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ABSTRACT

Floods are one of the most devastating disasters known to man, caused by both natural
and anthropogenic factors. The trend of flood events is continuously rising, increasing
the exposure of the vulnerable populace in both developedeapéciallydeveloping
regions. Floods occur unexpectedty some circumstancesith little or no warning,

and inothercasesaggravate rapidly, thereby leaving little time to plan, respond and
recover.As such hydrological data is needed before, during and #fieflooding to
ensure effectivand integratedlood managemeniThough hydrological data collection

in developed eountries has been somewhat well established over long periods, the
situation is different in the developing worl®eveloping regionsare plaguedwith
challengs that include inadequate ground monitoring networks attributed to
deteriorating infrastructureprgankational deficiencies, lack of technicatapacity
location inaccessibility anthe hugefinancial implicationof data collectiorat local and
transboundary scale3heselimitations therefore result inflawed flood management

decisionsand aggravatexposure of the mosulnerablepeople

Nigerig the case study for this thesexperienced unprecedented floodimg
2012 that led to the displacement 08,871,53persons, destruction of infrastructure
disruption ofsocioeconomicactivitiesvalued atl16.9 billion US Dollarg1.4% GDP)
and sadlythe loss of363lives. This flood event revealed the weakness inntteet i on 6 s
flood managemergystem,which has beeifinked to poor data availability This flood
event motivated this studwhich aimsto asessthesedata gapsnd explore alternative
data sourcesand approachesyith the hope of improving flood managemesmtd
decision makingipon recurrence. This study adopts an integrated approach that applies
openaccess geospatial technology dorb dataand financial limitationghat hinder
effective flood management in developing regions, to enhance disaster preparedness,

response and ceverywhere resources are limited

To estimate flood magnitudes and return peviogededor planningpurposs,
the gaps in hydrological data thatontribute to poor estimates and consequently
ineffective flood management decisions for tHger-South River Basin of Nigeria
werefilled usingRadarAltimetry (RA) andMultiple Imputation(MI) approachesThis
redued uncertaintyassociated witimissing dataespeciallyat locationswherevirtual

altimetry stations exist. This study revedthat the size and consistency of the gap
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within hydrologicaltime seriessignificartly influences the imputationapproachto be
adopted Flood estimates derived from data filled using bB# and MI approaches
were similar for consecutie gaps (1-3 years) in the time series, while wide
(inconsecutive gaps(> 3 years)caused by gauging statiahscontinuityand damage
benefitedthe mostfrom the RA infilling approach.The 2012 flood event was also
quantified as a-in-100year flood, suggesting that if flood management measures had
been implemented based this information, thempact of that evenivould have been

considerably mitigated.

Other than gaps within hydrolagil time series, in other cases hydrological data
could be totally unavailable or limited in duration to enable satisfactory estimation of
flood magnitudes and return perigodsie to finance and logis#itlimitationsin several
developingand remoteregions In such casesRegional Flood FequencyAnalysis
(RFFA) is recommendedto collate and leverage dafaom gauging statios in
proximity tothe area of interestin this studyRFFA was implemented using the open
access International Centre for Integrated Water Resources Manageeggahal
Analysis of Frequency Tool (IEGRAFT), which enables the inclusion of climate
variability effectinto flood frequency estimation at locations where the assumpfion
hydrologicalstationarity is not viableThe MaddenJulian Oscillationwas identified as
the dominant flood influencing climate mechanism, with its effect increasing with
return period.Similar to other studies, lenate variability inclusive regional flood
estimates were leghan those derived from direct techniqassarious locationsand
higherin othes. Also, themaximum historical flood experienced in the regveas less
than thel-in-100-yearflood event recommended for flood management

The 2012 floodin the Niger-South river basirof Nigeriawas recreated ithe
CAESAR-LISFLOOD hydrodynamic modelcombining operaccess and thirdarty
Digital Elevation Model (DEM), altimetry, batlgmetry, aerial photo and hydrological
data. The model wasalibrated/validated in three salomains againsin situ water
level, overflight photosSynthetic Aperture Radar (SAR) (TerraSARX, Radarsat2,
CosmoSkyMed) and optical (MODISatelliteimageswhereavailable to access model
performancefor a range ofgeomorphological and data variabilitymproved data
availability within constriced river channel areasesulted inbetterinundation extent
and water level reconstruction, witthe F-statistic reducing from 0.808 to 0.187

downstream into the vegetatiodominating deltawhere data unavailability is
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pronouncedOverflight photoshelpedimprovethe modelto reality capture ratiin the
vegetation dominated deléand highlightedhe deficiencies i'8AR data fordelineating
flooding in the deltaFurthermorethe 2012 flood was within the confine of ant100
year flood for the subdomain with maximum data availability, suggesting that in
retrospect the 2012 flood evembuld have been managedffectively if flood
management plans were implementeded on a-in-100-year flood.

During flooding, fastpacedresponses required. Howevetpgistical challenges
canhinder acces$o remote areas to collect the necessary da&ed tanform reat
time decisionsThus,this adopts an integrated approach that combanegs/d-sourcing
and MODIS flood maps for neaeattime monitoringduring the peak flood season of
2015. The results highlighted the merits and demerits of lapjproaches and
demonstrate the need fan integraéd approach that leverages tsteength of both
methods toenhance flood capture atacroand micro scale Crowd-sourcingalso
provided an option for demographic and risk perception data collectidnich was
evaluated againstgovernment risk perception mapd revealed theveaknesses in the
government flood modelcaused bysparsécoarse data applicationand model

uncertainty

The C4.5 decision tree algorithm was applied to integrate multiple-apeess
geospatiadata to improveSAR image flood detectioefficiency andthe outputswere
further applied in flood model validation. This approach resulted irStatistic
improvement from 0.187 10.365 and reduceithe CAESAR-LISFLOOD modeloverall
bias from 3.432 to 0.699Coarse data resolution, vegetation density, obsolete/non
existent river bathymetry, wetlands, ponds, uncontrolled dredging and illegal sand
mining, were identified as the factors that contribut® flood model and map
uncertainties in thedelta region hence the low accuracdepicted, despite the

improvemens that were achieved

Managing floods requires the coordination of efforts before, during and after
flooding to ensure optimal mitigation in the event of an occurrdncthis study and
integratedflood modelling and mappingpproachis undertakencombining multiple
openaccess data using freely available toolstob theeffecs of data and resources
deficiency on hydrological, hydrodynamic and inundation mappipgcesses and

outcomesin developing countriesThis approachf adopted and implementeah a
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largescalewould improveflood preparedness, response and recovery in data sparse
regionsandensue floods aremanagedustanably with limited resources.
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CHAPTER 1: INTRODUCTION TO RESEARCH, AIM AND OBJECTIVES
DEFINITION

1. Background

1.1.Flood Hazard and Impact

Floods are arguably one of the most devastating disasters known to man, accounting for
approximately onghird of global naturatlisastes, andimpacting more people than any
other natural or manmade phenomenon(Smith, 198). Over the pastlecadesthe
impactof floods hasbeen on the ris€Di Baldassarre et al., 2010, Aerts et al., 2014)
resulting in the death of approximatela,000 persons and affecting over 1.4 billion of
the global populacin the last decade of the ®@entury(Jonkman, 2005)Flood events
are strongly linkedo climatechange triggered weather variations, resulting in more
severe and frequent storrfukiko et al., 2013)As the global population continue to
increase,pushing peopleto settlein flood-prone regions (Burby et al., 2001) the
exposure tdlooding andits impact is expected tnase accordingly The Globalmap of
flood occurrences between 1985 to 2@ presentedn Figure 1 showing the spread of

flooding across developed and developing regions
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Figurel GlobalDistribution of flood occurrences985i 2016(Source:Dartmouth
Flood Observatony



Usually, floods transit political boundaries, affecting both developadd developing
countries alike (Biancamaria et al.,, 2011, Nkwunonwo et al., 201Bpwever,
vulnerability varieswidely from high to low-incomeregions as the ability to cope with
and mitigate flood impactwaries with economic capacityBrouwer et al., 2007,
Adelekan, 2011)Godschalk(1999) arguedthat the low-income populaceis naturally
inclinedto residen high-risk regions due to thiew cost ofsettlingwithin such regions,
therebylimiting their capacity to copwith and recover from disastrous events. Nigeria
has experienced increased flooding in recent ywakenridge, 2016)with impact
aggravated due to the high numbetlef vulnerablepopulace living within floodplains
(Nkeki et al., 2013, Agada and Nirupama, 2015, DauraMagbmi, 2015) Locations
of flood occurrences in Nigeriare presented in Figure 2, while global and local
(Nigerian) flood impactsare presenteth Table 1(Brakenridge, 2016)and provides

details of impact fooccurrences greater thanequalto 1-in-100-year flood.

Legend A
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Figure2 Distribution of flood occurrences in Nigerl®851 2016(Source:Dartmouth
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Tablel Estimated global and local (Nigeria) flood impafttsn 19851 2016(Source:
Dartmouth Floodbservatory

Damage Affected O 100
Location Occurrence Deaths Displaced
( 6 USCLC populace floods

Global 4387 661295 638196277 8.01*10" 4.62*1C° 725

Nigeria 58 1444 1881957 1.01*1¢  4.64*1C 6

Recent reviews mflood risk assessment in Nigeria categorised the causes of flaading
terms ofinitiation and exacerbation facto(Blkwunonwo et al., 2016, Ugonna, 2016,
Egbinola et al., 2015Figure 3 shows flowchart ofthe causes of floodinip Nigeria
including climate changepoor urban planningurbansation and anthropogenic
activities. Climate changaffects oceammtmosphericpatterns,thus initiating heavy
storms that consequentyausepluvial (rainfall), fluvial (river) and coastal (ocean)
floods (Nkwunonwo et al., 2015)Pmr developmental blueprintspolicies and
implementatiorresultin the violation of building regulations and settlemesftpersons
within high-risk floodplains, thereby increasing impervious land surfage-off and
exposure to floodingAlso, anthropogen activities such as poor waste management,
upstream dam water releasepoorly designed hydraulic structures, blockage of
waterways and drainages exacerbate floodiddeaga et al., 2008, Olukanni and
Alatise, 2008, Etuonovbe, 2011, Raheem 2011, Agbola et al., 2012, Koniflafs,
Nkwunonwo et al., 2016 Although most floods occur independently, in some instances
flood causescrisscross resulting in comgdex flood scenariosand associated risk

Nevertheless, thistudyis focusedsolely on fluvial (river) flooding.

Managing flood disastersustainablyrequires the coordination of efforts before
(preparedness), during (responsnd after (recoveryflooding (APFM, 2011) to
enable integrated flood management wariable pacesto minimize flood effects

Courteille,(2015)highlighted components of the disaster risk management cycle

1. Predisaster (Preparedness)involves expected risk assessment, mitigation
preventionrecovery planningnd preparedness.
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2. During disaster (Bsponsg includes warning/evacuation, saving people, providing
immediate assistance, and assesdargagsto critical infrastructures

3. Postdisaste(Recovery):encompasses reconstruction (resettlement and relocation),
economic and social recovery, and risk assessmiessofis for recurrence

mitigation and prevention).

Implementing these flood management strategies requires some form dPréstad
Postflood managementmeasuresare usually deliberately paced, adapting existing
methods thatrequire available data.For instance, prood measures can be
accomplishedy identifying locations susceptible to flooding based on knowledge of
past food trends fronwhich annual flood exceedance probalatreestimateqReed,
1999) Flood estimates are thgmropagated through hyadynamic models to route
flood spreadand quantify hazards (i.e. flood depth, velocity, and inundated area)
(Sarhadi et al.,, 2012)Postflood measureson the other hand, entails identifying
impacted locationgpeopleand critical infrastructure within inundated areas to quantify
damageand impactfor reconstructiorand rehabilitation purposdgyers et al., 2013,
Thorne, 2014)Responding to floods in the heat of the evemqarticularlychallengng,

as reattime data processing amaformationare neededor a promptresponsgMuller

et al., 2015, Temimi et al., 2004, Garflmtado et al., 2013)

Although several structural and nestructural steps have been taken by various
stakeholders to combat flooding in Nigeria, the results lenpoor, judging from
recent flood inpacts(Ugonna, 2016, Tami and Moses, 2015, Ojigi et al., 20IBjs
failure is attributedo the aehoc nature ineffective and poorly coordinated nature of
flood managemenefforts (Obeta, 2014a)shortageof quality data, poor stakeholders
flood risk perceptionand poor citizen inclusivenesstack of funding, technological
know-how and political willby the governmer(Maxwell, 2013, Ugonna, 2016)
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Application of Operaccessand 3¢ Party Geospatial Technology for Integrated Flood Risk Management in Data

SparseRegions oDeveloping Countries

1.2.Aim

The aim of this study is to overcome data and resources limitations in developing
regions tcadequatelynodel and map flooding, using alternative opecess geospatial
technology within an integrated flood management framewattkat enhance

preparedness, response and recovery.

1.3.0bjectives

1) Identify the causes of data limitations in flood management and alternative

operraccesslata sources available to fill thatagap.

2) Investigate varying hydrological data filling approaches to curising data

effect on flood frequency estimates.

3) Explore methods by which identified opancess3™ partyand citizeracquired
datacanbe integratively applied to improve hydrodynamic modelling and flood

mapping in data sparse regions.

4) Assess thémitations of alternative open data application and apply known

concepts to improved flood delineation.



Application of Operaccessand 3¢ Party Geospatial Technology for Integrated Flood Risk Management in Data

SparseRegions oDeveloping Countries

1.4. THESIS STRUCTURE

This thesigs structuredollowing the alternative format, composed of eight chapters,

with Six (6) chaptersZ-7) drafted to focus on specific research objectives.

Chapter 1: INTRODUCTION TO RESEARCH, AIM AND OBJECTIVES
DEFINITION

Introduces the research problem of flood risk and the need for flood management,
highlighting the key issues and rationale at global lacdl scals. The research aim
and objectives of the researate also outlined

Chapter 2: APPLICATIONS OF OPEN -ACCESS REMOTELY SENSED DATA
IN FLOOD MAPPING FOR DATA SPARSE REGIONS: A REVIEW AND CASE
STUDY OF NIGERIA

This chapter presents a review settithat focuses on the data challenges and
uncertainties associated with sparse data application in hydrologicdklling,
hydrodynamic modellingand flood mappingat global, transboundary and local
(Nigerian) scales. The core causes of data limitationgiameloping regionsare
disclosedandavailable alternative opesiccess remote sensing and tipaity data sets
that compensatdor ground data deficiency ilood mappingare highlighted. Flood
mapping processes including flood frequency estimaligdrodynamianodelling, and
inundation mappingre discussedandways radar altimetry, digital elevation model,
bathymetry, optical, radar images, and satellite consortium data can be apgled to
data sparsityor each of thesprocessesTransboundarflood management challenges
are alsoemphasisedvith the prospect of effectivbood management througturrent

and futureopen- access remote sensidgtaapplication.

Chapter 3: INFILLING MISSING DATA IN HYDROLOGY: SOLUTIONS
USING SATELLITE RADAR ALTIMETRY AND MULTIPLE IMPUTATION
FOR DATASPARSE REGIONS

One of thecauss of data deficiency disclosed in Chapter 2 is gaps within hydrological

time series which results inuncertain flood estimates. Chapter 3 expldies useof
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Application of Operaccessand 3¢ Party Geospatial Technology for Integrated Flood Risk Management in Data

SparseRegions oDeveloping Countries

radar altimetry and multiple imputation techniguedill missing data in hydrological
time series, consequently reducing flood estimates uncertaifiteseapproaches were
aimed at reconstructing missing annual peak river disclrardistorted due to
destructive floods, discontinueglauging station®r inaccessibility to remotkcations
during flooding The magnitudes of the 2012 and 2015 flood events at gauging stations
along Niger and Benue rivers in Nigevierealsoevaluatedrom distinctly filled time-

series and the application of these techniques in practice discussed

Chapter 4: ACCOUNTING FOR CLIMATE VARIABILITY IN REGIONAL
FLOOD FREQUENCY ESTIMATES FOR WESTERN NIGERIA

Logistical and financial challenges make it difficult to establish gatggons at all
required locations, hence thdrological monitoring networks are often sparaed

several locations left ungaugé@hapter 2). Also, the increasing influence of climate
change on floods as discussed in Chapter 1 and Chapter 2 annuls the assumption of
stationarity in flood frequency estimation. Chapter 4 presents findingaskas the

effect of climate variabilityon regional flood frequency estineatin the sparsely
gauged Ogw®Oaun River basinin Nigeria Freely available International Centre for
Integrated Water Resources Managermi@egional Analysis of Frequency Tool (IClI

RAFT) that aids the integration of the National Oceanic and Atmospheric
Administration (NOAA) climate indicemto flood frequency d@snation was applied,

thereby supporting flood management in regions with limited resources.

Chapter 5: INTEGRATING CROWD -SOURCING AND OPEN-ACCESS
REMOTE SENSING FOR FLOOD MONITORING IN DEVELOPING
COUNTRIES

Monitoring flooding at the peak of occurrenserequired to identify flooded locations
to deploy resources to mitigate flood impdntegratedNearReal Time remote sensing
MODIS flood maps and@rowdsourcingVolunteered Geographic Information Sys)em
were appliedfor flood monitoring during the peak flood season of 2015 (Chapter 5),
and data ornthe past flood event of 201%as collectedin retrospect. The VGIS

crowdsourcingapproachwas based on a revised disaster communication model by the
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SparseRegions oDeveloping Countries

UN Office for DisasterRisk Reduction (UNISDR), focused on impacted persons
communicating disaster reality to management agen@észen and government
perception of flood risks evaluategdand citizen risk perceptidn relation toflood risk
indicators such asAwareness, Wy and Preparedness also assesseffom

supplementary data collected

Chapter 6: HYDRODYNAMIC MODELLING OF EXTREME FLOODS IN
DEVELOPING REGIONS USING MULTIPLE OPEN -ACCESS REMOTE
SENSING DATA SOURCES

Chapter gportraysan integrated flood modelling amdapping approach applied in the
Niger-South river basin of Nigeria (i.e. from Niger river at Baro and Benue river at
Umaisha to the Niger Delta through Nun and Forcados tributaries). The hydrodynamic
model incorporates opeaccess remote sensing, airbofaeerflight), hydrographic and
bathymetric data from multiple sources and tpedties. 2D CAESAR-LISLFOOD
model is applied using 2012 hydrogragimd modified SRTMto recreate the
unprecedented flood event hydraulicallyne modelwascalibrated usingcombination

of satellite images (i.e. TerraSAR image, MODIS NeaRealTime flood map,
RadarSaR, CosmoSkyMed), overflight geotagged photos and water lavaliable for
three subdomains 1-in-100year flood frequency estimatewere modelled and
compared in retrospect to the 2012 flood evenmproveplanning and managemeoit

subsequent events.

Chapter 7: IMPROVING RADAR IMAGERY FLOOD DETECTION
CAPACITY USING MULTI -CRITERIA DECISION TREE ANALYSIS
TECHNIQUE BUILT ON OPEN -ACCESS DATA

Chapter 6 revealed the deficiency of Synthetic Aperture Radar (SAR) image in
delineating flooding in the vegetation covered Niger Delta using overflight geotagged
photos, due to SAR inability to penetrate vegetation covers and disdesaarailt-up

areas Chapter 7 combines multiple opancesslatasetsusing a C4.5 algorithm driven
decisiontree to delineate flood extent within the Niger Delta fonproved

hydrodynamic flood evaluation.
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Chapter 8: CONCLUSION, CONTRIBUTIONS, LIMITATIONS AND
RECOMMENDATIONS

Concludes the thesisummarsing the main findings and discussing the implications
regard toflood management. It also Synthesises previous chapters, aligning them with
the integrated flood management framework of preparednesdidpdd, response
(during the flood) and recovery (pogtood). The contributions of this thesis in filling
the data sparsity gap gtevelopingregions with limited resourceare highlighted. The
limitations and recommendations for improvement and future research dinscilso

presented
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CHAPTER 2: APPLICATIONS OF OPEN-ACCESS REMOTELY SENSED
DATA IN FLOOD MAPPING FOR DATA SPARSE REGIONS: A REVIEW
AND CASE STUDY OF NIGERIA

Abstract

Flood mappinggenerallyentaik flood frequency estimation, hydrodynamic modelling
and inundation mapping, which requires speciflata setsthat are sometimes
unavailable especially in developing regions due to financial, logistical, technical and
organgationalchallenges. Thishaptereviews flood modelling and mapping processes,
outlining the data requirements and how epeness remotesasing can supplement for
ground and higitesolution spacborne commercialdata. The merits, demerits and
applicationcasesf data setsuch as radar altimetry, DEM, optical and radar images

also discoursedor global transboundary and local floaisk management. Also, the
role of collaborative satellite information sharing and serdieléveryin flood disaster

monitoring and managemeistdisclosed

Keywords: Openaccess remote sensing, flood management, Altimetry, Synthetic
Aperture Radar, Optat Satellite, Digital Elevation Model (DEM), Transboundary
floods.

