Bonfond, B. and Saur, J. and Grodent, D. and Badman, S. V. and Bisikalo, D. and Shematovich, V. and Gerard, J. -C. and Radioti, A. (2017) The tails of the satellite auroral footprints at Jupiter. Journal of Geophysical Research: Space Physics, 122 (8). pp. 7985-7996. ISSN 2169-9380
accepted_version.pdf - Accepted Version
Available under License Creative Commons Attribution-NonCommercial.
Download (18MB)
Bonfond_et_al_2017_Journal_of_Geophysical_Research_3A_Space_Physics.pdf - Published Version
Download (5MB)
Abstract
The electromagnetic interaction between Io, Europa, and Ganymede and the rotating plasma that surrounds Jupiter has a signature in the aurora of the planet. This signature, called the satellite footprint, takes the form of a series of spots located slightly downstream of the feet of the field lines passing through the moon under consideration. In the case of Io, these spots are also followed by an extended tail in the downstream direction relative to the plasma flow encountering the moon. A few examples of a tail for the Europa footprint have also been reported in the northern hemisphere. Here we present a simplified Alfvenic model for footprint tails and simulations of vertical brightness profiles for various electron distributions, which favor such a model over quasi-static models. We also report here additional cases of Europa footprint tails, in both hemispheres, even though such detections are rare and difficult. Furthermore, we show that the Ganymede footprint can also be followed by a similar tail. Finally, we present a case of a 320 degrees long Io footprint tail, while other cases in similar configurations do not display such a length.