%, 
0.3% and 0.4% volume of de-icer: volume of baseflow runoff water respectively (-) Data unknown 
or not applicable. 

 296 

Other contaminants potentially present within the baseflow runoff include surfactants, solvents, 297 

triazoles, polycitric aromatic hydrocarbons (PAHs), aldehyde, benzine, volatile organic compounds 298 

(VOCs) and sulphates, which are deposited within airport catchments during standard airport 299 

operations such as aircraft and ground vehicle washing and maintenance, refuling and combustion 300 

of aviation fuels (Sulej et al., 2011, Sulej et al., 2012). Whilst these contaminants were not directly 301 

measured in the research reported here, it is assumed that only low concentrations would have 302 

been present within the baseflow runoff because mobilisation and transport from within airport 303 

catchments mainly occurs during storm water runoff events (Sulej et al., 2012). Baseflow runoff was 304 
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spiked with aircraft and pavement de-icing fluids sourced from Manchester Airport and used widely 305 

within the aviation industry in order to create the synthetic influent used within the aerated wetland 306 

tests. Three individual influent concentrations were created, defined as low (L), medium (M) and 307 

high (H) strength, containing 0.2 %, 0.3 % and 0.4 % volume of de-icer:volume of runoff respectively 308 

(Table 2). A nutrient solution of urea and ammonium phosphate was added to the synthetic influent 309 

at concentrations consistent with nutrient requirements for optimal microbial growth (Grady et al., 310 

1999, Wallace and Liner, 2010, Wallace and Liner, 2011a). The approximate ratio of BOD5:N:P was 311 

kept constant by adjusting the volume of the supplementary nutrient solution in relation to the 312 

BOD5 MLR for a test, ensuring that microbial processes were not constrained by N or P availability. 313 

The volume of influent dosed into the system for each individual test was adjusted in order to 314 

maintain the desired HRT within the three treatment cells. 315 

 316 

2.2.2. Aeration Configuration Tests within Pilot-Scale Aerated Wetland 317 

 318 

Four aeration configurations were tested to establish their impact on pollutant removal 319 

efficiency: phased aeration (PA), uniform aeration (UA), inlet-only aeration (IA) and no aeration (NA). 320 

The individual configurations were achieved by adjusting the manifold system to alter the spatial 321 

distribution and volume of air delivered into each of the three cells (Table 3). Each of these tests was 322 

dosed with the L strength influent with a mean BOD5 concentration of 810 ± 60 mg L⁻¹ and an areal 323 

MLR of 0.09 ± 0.01 kg d⁻¹ m-2 BOD5, alongside a HRT of 1.5 d across all three cells taken together. 324 

 325 

 326 

 327 

 328 

 329 
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Table 3. Summary of hydraulic retention time (HRT), five-day biochemical oxygen demand (BOD5) influent 

concentration, areal mass loading rates and air volume distribution throughout the pilot system during 

aeration configuration tests   

Aeration  HRT (a) 

(days) 

BOD5         

(mg L⁻¹)  

 BOD5 mass        

(kg d⁻¹ m⁻2) 

Air vol. (L min⁻¹) distribution across the system 

Configuration Cell 1 Cell 2 Cell 3 

Phased (PA) 1.5 834 0.1 100 66.6 33.3 

Uniform (UA) 1.5 727 0.08 66.6 66.6 66.6 

Inlet-only (IA) 1.5 812 0.09 200 0 0 

None (NA) 1.5 868 0.1 0 0 0 

Mean  810 ± 60 0.09 ± 0.01     

(a) Hydraulic retention time across all three cells taken together calculated following Equation 3. ± 1 standard 

deviation of the mean. 

 

2.2.3. Optimisation Tests within Pilot-Scale Aerated Wetland 330 

 331 

Further to the aeration configuration tests, nine separate tests were conducted between 332 

17/02/2015 – 14/06/2015 to determine the effect of wetland operating conditions on pollutant 333 

removal (Table 4). The novel PA configuration, as opposed to UA, IA or NA described in Table 3, was 334 

maintained throughout these optimisation tests. Three different HRTs (2.2 d, 1.5 d and 1.1 d) across 335 

all three cells taken together were tested to assess the impact of HRT on pollutant removal 336 

efficiency. Each of the three HRTs was tested with L, M and H strength influent as described within 337 

Section 2.2.1., with respective BOD₅ concentrations of 831 ± 35 mg L⁻¹, 1,355 ± 81 mg L⁻¹ and 1,853 ± 338 

99 mg L⁻¹. During optimisation tests, operating conditions were equivalent to mean areal MLRs of 339 

0.07 to 0.28 kg d⁻¹ m-2 BOD5, within the typical range of areal MLRs (0.05 to 0.28 kg d⁻¹ m-2 BOD5) 340 

identified from the literature for uniformly aerated wetlands (Envirodynamics Consulting, 2012, 341 

Moshiri, 1993).  342 

 343 

 344 

 345 

 346 

 347 

 348 
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Table 4. Summary of operating conditions including hydraulic loading rate (HLR), hydraulic retention time 