1. Introduction

1.1.Flood modelling and mapping

Managing flood effectively requires a goaehderstanding ohistorical flood trends,
future expectationsand identification oflocationslikely to be impacted by flooding
Flood mappingprovides the baseline for acquiring such informatidm ensure
prevention, protection and managemard efficiently undertaker(Plate, 2002) Flood
mapping is a process that defines the expected extent of watdaiirmmintodryland
as a result of intense precipitation or river water level rise driven by natural or
anthropogenic factorgMerwade ¢ al., 2008) Flood mapping processliffers
considerabl from project to projegtor country to country, dependingn cspecific
project requirement&nd countryspecific guidelines Also, the scale of flood risk
assessmentavailable data, resources, techni¢aowledge and delivery timeline
influences the approadateployed(Moel et al., 2015, Klijn et al 2008, Blichele et al.,
2006, Ologunorisa, 2004Nevertheless, the sequence of activities ladlto risk map

outcome is fundamentally the sameand involvesflood frequency estimation
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(probability of occurrence of #ood of specific magnitudever a certain period);
hydrodynamic modelling (routing of river discharge or catchment runoff over landscape
to determine water depth and inundation extent); and risk assessment (determining
landscape propertiampactedwithin flooded regions)ISDR, 2004, Els, 2013, FME,
2005b, Aerts et al., 2009, Martini ahdat, 2007)

Table 1 highlightsFlood mappingproceses basic data requirements, expected
outcomes and some case studies. These procagstsod management by provity

the necessary information needed for planning, flood defence structure design, disaster
response and recovery to mitigate flood effect.

Going forward, his review highlights the scarcity of data needed for mapping processes
(Table 1), detailing how a@wcements in opeaccess remote sensing can compensate
for ground monitoring deficiencies in local and transboundary river basins. Remote
sensingdata setsuch as altimetry, digital elevation models, radar and optical images
application in each flood mapping processe discoursedTo further demonstrate the
usefulness of opeaccess remote sensing in developing regions, a case study of Nigeria
is presentedemphasisingn local and transboundary flood management developments,

data limitations, current role and future prospect of remote sensing.

Tablel Flood mapping process and fundamental data requirement

Process Data Outcomes Cases
Flood frequency A Historicaldata:River discharge, A Flood magnitude at (Awokola and Martins,
estimation water levels and rating specific return periods 2001, Kjeldsen et al.,
curves/equations. (Direct and regional). 2002, Leclerc and Ouard:

2007, Ahn et al., 2014)

Hydrodynamic A Flood frequency outcome A InundationExtent (Sarhadi et al., 2012, Di
model A River discharge A Water depth Baldassarre et al., 2010,
A Digital elevation model A Flood velocity and travel Muncaster et al., 2006,
A Land use and covenap time Neal et al., 2011a)
Historicalflood extent, and
marks
Flood risk A Hydrodynamicmodel outcomes, A Exposure maps (Taubenbéck edl., 2011,
assessment demographigcsocioeconomic A Vulnerability maps Eyers et al., 2013, Neal e
and infrastructure data. A Evacuatiorplan al., 2011a)

12
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2. Data limitations, Prediction of UngaugedBasins (PUB) and Remote sensing
advancement

In recent decades, floods have been perceived tocbeasingly frequentyidespread

and more devastatingAs such the spatial network of existingnydrological gauging
stationshas become inadequate for optimal data collectittHSA AFO, 2014) In

other cases, obsolete equipment, financial and techchedlengeshampersufficient

data collection forflood mappingand managemer{Olayinka et al., 2013, Maxwell,
2013) Due to increasing global data deficiency and uncertasggyciaed with sparse

data application for hydrological andhydrodynamic modelling the International
Association of Hydrological Sciences (IAHS) launched the Predictiobrafauged
Basins (PUB) initiative to explore alternative data and technidoesimproved
Ungauged basin modellingivapalan, 2003)0One of the core objectives of the PUB is

to AAdvance the technolwalditocrakepredictipna mi | ity
ungauged basinfrmly based on local knowledge of the climatic and landsdhpe
controls hydrological processes, along with access to the latest data sources, and
through theseneansconstrain the uncertainty in hydrologiqalr e d i c($ivamalars . 0
et al., 2003) This objective aligns seamlessly with remote sensingsidering thait
providesan alternative data source to imprae understanding of local hydrology and
associated uncertainties in flood mappiog datasparseregions(Hrachowitz et al.,

2013)

Remote Sensing (RS) hadvancedo the stagewherdyy, in manyplaces,data isnow
freely availableat a global scaleenablingdevelopingcountiesto explore its potential
at little to no data acquisition coétan et al., 2015a)This review focuses solely on
openaccesgfreely available) satellite data integration into flood mapping processes to
compensate for data sparsely faced in developing regions, eimphases on a
Nigerian cases study, assessing the possibilityleveraging global geospatial
technologyfor local flood management. Inferenca® drawrfrom previous reviews on
low-cost Geographic Information System (GIS) and remote sensing appligation
hydrology, hydrodynamicmodellingand flood mappingYan et al., 2015a, Schumann
et al., 2009a, Mason et al., 2011, Dano Umar et al., 26idyever, a widerange of
freely availabledataset@nd sources needed for every step listed in Tabke £xplored

in this review,with case studiesf application for flood management improvement

discoursed
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3. Alternative open-access remote sensing data for flood modelling and
management

3.1.Radar Altimetry Water Level and Elevation

River water leved are an essential data input for hydrology ahgidrodynamic
modelling, and advancement in remote sensing has improved the way changes in water
surface elevation and slope dae measuisince the early 38 (Alsdorf etal., 2007)
Several radar altimetry missions routinely meadueshwatersurface despite being
originally designated to measure ocewatersurfacegKoblinsky et al., 1993, da Silva

et al., 2010) Radar altimetry data iacquiredvia a process that measures the distance
between the orbiting satellite and water surfeceslation toa reference datum, using
satellite sensor echo pulse return intes\ilabm when emitted tavhen reflection by
water surfacand return to satellitéSuistioadi et al., 2015, Belaud et al., 201Bjgure

1 (A). Altimetry water levels are measured at virtual stations located intermittently
where altimetry satellite tracks cross path with riV@&iskinshaw et al., 2014b, Musa et
al., 2015) when altimetry tracks pass over dry land, the elevation of the surface
intersected is measureéfigure 1 B) and C) shows a sample virtual station and
extracted altimetry time seri€€rétaux et al., 20113long the Niger River in Nigeria
The water leveht ariver of intereswith reference to a predefined datusuch asarth

Gravitational Mode(EGM 2009), is expresedas:
Q 0Y (@)
Y Y &  BAI O @)

Where, h = water surface elevatimnrelation to the reference ellipsoid = altitude of

satellite (from satellite orbit to reference ellipsoid);=range(distance between satellite

and open surface water bQdiRc.or = corrected ranges = speed of Iight?— = the dual
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direction travel time of radar signal, aBd\ T <0the sum of ionospheric, tidal, wet and

dry tropospheric corrections.

Satellite Altimetry

[\ /| Satellite Orbit
[ -

Propagation error:

- lonosphere

- Wet troposphere -
Dry troposphere

------------------ R - H - Atmosphere

Sea state Bias Correction
- EM Bias
- Skewness Bias

Sea surface

______________________ *\r Reference Ellipsoid External Gaophysical Adjustment
- Geoid (hG)

- Ocean Tidal Height (hT)
Bottom Topograp hV - Atmospheric pressure loading (hA)

Figure 1 (A) Graphic illustration ofsatellite altimetryheight measuremenprinciple
(adapted fronfMusa et al., 2015)

il in_etgrs

Figure 1 (B)lllustration ofavirtual station wherealtimetry satellite tracks intersect

river Niger
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Figure 1(C) Typical water levekime-series, derived from an altimetry virtual station

The vertical accuracy of altimetry water levéisectly affects theesults derived from
its application (O'Loughlin et al., 2016a)In comparison toground (in situ)
measurementsltimetry water leveVertical accuracyrangesfrom approximately 0.01
to 0.05 metresandRoot Mean SquareHrror (RMSE) from 0.003 to 0.004 metres for
watershedareas up to 100 kh{Birkett, 1995, Birkett et al., 2002, da Silva et al., 2010,
Frappart et al., 2006)n some caseshe difference between altimetry aimdsitu water
levels can be as high as 2 meff@gkinshaw et al., 2010)ariations of altimetry water
level accuracies are presented in Tdbdnd areattributed tovarying sensor typg the
distance betweeim situ and virtual station, and location of altimetry track intersect
with theriver (Yan et al., 2015a)Other factorshat affect altimetry accuracy include
ionosphere, troposphere, instrument noise, geoid, tidal and water surface variations
(Ponte et al., 2007, Chelton et al., 2001, Belaud et al., 2Bi\®r width and tributaries
dischargng into main rivers upstream difie virtual station have also been identifiad
the externaffactors that cotributed to altimetry water level discordancy framsitu

measurementSulistioadi et al., 2015, Pandey and Amarnath, 2015)

The application of radar altimetry has beéargely documented, especially in
hydrodynamic modelling in data sparse regiof®aur (4) aspects of altimetry
application in data sparse regicare discussebelow (Sectiors 3.1.1to 3.1.9 include
Altimetry dischargeestimation,Altimetry Digital Elevation Mode (DEM) accuracy
assessment, Altimetry Bathymetry definitioand Altimetry hydrodynamic model
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calibration and validatiariTable2 Altimetry characteristics Adapted and modified from
(O'Loughlin et al., 2016a)

S/N  Mission Ground Revisit Operation  Accuracy (m) References
footprint (m) time (days) timeline

1 TOPEX/Poseidon ~600 9.9 19932003 0.35 (Frappart et al., 2006)

2 ERS1 ~5000 35 19912000 N/A (da Silva et al., 2010)

3 ERS2 ~400 35 19952003 0.55 (Frappart et al., 2006)

4 ENVISAT ~400 35 20022012 0.28 (Frappart et al., 2006)

5 Jasonl ~300 10 20022009 1.07 (Jarihani et al., 2015a

6 ICE Sat/GLAS ~70 - 20032009 0.10 (Urban et al., 2008)

7 Cyrosat2 ~300 369 2010* < SRTM (Schneider et al.,
2016)

8 Jasor2 ~300 10 2008* 0.28 (Jarihani et al., 2015a

9 SARAL/Alti ka ~173 35 2013* 0.11 (Schwatke et al.,
2015c)

10  Sentinel 3 SRAL ~300 27 2016* 0.03 (ESA, 2016)

11 Jason3 ~300 10 2016* 0.03 (NASA, 2016)

12 SWOT ~10-70 21 2020 0.10 (Fu et al., 2009)

Current = *, Future = +

3.1.1. Altimetry discharge estimation

River discharge and stage argpical initial/boundary conditions needed in

hydrodynamicmodelling and are usuallyseldom unavailable at remote locatiors

mostdeveloping regiondueto factors previously highlighted in Section (Birkinshaw

et al., 2014b, Olayinka et al., 2013padar altimetry has been explored in several

studies tocurb data limitationchallengesand reduce the uncertainty associated with

modelling ungauged riverand are discussed detail below.
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Papa et al.(2010)utilised TOPEX/Poseidon, ER3, ENVISAT and Jason 2 altimetry
water levels in combination witim situ rating curve to estimate discharge along Ganga
and Brahmaputra river from 192®11to accuracy levels of 0.17 (mean error) and 0.28
(standard error) in comparison ito situ discharge at gauging statiorg&iver discharge
alongGodavari river from 2001 to 2014 was derived by combining ENVISAT (2002
2010), Jasoi2 (20082014) and SARAL/Alka (20132014) radar altimeter water
levels with in situ rating curvesat nearby gauging statign and validated against
hydrodynamic model t@ correlationcodficient (R%) value of0.9 and standard error
varying from 0.15 to 0.40 metréSridevi et al., 2016)n an AmazonRiver basin study,
Getirana and Petetsdard, (2013)explored the potential of estimating discharge at 135
gaugingstations using altimetry data from 475 ENVISAT virtual stations (2002
2005) Usingthe relationship betweein situ waterlevel anddischarge Getirana and
PetersLidard, (2013) successfullyestimated discharge at 90 virtual stations with mean
relative errors varying from 15 to 84%r large and small river basins respectively.
Discharge was estimated transboundary riversicluding Danube (Austria, Romania,
Bulgaria, Slovakia, Hungary, U&mne, Croatia, Germany, Serbia, and Moldova),
Mekong (Thailand, Cambodia, Laos, China, Myanmar (Burma and Vietnam), Amazon
(Ecuador, Colombia, Peru, and Brazil), Brahmaputra (India), Amur (China and Russia),
Ob (Russia), Vistula (Poland) and Niger (Nigerali, Niger, Benin, and Guinea)
using quantile function algorithm approach that exploits ENVISAT altimetry data
(Tourian et al., 2013)This approachresultedin discharge outcomes similar tbose

derived from conventional Forecast Rating Curve (FRC) approach.

Typically, estimating river discharge froattimetry water level depends on rating curve

or river geometryavailability (Michailovsky et al., 2012)However,several studies
have been able to demonstrate direct river discharge estimation from altimetry water
levels in theabsence oin-situ measurements, using supplemental remote sensing data
or models ENVISAT altimetry data from six virtual stations along Brahmap®irser

from 2008 to 2010 were assimilated into a Muskingum routing model driven by outputs
of a calibratedBudyko type rainfalrunoff model derived from Tropical Rainfall
Measuring Mission (TRMM) Multsatellite Precipitation AnalysiSTMPA) 3B42RT
reaktime productsThis integrated approachmprovedthe modeb discharge derivation
accuracy (NashSutcliffe efficiency) from 0.78 to 0.84.Also, using a different

hydrodynamic modelling approach, Tarpanelli et al.,(2016) combined Moderate
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resolutionimaging Spectroradiometer (MODIS) Terra and Aqua satellite images with
ENVISAT altimetry using a pixel to water level detection approachestimate

discharge witha correlationcoefficient of 0.96 and NasButcliffe efficiency of 0.91

when compared t situ dischargealong the Niger and Benue rivefSichangi et al.,

(2016) similarly integrated MODISsatellite derivediver width and altimetry water
levelsintoManni ngbés equat i oataContinentsltsdalendhe eerivied s ¢ h a

discharge Nastsutcliffe efficiencyvaried 0.60 to 0.97.

Other than a few studies includi@gtirana and Petetsdard, (2013) Tarpanelliet al.,
(2016) and Sichangi et al.,(2016) that have demonstratedirect river discharge
estimation in the absence i-situ data, river discharge estimation fraatimetry is
usually basedon the establishment of an empirical relationskith in situ gauging
stationsavailable afproximity to virtual stations. Although discharge estimates derived
from altimetry are usually with acceptablievels of uncertaintyfactors such ashe
distancebetween virtual and ground stations, contributing tributaries and the width of
the river affect the efficacy of such estimaiandey and Amarnath, 2015)he
discussed discharge estimation @gehes also reveal that the availability of multiple
supplementary remote sensing data at an ungauged river basin integmagrdpmical
formulasandhydrodynamic models can improve discharge esémat

3.1.2. Altimetry Digital Elevation Model (DEM) accuracy assessment

Once dischargendbr flood magnitude is estimated, it is propagated longitudinally
along river channels and laterally across floodplains in hydrodynamic models governed
by continuity and momentum equatiof@asas et al., 2006)he accuracy of DEMhat
defines the river channel and floodplaiterrain upon which flow is propagated
influences model outcomaccuracy(Cook and Merwade, 2009 herefore,in several

flood modelling studies the accuracy of the primary DEM is assessed prior to usage
against a higher accuracy DEM suchLight Detection and RangingLiDAR) or
Differential Gobal PositioningSystem (GPSglevation pointgPatro et al., 2009, Wang

et al., 2012, Sanyal et al., 2013, Ullah et al., 20P&quiring such data setsfor
accuracy assessment is cogensiveand in othernnstancesmpossible due to terrain
complexity and weather conditionthat hinder logistics for effective data collection
(Amans et al., 2013, Isioye and Yan@13). ICE Sat/GLASaltimetry data acquiredy

the National Aeronautics and Space Administration (NASA) between 12 January, 2003
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and 11 October, 2009 using geoscience laser altimeter system (GLAS) onboard the Ice
Cloud and Land Elevation Satellite (ICEat) provides a worthy alternative to ground
elevation due to its high accuracy in comparison to Kinematic GPS measurements
(Zwally et al., 2002)The absolute accuracy of ICE $atecorded to be as low as 0.002

and 0.005 meters in Bolivigricker et al., 2005and French Lak€lean Stéphane et al.,
2011)respectively, and depend dime slopeof the terrain under scrutinfbatge et al.,
2015) Over the years ICE Sat/GLAS has been applied in assessing various DEM
accuracies including SRTNMCarabajal and Harding, 2005, Kon Joon Bhang et al.,
2007, Du et al., 2016 ASTER GDEM (Zhao et al., 2010, Satgé et al., 2Q16PS
elevation(Braun and Fotopoulos, 20Qarto DEM (Rastogi et al., 2015 Canadian

DEM (Beaulieu and Clavet, 2009)nSAR DEM (Yamanokuchi et al. 2006)
TANDEM (Mirzaee et al., 20159nd modified/corrected DEMSarihani et al., 2015a,
Sampson et al., 2015, O'Loughlin et al., 2015)

The 70-metreground footprint of ICE Safzwally et al., 2002coupled with its ability
to penetrate gaps in vegetation canopy to capture underlying bare earth elevation
(Heyder, 2005)makes it a more accurate and useful alternative to ground sfovey

DEM accuracy assessment.

3.1.3. Altimetry Bathymetry definition

Accurate digital elevation models combined with detailed river bathyndeirgeation
provides the best terramatafor flood routing (Trigg et al., 2009, Casas et al., 2006)
Neverthelessacquiring such data for remote locations is usually diffiaslearlier
discussed Hence flood modellershave resored to exploring alternative options to
compensate for such deficiency. In the Amazon and NRipers in Peru,Chavarri et
al., (2012) examined the applicability of altimetry (ENVISAT) in constraining river
crosssection ofa onedimensionahydraulic model The resultshowed reducethodel
uncertainty mostly for rivers with widthsless than or equal 8.5 km. The proposed
Surface Water and Ocean Topography (SWOT) scheduled for launch ini2020
expected to provide one of the best altimetry datavater resource momiting and
management at a global scdfau et al.,, 2009, Bates et al., 2014ew studies have
experimented on SWOT deead bathymetry for hydrodynamic modelling to improve
outcome accuracyk-or example, Durand et ali2008) experimented on the SWOT

mission, applying datassimilation technique to estimate bathymetric depth and slope at
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five points along a 24Bm reachalongthe Amazon river to within 0.50 m and 0.30 cm
km of accuratesrespectivelyBoth derivativesvere then integrateitito LISFLOOD-

FP hydrodynamicmodel (Bates and De Roo, 200@) improve inundation extent and
downstream water surface elevation (WSH)e relationship between river width and
depths established using ENVISAT altimetry wasmbinedwith SRTM, Landsat,
MODIS and satelliterainfall datato derive updated river networind adjusted bed
profile was applied in the development &anges, Brahmaputra, and Meghna (GBM)
model suitable for large ungaugedhtershed (Maswood and Hossain, 2016)he
GBM modeldata integration res@t in a reduced RMSE from 3.0 to 1.0 metia
another studyy Yoon et al.,(2012) SWOT WSE was assimilated into LISFLOCHP
hydrodynamicmodel using docal ensemble batch smoother (LEnBS) method, esult
in the generation obathymetry, depth and discharge estimates. Bathymetry extracted
from SWOT hada RMSEof 0.56metres improving with the inclusion of more SWOT

observations in the modellipyocess.

The proposed SWOT and recently launched SerBrbvides a hugdataseprospect
for future of hydrodynamic studies, andtegration intohydrodynamic models can
improve flood extentdischargeand water levels outcomegarticularly when mulple

altimetry data are availabdonga modelled reach as Yoon et §2012)suggested.

3.1.4. Altimetry hydrodynamic model calibration and validation

Hydrodynamic model validatiomelps reveal how well a modeépresets what is
expected in realityStephens et al., 20148nd isdirectly linked to the configncein the
flood managemenmneasures implemented as a result of the model outc@atibration

is usually undertaken byadjusting various model parameters such as floodplain
roughness, channel roughness, rigkanneldepth, and river width whileomparing
flood model outcomes (water level, discharge and/or inundation extent) to what is
expectedn reality, derived fromn situ or remote sensing measuremefBelaud et al.,
2010, Sun et al., 2012, Van Wesemael et al., 2016, Neal et al., 2abdinercial high
resolution optical and radar satellites images, aanagesandhydrologicaldatahave
beenlargelyestablished as the optimal dataurce for hydrodynamic model calibration
and validation(Jung et al., 20, Dung et al., 2011, Pasquale et al., 2014, Wood et al.,
2014) However, the high cost of acquiring such data hindkesr application in

developing countriegAndréfouét et al.,, 2006)Hence, radar altimetry over the past

21



Application of Operaccessand 3¢ Party Geospatial Technology for Integrated Flood Risk Management in Data

SparseRegions oDeveloping Countries

decade has been explored globally as an alteroatees of data for model calibration
and validatioDomeneghetti, 2016)

Typically, in developingegionsriver measurements are manually collected using staff
gaugesandlater converted tdischarge using an established rating cuAtehe peak of
floods, measurement equipmeate usually damagednd access roadsundated, thus
impeding the observation preess(Olayinka et al., 2013, Dano Umar et al., 2011)
Therefore remotesensingradar altimetry provides an alternative river measurement
option that supportBydrodynamicmodel calibration and validation in the absence of

observedecordsg(Domeneghetti, 2016)

Water level @ta from three ENVISAT altimetry virtual stations along a 150km reach of
Danube rivewereapplied in the calibration aR LISFLOOD-FP modeko reconstruct

the 2006transboundaryflood occurrence(Yan et al., 2015b)Yan et al.,(2015b)
realised dvlean Average Error (MAE) of 1.53 m and 1.37 m for altimetry iansitu
model calibration approaches respectively, suggesting that bottsetat@an be used
interchangeably to improve flood modellingh sparsely gauged river basins.
Domeneghetti et al(2014) performedhydrodynamicmodel calibration for a 140 km
reach along the Po river using ER%Nd ENVISAT altimetry datagsulting inRMSE

of 0.85 m and 0.73 m respectively, and improved N&slkcliffe efficiency (NS) when
altimetry is combined with in situ data for model calibragn. Soil and Water
Assessment Tool (SWAT) rainfall remff model for thespasely gauged Okavango
transboundaryiver of Angola, Namibia and Botswamerecalibrated using total water
storage derived from Gravity Recovery and Climate Experiment (GRACE) altimetry
satellite andin situ data (Milzow et al., 2011) Also, Sun et al.,(2012) assessed the
uncertainty associated wittHYdrological MODel (HYMOD) along the Mississippi
River, calibratecagainstin situ and altimetry data. N$fficiencies of79.05 and 64.50
were reportedfor in situ stream flow and radar altimetry (TOPEX/Poseidon)
respectively, showing reduced uncertainty bounds for stream flows calibration in

comparison to altimetry calibration.

