The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

Blake, A. and Devitt, D. and Lister, A. and Nowak, J. and , MicroBooNE Collaboration (2018) The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector. European Physical Journal C: Particles and Fields, 78. ISSN 1434-6044

Full text not available from this repository.

Abstract

The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.

Item Type:
Journal Article
Journal or Publication Title:
European Physical Journal C: Particles and Fields
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/2200/2201
Subjects:
ID Code:
89756
Deposited By:
Deposited On:
17 Jan 2018 12:16
Refereed?:
Yes
Published?:
Published
Last Modified:
24 Oct 2021 04:15