(HRT), five-day biochemical oxygen demand (BOD5) influent concentration and influent areal mass 

loading rates used during aerated wetland optimisation tests one to nine (a) 

Test No. HLR (mᶟ d¯¹) HRT (b) (days) BOD5 
(c) (mg L⁻¹) BOD5 (kg d⁻¹ m⁻2) 

1 1 2.24 864 (L) 0.07 

2 1.5 1.49 834 (L) 0.10 

3 2 1.12 795 (L) 0.12 

Mean (tests 1 - 3)   831 ± 35 0.10 ± 0.03 

4 1 2.24 1,286 (M) 0.10 

5 1.5 1.49 1,444 (M) 0.17 

6 2 1.12 1,335 (M) 0.21 

Mean (tests 4 - 6)   1,355 ± 81 0.16 ± 0.05 

7 1 2.24 1,812 (H) 0.14 

8 1.5 1.49 1,967 (H) 0.23 

9 2 1.12 1,782 (H) 0.28 

Mean (tests 7 - 9)   1,853 ± 99 0.22  0.69 

(a) Tests conducted with a phased aeration (PA) configuration and aeration rate of 44.64 m3 d⁻¹ m-3 of media 

across all three cells taken togeather, 
(b) hydraulic retention time across all three cells taken together calculated following Equation 3,                                                                                  
(c) five-day biochemical oxygen demand (BOD5) influent concentrations interpreted as L = low, M = medium 

and H = high strength. ± 1 standard deviation of the mean. 

 349 

2.2.4. Data and Sample Collection for Pilot-Scale Aerated Wetland Tests 350 

 351 

Mean DO concentrations were determined by measuring DO in samples collected from the 352 

piezometers installed within each cell on three occassions: at the start; mid-point; and the end of 353 

each individual test. Dissolved oxygen was measured using a Hannah 9828 multi-parameter probe 354 

within a sealed flow cell, through which approximately 16 ml min⁻¹ of sample was pumped from the 355 

piezometers using a peristaltic pump. Results were recorded when the probe readings had 356 

stabilised, following purging of stagnant water from each piezometer. Further, a total of four spot 357 

samples were collected for each individual aeration configuration and optimisation test, involving 358 

one sample of the influent and one sample from each of the three treatment cell outlets. Samples 359 

from the cell outlets were taken based on calculations of the HRT within each cell and assuming 360 

steady state conditions and laminar throughflow within each treatment cell. Samples were collected 361 
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either manually into new, one litre plastic bottles, or via Aquacell P2 portable water samplers which 362 

were connected to the treatment cell outlets. 363 

 364 

2.2.5. Chemical Analysis of Water Samples from Pilot-Scale Aerated Wetland Tests 365 

 366 

Water samples from the aeration configuration and the optimisation tests were transported to 367 

an on-site laboratory and analysed within 48 hours of collection for BOD5, COD and TOC using 368 

standard laboratory procedures. Several duplicate samples were also analysed by an independent 369 

UKAS-accredited laboratory for BOD5 following the ISO/IEC 17025 standard to verify the BOD5 data 370 

that were determined on-site. Digestion of samples on-site for COD and TOC was performed using a 371 

LT200 instrument followed by colorimetric determination using a DR2800 photospectrometer. Hach 372 

methods were used to standards ISO 6060-1989 for COD and EN 1484 purging method for TOC. Hach 373 

Addista LCA standards of 50 ± 4 mg L¯¹ COD and 16.5 ± 3 mg L¯¹ TOC were used to verify COD and 374 

TOC results for each batch of samples processed. The analytical limit of detection was 15 mg L⁻¹ and 375 

3 mg L⁻¹ for COD and TOC respectively. All samples outside of the method range of 3 mg L⁻¹ – 150 mg 376 

L⁻¹ COD and 1.5 mg L⁻¹ – 30 mg L⁻¹ TOC were discarded and repeated following dilution with 377 

deionised water. Analysis for BOD5 was performed at 20°C using a BODTrak ™ II instrument. Samples 378 

were inoculated with a seed solution (PolySeed®) prior to incubation and analysed in accordance to 379 

the Hach standard manometric sample dilution, five day test procedure method 8043 (Hach, 2013). 380 

Blanks comprising de-ionised water, one nutrient buffer pillow and 35 ml of seed solution were 381 

frequently tested and discarded if the BOD₅ concentration was > 0.2 mg L¯¹. In addition to external 382 

laboratory verification, results for BOD₅ were verified on-site using glucose and glutamic acid (GGA) 383 

standards of 300 mg L¯¹, inoculated with 35 ml of PolySeed® solution and incubated at 20 ˚C for five 384 

days following appropriate dilution. All GGA standard results were within the maximum standard 385 

deviation of the method (± 30.5 mg L¯¹). 386 

 387 
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2.2.6. Data Interpretation  388 