From theseinstances highlighted abovéjs evidentthatradar altimetry caserveasan
alternative to ground observation, especially in data sparse reg\sle
hydrodynamicmodels driven by SRTM DEMave been seen tesult in comparable

outcomes when calibrated with altimetry water leveiedelsdriven by LIDAR and
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river surveycrosssection embedded terrain result in hugely discordant accuracies whe
calibrated withsimilar dataset (Domeneghetti et al., 2014Yhis thereby raiseshe
guestionof altimetryuncertaintyin modelcalibration andaccuracy assessmeielaud

et al.,(2010)applied TOPEX/Poseidon (T/P) and ENVISAT altimetry satellites data in
calibrating a propagatiomodelanddisclosedhatinherentaltimetry uncertainty effect

on themodeloutcome.

Residual altimetry uncertaies are expected to affect flood model accuracy as
Tommaso et al.(2013)further demonstrate@nd futher emphased by Domeneghetti
et al., (2014) where ENVISAT proved to provide better accuracy thBRS2 (See
Table 2 for altim&y accuracy differences).

Despite thesealeficiencies the importanceof altimetry data inmodel calibrationand
validationin ungauged basins canrz# dismissedHowever,it is advised thaaltimetry
is applied in combination witin situ data when availablDomeneghetti et al., 2014)
or in situ, data should it takes priority over altimetry as suggeste®bwy et al.(2015)
andSun efal., (2012)

3.2. Openaccess Digital Elevation Mode(DEM), Modifications and applications
in flood modelling

Topographical datas an essential requiremem hydrological and hydrodynamic
modelling(Yan et al., 2015a)andaccounts for a substta portion of the uncertainty
that propagateshrough tomodel outcomegCook and Merwade, 2009, Jung and
Merwade, 2015)The effect of terrain accuracy on hydrodynamic models and the need
for accuracy assessmehave been discussed briefly isections 3.1.2.and 3.1.3,
showinghow improved river channel definition using altimetry improved flood model
outcomegChavarri et al., 2012, Yoon et al., 2012, Durand et al., 2608h-resolution
topographical data such as LIDAR, TanDEM, bathymetry diffdrential GPS survey
providesthe besterrain characterization with reduced uncertainty and éNeal et al.,
2011a, Mason et al., 2016, Trigg et al., 2009, Bates et al., .2808@)ever, the cost of
acquiring such data is enormogSanyal et al.,, 2013and in othercases remote
locations are inaccessible fiorsitu data collectior{Jarihani et al., 2015a)
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Freely avdable digital elevation model providessaitablealternativeto commercial
datain data sparse developing regions where resources are li{Rata et al., 2009,
Lewis et al., 2013)

Shuttle Radar Topography Mission (SRTM) DE#larguably one of the most widely
used topographical data in developing regioagplied mostly in improving flood
modelling indatasparseregions(Sanyal et al., 2013, Domeneghetti, 2016, Jarihani et
al., 2015a, Neal et al., 2012)he 30 and 90 metres resolution SRTWas collected
during an 1iday mission in February 2000, through a collaboragiffert amongthe
National Aeronautics and Space Administration (NASA), the National Geospatial
Intelligence Agency (NGA) and the German Aerospace Centre (D& provides
nearglobalscale (80%) DEMFarr et al., 2007, Farr arkkbbrick, 2000) The 15 metre
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global
Digital Elevation Model (GDEM)acquiredby a joint mission of the U.S. National
Aeronautics and Space Administration and
Industry is alsowidely used in flood modelling and mappit@ichamo et al., 2011,
Demirkesen, 2016, Ullah et al., 2016jowever, ASTER GDEM isrgued tobe less
accurate than SRTM due to inherefgvation pixeloids (Wang et al., 2012, Bates et

al., 2014)

Other openacces topographic data sets such as Altimeter Corrected Elevations 2
(ACE2) GDEM, Global 30 ArcSecond Elevation (GTOPO30) and Global Multi
resolution Terrain Elevation Data 2010 (GMTED2010) are generally coarse in
resolution and are therefore employedlange-scalemodels only(Ned et al., 2012,
Schumann et al., 2013Recently released Advanced Land Observing Satellite (ALOS)
DEM (Tadono et al., 2014)as been evaluad and confirmed to provide more accurate
elevation in comparison to SRTM and ASTHBanillana et al.,, 2016) but its
application in hydrodynamic modelling is yet te seenVarious operaccess DEMSs,

properties and case studaa® presentenh Table 3.

24



Application of Operaccessand 3¢ Party Geospatial Technology for Integrated Flood Risk Management in Data

SparseRegions oDeveloping Countries

Table3 Some open source digital elevation models

DEM Spatial Vertical error  Case study Reference
resolution (m) (m)

SRTM 30, 90 +16 Damoda River, (Rodriguez et al., 2006,
India. Sanyal et al., 2013)

ASTER GDEM 30 + 25 Lake Tana, (Tarekegn et al., 2010,
Ethiopia. Tachikawa et al., 2011)

ACE 2 GDEM 1000 >10 Balkan Peninsula, ( Var ga and B
Croatia.

GTOPO30 1000 9-30 Balkan Peninsula, ( Var ga and B
Croatia.

BearEarth SRTM 90 6.05 12.64 Belize, Honduras. (Sampson et al., 2015)

(VegMrban)

BareEarth SRTM 90 4.85 8.667 Global (O'Loughlin et al., 2015)

(Veg)

EarthEnvDEM90 90 4.1310.55 Johor River Basin, (Tan etal., 2015, Robinson
Malaysia. et al., 2014)

ALOS 30 +5 Sindh and (Tadono et al., 2014, Jilani
Balochistan, et al., 2007)
Pakistan.

GMTED2010 250 26-30 Shikoku, Japan. (Danielson and Gesch,

2011, Pakoksung and
Takagi, 2016)

The discrepancieBetween opefaccess DEM and ground sureelelevation datdahat

results in diverse vertical accuracies (Table 3atisibuted toinherentsystemicand

external factorgFarr et al.,, 2007)SRTM system noise cougdl with the C and dband

sensors reflection offorest canopies, water bodies and rooftops in urban areathe

causes ohoisyandpoorly estimated terrain properti€gamazaki et al., 2012, Baugh et
al., 2013, Cook and Merwade, 2009, Kon Joon Bhang et al.,.2007)
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Over the years, various methods have been adoptedriothese deficiencies and
reduce the uncertainty associated with epecess SRTM DEMpplication Baugh et
al., (2013)reduced STRM uncertainty by combing vegetation canopy hegightsard et
al., 2011, Lefsky, 201(gnd MODIS image to reduce vegetation height efidetbeder

et al.,(2015)reduced SRTM bias by 64 percent by adopting a systematic approach that
combines vegetation heigli®imard et al., 201]1)Landsat land cover map and radar
altimetry to produce hydrologically corrected DEM. SRTM derived river esesimns
were adjusted using limited bathymetric surveassd applied inthe onedimensional
MIKE11 model(Patro et al., 2009nd LISFLOODFP twcedimensional modg|Sanyal

et al., 2013)o reduce model uncertaintieal et al.,(2012)adopted an approach that
reduced SRTM uncertainty bgharactesing hydrodynamicmodel parameters (i.e.
channel width and epth) as calibratable parameters in a guid LISFLOODFP
model, thereby improving simulatedater leves, wave propagation and flood extent.
Biancamaria et al(2009a)experimented byaryingriver channel depth by 5, 10 and
15 metres when modelling Obi riveand identified10 mekersas the optimal average
river channel depth fathe bestoutcome. In a recent study in Australiarihani et al.,
(2015a) adopted Hydrological Correction (HC) andVegetation Smoothening (VS)
(Gallant, 2011)approacheso reduce SRTM and ASTER DEktrorand deducedhat
HC DEM outperformed VS DEM for flood modellingThough the above described
DEM modification techniques resulted iaduced DEM and flood model uncertainty
they require specific skill setsomputational power and supplementary data that are not
always readily availde. Hencethere is a needto explore globally availableff-the-
shelf modified DEM that can beeadily applied in developing regionwhere such
resources arseldom availableAt a global scale, erreemanatingfom satellite system
noise, and sensor beam reflection ofégetation canopy, water surfacand urban
rooftops have been treated wittifferent techniques, restihg in the development of
freely available nevdata setsO'Loughlin et al.(2016b)reduced average vertical bias
from 141 m to 5.9 mby systematicallycombining ICESat Geoscience Laser Altimeter
System (GLAS) ground elevatiq@wally et al., 2002)vegetation heightSimard et al.,
2011) MODIS-derived forest canopy density and climate regionalization rfResl et
al., 2007, Broxton et al., 2014pampson et al(2015) reducedSRTM sensor noise
irregularities urban landscape anegetation canopy elevation oestimations using a
moving window filtering technique (Gallant, 201I)heir approachreducedRMSE
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from 10.96 m to 6.05 m when compared.iDAR, and overall flood model bias from
15.08 m to-0.1 m.EarthEnvDEM90 was developed by Integrating ASTER GDEM2,
CGIAR-CSI SRTM V4.1 and Global Land Survey Digital Elevation Model (GLSDEM)

using a combined Delta surface fillif@rohman et al., 200@)nd adaptive DEM noise

smoothing(Gallant, 2011)methodology resultingin minimised error in comparison to
raw SRTM and ASTER GDEM@obinson et al., 2014)

Sinceno studycurrently presentsa comparison of all available modifi&RTM DEM

for a specific region, this is undertaken for the Ni§euth river basin oNigeria and

presented in Table 4, revealing EarthEn¥®Methe most improved modified open

access DEM when evaluated against ICE Sat altimetry SPOT heigigsresults

presented in Table 4 will later inform the choice of DEM selected for hydrodynamic

modelling in Chapter 6.

Table4 SRTM and Modifications comparison with ICE Sat SPOT elevation

Elevation Min Max Mean Std.dev. R? RMSE
BareEarth SRTM (Urban and Veg) 36.00 68.00 47.28 9.09 095 2.94
BareEarth SRTM (Veg) 3445 69.44 4721 922 095 294
EarthEnvo0 36.00 65.00 4740 891 095 285
Raw-SRTM 36.00 63.00 47.34 895 094 3.08
ICE Sat 35.62 64.33 47.74  8.01 - -

Std. dev = standard deviation R? = Correlation coefficient

3.3. Openaccess Optical and Radar Satellite Images application iRlood

Modelling and Mapping

Optical and Radar imagedsoplay acrucial role in flood modelling and mappingised

for a rangeof applicatons including (i) ma n n i roughbess derivatio(Medeiros et

al., 2012) (ii) river width estimation(Andreadis et al., 2013Jiii) geomorphological

properties extractiorfKhadri and Chaitanya, 2014jiv) inundation extent mapping

(Bates et al., 2006)v) river discharge estimatiofTarpanelli et al., 2013, Gleason and

Smith, 2014) (vi) land use/cover derivatio(Sanyal et al., 2014)vii) bathymetry
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estimation (Karimi et al., 2016) and (viii) hydrodynamic model calibration and
validation (Wood et al., 2016)Remde Sensing (RS) application in flood management
has been well established, with opmstess images including Landsat, MODIS, and
ASTER widely used in developing regio(3ano Umar et al., 2011Yntil the launch

of the GBand Sentinell SAR mission by the European Space Agency (ESA) in 2014,
radar imagery applicatiomas beetimited in developing regions due to the high cost of
acquisition(Townsend and Walsh, 1998, Qasim, 2011)

Optical and RadaRemotesensing data provides uniqueerits and demeritsand are
characterisedbasedon the source oenergy employed during data collection. Optical
(passive) remote sensinglieson solar energy, while radar (active) remote senss&s
inbuilt energysourceonboardthe satellite(Dano Umar et al., 2011Passive RS data
can only becapturel in the daytime and depends ooloudfree skies(Asner, 2001)
However, its multispectral characteristiceake it a suitable for land use/cover
classification, inundation delineation, drainage mapping, and flood impact assessment
(Musa et al., 2015, Stephen et al., 2015, Alexakis et al., 28t8ye RS beam ability

to penetrate cloudsoverand water discrimination potentiaiakes it the optimal data
type for flood mapping when availab{8chnebele and Cervone, 2013, Townsend and
Walsh, 1998)

Despite SAR advantages, sensor noise, vegetation aneupuitdarbackscattehave
been identified as factors that hamper Séffectiveflood discrimination(Long et al.,
2014, Lamovec et al.,, 2013, Giustarigti al., 2013) SAR imagery flood maps are
usually extractedby pixel discriminationgiven thatflooded pixels tend to have lower
valuesof backscatter,due to the weak return signal associated with waters smooth
surface (Henderson and Lewis, 1998)he discrimination method applied can also

grossly impact on thaccuracy of the derived flood exté€Meljanovski et al., 2011b)

Some SAR flood extent mapping techniques incltigtistical active contouring
radiometric thresholdinghistogram thresholdingpixel-based segmentatipriractal
dimensioning of multtemporalimages neural networksin a grid system Image

segmentation and decision tree analgistng et al., 2014, Im et al., 2008)

Optical image flood extent on the other handare derived mostly from the

discriminating between the spectral signatures of water surfacéharglirrounding
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landscape irsingle ormulti-temporalimages, using classificatioor spectral indices
approacks (Zhang et al., 2014, Stephen et al., 2019)e properties of some open
access optical and radar RS images applied in flood modelling and mapping are

presented in Table 5.
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Table5 Optical andRadarSatelliteimageries case studies

Sat. Res.
Case study References
Imagery (m)
Landsat 30 Floodplain inundation delineatior (Neal et al., 2012, Seung Oh et a
for 2 and I dimensional model 2013)
calibration and validation, Inner
Niger and
MODIS 200 Hydrodynamic model calibration (Sanyal, 2013, Lewis et al., 2013)
and validation.
Terra 15 Urban sprawl and flood (Franci et al., 2015)
ASTER management Dhaka, Banglades
Sentinel 1 10 Sentinell and Landsa8 (Kyriou and Nikolakgoulos,
combination in mapping flooding 2015)
at river Evros, Greece.
Sentinel- 2 10 Water bodies delineation (Herve et al., 2013)

Sat.= Satellite, Res = Spatial resolution

4. Openaccess remote sensing application for flood monitoring and management
in Nigeria

Previous sections highlighted flood modelling and mapping procesdeta
requirements,and detailing available opeaccess remote sensingata setsand
application prospect in several locationNigeria is located downstream of the Niger
Basin (Figure 2)that collectsrun-off from a 2156000 kareathrough the Niger and
Benue rivers(Aich et al., 2014h) Thus Nigeria s prone to fluvial flood, exposing
floodplain dweller to diverseegativeconsequence@\keki et al., 2013, Akinbobola et
al., 2015, Agada and Nirupama, 2015, Tami and Moses, 2M\iggria recently
experienced unprecedented levels of flooding attributed to gaor water release
management and risk communication attributed to data unavailafijtgi et al.,
2013)

This section focusesn identifying the causes of data deficienciesNigeria and

reviewedthe literatureon applications of opeaccess applications in Nigeria to identify
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gaps and opportunities for research improvent@sed orglobal trends discussed in
the preceding seans. This reviewsectionbuilds of previous reviews on flood risk
management in NigerigKomolafe, 2015, Ugonna, 2016, Opolot, 2013, Adeaga et al.,
2008, Ologunorisa and Abawua, 2008)enincorporatedata challages, solutions and

prospect for regional anthtionalflood managemenisingopenaccess remote sensing.

[ Africa

Legend

Niger_Benue River
777 Niger Basin
|:| Nigeria

0 320 640 1,280 Km

Figure 2 Map showing Nigeria, Niger Basin, Africa and the main inflow rivers (Niger

and Benue)
4.1. Datalimitations for hydro -meteorological studies in Nigeria

Like in manydeveloping countries, tHack of hydrometeorological data in Nigeria has
been widely documentedpnsequentlyesultingin poor flood managementiecisions
(Ngene et al.,, 2015)Currently, existing hydrological and meteorologicagjauge
distributionare belowWorld Meteorological OrganizatioFMWR, 2013)and Ngene,
(2009)recommendtions i.e. (237out d 384) and (29 out 0of970) respectively. Alsp
severalof the established stations have beeported to bénactive decommissionedr
discontinued(Figure 3) contributing to the data sparsity in the cour(tdgene et al.,
2015, FMWR, 2013)
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Figure 3Status of some hydrological gauging stations in NigérfaFunctional, NF =

Non-Functional, Unknown)

Lack of financial support, technical deficiency, pomrganisationalstructure and
obsoleteequipment/infrastructure have been identifiedttaes factorsresponsible for

data shortage in Nigeri@lomoda, 2012, Izinyon and Ehiorobo, 2014, Olayinka et al.,
2013, Ertuna, 1995)Also, Maxwell, (2013) and Ononiwu,(1994) attributed data
inconsistency to poor hydrological data management systems and lack of standards,
resuling in unreliable, fabricattanddata formainconsistencyFurthermoreMaxwell
(2013)and Olayinka(2012) arguedthat even when data is available, custodians store
data in paper format thus reducing transferability, applicability and leng

term/sustainablelata availability

Hydro-meteorological dataare essentially appliedn estimating expected flood
magnitudes based on past trgrahd the length odvailablehistorical data contributes
to the uncertainty ithe derived floodestimategMerz and Bléschl, 2005, Reed, 1999)
Extendedhistorical data result in more accurate estimates and vice Kjsilsen et
al., 2002)

Metaanalysis of river and rainfall estimation studies (Figireahows that rainfaldlata
setsare generally longein durationthanthoseof streamflowdata.ln 2016, a search

was conducted within the pesrviewed literature on the google scholar
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(https://scholar.google.cofy/database spanning the years 2000 to 2016. A combination

of t he search t er ms and keywords i ncl uc
Ahyddynamic model |l ingo, mMvVdlomar afbridguencas
Arainfal/l frequency analysiso, Anfl ood maj]
floodingo, were used, with the results fu

representig the country of interest.