 389 

Pollutant removal efficiency for the tests described in Sections 2.2.2 and 2.2.3 was calculated as a 390 

cumulative percent removal, R, between the influent and the final effluent leaving the third 391 

treatment cell following Equation 1, assuming that the system was in equilibrium at the time of 392 

sample collection: 393 

 394 

 𝑅 =
𝐶ᵢ−𝐶ₒ

𝐶ᵢ
∗ 100                                                                 (1)  395 

where: 396 

R = pollutant removal efficiency (%) 397 

Cᵢ = mean influent concentration across triplicate tests (mg L⁻¹) 398 

Cₒ = mean final effluent concentration across triplicate tests (mg L⁻¹) 399 

 400 

Areal mass pollutant loading rates (kg d⁻¹ m-2) were calculated in accordance with Equation 2 401 

(Kadlec and Wallace, 2009): 402 

 403 

𝑀𝐿𝑅 =
𝑄∗𝐶ᵢ

𝐴
                                                                        (2) 404 

where: 405 

MLR = mass pollutant loading rate (kg d⁻¹ m-2) 406 

Q = volumetric flow rate (m3 d¯¹) 407 

Cᵢ = influent pollutant concentration, i.e. BOD5 (mg L⁻¹) 408 

A = wetland area (m2) 409 

 410 

Hydraulic retention time (HRT) was calculated in accordance with Equation 3 (Çakir et al., 2015, 411 

Metcalf and Eddy Inc, 1991): 412 

 413 
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𝐻𝑅𝑇 =
𝜋 𝑟²∗ɸ∗𝑑

𝑄
                                                                      (3) 414 

where: 415 

HRT = hydraulic retention time (days) 416 

𝛑 = pi  417 

r = cell radius (m) 418 

ɸ = media porosity (40 %) 419 

d = media depth (m) 420 

Q = influent flow rate (m³ d¯¹) 421 

 422 

2.3. Statistical Analysis 423 

 424 

Two-way analysis of variance (ANOVA) and Tukey’s-b tests were used to test the effects of media 425 

depth and aeration rate on SOTE within the experimental column tests. One-way ANOVA and 426 

Tukey’s-b tests were performed on sample data from the aeration configuration tests to assess the 427 

effects of aeration configuration within the system on COD, BOD5 and TOC removal efficiency. 428 

Separate two-way ANOVA and Tukey’s-b tests were performed on data from the aerated wetland 429 

optimisation tests to assess the effects of HRT and influent strength on COD, BOD5 and TOC removal 430 

efficiency. Data normality and homogeneity of variances were determined by Shapiro-Wilk and 431 

Levenne tests respectively, revealing normal distributions and variances to be homogeneous within 432 

all datasets. All statistical analyses were conducted using IBM SPSS 20 and significant effects were 433 

accepted at p < 0.05. 434 

 435 

 436 

 437 

 438 
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3. Results 439 

 440 

3.1. Effects of Aeration Rate and Media Depth on Standard Oxygen Transfer 441 

Efficiency in Media-filled Columns  442 

 443 

Aeration rate was inversely related to SOTE (F(2,24) = 28.13, MSE = 14.10, p ≤ 0.0001). Post-hoc 444 

Tukey’s-b tests revealed that aeration rates of 1 L min⁻¹ resulted in significantly higher SOTEs 445 

compared to aeration rates of 3 L min⁻¹. No significant difference was found between SOTEs under 446 

aeration rates of 1 L min⁻¹ compared to 2 L min⁻¹ or aeration rates of 2 L min⁻¹ compared to 3 L 447 

min⁻¹. The effect of media depth on SOTE was not significant, nor was there a significant interaction 448 

effect between aeration rate and media depth on SOTE. Whilst there was no significant effect of 449 

media depth on SOTE, a consistent trend was observed with increasing media depth resulting in an 450 

increase in mean SOTE under each of the three aeration rates (Figure 5). 451 

 452 

 453 

Figure 5. Standard oxygen transfer efficiency (SOTE) in media-filled columns of 1,500 mm to 3,000 454 

mm depth at aeration rates of 1 L min⁻¹ to 3 L min⁻¹. Columns represent the mean SOTE for each 455 

depth and each aeration rate tested (n = 3 for each combination of aeration rate and media depth). 456 

Error bars represent ± 1 standard deviation of the mean. 457 
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3.2. Impact of Aeration Configuration and Sample Position on Dissolved Oxygen 458 

Concentration within the Pilot-Scale Aerated Wetland 459 

 460 

The effect of aeration configuration on mean DO concentrations within pore water in the pilot-461 

scale aerated wetland cells was significant (F(3,24) = 84.19, MSE = 2,158, p ≤ 0.0001). Post-hoc 462 

Tukey’s-b tests indicated that the PA configuration resulted in significantly higher mean DO 463 

concentrations within the treatment cells in comparison to UA, IA or NA configurations, whilst there 464 

was no significant difference in mean DO concentrations between UA, IA and NA configurations. The 465 

effect of sample position (cell number) on DO concentration was also significant (F(2,24) = 57.19, 466 

MSE = 1,466, p ≤ 0.0001). Post-hoc Tukey’s-b tests indicated that no significant difference in DO 467 

concentrations was observed between cells one and two, however DO concentrations were 468 

significantly higher in cell three compared with cells one and two. The interaction between aeration 469 

configuration and sample position also had a significant effect on DO concentration (F(6,24) = 45.61, 470 