Majority of hydrological modelling studieare basedn historical data of lengths
ranging from 10 to 20 yearbencethere is a needfor adaptation ofan approach that
leverages omata frommultiple gauging stations to reduce flood estimate uncertainty

and improve flood management decision makKFgE, 2005a)
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Figure4 Rainfall andstreamflowdata length variatiofrom previous studies in Nigeria
4.2. Remote sensing applicatiofor flood management in Nigeria

Remote sensing (RS) in past three decades has playedcial ale in flood
management globally, regionally and Nigeria in partic(dateaga et al., 2008, Hughes
et al., 2015, Hrachowitz et al., 201Remote sensing allows ftine collection of data

without being in direct contact with the object under investigafgmith, 1997, Kite

1 https://scholar.google.com/
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and Pietroniro, 1996)thereby providing an alternative to ground data collection
hindered by factors previouslysdoursed(Nwilo et al., 2012, Musa et al., 2015)he
spatiotemporal capacity of remote sensing, ease of manipulation @il diga and the
advantage of radar sensors ima@es enhancechundation mapping tremendously
(Musa et al., 2015, Ritchie and Rango, 199B¢spite these advantages, RS is not
without limitations, asthe time lapse between satellite image captutegh cost
associated with acquisition of highsolution imagg cloud cover, vegetation canopy
and terraimoughnesdiave been reported in several arstes to hamper RS application
(Chen et al., 2005, Lewis et al., 2013, Sanyal et al., 2013)

Integrated flood mappingmainly involves flood magnitude estimatign hazard
modelling and impact assessméherts et al., 2009)Sevensub-categories oRS flood
application areas haveeen identifiedn Nigeria, including Vulnerability assessment,
Flood frequency analysis, Flood risk mapping, Rainfall frequency (intensity) analysis,
Hydrodynamic modelling, Water resource management and Floodplain encroachment
analysis Vulnerability analysisentails integratingsociceconanic and biophysical
factors to ascertaiaregion®coping capacityn relation toflood exposurédMusa et al.,
2014a, Adelekan, 2011, Tamuno et al., 2008pod frequency analysimvolves
estimating expected flood magnitudes by fittimgtoric flood time serieto a suitable
probability distribution to or combining hydrological data from regions of
physiographic similarity(Izinyon and Ehiorobo, 2014, Izinyon and Ajumka, 2013,
Fasinmirin and Olufayo, 2006)The minfall frequency (intensity) analysiapplies
rainfall data to estimate expected rainfall intensityl expected runoffisikwue et al.,
2012, Ologunorisa and Tersoo, 200&)nce flood estimatesre determing the
outcomes argouted in 1/2 dimensional models in combination with terrain data to
derive floal hazard information such as inundation extent, deptits /or velocity
(Olayinka et al., 2013, Adewale et al., 2010}her than hydraulically modelling flood
hazard, flood defps and inundation extent for a particutexint in timecan be directly
determined using satellite images and digital elevations md@lskrs et al., 2013,
Akinbobola et al., 2015)The increasing development of industries and settlements
within thefloodplainis directed related to exposuaad vulnerability(Padi et al., 2011,
Tamuno et al., 2003Remote sensing and GIS approaches are ususdigito identify
floodplain encroachment to ensure adherence to and enforcement offlood
managemenpolicies (Oyinloye et al., 2013, Ndabula et al., 201Rjgure5 illustrates

34



Application of Operaccessand 3¢ Party Geospatial Technology for Integrated Flood Risk Management in Data

SparseRegions oDeveloping Countries

flood management application areas mostly focused on in Nigeria, showing high levels

vulnerability mapping, flood frequency assessment and risk assessment.
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Figure5 Flood studiesn Nigeriashowing specific application areas

4.3. Openaccess remotaensing application in flood management Nigeria

Metaanalysis of 100 flood research journal articles focused on Nigeria shows the range
of data applied in flood management studies (Figd)rerevealing high reliance on
Landsat andSRTM. Various data setsprovide contrasting levels of accuracy and
uncertainty(Jung and Merwade, 2013hereforehigh spatial resolution data such as
LIDAR and SARare mostly recommended for flood modelling processes due to the
advantage of terrain complexity detailing andffective water surface discrimination
capacity (Qasim, 2011, Hunter et al., 2008Figure 7 further shows the variation
betweenTerraSARX (radar) digitized from theflood map derived using histogram
thresholding appieh by the Disaster Charteonsortiumand MODIS (optical) flood
extentsautomatically generated as Modis Water Prodiiaciugh a collaborative effort
betweerNASA andDartmouthFlood Observatory, University of Colorado, USAsing
algorithm that uses a ratio of MODIS 2&60Bands 1 and 2, and a threshold on Band 7
to provisionally identify pixels as wat@xigro et al., 2014)
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Nevertheless, sudhighly detailedsatellite data are costly atidereforeseldom applied

in developing countrieBke Nigeria. However, the constellation global satellites for

di saster management through the I nternat.
initiative (Bessis et al., 20048nd other emergency services makegresolutiondata
available for disaster response if activated durflapding. Also, multinationals
companiesvith largefinancial capacities such as Shell Petroleum Development (SPDC)
and other®perating in the Niger Delta region of Nigeria acquiigh-resolutionimages

for operational purposes, and sometimes use such data for disaster manéggenent

et al., 2013) Nigerian Satellite images are also seldom availablebw@gaucratic
bottlenecls and poor data management infrastructureler data availability for flood
managementand otherapplicatiors (Agbaje, 2010, Akinyede and Adepoju, 2010)
Other data types and techniques widely applied in Nigerian flood management studies

are presenteih Figure8.
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Figure6 Remote sensing data application in flood studies in Nigeria
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Figure7 Radar (TerraSARX) and Optical (MODIS) flood extentsomparison at
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5. Openaccess remote sensing in transboundary flood management

Managing flood occurrences in a sovereign nation is challenging endbgh
complexity is increased when flood transcenberders Floods sometimesriginate
from one country, and if hydraulically connected to another country within a single
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catchment areatravels downstreantBakker, 2009) hence transboundary flooding.
Poor management of excess water releases from dams triggeckohdte change and
other anthropogenic factors yWeabeen identified asome of the leading causs of
transboundaryflooding (Angelidis et al., 2010, Clement, 2012, Zeitoun et al., 2013,
Cooley and Gleick, 2011)n such situations, efforts need to be coordinated between
flood origination and destination countries to ensure effective flood management.
Approximately 2286transboundary river basinsxist globally (Figure9), encircling
42% of the worl doés pop Ulamd, and s regporisiblé for a 6
approximatey 50% of global river discharg@Volf, 2002, TWAP, 2016)

Legend
|| Transboundary River Basins
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Figure9 Global Transboundary River Basi(surceTransboundary Freshwater

Dispute Databage

Coordinating the activities of individual countries within a transboundary water
resource managemerdrgansation is particularly challengingdue to the diverse
interests, policies and activities of ripariafc COWASSWAC/OECD, 2008, Hooper
and Lloyd, 2011, Chikozho, 2014)hus promptingthe need fora shift to remote
sensing approaches that aid independent data woflelmy riparian countries without

administrative protocols violatiofiKlemas, 2015)
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Several remote sensing studies have been underiakénis regard, using radar
altimetry, optical/radar imageries, and hydrodynamic models to solve the data limitation
challenges associated with poorly coordinated transboundary flood management efforts.
Mallinis et al.,(2013) delineated transboundary Evros river (Bulgarian/Turkey) flood
extent and damage caused by upstream dam water releas&NSIB®AT ASAR and
postflood multi-temporal LANDSAT TM images. The effecvf varying flood
magnitudes released from upstream Ivaylovgrad dam (Bulgaria) on the connecting
Ardas River (Greece) was modelled using HE®GAS, using in situ gauge
measurementand digitalterrain data(Serbis et al., 2013}herebyenabling effective
downstream flood planng and managemeriati et al.,(2008)investigated changing

land use/cover impact on the Mara transboundary river (Kenya/Tanzania) hydrological
regime usingremote sensing (Landsat MSS, TM/ETM, and SRT{hundcollected

land use/cover ata, meteorological andtreamflow data integrated within the
Geospatial Streamflow Model (GeoSFMBiancamaria et al.(2011) established a
empirical relation between downstream altimetry (TOPEX/Poseidon) water levels
(India) and upstreanm situ measurements (Bangladesh) for forecasting purplusey

the Ganges and Brahmaputra transboundary ribessain et al.(2014) in the same
study area apigd a forecasting rating curve approach combined with HRAS
hydraulic model to forecast downstream water levels using upstream JASON
altimetry,in situwater levels and rating curvBeyler et al.(2008)further demonstrated

the value of remote sensing altimetry and SAR satellite missions in transboundary water
resource managemermts remote lgations along the BetMadeira river in the Amazon

was monitored using ENVISAT altimetand JERSL radar images

The case studies discussed above illustrates the wide range chayess remote
sensing application in transboundary flood managenweitit, radar altimetry, DEM,

SAR and optical images identified as alternatives to ground survey distorted by
bureaucratic challenges. Remote sensing makes it possible to forecast expected floods,
estimate flood exceedance probabilities and monitor riparian goohémgego land

use/cover effect on downstream hydrology.

5.1. Transboundary flood management Nigeria (Niger Basin)

The unprecedented flood everit 2012in Nigeria was attributedto (i) excess water

releasefrom dams within and outside Nigeria due taotense precipitatign (ii)
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inadequateisk communication; angoa stakeholder collaboratiofOjigi et al., 2013,

Olojo et al., 2013)The lack of transboundatakeholdercollaboration is evident for
instance inNi geri ad6s inability to uphold part
Cameroon to establish Dasin Hausa dam to buffer the effect of Lagdo dam built by
Cameroon along the Ben&ever (Erekpokeme, 2015, Daura and Mayomi, 2015)

The Niger transboundary river bagilRigure 10)encompasses 12 countries including
Senegal, Guinea, Cote D'lvoire Mauritariéali, Burkina Faso, Algeria, Niger, Benin,
Nigeria, Cameroon and Chadhe basinencircling 93,617,850 personwvithin a
2156000 krh ared TWAP, 2016, Aich et al., 2014b)

facfo A Algeria
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Figure10 Map of Transboundary Niger River Basishowing constituting countries and

Dams

Figure 10 also highlights the transboundary nature Niger River Basin, constituent
countries and characteristics. The Nidgasinis largely regulated by dams, housing
approximately 69 Dam@.ehner et al., 2011¢onceived mostly as national and local
projects but have transboundary impac{(&RP, 2016) To effectively manage
transboundary water resource and impact on riparian countries, the Niger River
Commission (NRCyas establisheoh 1963, now théNiger Basin Authority (NBA)as

reconstituted in 1980 to promote-coperation between member states and ensure
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sustainable Integrated Water Resource Manage(@ht, 2016) The Niger basin is

presently controlled by several pastionial agreements presented in Table

Table6 Niger River Basin Agreement, Nigeria. Adapted fr@@ossard, 2009,
International Waters Governance, 2016, Wolf, 2002)

SIN  Treaty Function Location Year
1 Act regarding navigation and econorsizoperation Navigation and Joint Niamey, 1963
between the states of the Niger Basin. management Niger.
2 Agreementoncerning the River Niger Commission Navigation, Joint Niamey, 1964
and the navigation and transport on the River Niger. management, information  Niger.
exchange
3 Agreement Revising the Agreement Concerning the Navigation, Joint Niamey, Niger 1973
Niger River Commission and the Navigatiand management, information
Transport on the River Niger. exchange
4 Convention Creating the Niger Basin Authority (NBA Water resource mgt. Faranah, 1980
coordination Guinea
5 Protocol relating to the Development Euof the Niger Planning funds for NBA Faranah, 1982
Basin Guinea
6 Agreement between Nigeria and Mali Co-operation on water 1988
resource use in the Niger
7 Agreement Nigeria and the Republic of Niger Environmental conservatiot Maiduguri 1990
concerning the equitable sharing in thevelopment,  and water resource
conservation and use of their common water resourt management
8 NigeriaCameroon Protocol Agreement Coordinate dam water - 2000
release.
9 Niger Basin Water Charter. NBA reviewand update. Niamey, 2008
Niger.
10  African Risk Capacity Weatherfinancial risk Pretoria, South 2012
management Africa.

Despite thee various cooperative frameworks, several factors includihdPoor and

fragmented data collectioffii) Lack of co-ordinationbetween riparian countries and
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organizations,(iii) Poor communication and knowledge of legal and institutional
frameworks, (iv) Funding deficiency,(v) Lack of clear objectives(vi) Lingual
differences, andyvii) Technical limitations(Morand and Mikolasek, 2005, Olomoda,
2002, IWG, 2016) have been identified as tloere issues hindering effége water
resource management in the Niger BagBrossmann,(2006) also lamented the
deplorable state ahe 65 gauging stations setp by NBA t hrough the
Pr oj ect 0Althongh the emergence of the NigdivCOS (Hydrological Cycle
Observing System) programegpectedo restore riveimonitoring network to optimal
capacity(Olomoda, 2012, Pilon and Asefa, 201ttje process isurrently in progress.
Nigeria, however furtherfacesspecificchallenges such as poor engagement, varied risk
perception, lack of interest, poor communication and commitment within the Nigeria
Basin Authority which hinders effective coordination and integrated water resource
framework implementatio(Olomoda, 2012)

5.2. Openaccess remote sensing gfication in Transboundary flood management,
Nigeria

As transboundary floods become m@mevalentand intense due to increased storms
triggered by climate change and anthropogenic fadasle et al., 2015)sufficient
hydrological datds requiredfor planning to mitigate flood impactAlso, considering
that transboundary flood management instituti@me facing recurring challenges tha
limit its functionality and sufficient data acquisition, opmtress remote sensing
provides a lowcost and viable alternative that alloevansboundary flood monitoring

and management without disruptiagy sovereign natiob autonomy

Openaccesssatellite imageries such as Landsat and MODIS have been proven to
provide an easy to visualizbe extentof flood transiting from a country of origin to
another downstream, enablimgpact quantificatiomeeded for prompt response, risk
assessment and dwation (Mallinis et al., 2013, Skakun et al., 2018adaraltimetry,

on the otherand,can be applied independently or with satellite images to support

planning, forecasting and flood management in riparian countries.

Tarpanelli et al.,(2016) explored the potential of integrating MODIS image and
ENVISAT radar altimety to predict and forecast discharge along the NRgmue
river. The dscharge was derived from daily anai8y 250m resolution MODIS AQUA
(BAND 2-NIR) by establishing an enmgal relationship between watéee land pixels
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during peak flood, permanentter pixels withirtheriver and known discharge values.
Pandey and Amarnatli2015) applied a combined forecasting rating curve approach
(Hossain et al., 2014pand hydraulic (HEERAS) model techniques to estimate
discharge from ENVISAT, Jaseh and AltiKa altimetry virtual station water levels
along the Niger and Benue rivers, resultimgNS and Rof 0.7 and 0.97 respectively.

In other closely related studies in the region, Salami and Ni(2@l,2) monitored

Kainji Lake using TOPEX/Poseidon and ENVISAT altimetry, revealing stronger
correlation between altietry andin situ measurements in the wet seasof £F0.93)

than the dry season {R 0.77), and RMSE varying from 0.50 m to 0.83 m for
TOPEX/Poseidon and ENVISAT respectively. Sparavigrfa014) studied the
variability of Nasser, Tana, Chad and Kainji lakes using TOPEX/POSEIDON and
Jasonl altimetry, and Cretaux et a{2011) combined TOPEX / Poseidon (T/P) and
ENVISAT altimetry with 8day MODIS Near Infrared band imag® monitor water

level variations and inundation along the Niger inner delta, Lake Tchad and Ganaga

river delta.

The hgh accuracyof water level estimatiofrom radar altimetry during theet season
along the Niger rive(Salami and Nnadi, 20123uggestghat altimetry canpotentialy
be usedn flood monitoring and management in Nigeria and Rliger Basin andthe
varying accuracies of different altimetry missiongply that altimetry data must be
applied cautiously, due r@sidualuncertainty. With current radar altimey tracks,such
as Jasor2 (Figure 1), Sentinel 3A/B (Figure ) and future SWOT (Figure3) passing
across the Niger basin, the potential for ltagn data collection fronspaceborne

altimetry for flood management is huge.
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Figure 2 Sentinel 3A/B Altimetry Tracksvithin theNiger River Basin
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Figure B SWOT Altimetry Trackswithin theNiger River Basin

6. Consortium of satellites for flood emergency management

Other than opesaccess remote sensing data, in sanstéancescommercial, regional

and national satellit@rgansations collaborative deliverhigh-resolutionimages and
services to support flood response and mitigation efforts. This section discussed some
the available satellite consortiums, disaster support services and cases of application in

Nigeria and hydraulically connected rivémsthe Niger Basin
6.1. Internationalcharteri s pace and maj or disasterso (1 (

The internati omdal mxjhanrteirs dstparceo a( | CSMD)
European Space Agency (ESA) and the Centre NationalE t Spatales (CNES)
following the UNISPACE Il conference held Vienna in 1999, and was igned by

the Canadian Space Agency (CSA) in 2@B#ssis et al., 2004)'he objective ofthe

Charter is to providelata to enable critical decision making during environmental or
technological disasters such as floodirml, spills, fires, earthquake, volcanoes,
hurricanes, landslides and ice hazatlsreby ensuring minimizettie impacton people

and infrastructures is minimizedCSMD, 2015) Between 2001 and 2012, several
satellite agencies including Japan Aerospace Exploration Agency (JAXA), Indian Space
Research Organisation (ISRO), United States Geological Survey (USGS), National
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Oceanic and Atmospheric Administration (NOAA), Argentinean National Commission

on Space Activities (CONAE), Exploration of Meteorological Satellite (EUMETSAT),
German Space Agency (DLR), National Institute for Space Research (INPE) of Brazil,
China NationaSpace Administration, Disaster Monitoring Constellation International
Imaging (DMCii) and Korean Aerospace Research Institute (KARI) joined the
Consortium,t hus enhanci ng thigk redOlatianr dpteal asl SARr o mp t
imagesacquisition and availality (UNOOSA, 2013)

Between 2000 and 2015 the ICSMD charter has been activated 44 byimese than
110 countries for various disast§f€SMD, 2015, UNOOSA, 2013)As at 1 August
2016, 500 disasteCharteractivations have been recordd@SMD, 2016) Up to date
overview of disasterCharter activations for flood monitoring and management is
presented in (Figure 13), with South America, Africa and Ahk@wving the highest

activatiors.

Jcean

Figure 13Map showinginternational Disaster Charter Flood Activatid@9007 2016)
(Source: Disaster Charter)

6.2. Disaster Charter activationsin Nigeria

In Nigerig the charteris usually activatedy the National Emergency Management
Agency (NEMA) designated project managgne activation follows the following five

steps: (1) requisition by authorised person, (2) requestor identification and request
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verification by a 24/7 operator, (3) request analgsid satellite tasking for data capture,

(4) data acquisition and delivery, and (5) support in data processing throughout the
emergencyJames et al., 201.3n Nigeria, activation of the disaster charter is relatively
new, and only 6 activations have been made between 2010 and 2012 to monitor
flooding events at Sokoto in 2010 (calls: 324 and 326), Ibadan in 2011 (call: 370), and
in 2012 at Adamawa, Kogi and fasa, (calls: 407, 415 and 416) respectidgmes

et al., 2013)Some of the images collected ovke course of the activations in Nigeria
include RADARSAT2, SPOT5, TerraSARX/TanDEM-X, Landsat ETM,
KOMPSAT, ENVISAT, UK-DMC, and NIGERIASAT(ICSMD, 2016, Olojo et al.,
2013) One of the lingeringchallenge of the DisasterCharterimagesis the strict
license andopyrightpolicies thatprohibit reeuseand distribution of the dat@ames et

al., 2013) thus limiting the prospect of further data application in research.
Nevertheless, finished produdse available via th€harter Activationsveb pageas

high-resolutionmaps and can be used for flood mapgnacesses

6.3. International Water Management Institute (IWMI) Emergency response

products for water disasters

This is aspacebased information and rapid mappipigtform for emergency response
aimed atproviding supportfor disaster management in Africa and Aslde platform
was developed from a collaboration amsinthe International Water Management
Institute (IWMI), Asia-Pacific Regional Space Agency Forum (APRSAF), European
Space Agency (ESA), therlited Nations Office for Outer Space Affairs (UNOOSA)
and theUnited Nations Platform for Spadmsed Information for Disaster Management
and Emergency Response (A8®IDER).This platformchannelanimpactedc ount r y 0 s
data request to the Disasteharter and alsalirectly processeand applie®penaccess
remote sensingmages (i.e. Landsat, Sentinel 1, MODIS and Global Precipitation
Measurement) to deliveproducts needed for decision making durirey disaster
(Backhaus et al., 2010%ofar, the platformhas supported five countries including Sri
Lanka, Myanmar, India, Bangladesh, and Nigéfi&@MI, 2016). Also, a total of 37
flood support information sabeen deployed froropenaccesssatellites as well as
TerraSARX, RadarsaR, RISAT-1, ALOS2 PALSAR2, and JAXA2 ALOS2
(IWMI, 2016).
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6.4. IWMI Emergency response application, Nigeria

This Spacebased information and rapid mapping for emergency response platform
between 2% Septembei 4™ October2015hasdelivered 10 Sentinel flood maps to
support flood management efforts along Niger @whue rivers in Nigeria This
emarated from acollaborative effort amongst IWMI, European Space Agency (ESA),
Federal Ministry of Agriculture and Rural Development (FMARD) and Consortium of
International Agricultural Research (CGIAR).

6.5. Copernicus Emergency Management Service

The European Union Copernicus Emergency Management (pktS)des rapid(i.e.

hours or days) fresatellitebasedmaps toinform decisioamaking before, during and

after natural anadnmanmadedisastergCopernicus, 2016)Although European nations

are considere@ priority for support provision, otherountries through anauthorsed

user can activate the Copernicus EMS. Splfatween % April 2012and 19" August

2016, the Copernicus EMS has been activated 175 times (Table 7), with flooding
identified as the highest cause of activation (40%), resulting in 68% of delineation maps
generated.

Table7 Summary of the Copernicus EM®1apping Activations

. Number of Number of Number of Number of
Type of Disaster o ) . .
Activations Reference Maps Delineation Maps Grading Maps

Earthquake 9 83 31 67
Flood 71 358 692 61
Forest fire,

wildfire 21 47 98 79
Industrial acciden 5 12 3 1
Other 55 218 143 127
Wind storm 14 80 45 53
Total 175 798 1012 388
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6.6. Copernicus Emergency Management Service (EMS) application, Nigeria

region

The Copernicus Emergency Management Service (EMS) has not been activated for
Nigeria yet, but have been activated twice (EMSR018 and EMSRO019) for Niger
(Niamey) and Cameroon (Lake Maga, Gar@emnue River) respectively in 2012, and
could prove useful forransboundary flood monitoring in NigeriAuthorised users
France|Centr®perationnelde Gestioninterministerielde Crises (C.0.G.I.C) and EC
Services|DG JRC activated the Copernicus EMS for the respective countries, providing
RadarsaR, Rapid Eye, COSM&kyMed, and SPOb satellite imagedlood extent

maps.
6.7. Digital Globe Open Data Program

More recently, Digital Globea commercial satellite compafgunchedhe iiOpen Data
Program ( O D Pijitiative aimed at providinghigh-resolution satellite imagery to
support recovery from larggcale natural disasters such as floodigce, 2017)ODP
provides pre and postdisaster images, including support via theTomnod and

Humanitarian OpenStreetMap Tea(iOT) crowdsourcing platforms for damage

assessmen(Baruch et al., 2016%0 far,the ODP has been activated six times by Haiti,
Nepal, Mexico, Ecuador, Caribbean/Unitadt8s, andMladagascarto manage disasters
including earthquakes hurricanes, and cyclone3he prospectof this initiative is
enormousashigh-resolutionimagery will largelyimprove risk and damage assessment
in remote locations that are usuallgobserved in coarse imagdhough the ODP is
yet to be deployed in Nigeria, it was deployed gostdisasterassessment of the 2017

Sierra Leone Mudslide disaster. This is its first application icettee African continent.