MSE = 1,169, p ≤ 0.0001). Post-hoc Tukey’s-b tests revealed that significant differences in DO 471 

concentrations across the three cells were observed in PA and UA tests, but not within either IA and 472 

NA tests in which DO concentrations remained at 0 mg L⁻¹ across all three cells (Table 5).  473 

 474 

Table 5. Summary of mean dissolved oxygen (DO) 

concentrations (mg L⁻¹) determined from piezometer samples 

within treatment cells one to three during aeration 

configuration tests. n = 9 for each aeration configuration and 

cell position combination 

Aeration 

configuration 

Position within system 

Cell 1 Cell 2 Cell 3 

Phased (PA) 0 2.1 ± 1.2 8.3 ± 0.2 

Uniform (UA) 0 0.7 ± 0.4 0.8 ± 0.4 

Inlet-only (IA) 0 0 0 

None (NA) 0 0 0 

 ± 1 standard deviation of the mean 475 
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3.3. Impact of Aeration Configuration and Sample Position on Pollutant Removal 476 

within the Pilot-Scale Aerated Wetland 477 

 478 

Aeration configuration had a significant effect on COD (F(3,24) = 327.57, MSE = 3,403, p ≤ 479 

0.0001), BOD5 (F(3,24) = 361.21, MSE = 3,665, p ≤0.0001) and TOC (F(3,24) = 98.81, MSE = 2,412, p ≤ 480 

0.0001) removal efficiency within the pilot-scale wetland (Table 6, Figure 6). Post-hoc Tukey’s-b tests 481 

confirmed that significant increases in removal efficiency for each of these pollutants occurred in the 482 

order NA < IA < UA < PA. Across the NA to PA aeration configurations, the mean removal efficiency 483 

increased from 37 % to 92 % for COD, from 45 % to 98 % for BOD5 and from 46 % to 92 % for TOC. In 484 

parallel with increased pollutant removal efficiency, final effluent concentrations of COD, BOD5 and 485 

TOC decreased significantly across the NA-IA-UA-PA aeration configurations, with the lowest final 486 

effluent concentration for each parameter achieved under the PA configuration (Table 6). Sample 487 

position also significantly influenced pollutant removal efficiency for COD (F(2,24) = 364.47, MSE = 488 

3,787, p ≤ 0.0001), BOD5 (F(2,24) = 512.26, MSE = 5,197, p ≤ 0.0001) and TOC (F(2,24) = 197.77, MSE 489 

= 4,828, p ≤ 0.0001). Post-hoc Tukey’s-b tests revealed significantly higher COD, BOD5 and TOC 490 

removal efficiencies within cells one and two compared to cell three. Further, a significant 491 

interaction effect between aeration configuration and sample position through the system was also 492 

observed in terms of pollutant removal efficiency for COD (F(6,24) = 62.18, MSE = 645.98, p ≤ 493 

0.0001), BOD5 (F(6,24) = 82.00, MSE = 831.95, p ≤ 0.0001) and TOC (F(6,24) = 35.55, MSE = 819.09, p 494 

≤ 0.0001). Post-hoc Tukey’s-b tests revealed that pollutant removal efficiency was significantly 495 

higher within treatment cells one and two compared to cell three for COD, BOD5 and TOC under all 496 

aeration configurations, except for the IA configuration in which no significant difference between 497 

treatment cells two and three was observed.  498 

 499 

 500 

 501 
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Table 6. Summary of influent concentration, final effluent concentration and mean pollutant removal efficiency 

(%) for chemical oxygen demand (COD), five-day biochemical oxygen demand (BOD5) and total organic carbon 

(TOC) within a pilot-scale aerated wetland operating under four different aeration configurations (n = 3 for each 

aeration configuration) 

Aeration 

configuration 

COD BOD₅ TOC 

Influent 

(mg L⁻¹) 

Final 

effluent  

(mg L⁻¹) 

Removal 

efficiency 

(%) (a) 

Influent 

(mg L⁻¹) 

Final 

effluent  

(mg L⁻¹) 

Removal 

efficiency 

(%) (a) 

Influent 

(mg L⁻¹) 

Final 

effluent  

(mg L⁻¹) 

Removal 

efficiency 

(%) (a) 

Phased (PA) 1,217 ± 28 98 ± 13 92 ± 1 834 ± 63 21 ± 5 98 ± 1 430 ± 11 35 ± 6 92 ± 2 

Uniform (UA) 1,130 ± 48 246 ± 25 78 ± 1 727 ± 19 36 ± 6 95 ± 1 575 ± 106 68 ± 13 88 ± 4 

Inlet-only (IA) 1,193 ± 6 676 ± 21 43 ± 2 812 ± 29 421 ± 61 48 ± 7 544 ± 57 266 ± 10 51 ± 6 

None  (NA) 1,161 ± 23 730 ± 44 37 ± 4 868 ± 21 477 ± 55 45 ±  6 796 ± 18 428 ± 35 46 ± 6 