7. Conclusion

Flood disasters are becoming more frequent, intense and destructive, owing to climate
change and anthropogenic factors. Managing floods requires effective decision making
based on wpo-date and reliable hydrological informati¢Bls, 2013) Typically, data
needed for flood management includes river discharge, water levels, precipitation,
terrain, and land use/cover characteristics collected through the establishment of ground
monitoring stations and field observatidssrveys (Kite and Pietroniro, 1996)In

situations where flood transcends administrative bourdadue to natural catchment
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delineations or river network connectivity, transboundary corporationsedngp to
enable collaborative data collectioog-operationy risk communication, information
sharing and planning to effectively manage flood impact in riparian coufBaker,

2009, Chikozho, 2014)Nevertheless, both independent and transboundary data
collection systems for flood management arsually flawed by organgsational
technical, Institutional, infrastructural and financial challengesliimitt inter andintra
organgationalco-operation(Olomoda, 2012, Bakker, 2009, Chikozho, 2012, Zeitoun et
al., 2013, Tilleard and Ford, 2016)

The role of remote sensing in supporting transboundary flood monitoring, planning and
management is enormous, as it allows data collection at upstream flood origination
countries by downstream impacted country withabe need forbureaucratic
authorization(Angelidis et al, 2010, Sridevi et al., 2016)n independentountries
remote sensing mostly enables data collection in renmmdecessible and data sparse
locations to improve flood management practi®dusa et al., 2015)

Advancement in remote sensing has immensely improvedd flmanagement,
particularly by making data available frgeospatial datéo improve flood practicem

data sparse regions of developing countries where ground monitoring network is limited
and the cost of obtaining commercial satellite data is particularly (Bigilncamaria et

al., 2011, Yan et al., 2015&)penraccess remote sensing improves flood modelling and
mapping wherdata setsuch as radar altimetry, digital elevation model, optical and
radar satellite imagery are applied independently, in combination imitlsitu
measurements or integrated intoydrodynamic models as initial or boundary
conditions, thereby reducinfijood estmation uncertainty in ungauged river basins
(Birkinshaw et al., 2014b, Sanyal et al., 2013, Jung et al., 2012, Trigg et al., 2009)

It is worth noting that various freely available RS data sets provide varying accuracy
levels, depending on multiple factors. Altimeti}ission accuracies depend ahe
satellite ground footprint, virtual station location, river width, tributaries discharging
into the mainriver and satellite sensor properti@éan et al., 2015a)Digital elevation
model spatial resolution results in elevation approximatioe, toC and Xband radar
inability to penetrate@egetation canopies, and reflection off rooftops and water suyfaces
resuling in elevation oveestimation(Cook and Merwade, 2009, Musa et al., 2015)
Optical imagery applicationsr& hampered by atmospheric conditions and spatial

resolution (Asner, 2001,) while one of the core deficienciesf radarimagesis the
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inconsisteng in delineating floodsin urban and forested areg@¥eljanovski et al.,
2011a)

Despite these deficienciethe role ofindividual and collectiveRS sensor images
applicationin flood managemenis huge, especially in developing regipas it allows

for the estimation and quantification of hydrological parametatspreviously
undetectedocationsonce a concept has been proatra location wheran situ data is
available(Tarpanelli et al., 2016)

With remote sensing technology continuously advancing and becoming more freely
available,the relianceon ground observation data is expected to decline, especially
whereground data isinreliable and scanty as evident in Nigefilso, with commercial
satellites companies such as Digiglbbe and other satellite consortiunteaking
availablehigh-resolutionimages for disaster managent(ICSMD, 2015, Price, 2017)
flood mapping processes will benefit hugdDespitethis obviousadvantage of remote
sensing the role ofgroundcollecteddata cannot bdisregardecand must take priority

or applied in combination withemote sensinglata for enhanced flood mapping
(Domeneghetti et al., 2014, Sunad, 2012)

7.1. Future research direction for improved flood modelling and mapping in

Nigeria

1. Planning for flood management usually requires flood magnieatamatesat
varying return perioddased orhistorical flood data. In developing regions, such
data ardypically short if the gauging station is newly establishedliscontinued
and contain gaps (missing data points) caused by equipment malfunction or poor
data collation practices (Maxwell, 2013, Olayinka, 2012)Altimetry can aid
historial river data reconstructiowherenewly established and old discontinued
gauging stations exist at prmity to virtual stations(Escloupier et al., 2012)
Nevertheless, the low revisit time of altimetry satellf@d.oughlin et al., 2016a)
can result in th@on-capture ofpeak floods needed for flood magnitude estimation
(Domeneghetti et al., 2014, Yan et al., 201&hdlin other instancesltimetry data
is unavailale at certain locationgPapa et al., 2010Y herefore,t is essential that
the effectof altimetry application is evaluated against another that statistically

infills missing hydrological data to ascertain the influence of both approaches on
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flood frequency estimates, atmlunderstand whetheseindividual approaches can
beused

2. The potential ofndividual satellite data such as altimetry, DEM, optical and radar
images ha beendemonstrated in this reviewvith the uniquemerit, demerit and
application prospect clearly highlighteth very remote locations of developing
regions, dataparsty is so wicespread that uniform data is seldom available for a
whole catchment aredherefore a combination of all availablepenaccess RS
data insuchunique datssparse location isscommendedeveragingon merits of
individual data setsto improve all phases of flood mapping processes, i.e.
hydrological modelling, hydrodynamic modelliagdinundation mapping.

3. Satellite onsortiumimageshave been proven to be useful in flood risk assessment
when a flood occurs,as pre andpostflood images are provided for comparative
analysis(Olojo et al., 2013)However, strict license arabpyrightpoliciesprohibit
re-use and distribution of the datdames et al., 2013thereby restricting a shift in
focus from flood recovery to planning. Neverttsse end productsi.€. high

resolutioninundation maps) are available via fBkarter Activationsveb pageand

can be applied to support flood modelling processesinform decision making
before during and aftea flood event

4. The deficiencies of spadmrne images application in flood modelling and
mappingarequite pronounced in various landscapes, irrespective of the sensor type
and theirparticular advantagegLong et al., 2014, Corcoran et al., 201Zhe
private sector has played a vital rateadvancing geénformatics in developing
regions(AARSE and EARSC, 2016)nvestinghugelyin high-resolutionsatellite
andairbornedata needed for operational and disaster management pu(Ryses

et al., 2013, Nwilo and Osanwuta, 200A)unique opportunity foralaboration is
identified here, as privately sourtdata can be integrated with opaccess remote
sensing and crowdoureng (Degrossi et al., 2014p improve flood mapping in
data sparseegions.

5. Though this literature review focused on fluvial flood modelling and mapping, it is
important to note that precipitation d4ia situand satellitexouldalso vital in this
processand has been widely applied, especiallyatasparseregions from flood

modelling and hazard mappifgoshimoto ad Amarnath, 2017, Komi et al., 2017,
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Yu et al., 2016, RevilllRomero et al., 2015afiowever, this i9eyond the scopef

this thesis.
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7.2 Simmary of thesis methodologies for analytical chapters 37

Chapter

Gaps address using method

Method description

Available data

This chapter attempts to fill the gaim
hydrological data evident during floodin

that emanates from restricted access

remote locations to acquire  rivf

measurements manually, as well as

Two approaches, empiricand statisticabre
applied to assess the prospect of estima
peak flows needed for mhict flood frequency
estimation, as well aascertain thevariation

in the flood frequencestimats derived using

Annual peak flow time series with ga
varying from 1 to 3 years (consema)

and > 3 years (inconsecutive).

° destruction of measuring equipmethtring | both approaches.The empirical (Radar
peak floods that detercontinuous dati Altimetry) and statistical (Multiple
acquisition. Imputatior) are respectively applied turtail
missing data deficiency at locations wh¢
supplementary data available and unavaila

In situations where gauging stations are-n Regional flood frequency isadopted and| Annual peak flow time se&s for

4 existent ordata collected ishort in length, considers climate variability effect. Tl gauging stations within the Ogudshun

regional flood frequency can enal

analysis is executed usirttpe International

river basinof Nigeriag SRTM DEM and
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hydrological data agglomeration fro
neaby stations with similar hydrologicg

parameters.

Centre for Integrated Water Resour

ManagemeritRegional Analysis o]
FrequencyTool (ICI-RAFT) software with
inherent climate indices database to en:
climate variability assessment.Climate
variability is accounted for due to tf
significant trends and homogeneity obser

in the available historical data.

global climate indices time series frg
the National Oceanic and Atmosphe

Administration (NOAA)

During flooding,swift responseas expected
therefore disaster magement authoritie
require Real or NedRealTime (NRT)
information on exposure taespond, to
mitigate flood impact. Such datasets
seldom available in many developil
countries.

Typically, government agencies devel

{ this chapter The MWP flood extent is

To deliver he required NRT flood
information, twice daily overpass (Terra af
Aqua satellite3 MODIS Water Produc

(MWP) is combined withcrowd-souring in

generated automatically by a NASArough
an algorithm that uses a ratiof MODIS 250

m resolutionBands 1 and®, and a threshol

Inundation extent derived from th
MWP; georeferenced crowdsrcing
data points of responsdsom citizens
on knowledge of flooding arountheir
surrounding flooded or norflooded)
information th

and supplementary

infer preparedness response an

recovery; and the Annual Flog
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maps of perceivedlood risk beforea flood

occurs, to inform flood manageme
decisions. However, if such flood risk ma
are developed from coarse and inaccu
data, the perception of flooding will diffe
considerably from reality, resulting in flawg

decision making.

of Band 7 to provisionally identify pixels &
water Crowdsourcingdata s acquired using
web GIS application developed by the auth
using ArcGISGeoFormplatform.

The discrepancy betweegovernment and
citizen flood risk perception is also evalualt
using data acquired from crowdsourcing
also assessed, as well as factors that a

citizen preparedness, response and recove

Outlook of Nigeria (2015).

Hydrodynamic models provide a viab,
approach to estimate known or expec
flood extent and water level needed for flg
management decision making. These mo
typically require hydrological, topograph
floo

and calibration (known historical

extent, water levels, discharge 0

Variable degrees of afa availability was
evident in the model domain (i.e. Nige
South, Nigeria). Therefore, the whole stu
domain is modelledand calibratedusing
CAESAR-LISFLOOD, due to the availability
of input hydrological data upstream of t

domain, whilevalidation is segmentednto

Whole domain Hydrological input
data (Umaisha and Baro gaugi
stations, along Benue and Niger rive
respectively), and SRTM DEM (wit
Urban and Vegetation elevatio
reduced).

Lokoja: River bathymetry (acquireoh
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watermark} data, which as seldom availal

in many developing regions.

subdomains to reflect the variable data
availability. The three (3)subdomains are

named Lokoja, Onitsha and Niger Delta.

2011), NRT MWP, TerraSAKX, water
level measurement at Lokoja gaugi
station.

Onitsha: River bathymetry (acquireuh
2001), NRT MWP, andwater level
measurement at Onitsha gauging
station.

Niger Deltaz NRT MWP, Geotagge

overflight photos, CosmoSkyMed at

RADARSAT-2.

Flood extents extracteffom passive and
active satellite images such aMODIS,
RADARSAT 2,and TerraSARX are usually,
impaired by environmental conditior
including reflectance from vegetation cov
The|

urban landuse and cloud cover.

Decision tree based algorithmaslopted anc
applied here using WEKA data minir
software This approachintegrates various
open -access datasets including hydrolg

(river), geology, soil composition, lan

use/cover, DEM and its deatives to

CosmoSkyMed, RADARSAT,

Landsat8, soil composition, geolog
map, SRTM DEM, DEM derivative

(Topographic Wetness Index, a

Stream Power Index),

geotagg

overflight images.

57



Application of Operaccessand 3¢ Party Geospatial Technology for Integrated Flood Risk Management in Data SRaciens oDeveloping Countries

conditions are particularly evident irhe| improve radar flood detection potential in t

Niger deltaregion. mangrove dominated Niger delta region.

Furtherdetailsof specific methodologieare presented in individual chapters
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CHAPTER 3: INFILLING MISSING DATA IN HYDROLOGY: SOLUTIONS
USING SATELLITE RADAR ALTIMETRY AND MULTIPLE IMPUTATION
FOR DATASPARSE REGIONS

Abstract
Floods are undoubtedly one of the most devastating natural disasters otriggeted

mostly by climaticactivities and aggravatedy anthropogenic factorsDue to the
disastrous consequences of floodiitgis importantthat properstructural and non
structuralmeasure$e putin place to manage the effects of floodimad the first step
towards this isthe estimation ofexpectedflood magnitude and the probability of
occurrenceGapsin hydrologicaldata, particularlyn developing countriesicreaseshe
complexity of flood frequencyanalysis and could contribute to flood estimats

uncertaintyconsequentlyesulting in pooflood management decisions.

In this study, two methodsfor filling hydrological data gapsare deployed, (i)
incorporating river level data derived from sateli@sedRadar Altimetry and (ii)
Multiple Imputationtechnique and the impact of these approaches of derived flood
estimates are quantifiedhe approacss presented heraere appliedalongthe Niger
and Benueiversin Nigeriato assesscenarios obupplementary datavailability and

unavailability, to fill data gapsat specific gauging stations

The studyreveagéd that Radar Altimetry missing data infilling approach outperformed
Multiple Imputation, especially for widely gapped time series (> 3 years), but did not
differ significantly for data setsvith gaps of 13 years Also, previousy unquantified

2012 and 2015 flood events in Nigeria wepgantifiedas 1-in-100 and 1in-50 year

floods respectively, suggesting that the impact of these flood events would have been

mitigated considerably if sudhformation was availablehaving filled the historic da

gaps
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This study demonstrateghe potential of altimetryand statistical computatiofor
providing information tasupportflood management ideveloping regiong/herein situ
data is sparseespecially whergaugingstations have been destroyed, discontinued or

arenewly established.

Keywords

Hydrology, Missing data, Radar Altimetry, Multiple Imputations, Uncertainty, Flood

FrequencyAnalysis

1. Introduction

Flooding is one of the most devastating natural hazards, increasifrggumency,
magnitude and impact due to changing climatic conditions and anthropogenic
triggergfactors(Lavender and Matthews, 200%Reliable flood information is required
by flood risk managers and stakeholdevken deploying measure® effectively
counter the impacts of flood3ypically, networks ohydrologic gauging stationgre
establishedor this purposgHipel, 1995, Herschy, 2008)istributed across several
locations of interest toollectlong-term hydrological dataHowever, operating sudh
situ measurement systenespecially in developingegonsare oftenproblematicdue to
underfunding of implementation agencies by governméBtarrett et al., 2010)
inaccessibility and security challenges at some locafidmgpadu et al., 2013b)ack of
commitment by gauging station operatoasd equipment malfunction, replacement,

damage, modification and discontinu{layinka et al., 2013)

These factorgontribute to hydrological network inadequaegd decline of functional
stations and gaps in available recottlat flood modelling processes can result in
uncertain estimate&ven when data is available@ many casefor developing regions

theserecords are usually shornd river water level measwmentsand discharge
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estimation processefsirther subject the available hydrological dat@a aleatory and
epistemicuncertainies (Merz and Thieken, 2005, Baldassarre avdntanari, 2009,
Beven and Hall, 2014)This paucity of data is particularlgeverein developing
countries further limiting their capacityto mitigate and cope withthe impact of

flooding on people, infrastructure and so@oconomic activities

Researchers have explored several techniques to compensate data defitiencies
estimate flow for ungauged or sparsely gauged river basidisiding remote sensing
applications(Bjerklie et al., 2005, Tarpanelli et al., 2013, Birkinshaw et al., 2014a,
Gleason an@&mith, 2014) hydrodynamic modellingBiancamariaet al., 2009a, Neal et

al., 2012, Sanyal et al., 2014ombinedremote sensing and hydrodynamic models
(Pereira Cardenal et al., 2010, Tarpanelli et al., 2013, Yan et al., 2@Behment
geomorphological and meteorological data applicat{dntish et al., @10, Grimaldi et

al., 2012, Rigon et al., 201,5nd hydrological regionalizatidisaf, 2009a, Smith et al.,
2015, Kumar et al.2015, Rahman et al., 2014)hese techniqueprovide varying
advantages andhallengesand are applcable in different scenarioslependingon
availabledata Furthermore, l& of these approaches require some form of ground data
for verification given thatin situ observations provide better insight into local
hydrological processes and catchment response to changing climatic conditions
(Hrachowitz et al., 2013Rnd the output of each technique is strongly dependethieon

input data accuracy.

Irrespective of thenethod adpted for flood magnitude estimation, missing dattnin
thehydrological timeseries increases the uncertaintyhiaestimateresulting in flawed
flood management decisiofdung and Merwade, 2015Yo curtail this deficiency,

hydrologists have deviseskveralmeansto fill gaps in hydrological timseries using
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both statistical and empirical methodologi@Sampozano et al., 2014ptatistical
techniques are centred on filling missing data by simulatmgsing data using
trends/patterns from availableatd using methods such as regression analysis
(Westerberg and McMillan, 2015, Olayinka et al., 2013erpolation(Lee and Kang,
2015, Hasan and Croke, 2018phd artificial neural networkg¢Steven et al., 2010,

Starrett et al., 2010)

Traditional missing datafilling approaches generally involve removal of incomplete
data or single data imputationethods such as arithmetic mean or median imputation,
regressiorbasedmputation and principal component analységsed imputatiofPeugh

and Enders, 2004)Though the deletion method usually convenient(King et al.,

1998) this approach reduces sample size, thereby introducing statistical bias and
reducing the statistical power ampdecision of standard statistical procedutetle,

2002) Single imputation approaches contrastingly replace missing data while retaining
the original sample size. However,single imputation techniques lead to distorted
parameter estimates, reduced data varialiBgraldi and Enders, 2010, Little, 2002)
predictable bias, high variable correlatiffbonders et al., 2006)and dimensional

subjectivity(Jolliffe, 2002)

To curtail the limitations of the single imputation approddiltiple Imputation(MI)
has been proposed; an approach that fundamentally espfégsing time series values
using two or more plausible values derived from a distribution of possib{iGegham

et al., 2007, Graham and Hofer, 2000fultiple imputation is widely used in
hydrological studiegAsian et al., 2014, Khakloo et al., 2015, Graham et al., 2007,

Yozgatligil et al., 2013, Tyler et al., 2011, Lo Presti et al., 2010, Li et al., 26%5)
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provides the unique advantage of accounting for missing data uncertadtylo not

overestimateorrelaton error(Lee and Carlin, 2010)

Empirical methods on the other hand fitissing datausing supplementarglata sets

from upstream or downstream gagstations close to the location of interesg, well

as otherdata setsuch agligital elevation mode{Pan and Nichols, 2013pathynetry
(Tommaso et al., 2013nd/or satellite imagergata setg(Tarpandi et al.,, 2013,
Gleason and Smith, 2014, Birkinshaw et al., 201ata) radar aimetry (Dubey et al.,
2015, Asadzadeh Jarihani et al., 201Qf all listed empirical approaches, only
altimetry provides direct water level estimates that can be integrated seamlessly into
existing hydrological time saxs without complex computatigfandey and Amarnath,
2015, Silva et al., 2014, Papa et al., 20@yenthataltimetryvirtual station network

are globally distributed (See Figure 1113, Chapter2), a unique opportunity for
infilling hydrological time series gaps is presented, especially in developing regions
during peak flood seasons when situ statiors are usually disruptedor damaged
Notwithstandingradaraltimetryd sdvantages, its applicatios not without limitation,

as factors including atmospheric state during datpuisition satellite sensor properties,
temporal resolution, water surface characteristics and altimetry ground footprint
contribute to the measurent variability and uncertainti€Belaud efal., 2010, Jarihani

et al., 2015b, Clark et al., 2014urthermore, considerintpe recent launch of Jas@n
(NESDIS, 2016)and SentineB (ESA, 2016)in early 2016, and the prospeetlaunch

of Surface Water and Ocean TopogragByWOT) in 2020(Avisio, 2016) altimetry

data collection is expected to continue, and domirgtstainablewater resource

managemenor years to come

The objectives of this chaptaredetailed as follows:
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I.  Explore the prospect of filling missing hydrological tiseses usingradar
altimetry and multiplemputation
Il. Estimate flood frequency and magnitude ussograstingdy filled hydrological
time series and the effect of the gap length.
lll.  Assess thaccuracy and discordancy of derivatives from both approaches
IV.  Quantify the magnitudef therecentlyexperienced flooth 2012at the location
of interest (Nigeria), using data filled by both approachesietmonstate the

practicaity of this study.