(a) Cumulative pollutant removal efficiency (%) determined from influent to final effluent concentration, see Equation 1  502 
± 1 standard deviation of the mean 503 
 504 

 505 

Figure 6. Mean reduction of (a) chemical oxygen demand (COD), (b) five day biochemical oxygen 506 

demand (BOD₅) and (c) total organic carbon (TOC), concentrations (mg L⁻¹) throughout the pilot-507 
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scale aerated wetland from influent to final effluent (cell 3 outlet, Figure 4), when tested under 508 

different aeration configurations.  509 

 510 

3.4. Impact of Hydraulic Loading Rate and Influent Strength on Pollutant Removal 511 

Efficiency  512 

 513 

A summary of the results from the nine different optimisation tests (three hydraulic retention 514 

times * three influent strengths, see Table 4) is reported in Figure 7. A significant effect of HRT on 515 

pollutant removal efficiency was observed for COD (F(2,18) = 105.40, MSE = 1,467, p ≤ 0.0001), BOD5 516 

(F(2,18) = 98.40, MSE = 1,892, p ≤ 0.0001) and TOC (F(2,18) = 28.00, MSE = 989.39 p ≤ 0.0001). Post-517 

hoc Tukey’s-b tests revealed significantly higher pollutant removal efficiencies within tests operating 518 

with a HRT of 2.24 d and 1.49 d for all three parameters, compared to tests with a HRT of 1.14 d. No 519 

significant effect of influent concentration on pollutant removal efficiency was observed for COD, 520 

BOD5 and TOC, whilst there was also no significant interaction effect between HRT and influent 521 

concentration on the removal efficiency of these parameters.  522 

A significant effect of HRT on the final effluent concentrations from the outlet of treatment cell 523 

three was observed for COD (F(2,18) = 69.11, MSE = 565,484, p ≤ 0.0001), BOD5 (F(2,18) = 53.50, MSE 524 

= 302,871, p ≤0.0001) and TOC (F(2,18) = 18.86, MSE = 79,994, p ≤ 0.0001). Post-hoc Tukey’s-b tests 525 

revealed that final effluent concentrations were significantly lower for COD, BOD5 and TOC during 526 

tests with HRTs of 2.24 d and 1.49 d, compared to tests with an HRT of 1.14 d. In contrast to 527 

pollutant removal efficiency, influent concentration had a significant effect on final effluent 528 

concentration for COD (F(2,18) = 21.59, MSE = 176,618, p ≤ 0.0001), BOD5 (F(2,18) = 13.23, MSE = 529 

74,891, p ≤ 0.0001) and TOC (F(2,18) = 7.59, MSE = 32,183, p = 0.004). Post-hoc tests revealed that 530 

final effluent concentrations were significantly lower during tests conducted with L influent strength 531 

compared to tests with M and H strength influents for both COD and TOC. Final effluent BOD₅ 532 

concentrations were significantly lower in tests conducted with L and M strength influents in 533 
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comparison to H strength influents. Despite the significant effect of HRT and influent concentration 534 

on final effluent concentrations, no significant interaction effect between these factors was 535 

observed in terms of the final effluent concentrations of COD, BOD₅ and TOC.  536 

 537 

 538 

 539 

 540 

 541 

 542 

 543 

 544 

 545 

 546 

  547 

 548 

 549 

 550 

 551 

 552 

 553 

x 554 
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 555 

 556 

 557 

 558 

 559 

 560 

 561 

Figure 7. Results of pilot-scale aerated wetland optimisation tests for (a) chemical oxygen demand 562 

(COD), (b) five day biochemical oxygen demand (BOD₅) and (c) total organic carbon (TOC), 563 

cumulative removal efficiency (%) determined following Equation 1 and final effluent concentration 564 

(mg L⁻¹), when tested with mean BOD5 influent concentrations of 831 mg L⁻¹, 1,355 mg L⁻¹ and 1,853 565 
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mg L⁻¹ representing low (L), medium (M) and high (H) influent strength and three different hydraulic 566 

retention times (1.14 d, 1.49 d and 2.24 d). 567 

 568 

4. Discussion 569 

 570 

4.1. The Impact of Artificial Aeration on Pollutant Removal within Constructed 571 

Wetlands 572 

 573 

The research reported here demonstrates the essential role of artificial aeration within HSSF 574 

constructed wetlands treating high-strength organic wastewater, in order to optimise pollutant 575 

removal efficiency and to achieve pollutant concentrations in final effluent that meet the typical 576 

requirements of legislation. Without artificial aeration, anaerobic conditions developed throughout 577 

the pilot-scale aerated wetland at Manchester Airport, indicating limited availability of DO to 578 

support aerobic respiration and thereby resulting in sub-optimal removal efficiencies for COD, BOD5 579 

and TOC (< 51 % pollutant removal compared to influent conditions). These findings are consistent 580 

with the results of pilot-scale constructed wetlands dosed with de-icer contaminated runoff from 581 

Edmonton Airport in Canada and Buffalo Airport in the USA, where mean BOD5 removal efficiencies 582 

of only 55 % and 68 % respectively were achieved in the absence of artificial aeration (Higgins et al., 583 