2. Study region
The Niger souttHydrological Area (HAS5)(Figure 1A) is the focus of thistudyand

encirckes 22,170,300personswithin a 54000knt area The hydrology of the region is
defined byNiger Basin watemflow from Niger and Benue rive(gigure 1B)travelling
downstream to thétlantic Ocearthrough Nun and Forcadasstributariesn the Niger

Delta (Figure 1C) and to the Anambrémo river basinthrough Anambra riverfAnnual
rainfall in the Niger Basin varies from 1100 mm to 1400 mm, while the land cover/use
along the Niger and Benus comprisd of built-up areas, cultivated langblantations,
wetlands, mixedand use, grasslands, vegetation and samtaces(Odunuga et al.,
2015) HA-5 encompassesections ofsome ofthe most impactedstates(i.e. Kogi,
Anambra, Imo, Delta Bayelsa and Riverdyring the 2012 and 2015 flood event®f

which the 2012 flood was reported to have caused the greatest impact/damage in 40
years(Ojigi et al., 2013, Tami and Moses, 2013he impactsanclude disruption of
socioeconomic activities, damage to properties and infrastructure saaly deaths
(FGN, 2013, Erekpokeme, 2019oth events werériggered by intense precipitation
which resulted in the release of excess water from dams in Nigeria (Kainji, Shiroro and

Kiri) and Cameroon (Lagdo), with the impact exacerbated by poor planning due to
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insufficient data and poor communicati@@jigi et al., 2013, Olojo et al., 2013, FGN,

2013) Hence this study site is valuablaes it exploreshe challenges and opportunities

associated with hydrological datequisition,the potentialof alternative data sources

and their applicability. FigureAL also showsn situ gauging stations, radar altimetry

tracks and virtual stations along the Niger and Benue rivers.

@ Jason-1/2_V5

@ Envisat VS
® Topex Poseidon VS — — - Jason1/2/TPTracksNig

0 130 260 520 km A Gauge_Stations

BenueRiver

NigerRiver
EnvisatTracksNig

[ ] niger_South (HAS)

l:l MNiger Basin
l:l Migeria
l:l African

(B)

LY

Anambra

Forcados

Nun

Figurel: (A) Map of Nigeria showingn situgaugng stations, altimetry virtual stations

and tracks along Niger and Benue Rivers. (B) Map of Africa showing Niger Basin

imprint on Nigeria. (C) Niger South hydrological area showing tributaries (Niger and

Anambrg and distributarie@Nun and Forcadgs
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3. Materials and Methods
3.1.In-situ hydrological data

Hydrological data(Discharge, Water level and Rating curve) for ftve (5) in situ
stations (Table 1) used in this study were acquired filoenNigerian Hydrological
Service AgencyNIHSA), National Inland Waterways Authority (NIWA9nd the Niger
Basin Authority (NBA) Daily mean water level data is manually collected using staff
gauges, then converted to discharge upiegdefinedandup-to-daterating curve (i.e.

the relationship betweem-situ discharge and water levels3ee Appendix 3 The
respective gauging stations were established before the establishment of upstream dams
that alter the Niger and Benue river hydrological regirfsam, 2001b) i.e. Baro
(1915), Lokoja (1915), Umaisha (198@nitsha (1955and Taoussa (1954) herefore,
postdam establishment hydrological time series is applied to eliminate hydrological
heterogeneity caused by damreation.Hydrological data fofTaoussa gauging station
located in Maliwas acquired from the Niger Basin Authority (NBA) for validation
purpose, as none of the dsgts availablevithin the area of interest was without gaps
(Supplementary Figure i1 3). Only annual maximunflow time seriesdata are used in

this study.
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Tablel In situgauge station characteristics

Station . . River Width  Missing annual
River Lat. ©) Long. @) Area km?) Period of record GBM (m)

Name (km) peakdata
Baro Niger 8.6066 6.4170 730,000 1985- 2011 57.22 0.64 12
Lokoja Niger 7.8167 6.7333 752,000 1989- 2012 45.77 1.65 6
Umaisha Benue 8.0000 7.2333 335000 1985- 2012 18.87 0.61 19
Onitsha Niger 6.1667 6.7500 1,100000 1989- 2011 24.14 1.03 16
Taoussa Niger  16.9500 -0.5800 340,000 1985- 2015 N/A 0.47 0

* GBM: Gauge Bench Mark above Mean Sea LeX#A: Not Applicable(Source: NISHA, NIWA and NBA)
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3.2. Radar altimetry data collection and aplication for missingfilling data gaps

Radar altimetry data is acquired via a process that measures the distance between the
orbiting satellite and water surfagerelation toa reference daturfEarth Gravitational

Model (EGM) 2008) using satellite sensor echo pulse retumervals from when

emitted to when received upaeflection bythe water surfacgSulistioadi et al., 2015,

Belaud et al., 2010)Altimetry water levels are measured at virtual stations located
intermittently where altimetry satellite tracks cross paith rivers (Birkinshaw et al.,

2014b, Musa et al., 2015pff-the-shelf Topex/Poseidon (T/P), Envisat, Jasbrand

Jasor2 altimetry missions (See Table 2 for propertiey data fromthe Centre for
Topological studies of the Ocean and Hydrosphere (CT(@§taux et al., 2011)

database ara@pdiedin this study.

Altimetry water leveldata downloaded from CTOH are gyeocessed using the Virtual
Altimetry Stations (VALS) softwarand takes into cognizantee distance between the
satellite and water bodynd uncertainty contributing factors such as itmosphere,
humid and dry atmospheric conditions, polar tide, and solid eartlid@d8ilva et al.,

2010)
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Table2 Radar Altimetry mission and characteristics

S/N Mission Groundfootprint Return period Operation timeline Vertical References

(m) (days) Accuracy (m)
1 Topex/Poseidon ~600 9.9 1993- 2003 0.35 (Frappart et al., 2006)
2 Envisat ~400 35 2002- 2012 0.28 (Frappart et al., 2006)
3 Jasonl ~300 10 2002- 2009 1.07 (Jarihani et al., 2015a)
4 Jasor2 ~300 10 20081 0.28 (Jarihani et al., 2015a)

The EGM 2008 vertical datum for altimetry data used in VALS was converted to MSL which corresponded witkitlhgauge station
datum. This conversion was performed using datum correction parameters derived from the geoid calculator GeoiedEval

(http://geographiclib.sourceforge.net/tiin/Geoid Evid).

2 http://geographiclib.sourceforge.net/dmn/GeoidEval
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3.3.Missing Data Imputation, Pre-processing and Flood frequency analysis

3.3.1. Missing [ata Imputation

Missing data is aegulaty occurring phenomenon imydrological analysisdepictedoy

gaps within hydrological time series that emanate due to poor data management,
equipment damage/malfunction andracquired data due to inaccessibility, thus
resulting in poor flood magnitude estimates and management decisions. Two
approaches, Radaitimetry and Miltiple imputationare explored in this studgjming

to redue the uncertainty associated widpplying ggpped in historical hydrological

datssets

3.3.1.1. Radar Altimetry Missing Data Imputation

This appoach involvesestablishing a correlation relationship between upstream or
downstreamaltimetry virtual station datsetsthose of a nearbin-situ gaugng station
whenwater leveldata exist at both stationEhe established relationship is then applied
to estimate missingn-situ data whenonly altimetry data is availableAt locations
wheredata is not available at similar dates fiorsitu and altimetry virtual statianto
establish an empirical relationshipreviously established relationship fromnaarby
altimetry stationcan beadopted, provided thelistance between both virtual stations is
minimal, the changeniriver width is negligible, no hydraulic structuretabutary exist
between bothvirtual stations(Papa et al., 2010, Pandey and Amarnath, 20T%)is
approach is consistent with previous studiéapa et al., 2010, Michailovsky et al.,
2012, Dubey et al., 2015)vhere the rating curve for mearbygauging station was
adapted for another station where data was unavail@bé&enewly estimated wateit
In-situ station is then converted to discharge usipge-definedrating curve/equatian
Figure 1 showed the altimetry virtual stations chosen for this study whigs along

Niger and Benue rivers located upstream and downstream oinibiéu gauging
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stations. The frameworfresented irFigure 2 describeghe methodology fomfilling

missing datausing altimetry, while the characteristics of altimetry virtual statians

presentedn Table 3.

In Situ Water

. . In Situ
Level Rating CurvéEquation <

Discharge

\ 4

Correlation Extension
and Validation

TN \ v

Predicted Dischargﬁ

Altimetry Water In situ
Level(T.P, Envisat .
Jasor2) Altimetry

v

\ 4

Figure 2 Methodology for estimating missing discharge data using radar altinietry,
situwater level and rating curves
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Table 3 Characteristics of the altimetry virtual statiithin the study area

Name Mission  River Temporal Latitude Longitude Distance from GOI Data match points ,
coverage (km) (Alt vsIn situ) i
Env_702_ 01  Envisat Niger 20022010 6.6500 6.6500  115.4 (Lokoja)DS 42 0.59
Env_029 01 Envisat Niger 20022010 5.9900 6.7200 23.7 (Onitshaps 9 0.95
Env_158 01 Envisat Benue 20022010 8.0200 7.6700 54.3 (UmaishalJS 15 0.934
tp198 4 moy  T/P Nun 19932002 6.0981 47563  234.7 (OnitshapS 88 0.66
j2_020_1 Jasor2 Benue 20022011 8.0082 7.7540 62.9 (Umaisha)JS 15 0.95
j2_211 3 JasorR2  Niger 20022011 8.3675 6.5570 33.8 (Barojus 20 0.94
j2.161 1 Jason 2 Niger 2002- 2015 17.0107 -1.5247  112.5(Taoussa-US 14 0.92

GOI: Gauge of interest, DS = Downstreamin situ gaugeUS = Upstreanof in situ gaugeR? = correlation coefficient, (!Jlenotes that
the correlation relationship #te J2_020_1virtual stationwas adoptedor Env_158 01 due tthe absencef in situ measurementsear

that virtual stationThe distance between the two virtual stations was limiteck(@)3
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Table 3(R? indicatesthat thecorrelation between Rélerived andn situ stage data
was higher as thalistances between virtual aiml situ gauge stationseduce and vice
versa Also, the reducedcorrelations between virtual statior(&nv_702_01 and
tp198 4 moy andin situ stations watelevels at Lokoja and Onitsha respectively are
attribued to tributaries dischargg into the main riversThesefindings are consistent
with other studies aBrahmaputra rive(Dubey et al 2015) Lake Argyle(Asadzadeh
Jarihani et al., 2013)nd Lake VictorigCrétaux et al., 2011, Asadzadeh Jarihani et al.,

2013, Dubey et al., 2018nd Benue rivefPandey and Amarnath, 2015)

3.31.2. Missing DataMultiple imputation

Multiple imputation (MI) allows for theinfilling of missing data in situations where
supplementary data such eadar altimetry isunavailableand is widely applied in
hydrological studiegGill et al., 2007, Schneider, 2001, LoeBti et al., 2010, Graham

et al., 2007)MI hasalsobeen found to outperform traditional techniques such as mean
imputation, missing indicator and complete case analmerick, 2011, Schafer,
1997, van der Heijden et al., 200B8)I fills data gaps by generating a plausible number
of values after fitting the existing data to a distribution based on the statistical
parametersuch as mean and standard deviatioh the datasetwhile accounting for
uncertainty about theupposedrue value (Li et al., 2015, Rubin, 1987, Yozgatligil et
al., 2013) The t er m inipMatibrd | pmpl i es t hesimoateglsi ng
multiple times, in this case (5 times) using XLSTAT Ms Excel-eddhus quantifying

the uncertainty in the simation process and reducing false precision attainable with
single imputatior(Li et al., 2015) The MI algorithmis implemented in XLSTATwhich
adopts theviarkov Chain Monte Carlo approa¢han Buuren, 2007whereby missing

valuesareestimatedy randomsamplingfrom a distribution of plausible valueerived
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from multiple simulations undertaken usingean and standard error paramesenslar

to that of the originatlatasetinder the assumption of normal distribution

3.3.2. Preprocessing

3.3.21. Preliminary Analysis Prior to Flood Frequency Estimation

Preliminary analysis is an integral part of flood frequency estimation, as it ensures the
applieddataseimeets the requiregdrerequisiteo ensure thelata setapplieddoesnot
contribute additional uncertainty tprobability distributions andflood frequency
estimats (Lamontagne et al., 2013)hese include test fautliers, trends, homogeneity

and serial correlation

A Grubbs and Beck&rubbs and Beck, 1972nd multiple Grubbs and Becksutlier
test appliedto identfy Potentially Influential Low Floods (PILFs)

A MannKendall test(Mann, 1945, Kendall, 1975gpplied to assedsends in the
time-series

A Pet t i (Pdititt, 1979 sistseshistoricaldata homogeneity

A Lag1l correlation coefficient statisticdKendall and Stuart, 1969}est the serial

correlation between the indekant observations of a tirseries.

All data preprocessingexcept the multiple Grubbs and Becks testGBt) was
undertaken using XLSTAMS Excel Addin. The mGBtwas performed irrlike flood
frequency analysis softwa(&uczera,1999, Lamontagne et al., 2013)GBt assesses
the anomaly of the R smallest sample in comparison to the peak flood population
dataset(n) and uses a threshold to remove this anomaly. Noneth&edsuco et al.,
(2014) warnedon the need to be cautious when removiRIgFs to ensure data that
significantly affects the quantile estimagenot eliminatedOther uncertainies factors

that contribute to hydrological data uncertainty include changegand cover,
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catchment geomorphological river channel, andthe construction of hydraulic
structures; these areomewhat curtailed by consistently updated rating cuiabey et

al., 2015)

3.3.22. Simple Rating Curve extrapolation uncertainty assessment

In addition to the impact of missing peak flow data on flood frequency estimates, the
rating curve from which discharge derivedcan contribute to desigifood uncertainty
(Baldassarre and Montanari, 2009, Di Baldassarre et al., 2012, Kuczera, R883(
curves present the relationship betwéssitu stage and discharge at gauging station
(Haddad etl., 2014) This, thereforeallows for the estimation for discharge from river
water level measurement acquired using staff gauge, which is usually the case in most
developing countries due to the absence of sophisticated equipraanieerveld et

al., 2017) Typically, rating curvesare developedrom data collected within river
boundaries. However, durinfjooding rivers rise above knowhoundxries used in
rating cures derivation, resulting in extrapolation uncerta{ftgrschy, 2008) Other
factors that contribute to rating curve uncertainty includeng curve overfitting
(Haque et al., 2014, Baldassarre and Montanari, 200@) crosssedion changes due

to erosionor aggradationland cover change, hydraulic structure degitalbert et al.,

2011) and measurement errqBaldassarre and Montanari, 2009)

A simpleRatingsRatio (RR) approach is applied to identify stations \aitligh degree
of extrapolationuncertainty(Haddad et al., 2010RR is ascertainedby dividing the
maximum discharge for each yearsJ®@y the maximum measured discharge applied in

theratingscurve development (). The egation below defines RR as:

221
1 C
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If the RR value is less than 1, the correspondiprydlue is assumed to be free from
extrapolation uncertainty and the preseatextrapolatioruncetainty is pronounced if

RR is much greater than (>>)Haque et al., 2014)

3.3.3.Flood frequency estimation

Flood frequency estimation is a process that entails establishing a relationship between
flood quantile and the probability of occ
the likelihood of a flood of specific magnitude/threshold being met or exceeded at any
given point i being expresseds@tardperivod(Reede 99)This is
undertaken by fitting a predefingadobability distribution tdistoric AnnualMaximum

Series (AMS) or partial series data frarsingle or combination gaugirsgations thus

capturing the probability of a peak flood occurre(@dinger and Griffis, 2008)

The length of available data alswntributesto flood estimates uncertainty, thus the
availability of more historical data implies improvéédod estimates and confidence in
the decisionmade from such estimateéBhe Reed(1999) Flood Estimation Handbook
(FEH) 5T rule of thumbfor length of data required for flood estimation is adopted, i.e.
the historical data should la¢leastfive times the target return periods, thus providing

acceptable uncertainty limits

Varying prdability distributions including Generalized Extreme Value (GEV),
Generalized Logistic (GLO), Extreme Value (typg B), Generalized Pareto (GPA)
and Log-Pearson type 3 (LBdhave been applied to fit Annual Maximum time series,
and providing contrasting levels of flood estimates, doeerthe same daset(Laio et
al., 2009) Typically, a suitability analysis is undertaken to access the grebability
distribution (Peel et al., 200]1)but GEV is adopted to estimate flood frequency and

magiitude in this study, due toits robustness, flexibility(Komi et al., 2016,
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Hailegeorgis and Alfredsen, 2017, Papalexiou and Koutsoyiannis, 20iByvide
applicabilityin the area of interest, for consister{&inyon and Ehiorobo, 2014, Garba

et al., 2013b, Fasinmirin and Olufayo, 200BEV probability distribution estimates are
howeer affected bytropical cyclones and extratropical weather systems that results in
extremely large shape parametésnith et al., 2011, Villarini and Smith, 201@&nd
these events do not manifest in Nigerurthermore GEV like other probability
distributiors is affected by shorhydrological time seriegesulting in uncertairflood

estimategRagulinaand Reitan, 2017, Botto et al., 2014)

GEV is expresseds thus:

F (xt,ak) = f;exg’: gl k(xa' t)’é’igg k(xa- t)‘é’i1Wherk>0,x<t+i;Wherk<0,x>t+i 3)

%iexpg (X't)gexnle expe (Xat)@ if k=0
where, t, U, represerd ldcation, scale and shape parameters of the distribution
function.

Once the GEV parametengere fittedto thepeak flood historical data for each station
the uncertainty limits (i.e. upper and lower boundargg)ascertainedy a bootstrap
approach that samples the origirttasetto create random data series with similar
parameters as the original datageen applies there-defineddistribution furction to
estimate various flood magnitudes at different return per{&dioon, 1979a, Efron,
1979b, Kuczera, 1999, Hu et al., 20EBod frequency analysis was undertaken in the

Flike flood frequency analysis softwea
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3.3.4.Comparative Analysis (Permutation test and KolmogorovSimonov test):

PermutatiorandKolmogorowSimonov test are applied to ascertdime significance of
the missing data imputation approactwes the flood estimateand variation in the
quantile distributions respectivelyPermutation test is theon-parametricalternative to
parametric test, used in ascertaining tlagference between twtreatments(Good,
2000) i.e. Multiple Imputation and Radar Altimettynputation in this caseyhile the
KolmogorovSimonov test(Kolmogorov, 1991)assesss if two distributions are the
same or if a distributiordiffers from a reference distributiorBoth analysiswas

undertakain R.

3.3.5.Infilling method evaluation for contrastingly gapped data at Taoussa, Mali:

To further evaluate the effect of the infilling approashpplied on flood estimates,
complete hydrological time series availalsieTaoussa gauging station in Mgbee
location map in Supplementary Figurewlas acquired from the Niger Basin Authority

Databasehttp://nigerhycos.abn.ne/usanon/htmy, due to the absence of ghpe data

in Nigeria Historical water levels were converted to discharge usiatgngs curve

presented in Supplementary FigureFlbod estimates derived from data filled using

Multiple Imputation (MI) and Radar Altimetry (Alt) for both consecutivéyO 3 year s)
and inconsecutively(> 3 years)gapped data arthen compared to estimates derived

from complete data using Permutation and Kolmogaoaonov tests.

S http://nigerhycos.abn.ne/usanon/htm/
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4. Resultsand Discussion

4.1.Missing Data Infilling: Radar Altimetry (RA) and Multiple Imputation (Ml)

Figure 3 (a-d) shows the Anual Maximum Seriesdata for each of the four gang
stations with gaps filled usindRA and MI datainfilling approachesBoth approaches
respectively address situations of supplementary data (i.e. remote sensing) availability
andunavailabilityand provides options for hydrological data gag#ling, considering

that altimetry tracks and virtual stations are not present at every river.