2007).  584 

However, our research also reveals that the precise configuration of artificial aeration can 585 

significantly influence pollutant removal within HSSF constructed wetlands. Specifically, and for the 586 

first time in an aerated wetland, we provide evidence for the advantages of a phased aeration 587 

configuration compared to alternative aeration configurations. In contrast to the IA configuration, 588 

both PA and UA configurations resulted in significantly higher pollutant removal efficiencies for COD, 589 

BOD5 and TOC. Whilst high removal efficiencies were achieved for these pollutants under the UA 590 
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configuration, Figure 6 emphasises that the removal of organic compounds occurs predominantly 591 

within the first two-thirds of the treatment system. This is consistent with findings from previous 592 

research in aerated wetlands, where up to two-thirds of organic matter was removed within the first 593 

quarter of a system (Akratos and Tsihrintzis, 2007, Zhang et al., 2010). In fixed film systems, such as 594 

aerated wetlands, biomass growth and microbial respiration of BOD₅ decrease exponentially 595 

towards the system outlet, associated with progressive filtration of particulate organic matter and 596 

declining concentrations of biodegradable organic carbon (Kadlec and Wallace, 2009). These 597 

characteristics potentially result in sub-optimal operating conditions under the UA configuration, 598 

involving under-aeration at the inlet zone, resulting in the development of anaerobic conditions, 599 

alongside over-aeration towards the outlet of the system resulting in unnecessary aeration, energy 600 

consumption and operating costs. In contrast, PA better aligns the delivery and demand for aeration 601 

across a treatment system, for example delivering 50 % of the total aeration to the first third of the 602 

pilot-scale system used in the research reported here. The PA approach has similarities with tapered 603 

aeration designs in biological reactors, such as the activated sludge treatment process, in which 55 % 604 

to 70 % of the total air input is typically applied to the first half of a system to address the high O2 605 

demand near to the inlet (Wolter and Hahn, 1995). 606 

The PA configuration evaluated in our research enhanced pollutant removal efficiency by 15 %, 3 607 

% and 5 % for COD, BOD₅ and TOC, compared to the results obtained under the more conventional 608 

UA configuration, although pollutant removal efficiency was only statistically higher for COD under 609 

the PA configuration. Despite the enhanced performance of PA compared to UA, IA or NA 610 

configurations, DO concentrations within the first treatment cell remained at 0 mg L⁻¹. This indicates 611 

high rates of aerobic respiration and insufficient input of air to meet the O2 demand exerted by the 612 

influent within this cell, even with PA. Further, mean DO concentrations within the media pore space 613 

of cell three were high (8.3 mg L⁻¹) during PA tests, suggesting excessive inputs of air compared to 614 

the O2 demand exerted by the waste water within this cell. Therefore, opportunities remain to 615 

further optimise the delivery of aeration as part of a PA configuration, in order to better match the 616 
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supply of and demand for DO through a treatment system. For example, aeration devices could be 617 

automated to operate only when DO concentrations are within a pre-defined range, switching off 618 

when DO concentrations are outside of this range to prevent excessive input of air to a treatment 619 

system. 620 

 621 

4.2. Impact of Aeration Rate and Media Depth on Standard Oxygen Transfer 622 

Efficiency   623 

 624 

Whilst our research demonstrates the important role that artificial aeration plays in optimising 625 

constructed wetlands for the treatment of high-strength wastewaters, typical aeration devices 626 

consume approximately 0.2 kWh of energy per m3 of water treated (Wallace et al., 2006, Murphy et 627 

al., 2012) and can contribute up to 80 % of the total operating costs of a system. The optimisation of 628 

design factors that control the efficiency of O2 transfer from the gaseous to the liquid phase is 629 

therefore integral to achieving low cost, sustainable treatment solutions. Our research demonstrates 630 

that aeration rate was an important control on SOTE within the media-filled column experiments, in 631 

which SOTE decreased significantly from 2.4 % to 1.6 % in 1,500 mm deep columns and from 4.9 % 632 

to 2.9 % in 3,000 mm deep columns when aeration rate increased from 1 L min⁻¹ to 3 L min⁻¹. The 633 

response of SOTE to increasing aeration rate is consistent with previous results within 1,000 mm 634 

deep, 2.25 m³ media-filled tanks in which SOTE decreased from 14.0 % to 5.5 % when airflow rates 635 

increased from 10 L min⁻¹ to 20 L min⁻¹ (Butterworth et al., 2013). These authors also showed that 636 

SOTE decreased when media diameter increased (Butterworth et al., 2013), explaining the higher 637 

SOTE with the 2 mm diameter media used by these authors compared to the results reported in the 638 

current paper which used 10 mm to 15 mm diameter media. The response of SOTE to increasing 639 

aeration rate is also consistent with previous studies conducted within open-water diffused aeration 640 

systems, which have been examined more extensively than media-filled systems. For example, SOTE 641 

decreased from 23.6 % to 18.3 % when aeration rate increased from 0.4 L min⁻¹ to 2.3 L min⁻¹ within 642 
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a full-scale, 2,700 mm deep oxidation ditch operating under an extended aeration configuration 643 

(Gillot and Héduit, 2000). Further, SOTE decreased from 8.9 % to 7.1 % in a 1,500 mm deep system 644 

and from 6.0 % to 4.5 % in a 2,900 mm system when aeration rate increased from 10 L min⁻¹ to 40 L 645 

min⁻¹ within a 3,000 mm deep pilot-scale hypolimnetic aeration system (Ashley et al., 2008).  646 

In open water systems, the aeration rate influences the fluid dynamics of air bubbles, with larger 647 

bubbles being produced when the aeration rate through an orifice or diffuser is increased (Ashley et 648 

al., 2008). As bubble diameter increases, the buoyancy force increases bubble terminal velocity, 649 

which in turn minimises bubble retention time within a water column. Further, the bubble surface 650 

area to volume ratio decreases as bubble diameter increases, resulting in a reduction in the relative 651 

surface area across which the mass transfer of O2 from the gaseous to the liquid phase can take 652 

place (Gillot and Héduit, 2000, Ashley et al., 2008, Henze et al., 2008). Bubbles also form more slowly 653 

when air comes into contact with water at a diffuser orifice under low airflow rates compared to 654 

high airflow rates (Davidson and Schüler, 1997), presumably resulting in greater O2 transfer during 655 

the formation of each individual bubble at the diffuser orifice location (Ashley et al., 1991, Gillot and 656 

Héduit, 2000). Further, more uniform distribution of air bubbles released from a diffuser orifice can 657 

be achieved under low airflow rates, resulting in a more uniform distribution and greater separation 658 

between individual bubbles rising through the water column. This serves to reduce bubble 659 

coalescence in open-water systems (Ashley et al., 1991, Gillot and Héduit, 2000, Butterworth et al., 660 

2013). However, this is likely to be less important in media-filled systems where bubble hold-up 661 

within the media pore space increases bubble coalescence (Fujie et al., 1992, Collingnon, 2006, 662 

Butterworth et al., 2013).  663 

Generally, higher SOTEs have been reported within open water systems compared to media-filled 664 

systems. However, direct comparisons between the two types of system are complicated by the very 665 

different physical characteristics of open water and media-filled systems. A previous study that 666 

directly compared SOTE between open water systems and media-filled systems within 1,000 mm 667 

deep tanks, established that SOTE was enhanced within the media-filled system compared to the 668 
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open water system under aeration rates ranging from 10 L min⁻¹ to 60 L min⁻¹ (Butterworth et al., 669 

2013). In media-filled systems, the media pore space can enhance bubble hold-up compared to open 670 

water systems, thereby increasing bubble retention time and potential O2 mass transfer from the 671 

gaseous to the liquid phase. The effect of increased bubble retention time in the research reported 672 

by Butterworth et al appeared sufficient to negate the adverse effects of bubble coalescence on 673 

SOTE within media-filled systems compared to open water systems. Regardless of SOTE, media-filled 674 

systems offer several advantages compared to open water systems for the treatment of high-675 

strength wastewater, such as enhanced sedimentation and filtration of particulate load (Faulwetter 676 

et al., 2009). The presence of media also serves to provide a more robust and stable attached 677 

microbial population, due to the high surface area of the media surfaces compared to open water 678 

systems where microbial colonies are typically in suspension and can be more difficult to maintain 679 

(Metcalf and Eddy Inc, 1991). Further, media-filled systems such as aerated wetlands typically 680 

provide a higher and more consistent pollutant removal efficiency, alongside lower final effluent 681 

pollutant concentrations, compared to conventional open water systems such as lagoons (ACRP, 682 

2013, Freeman et al., 2015). 683 

Another means of enhancing SOTE is to increase bubble retention time by increasing the depth of 684 

a treatment system, thereby prolonging the time taken for a gas bubble to rise through a water or 685 

media-filled column. For example, our research demonstrated that SOTE more than doubled from 686 

2.42 % to 4.90 % when media depth increased from 1,500 mm to 3,000 mm at airflow rates of 1 L 687 

min⁻¹ within the media-filled columns, although we note that no statistically significant effect of 688 

media depth on SOTE was found. Whilst only limited research has assessed the effect of media 689 

depth on SOTE, the increase in SOTE with media depth reported in this paper is generally consistent 690 

with the results of previous work in open water systems. For instance, SOTE increased from 4.0 % to 691 

4.6 %, when diffuser depth increased from 0.24 m to 0.32 m below the media surface within a 240 692 

mm internal diameter laboratory scale column operating under aeration rates of 1.6 L min⁻¹ (Zhen et 693 

al., 2003). Similar findings were observed during laboratory tests conducted within 300 mm internal 694 
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diameter columns characterised by low water depths and air flow rates of 1 L min⁻¹, in which SOTE 695 

increased from 3.9 % to 4.2 % when depth increased from 0.45 m to 0.60 m (Atta et al., 2011).  696 