Points of data overlap between the Ml and RAime-seriesdepicts pointswhere
historical data exist, and tilspace between tirgeriesrepresentpeak flood estimated
by the varying approache3he RA derived dischargés higher its MI counterpart at
Umaisha compared to any other statigkt. Baro, Lokoja and Onitshgauging stations
RA peak flood estimates weraostly lower thanthose estimated by MI, and higher
only in 1993 at Baro and Onitsha, and 1995 and 2001 at Baro only. The consistently
low peak flood estimatedisplayed at Umaisha reveals tiheficiency of MI, especially
when estimating missing dafar time series with wide gap@yler et al., 2011)The
higher Altimetry peak flood estimates at Baro and Oait&h also consistent with
historical flood eventseported bythe Dartmouth Flood Observatory (DFO) Archive.
The high discharge valuesstimatedfrom the RAinfilling method compared to Ml

weremostevident fordata setsvith inconsecutivé>3 years)missing data.
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Figure 4 & - b) shows the time series for Taoussa reference station in Mali, used as the
validation station for the methods applied in this study consecutively and
inconsecutively spaced historical timseries Both figures generally reveathat
estimated peak discharge discordant from the real values, but RA estiveat¢etose

to thein-situ measurements, comparéa M| estimates especially for consecutively
gapped data. Results frottne further quantitativeanalysisare presented and discussed

in section 4.6 and more information on the exedtfigures of these outcomes are

presented itsupplementary Figure 1
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Figure 4 @) Taoussa&Complete and Consecutive missing data

82



Application of Operaccessand 3¢ Party Geospatial Technology for Integrated Flood Risk Management in Data

SparseRegions oDeveloping Countries

2500.000

2000.000
?
© 1500.000
IS
)
e
(]
>
]
?,} 1000.000
Z
—e— Discharge Complete
500.000 —a—  Dischargg(Inconsecutive) Ml
—*— Dischargdlnconsecutive ALT
0.000
1990 1995 2000 2005 2010 2015 2020

Year

Figure 4 b) Taoussa Complete and Inconsecutive missing data

4.2. Preliminary data analyss

Results of the preliminary analysis, i@utlier, trend, homogeneity and serial (lagl)
correlationfor each gauging station is presented in TablB-dalues greater than (>)
0.05 implies thasignificant outliers do not exist within the dataseterring that high
and low flood levels captudein the historical series arconsistent with years of
recadedflood events The results of the outlier te&irther suggesthe historical data
sets resporeti to realflood events rather thaof equipmentfaults. Table 4 also shows
the results of th€i) Mann-Kendall trend test demonstrated the absence triEmdsl
gauge stations at 5% significance le¥#) Homogeneity (Pettit) test which assesses the
variability in the hydrological dateés specifiedin the homogeneity ualue)and (iii)
Serial (Lag 1) correlation within gauge records resulésging fron -1 to 1,wherel
infer perfect correlation and-1 perfect norcorrelation MannKendall and

Homogeneityp-valuesvary from (0.170- 0.917) and (0.052 0.963 respectively
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suggesting the absence of significant hydrological trends ahdmogeneity
(breakpointy, indicating stationarityTheseresults indicate the loragrm consistencgf
environmental and physical condit®nwithin the catchmenat the time of data
collection(Kang and Yusof, 2012Although dams upstream of the gauge stations have
altered the hydrological regime of the Niger and Betvers when establishef@bam,
2001b, Olayinka et al., 201,3his study usedatasetsacquired after damonstruction
thussudden changes in dischargerenot observedAlso, average serial correlation of
all sitesranging from {0.04471 0.519)suggestshe absencef statistically significant

correlationbetween peak floods for each site
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Table4. Preliminary analysis results (Mean, Homogeneity, Trend, Outlier, Serial correlation)

Station n Mean Homo. (RValue) Trend (Rvalue [+4]) Outlier LO- UO (P-Value) Lagl correlation
Mi RA Ml RA Ml RA Ml RA Mi RA
Baro 27 5414.464 5282.514 0.568 0.567 0.680[+] 0.967 [+] 1805.638- 8679.583 (0.149) 1805.638- 8679.583 (0.664) -0.044 -0.021
Lokoja 23 18912.48 17805.802 0.663 0.142 0.433[+] 0.228[+] 13846.000 23797.980 (0.415) 10752.972 23797.980 (0.364) 0.26 0.291
Umaisha 27 11838.31 12416.21 0.887 0.525 0.869F 0.680[+] 8775.407-15318.597 (0.209) 10138.233 13408.253 (0.893) 0.05 0.519
Onitsha 23 16742.22 15457.1 0.963 0.29 0.917f 0.403f 15161.802 19829.5560.063) 10451.462 19829.556 (0.286) -0.103  0.119
Taoussd 23 1759.316 1697.879 0.208 0.284 0.256F 0.132f] 1542.080- 1984.6150.208) 1286.796- 1984.615 (0.352)  0.060 -0.113
Taoussad 23 1774.456 1652.969 0.129 0.052 0.791[+] 0.170f] 1536.970- 1984.615 (0.980) 1044.185 1984.615 (0.054) -0.072 0.191

MI = Multiple Imputation,RA = Altimetry, LO = Lower Outlier, UO = Upper Outlier, n = Number of data poin}s; fiegative trend, (+)

= positive trendTaoussé= Consecutively gapped, TaouSsanconsecutively gapped
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4.3. RatingRatio: rating curve extrapolation uncertainty

Figure5-9 shows plots oRatingRatios (RR) of peak flood data derived from the two
infilling approacheg¢MI and RA), in relation to the threshold value of 1. As suggested
by Haque et al.(2014) a RR much greater than (>>)ifinplies the presence of residual

uncertainty in the discharge estimadeto ratingscurveextrapolation.

From the results presented, the maximum RR values are obse®aét.0172)and
Taoussa(1.045) gauging stationsand areslightly greater than (>>) lsuggesting
minimal rating curve extrapolation uncertaintyherdore further analysis isnot
undertaken to integratedating curve extrapolation effect into the flood frequency
estimation procedure using approeshsuch as Coefficientof Variation (CV),
Likelihood framework andBayesian framework suggested biaque et al.(2014)

Peterser@verleir and Reitan2009)andLang et al.(2010)
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4.4. Flood frequencyestimation, uncertainties and application

Flood quantilesstimatesupper and lower confidence limits based on 90% confidence
interval for five return periods {h-2, 1-in-5, 1-in-20, 1-in-50 and 1in-100 yearflood
events) are presentedn table 5 - 8, and theflood frequencyplots for Lokoja and
Umaishagaugng stations arg@resentedn Figure 10 (ad). At Lokoja,anequal number

of missing data wrefilled with radaraltimetryandMultiple Imputation, while Umaisha
has the most missing data (gap&esenting the results from these statwitb varying
gaps allowed for the assessmentf the effect of the two missinglata infilling
approachedor datasets The dash lines above and below the expected quantile line
(Figure 10 ad) representthe upper and lower uncertainty boundariaed the area
within the uncertainty boundaries defines the confidencecredibility limits of the
derived estimates.e. thesmaller the betterand vice versaFlood frequency curves of

other sites are presented in Supplemerfayyre4 i 8.

The difference between MI and RAnfilled flood estimategyenerallytend to incease
with increasing return periods, anithese differences are more pronounced for
inconsecutively gapped historitime series such as Umaishgalfle 7), where Ml
approah resulted in muclesser flood estimates than RMI is typically known for its
ineffectiveness in fillingnconsecutivemissing data pointéTyler et al., 2011)thus this
result was expectedAt Baro, Lokoja and Onitsh@auging stations that exhibited
consecutive gapshe Ml floodestimates were higher than those of RAable5, 6 and
8). These resultsimply that both methods came applied interchangeaty for
consecutively gapped tinseries Nevertheless, he statistical significance of ¢ke
resultsis further evaluated by permutation and Kolmogorosimonov tests and

presented in section 4.5.1.
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Table5 Baro flood quantile estimates and uncertainty boundaries for MR#nfilled

datasets
Expectedquantile Lower Uncertainty Limit Upper Uncertainty Limit
Return (m¥s) (m3/s) (m3/s)
Period
(L-in-Year) MI RA M RA MI RA
2 5415.9 5244.3 4906.3 46768 5770.9 5858.3
5 6753.9 6741.0 5949.4 6090.3 7444.5 75650
20 8018.9 8267.1 7209.9 7408.6 11870.9 10194.6
50 8614.7 9039.3 7845.3 7971.0 17085.9 12145.3
100 8980.1 9536.3 8229.0 8271.4 23207.5 13887.6

Table 6 Lokoja flood quantile estimates and uncertainty boundaries for MIRad
filled datasets

Expected quantile Lower Uncertainty Upper Uncertainty
Return (m3/s) Limit (m?3s) Limit (m?3/s)
Period
(2-in-Year)
Ml RA Ml RA MI RA
2 19006.2 17934.5 17947.2 16529.0 20198.5 19479.5
5 222002 22013.5 20653.9 20115.6 24413.6 24548.2
20 26592.40 27139.4 23856.4 24056.5 32051.6 33002.4
50 29529.4 30294.0 256987 26172.6 39055.4 39780.8
100 31812.1 32611.4 26987.0 27559.2 45774.8 45710.1
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Table 7 Umaisha flood quantile estimates and utaiaty boundaries for Ml and RA

filled datasets

Expected quantile

Lower Uncertainty

Upper Uncertainty

F;‘Ztr‘ﬁ(;g (m3/s) Limit (m 3/s) Limit (m?/s)
(1-in-Year) MI RA MI RA MI RA
2 11868.8 12409.9  11540.7 117239  12232.2  13140.8
5 129952 14478.52 12489.1 13573.6 13672.2  15642.9
20 146763 17019.0  13718.3 15580.5 16370.9  19756.0
50 15887.6 18549.5  14497.5 166157  18832.8  23108.6
100 16878.1 196578  15071.1 172696  21156.0 25951.1

Table8 Onitsha flood quantile estimates and uraiety boundaries for Ml and RA

filled datasets

Expected quantile

Lower Uncertainty

Upper Uncertainty

Return (m3/s) Limit (m 3/s) Limit (m?3/s)
Period
1-in-Y
(1-in-Year) M1 RA MI RA M RA
2 16575.0 15649.5 16167.9 15110.1 17029.2 16229.4
5 17723.2 17110.0 17151.4 16419.0 18565.1 18063.1
20 19302.0 18901.5 18272.% 17806.3 22009.8 21251.1
50 20357.7 19979.5 18840.6 18508.7 25557.4 24003.6
100 21178.3 20759.5 19194.3 18947.0 29506.5 26585.8
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Figure 10 (a) Lokojav flood frequency plot
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Figure 10(b) LokojaRA flood frequency plot
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Figure 10(c) UmaishaMI flood frequency plot
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Figure 10(d) UmaishaRA flood frequency plot

Figure4 (a-d): Probability distribution plots (PDP) of flood quantiles basedailtiple

Imputation(MI) and Radar Atimetry (RA) filling methods.
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4.5. 2012 and 2015 floods return period estimations

The unprecedented flood of 2012 was reported as one of the most devastating floods in
Nigeriain 40 yearsfollowed by subsequent flood event of 2015. Pplstflood need
assessment repofEGN, 2013) revealed(i) economic and infrastructure loss worth
16.9 billion US Dollars (ii) displacement of 3.8 million people, and (ii) loss3#3

lives.

A retrospective appach was undertakenn this study to categorise the flood
magnitude that resulted in these devastating impacts having fikedath gapsThe
resultsare presented with better details in Table 6 andevealed that the peak flood
magnitudes of 201231700 n¥/s at Lokoja;18800 ni/s at Umaisha) and 2015 (22700
m®/s at Lokoja)detailedin the Nigerian Flood OutlooNIHSA, 2016)were within the

90% confidence levdbourds of 1-in-50 and 1in-100-yearflood events This implies

that radar altimetry application in filling gaps in hydrological datasetsn be
instrumental in improving flood management decisions in-dpggise regions through
the provision of substantial information that would enhance mitigation efforts to reduce

the impact of flooding othe potentially exposed populace

At Baro (Niger River) the2012 and 2013%lood eventswere captured as-ib-100 year
flood events i.e. 1320%s and 13000n%s respectively from data derived from both
missing datanfilling methods. Furthermore the upper uncertainty boundaries of the
quantile estimatederived from MI was greatehanR A ¢ depicting thepossibility of
designover-estimationin practice if Ml flood estimatesreimplementedor flood risk

management
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4.6. Assessment of missindata infilling method effect on flood quantile estimates

4.6.1. Assessment of Radar Altimetry and Multiple Imputationinfilling , Niger and

Benue rivers Nigeria

The results othe Permutation and KolmogorevSimonov tests presented in TalSle
assessestatistical significance of the difference between floodquantiles estimated
using multipleimputationand radar altimetrinfilling approachesRadar altimetry data
was not available for all the missing data years, hémed/issing /infilledRA column

of Table9 shows the number of missing data points and available altimetry data points.
Umaisha gauging station had the most missing data (19), of {@ddyadar altimetry

data pointsvhereavailable to fill the gaps, anthe remaining(5) filled with multiple
imputation At Lokoja, the 6 missing data points where equality filled withltiple
imputationand radar altimetry approach, thus providing a reference station for equal

comparison of both approaches.

Permutation test resul{®,m = 0.02)at Umaisha statiowith inconsecutively gapped
data suggestshat flood frequency estimates derivdtbm Ml and RA imputation
approaches differedignificantly, and theDxs statistic= 0.571 andPs = 0.017for the
Kolmogorov- Simonov test further reveals tddferencein the quantile distributiofor

both estimatesThis deviatioris attributed to the high number of missing daitad by

the contrasting techniques i.e. 14 out of 19 missing data, and MI inability to accurately
fill inconsecutivly gappeddataset{Graham et al., 2007, Rochtus, 2014, Tderl.,
2011) At Lokoja stationwherean equal numbenf missing datavere filled by both
techniquesthe differencebetweenderived flood frequency estimatasad distributions

was not statisticallgignificant(Pperm = 0.713 Dks = 0.143,andPxs = 0.98).Similarly, at
Onitsha and Baro, the estimated quantiles @mobability distribution were not
statisticaly different (P> 0.05), implying that the application of altimetiry filling
missing data did not result in any viable change in the quantile estiraates
distributions when compared to MI Therefore, both approaches cae applied
interchangeably depending on the number of gaps and spread within the historical time

series
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Tabe 9: KolmogorovSimonov and Permutation test results

Stations Missing/infil Permutation test Kolmogorov- Simonov test
led-RA __
PpemrValue K-S Statistic (L) Pws-Value
Umaisha 19 (14) 0.020 0.57143 0.0017
Onitsha 16 (9) 0.407 0.19048 0.8531
Lokoja 6 (6) 0.713 0.14286 0.9870
Baro 12 (1) 0.063 0.38095 0.0948

4.6.2. Assessment oRadar Altimetry and Multiple Imputation infilling at Taoussa
Mali

Flood frequency estimatesd the upper and lower uncertainty boundsaféin-2 to -
in-100year flood events are presented in Tabléolcapture varying scenarios of gaps
(consecutive anthconsecutivgandinfilling approaches (Radar Altimetry aMultiple
Imputation) Theresultsshow that flood estimates for bothifill ing approachesare
within the uncertainty bounds of the complete data flood events for all return periods,
except the 4n-2year flood derived froninconsistently gapped data filled with radar
altimetry. Permutation and Kolmogorov Simonov test results @ble 11) further
reveaéd that thoughflood estimateglid not significantly differ (Pperm™ 0.05) the Dxs

and RsValues for the radar altimetryestimates for both consecutive and
inconsecutively gapped time series showed significant differences in distribution when
compared to complete datéhe observedlifference in distributiorsuggest that the

two complete and RA imputed flood estimatesrasedrawn from the same distribution
despite not being significantly differe(Ewemoje ad Ewemooje, 2011)Therefore, an
assessment dhe optimal probability distribution fofitting the historical time series

derived infilling the varyinginfilling approachess suggestedrather than using a
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predefined distribution such &EV as was the case in this studyven that varying
probability distribution can result in very different flood estimates even for the same

datasefLaio et al., 2009)

Table 10: Taoussa flood quantile estimates and uncertainty boundaries for complete
historical data and consecutively dndonsecutivelygaped missing data filled with Ml

and RA @proaches

] Lower Upper Discharge Discharge Discharge Discharge
Return Discharge o o i i i i
) Limit Limit (Consecutive) (Consecutive) (Inconsecutive) (Inconsecutive)
Period Complete
(Complete) (Complete) MI RA MI RA
2 1787.79  1734.88 1842.2 1760.15 1709.32 1779.18 1669.77
5 1898.39  1850.91 1954.0 1874.26 1861.13 1887.62 1835.12
20 1983.25  1938.07 2087.7 1978.07 1984.19 1976.08 1986.4
50 2015.89  1967.17 2170.6 2025.17 2034.14 2012.2 2055.43
100 2033.39  1978.96 2229.2 2053.36 2061.89 2032.35 2096.89
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Table 11 Kolmogorov+Simonov and Permutation test results, Taoussa gauging station

Kolmogorov- Simonov test

o _ Permutation
Data gagnfilling comparison b Val
(PhenrV/alue) K- S Statistic Dis) P - Value
Complete Vs Corecutive(Ml) 0.731 0.381 0.095
Complete VLonsecutivdRA) 0.870 0.429 0.041
Complete Vs InonsecutivéMI) 0.997 0.238 0.603
Complete VdnconsecutivgRA) 0.873 0.476 0.016

5. Conclusion

Missing data in hydrological time series is an unavoidable part of ground monitoring
and emanatedue tovarying factorghatinclude natural, technical, physical, procedural
and financial constrainty hese challengeansequently result in uncertain design flood
estimategTyler et al., 2011, Starrett et al., 201)us increasing flood exposure and/or
cost offlood controland managememheasuresmplementation based on such results.
Advancemat in operaccesgadar altimetry provides reasonably accurate continuous
water level measurements not hampered bys gap evidentn in situ measurements
(Escloupier et al., 2012)especially during extreme flood eventdso, advances in
computational hardware and softwdneve reduced thechallenges associated with

undertaking complex statisticahputations to estimate missing détitle, 2002)

This studyapplies Radar Altimetry andVultiple Imputation to fill gaps irhydrological
historical timeseries and flood frequency estimations, thereby captwtegariosof
supplementary data availability as unavailabitggpectively asusually, the casealong

severalrivers in developing regionsFurthermore, the effect of both approaclues
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flood frequency estimates was evaluated for gapgtations along the Nigeria and
Benue riversaccounting for the variation in missing daggarentn the study area, i.e.
consecutive (B years) andnconseutive (> 3 years) To further evaluatéhe most

suitable infilling approachdata was deliberately removed frasomplete dataset to

depict these missing data variations.

Results from this study revealefl) improved correlatiorbetweenin situ water level
measurementand radar altimetrgs the distance between them reduce and vice versa,
(ii) the size of thayaps in the hydrological time seri@onsecutive anthconsecutivg
determines to a large extent the missing data imputation approach applied; (iii) Radar
Altimetry missing data infilling approachutperformed Multiple Imputation, especially

for widely gapped time seri€s 3 years)but did not differ much fodata setsvith gaps

of 1-3 years hence can be applied interchangeably for datasets with consecutive gaps
and (iv) the previously unquantified 2012 and 2015 flood events in Nigeria were
qguantified as 4n-100 and 1in-50year floods respectivelgnd can be applied to inform
flood management decisiofaving filled the historic data gapBespite the progress

and potential portrayed in this study, the outcome could contain residual unmstaint
that have propagated from in situ and altimetry bialyical data collection process,
rating curve extrapolation, probability distribution and methodology selection. The
guantification of these uncertainties is however beyond the scope of this study.
Furthermore hydrodynamic flood modelling and mapping fbidod depth and exten

based on the outcome of this section willinelertakenn Chapter 6.
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Chapter 3 Supplementary Figures and Tables
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In situ Station Water Level (Taoussa)
w

In Sltu = 0.9226*Altimetry- 180.48
R?=0.9242
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Virtual Station Water level (Taoussa)

Supplementarfigure3. In situ Station (Taoussa) vs Virtual Station (Taoussa)

Supplementaryfable 1. Radar Altimetry Missing data filling outcome

Altimetry Water Filled Water level Filled Discharge
S/IN  Year
level (m) (m) (m3/s)
1 2002 200.773 4.754 1487.468
2 2003 199.642 3.710 1044.185
3 2004 200.730 4.714 1470.615
4 2005 200.992 4.956 1573.303
5 2006 201.056 5.015 1598.387
6 2007 201.268 5.210 1681.478
7 2008 200.947 4914 1555.666
8 2009 201.205 5.152 1656.786
9 2010 200.846 4.821 1516.080
10 2013 200.790 4.769 1494.131
11 2014 200.743 4.726 1475.710
12 2015 200.261 4.281 1286.796
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CHAPTER 4: ACCOUNTING FOR CLIMATE VARIABILITY IN REGIONAL
FLOOD FREQUENCY ESTIMATES FOR WESTERN NIGERIA

Abstract

Extreme flood events are becoming more frequent and intense, owing to climate change
and other anthropogenic factorlligeria recently has been impacted immensely,
resulting in damage to infrastructures, displacement of people, and loss ofTlves.
reduce such impacts in the futureffective planningis required, underpinnedby
analytical work based on reliable data and informat®uch data is however sparse in
developing regions, owing to financial, technical and organisational drawbacks
Regional Flood Fequencyanalysis(RFFA) is applial in this study ¢ curtail data
unavalability and short recorddeficiency challengg by agglomeratingdata from
various sites witl{i) similar hydregeomorphological characteristi¢s) governed by a
similar probability distributionand (iii) differ only b y a n -f fil i ontdategan be
estimated using proxy informatiotdsing ICFRAFT tool to implement the RFFA

climate indicesareintegrated to account for climate variability effect.

Data from seventeen gauging stations within the G@@san River basin inwestern
Nigeria were analysediesulting in the delineation dhree sukregions delineatedf
which two werehomogeneous and one nbamogeneousGeneralized Logistic (GLO)
distributionwas fittedto theannual maximum flood series for the two homogeneous
regions to estnate flood magnitudes and probabilityamfcurrencevhile accounting for
climate variability The influence of climate variability on flood estimates was linked to
MaddenJulian OscillatiofMJO) and resulted imnincreasegrobability of high return
period flood (i.e. 1in-100year)occurrence The resultsreiteratethe importance of
taking climate variability into account in flood frequenegtimationand suggestsa

review flood management measures based on the assunipgiatianarity.