The substantial increase in SOTE with increased media depth that is reported here suggests that 697 

more efficient, cost-effective and sustainable treatment of wastewater could be achieved through 698 

increasing the media depth within artificially aerated HSSF wetlands. However, there remain 699 

important practical challenges to constructing artificially aerated wetlands at depths > 1,500 mm. 700 

Firstly, health and safety issues surrounding the structural stability of excavations (HSE, 2016) would 701 

need to be addressed, resulting in stabilisation potentially being required during construction. 702 

Secondly, an economic assessment would be required to determine the cost-effectiveness of 703 

increasing media depth, given the additional costs for material excavation and disposal where the 704 

excavated material cannot be reused on-site. Finally, issues with groundwater levels creating 705 

hydraulic pressure beneath a treatment system, potentially damaging any impermeable liner, would 706 

need to be considered. However, even relatively small increases in media depth were shown in our 707 

research to generate substantial increases in SOTE, for example a 44 % increase in SOTE, from 2.4 % 708 

to 3.5 % when media depth increased from 1,500 mm to 2,000 mm at airflow rates of 1 L min⁻¹. 709 

 710 

4.3. Optimisation of Hydraulic Retention Time and Pollutant Mass Loading Rate 711 

within Artificially Aerated Wetlands 712 

  713 

Significantly higher pollutant removal efficiencies for COD, BOD5 and TOC were achieved under 714 

HRTs of 2.2 d and 1.5 d in comparison to an HRT of 1.1 d within the research reported here. No 715 

significant difference in pollutant removal efficiency between 2.2 d and 1.5 d HRT suggests that the 716 

optimal HRT within the treatment system evaluated here was 1.5 d. This is within the 1.2 d to 6.1 d 717 

range of HRTs reported previously for aerated wetlands treating effluents characterised by high 718 

influent ammonia or BOD5 concentrations (Wallace et al., 2006, Wallace and Liner, 2011a, Murphy et 719 

al., 2016, Uggetti et al., 2016). Although pollutant removal efficiency was not significantly affected 720 
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by the range of influent concentrations tested, the concentrations of pollutants in the final effluent 721 

were significantly lower when the experimental system was dosed with low and medium strength 722 

influents, in contrast to high strength influents. These observations suggest that influent 723 

concentration and therefore pollutant MLR is a key factor determining the optimal operation of 724 

aerated wetland systems. Optimisation of biological wastewater treatment systems is typically 725 

achieved when steady-state MLRs are maintained, thereby facilitating the establishment of a 726 

microbial biomass that is fully acclimated to MLR of the influent. The results reported here indicate 727 

that optimal areal MLRs are 0.10 kg d⁻¹ m-2 BOD5, if the objective is to achieve a low final effluent 728 

concentration compliant with typical UK BOD5 environmental permit limits. However, the treatment 729 

system evaluated here also performed at > 91% BOD5 removal under areal MLRs of up to 0.23 kg d⁻¹ 730 

m-2 BOD5, although mean final effluent BOD5 concentrations were 177 mg L⁻¹ which exceeds typical 731 

environmental permit limits and would therefore require tertiary treatment or discharge as a trade 732 

effluent. The long-term operation of aerated wetlands exceeding 0.20 kg d ¯¹ m-2 BOD5 is not 733 

recommended, due to the potential for microbial clogging of the media pore space, resulting in 734 

operational issues including hydraulic malfunctioning, surface flooding or reductions in pollutant 735 

removal efficiency (Nivala et al., 2012, Pedescoll et al., 2013). 736 

 737 

 738 

 739 

 740 

 741 

 742 

 743 

 744 

 745 
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5. Conclusion 746 

 747 

Global population growth, urbanisation, industrialisation and climate change represent significant 748 

threats to the ability of freshwater ecosystems to provide critical services to human society. New 749 

forms of decentralised treatment, such as artificially aerated wetlands, represent a potentially 750 

sustainable approach for mitigating the impacts of wastewater derived from sources such as airports 751 

thereby protecting and enhancing freshwater ecosystems and the services that they provide to 752 

human society. 753 

The research reported here examined how new approaches, based on artificially aerated HSSF 754 

constructed wetlands, can enhance the treatment of high-strength wastewaters from sources such 755 

as airports. Using a novel phased-aeration approach, we demonstrate how pollutant removal 756 

efficiency per unit of aeration supplied can be significantly enhanced, potentially reducing the 757 

treatment costs associated with artificially aerated HSSF constructed wetlands. Optimal operating 758 

conditions for a pilot-scale system replicating an aerated HSSF constructed wetland were defined, 759 

resulting in > 90% removal of COD, BOD5 and TOC with a hydraulic residence time of 1.5 d and a 760 

mass loading rate of 0.10 kg d⁻¹ m⁻² BOD5. Further, reduced aeration rate and increased bed media 761 

depth were shown to enhance the transfer of oxygen from gaseous to liquid phases, thereby 762 

promoting aerobic pollutant degradation processes within aerated wetlands. This research highlights 763 

the potential of decentralised, aerated wetland technology to successfully treat high-strength 764 

wastewaters, providing additional support for future development and application of the aerated 765 

wetland technology to protect and restore freshwater ecosystems.       766 

 767 

 768 

 769 
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