Keywords: Climate variability; Regional flood frequency; climatalices; L-moment,
MaddenJulian Oscillation (MJO)Generalised.ogistic (GLO)

1. Introduction

Floods are natural hazards aggravated by anthropogenic fatdrsesult in the
destruction of agricultural lafmokms livestock and crops, disruption of so@oonomic
activities, damagdo properties and infrastructures, loss of lives and finanoiss

(FGN, 2013) In Nigeria (the cas study of this researchihe recent unprecedented
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levels of flooding and impact resulted increasedpublic, government and other
stakeholdergoncern and curiositgbout the probability of flood recurrenda orderto

plan andmplementappropriate mitigation measuresreduce flood impadtAgada and
Nirupama, 2015)Knowledge of flood frequency estimates is crucial in ensuring that
sociceconomicactivities and infrastriuaral developmentre planned appropriately
(Hosking and Wallis, 1997)Accurate estimates dlood frequency estimates, also
known asAnnual Exceedance Prdtéities (AEP)arealso important for design of flood
defence structures (dykes, levees, dams, etc.), construction of hydraulic structures
(Bridges and culverts), development for floodplains and urbanudaadegulations
emergency management and insurance policy developiidghtdsen et al., 2002, Saf,
2009b) Underestimation of the design flood can lead to increased flood risk with
potentially damaging consequences, whilerestimatiorcan lead to resource wastage

and flood aggravation upstream or downstréihshra et al., 2009)

To accurately estimate AEP, networks of gauging stations are established to collect
hydrological data over a long periodHerschy, 2008) However, it is logistically
difficult due to harshtopography andcost intesive to establish gauging stations at
everylocationof interest. Hencesome locations anesuallyleft ungauged or witlshort

data for newly established stations. In several developing regions many catchments are
poorly/sparsely gauged, due to (i) lack d commitment by station operatorgi)
deteriorating conditions ofbservationequipment,(iii) insecurity challenges, an@v)
inaccessibility to remote locatiorfdmpadu et al., 2013a, Olayinka et al., 201I¥)e
absence of quality and sufficient data leads to poor flood predictions, as often the case
in developing regiongDano Umar et al., 2011 herefore, It is esntial to explore
technigueswith the capacity to extract the maximum value from any available tata

developreasonable flood frequency estimat@yegoke and Oyebande, 2008)

Generally the choice of techniques fdlood frequency estimatiomlepeng on the
availability of historical flood records at/or around the specific site of inte(Bsted,
1999) When sufficient historical flood data are availabl&sFAis estimatedby the
application of direct (asite) flood frequency analysis which involves fitting predefined
probability distribution to the annual maximum flood or partial flood time series
(Herschy, 2008)Where datais insufficient, indirect flood estimation procedures are

usedwhich includegq(i) the adoption of hydroneteorological data from other locations
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similar in characteristics to the site of inter@dtachowitz et al., 2013, Wagener, 2007,
Gupta et al., 2008 nd(ii) the incorporation of data from other sources such as remote
sensing(Smith et al.,, 2015, Owe and Neale, 200%) the presenstudy, the former
approachis adoptedvhile in our ongoing related work the mentthe latter approach

are being investigated.

A major factor thataffects future flood regimes and must bsonsideredwhen

estimating floodnagnitudess the changing climatic conditions, whioksuls in more

intense and frequerftooding (Kunkel, 2003) Estimating frequenciesunder climate

variable conditios require theincorporaton of nonstationaity effects defined by
statistically significanbreakpointgPettitt, 1979)and trendg¢Kendall and Stuart, 1969)

within historicaltime series. While stationary flood frequency methedtail directly

fitting predefinedprobability distributions tdhistoricaldata, norstationay approaches

are not astraightandrequiresheintegrationclimate variability using climatic indices

a mechanism fodepictsclimatic influencel O6 Br i en and Burnl, 2014,
2013, Hounkpé et al., 2015byeveral studies have demonstrated the benefits of
incorporating climatic variability into flood frequency estimatfmoceduregKochanek

et al ., 2013, Li and Tan, 2015, Mandhado ¢
emphasizedhe need for a paradigm shift in approachet@mble thedevelopnent of

robust and resilient predictiofslounkpé et al., 2015b, Solecki and Rosenzweig, 2014)

Also, recent evidence from studies in West Afribdouhamed et al., 2013, New et al.,

2006, Diatta and Fink, 2014nd Nigeria(Salau et al., 2016jurther suppor this
argumentand providesevidence ofstrong correlations betwa climatic variability and
hydro-meteorological events in these regi¢Agh et al., 2014a, Hounkpé et al., 2015b,

De Paola et al., 2013)

Therefore, this studgims to tacklehe problem oflata sparsity and limited resources to
estimateflood frequencywhile taking into consideration climate variability effect, as
oftenthe case in developing countrids subsequent sections, (@scribes the study
area and data sourc¢g8) details preliminary analysis and-rhoment based regional
flood frequency techniques, taking climate variability effect into ac¢déditpresents
the results of preliminary analysis, direct and regionatidment based flood frequency
estimates and (5) concludesone the findings and implication of the results on flood

management.

107



Application of Operaccessand 3¢ Party Geospatial Technology for Integrated Flood Risk Management in Data

SparseRegions of Developing Countries

2. Study Area and DataSources

The OgurOsun River BasinQORB) is in western Nigerig6 30;j - 8 20N latitude and

3 23j- 5 10iE longitude) andencompasse®ur states includin@gun, Osun, Oyo and
Lagos within a 66,264 knd area Thebasin is drained bywo major tributaries, Ogun
and Osun, and otheninor tributaries includingrewa, Ibu, Ona, Sasa ar(@fiki Rivers.
The climate of OORB isnfluenced bytropical continental and maritime air masses
(Adeaga et al., 2006)and experiences amnual rainfallof 1400 mm to 1500 mm
mean annual air temperature between 25.7°C and ; 30ftCrelative humidity varying
from 37%71 85% for dry and wet seasongspectively(Adeleke et al., 2015 00RB
has experienced recurring floodimgcent years, caused Wgctors such asntense
precipitation poor uban planningand waste management; and failure of upstream
hydraulic systems,resulting in sociceconomi¢ infrastructural, ecological and

environmenal impacts(Jinadu, 2015, Komolafe, 2015)

Hydrological data(discharge, water levels amdting curves)used for this studyere
provided by the OgurOsun River Basin Development Authority (OORBDAe
agency responsible for tlmllecion and management of data in the basgidditional
datasetsfor two hydrological station, i.efewaMata and On&iver/Sala villagewere
extractedfrom published researc®lukanni and Alatise(2008) and Ewemoje and
Ewemooje (2011) respectively, using the WebPlotDigitizeRohatgi, 2014) The
catchment area for each station was delineated from 30 m Shuttle Radar Topography
Mission (Farr et al., 2007using Arc Hydro in ArcMapThe properties of the gaimp
stationsfor OORB is presented in Table, and thgatal distribution of gaugess
presented in Figure Bhowingthe spread and sparsityf the hydrological monitoring
network. Climate indices were provided by the National Oceanographic and
Atmospheric Administration (NOAAYGCOSAOPC/PPOC, 2016)available within

the International Centre for Integted Water Resources Management (ICIWaRM)
Regional Analysis of Frequency TodC(-RAFT) databaseandincludes multdecadal
meteorological events such as Pacific Decadal Oscillation, ElI Nino/Southern
Oscillation, MaddenJulian Oscillation (MJO), North Adntic Oscillation and others.
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Tablel Gauge stations properties

S/N Station ID Years Data Lat. Long. Missing Cat. Area (k)

1 Eggua 19802012 26 (05 292 0 0.64

2 Idogo 19802012 24 683 292 0 0.923

3 Ajilete 19802012 29 670 292 0 2.89

4 ©Oba/OyeObgbomoso 19661988 23 6.70 292 0 2.90

5 Ebute Igboro 19802012 25 690 2980 0 7.92

6 YewaMata 19821994 14 695 292 0 24.05

7 ljaka-Oke 19802012 27 18 2980 0 63.15

g Ogun/Oyoelseyin road 19661988 23 785 3.94 0 578.00
o  Ofiki/Ofiki town 10661988 23 763  3.21 1 715.00
10 Ogun/Shepeteri 19661988 23 8.63 3.65 0 1190.00
11 Oyan/liajille 19822009 26 /98 300 1 1460.00
1o Ofikillgannallere road 19661988 23 7.95 3.23 0 3978.00
13 Ofiki/lgangan 19661988 23 7.68 3.18 0 2732.00
14 Oshun/lwo railway 19651988 24 785 3.93 0 4325.00
15 ©Ona river/Sala Village 19821999 18 7.01 3.015 0 8500.00
16 ©Ogun/Olokemeji 19661987 22 745 3.09 0 9140.00
17 Ogun/lbaragun 10651988 24 677 3.33 0 21660.00
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Figurel: The OORB study region.

3. Methodology
3.1. Data Preparation and Preliminary analysis

Data preparation is prerequisitefor RFFA, andentails dataformatting filling of
missing data gaps and statistical test analyRiger water levels were converted to
discharge usingating curves provided by tHt@ORBA. Multiple imputation techniques
(van Buuren, 2007yvas applied to fill the gaps in the hydrological ddtge to the
consecutive gaps of3years inherent in thieydrological datgKhalifeloo et al., 2015)
Multiple imputations were executedusing Microsoft Excel XLSTAT addon that
implements aoupledMarkov Chain Monte Carlandordinary leassquars regression

approach to estimate missing annual peak flowas Buuren, 2007)

RFFA applicationis also basedn the assumption that the data used satisfies the
conditions of randomness, serial poorrelation, outlierabsenceand homogeneity, to

reduce thenherent dataincertainty(Kang and Yusof, 2012)
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The randomness of hydrologic data points at each station was estimated using the trend
identification function ManfKendall (M-K) test(Mann, 1945) The MK test assesses
the upward and downward trends in the time seffage andWang, 2002) Serial
correlationwithin hydrologicalrecords ata particular siteresults indiscrepancies in
regional variance and increased data skew(@tglinger, 1983)thus contibuting to
uncertainty in regional flood frequenegtimateqKuczera, 1983, Hosking and Wallis,
1997) To assess the magnitude of the serial correlatiagl correlation coefficients
(Kendall and Stuart, 1969yasapplied toderive valueganging from-1 (perfect non
correlation) to 1 (perfect correlation). The presence of outtissaffects data quality,
and consequently flood estimatesutlizrs are attributed to gauge failure, sampling
inconsistencies, typo errors, or gauge disruptions, and aconsitlered panf thereal
flood populationdataset (Pedruco et al., 2014Putlierswere identifiedby using the
Grubbs and Beck $¢ (Grubbs and Beck, 1972Finally, breakpointanalysis(Pettitt,
1979)was appliedo assessignificant homogeneity within the hydrological time series,

attributedto changing climatic conditions.
3.2.Climate indices- climate variability effect

Climate variability affects the frequeneynd magnitudef extremeflood events(Kwon

et al, 2008, Gutiérrez and Dracup, 2001)armer climate implies increased
evaporation and atmospheric wataoisture resulting in persistent precipitation and
consequentlyflooding (CEDEAO-ClubSahel/OCDE/CILSS, 2008While in the past
hydrologic models have assumed stationadtyyent climate change conditiomaply
thatthe future is expected to vary despite wisaknownof the past (He et al., 2006,
Sayers et al., 2015)Processes in the oceatmosphere systenthat influence
precipitation, atmospheric pressure and temperatamebe defined by climatindices
and is useful in trackig longterm hydrological changdgi and Tan, 2015, Machado et
al., 2015, Lépez and Franceés, 2013, Giovannett®d25) Some key climate indices
that characterize the frequency, intensity and duratiorextfeme climatic events
include the Arctic Oscillation (AO), North Pacific Oscillation (NPO), North Atlantic
Oscillation (NAO), Pacific Decadal Oscillation (PDO), R@éNorth American Index
(PNA), EIl Nino/Southern Oscillation (ENSO), and Maddarian Oscillation (MJO)
(Mouhamed et al., 2013)
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In this study, the correlation between the annual maximum series and climatic indices
are evaluated and the influence of these indices on the hydrologic -Seresare
accouned for within the floodfrequencyestimation proces@Hounkpé et al., 2015b,
Giovannettone, 2015)The International Centre for Integrated Water Resources
Management (ICIWaRM) Regional Analysis of Frequency Tool-@8FT) developed

by Giovannettone and Wrigh(2011) embedsvarious climate indices, including those
previously mentionedo enable analysiand inclusion of climate variabilityfor the
estimation ofAnnual Exceedance Probability (AEP). {RIAFT tends tocorrelatepeak

flood valueswith each climate indicegp determine that with the highestrrelation
coefficient (R) (Giovannettone, 2015)hus inferring the influence of climate indices

3.3. L-moment- Index Flood Regional Flood Frequency Analysis (RFFA)

Regional flood frequency analysis msed on thegglomerate hydrological data in
regionscharacterisedby similar physiographical parametersluding catchment area,
catchment slope, stream length, precipitatiand/or elevation. Hydrological data
availableat the sites within the defined region arged to estimate the regional flood
qguantile based on the assumption that they defned by the same probability
distribution, and differ only by the index flood (Hosking and Wallis, 1997). This
processthereforeredue@s the inconsistenciesssociated wit data shortagéMishra et
al., 2009)

The Index flood technique developed Dalrymple (1960) has beerapplied widely in
determining flood estimates for catchments of varying sizes, gaagedngauged

applied at global, reghal and local scalg$mithet al., 2015, Padi et al., 2011, Izinyon

and Ajumka, 2013)The general assumption for this technique is thatprobability
distributions of the annual maximum floods across sites in the regesimilar, and
differonlybyasitespeci fic scaling f ad¢meanormmediomed t h
(Hosking and Walllis, 1997, Reed, 1999, Dalrymple, 1960)

The flood quantile(1 ) for a T-year return periodat a site of interestE, given a
regional probability distribution factor 8 , common to all sitescan be

mathematically expressed as:

1 1 8 (4)
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Indexflood (1 for an ungauged site of interes usually derived from an
establishedelationship between available catchment characteyisficrmationsuch as
catchment area and the indéxod of gauged sites within the homogeneous region
(Stedinger and Giriffis, 2008) The regionaprobability distributionis a dimensionless
parameter determined using a bigsstatisticalapproach discussed inlater section of

this study.

L-moment based flood frequency analysis wasdertaken using ICIRAFT
(Giovannettone and Wright, 20113nd the procedure includ€g data screening of
clustered sites using the discordanmeasure (D) based on Wards hierarchical
clustering approacHii) regional homogeneity testing using the heterogeneity measure
(H), (iii) selection of the appropriate distribution using the goodokfs measure (2),

for the estimation of the frequency distribution using the index flood procedure
(Hosking and Walllis, 1997).-moment is a widehpreferred method for RFFA due
therobustness of Linear (L)moments in comparison to ordinary moments in handling
extreme values over a wider range of probability distributicersd its reduced
susceptibility to bias.The components of-inoment analysis are detailed Hosking

and Walls (1997)andother studie | zi nyon and Ehi or obo, 201
2014, Kjeldsen et al., 2002, Saf, 2009a, Peel et al., 20bB)individual L-moment

components and processes are not explamddtailsbut summarisedoelow.

Data screening: The discordancy measure is based oiMdments (:Mean, L-
Covariance L-Kurtosis and L-Skewness), and identifies sites whos&lament ratio

are discordant from that of the whole grc«
Homogeneity testing:Heterogeneitymeasure (H) compares the variation between L
moments for a group of sitescawhat is expected at homogeneousegion to justify

thatthe group of sitesire defined by a similar probability distributiodhe region is
deemedacceptabljnomogeneous if H <1, possibly heterogeneodsdf H < 2, and
2 if the region isdefinitely heterogeneous (Hosking and Wallis 1997jobability
distribution selection: The ZStatistic is a goodness-fit measure that assesses the
probability distribution thatbest fits the weighteeaverage regional L-moment
parametersof each site in a homogeous region(L-Skewness and -Kurtosis)
(Borujeni and Sulaiman, 20Q9)An optimal probability distribution can also be

visualised using Lmoment diagram ({Kurtosis vs. L-Skewness), with thebest
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distribution is approximatedas thedistribution curve closest tthe majority of the

sample datpoints(Komi et al., 2016)

4. Results and Discussion
4.1.Data characteristics and preliminary analysis

Data preparationesults for this study are presented in Tablea®1 correlation results
show thatthe serial correlation betweedatasetsat each site varied fror0.002 to
0.516(-1 = perfect norcorrelaton; 1 = perfect correlation), suggesting the absence of a
strong relationship among peak floatsach siteNo low outlier wadletectedrom the
Grubbs and Beck tesindhigh outliersidentified at Oba/OyeObgbomosoQOfiki/Ofiki
town, Ofiki/lgannallere road, Ofiki/lgangan, Ogun/Shepeteri, Ogun/@geyin road,
and Ogun/Ibaragun gauging statiomere consistendit each site, as well agth flood
events recorded inpast literature(Olukanni and Alatise, 2008) The trend and
breakpointanalysis (homogeneity test@sult revealedthat significantupwardstrends
were evident atjaka-Oke, Oyarllaji-lle, and Oba/Oydbgbomoso stations, while no
significant trendswere identifiedat the remaiing sites.These trends wereonsistent
with those of theneighbouringDueme River Basin in thBenin RepubliqHounkpe et
al., 2015b) influenced by similar clim& conditions The time series plots presented in
Figure 2 & - d) showthe annual maximum discharge of tloeir stations selected for
further analysisThese selections captutke varying spectrum of trends displaying
spikes and troughs that represpaak flood variability at ljak&®dke and Ofiki-lgangan
(Figure 2 (ab)), while changes in hydrologic regimes defined by the breakpoints
analysis ardor Ofiki/lgannallere road and Oba/Oy@bgbomoso statiorare presented
in Figure 2 (ed). Changes in théaydrological regime are evident in the breakpoint
analysis plots from 1965 to 1957 and 1979 to 1988, corresponddtgtmmented years
of changes irprecipitation patterns in Nigeria and West Afritet depict dry to wet
(intense drought to rainfall) zentransition(New et al., 2006, Oguntunde et al., 2011,
Ogungbenro and Morakinyo, 2014, Adeaga, 2006)
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Table2 Preliminary test results

S/N Station ID N Missing Outlier Trend (+/-) Homogeneity Lagl cor.
1 ljaka-Oke 33 6 0.464 0.001 + 0.081 0.516
2 Eggua 33 7 0.017 0.721 + 0.149 0.083
3 Ebute Igboro 33 8 0.005 0.420 + 0.193 0.083
4 ldogo 33 9 0.001 0.768 + 0.776 0.330
5 Ajilete 33 4 0.016 0.457 - 0.290 -0.025
6 Yewa Mata 14 0 0.049 0.518 - 0.885 -0.209
7 Oyan/llaji-lle 26 0 0.838 0.000 - 0.548 0.319
8 Ona river 18 0 0.955 0.654 - 0.439 0.019
9 Oshun/lwo railway 24 0 0.061 0.132 + 0.189 0.305
10 Oba/OyeObgbomoso 23 0 0.298 0.016 + 0.001 0.272
11 Ofiki/Ofiki town 23 1 0.128 0.566 + 0.659 -0.254
12  Ofiki/lgannallere road 23 0 0.370 0.057 + 0.013 0.302
13 Ofiki/lgangan 23 0 0.398 0.057 + 0.047 0.274
14  Ogun/Shepeteri 23 0 0.079 0.172 + 0.183 -0.164
15 Ogun/Oyelseyinroad 23 0 0.312 0.566 + 0.444 0.125
16  Ogun/lbaragun 24 0 0.279 0472 + 0.463 -0.018
17  Ogun/Olokemeji 22 0 0.000 0.617 - 0.170 0.077

Trenddirection (+£), Outlier, and Homogeneity depicted byalues, Lagl correlation varies from
ltol
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Where: mu (---) and mu (---) representhe mean discharge of both break points,
representing the average difference in hydrological regimes.

Figure 2 (ad) Trends andbreakpointgplots for some ofhe nonstationarygauging
stations

4.2. Identification of homogeneous regions andetermination of discordancy
measure

Regional L-moment statisticsdiscordancy (D) and heterogeneity (H) statistioe
presented in Table 3, whitate-specificresults of same statistics are presented in Table
4. An H statisticvalueof 8.89(i.e. H>1)reportedfor the entire catchment areaveals

the variable land cover, hydrologic and catchment characteristics over the @gumn
River Basin(Oyegoke and Oyebande, 2008pnsequently, the region was divided into

threesubregionsand testedor homogeneity (Table 3gnd the Emoment statistics of
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sites constituting each subgion are presented iffable 4.The HStatistics for sub
regions 2 and 3howed homogeneit{H<1), while subregion 1 was heterogeneous
(Table 3).For theH and L-statistics of all defined regiorsse presenteth Table 4, only
Idogo was discordant (D 4.2232)and was removed frorfurther analysis All other
sites withinthe homogeneousubregiors were within the prescribed critical limit for
discordancy (D<3).The combination ofgauging station historic datavithin the
homogeneous sufegions provides a means to improlmgterm flood magnitude
estimationby using a combinediatasetrecord of 126 years (stiegion 2) and 141
years (sulregions 3) thus satisfying in excess tidigerian guideline of time series
length for RFFA of 30 yeaiis Nigeria(FME, 2005b)

Table 3 Regional Average &tatistics and Fbtatistc for defined regions

Region No of Mean L-CV  L- L-Kurt.  Dis. H Homogeneity
Stations Skew. (D)
All 17 66.144 0.252 0.146 0.198 3.000 8.89 Heterogeneou:
1 6 35.458 0.224 0.112 0.226 0.165 12.42 Heterogeneou:
2 5 70.680 0.248 0.180 0.172 1333 0.62 Homogeneous
3 6 98.865 0.275 0.175 0.171 1.648 0.87 Homogeneous

L = Linear, CV = Covariance, Skew = Skewness, Kurt = Kurtosis, Dis = Discordancy, H =

Heterogeneity

Table 4 -Moments and Discordancy Statistics for the Sites in the threeegidns

Region Station ID Mean L-CV  L-Skew. L-Kurt. LM-ratio Ol

1 Eggua 7.965 0.456  0.449 0.296 0.134  1.587
1 Ebute Igboro 17.312 0.219 0.189 0.235 0.114  0.279
1 Ajilete 31.219 0.120 0.176 0.229 0.129 0.854
1 ldogo* 11905 0.049 -0.434 0.276 -0.211  4.223
1 Yewa Mata 10.203 0.461 0.352 0.159 0.143 1.264
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Ona river/Sasa

1 . 189.723 0.137 0.053 0.033 0.016 0.667
Village

2 ljaka-Oke 5.613 0.234 0.236 0.178 0.021 0.633

2 Oshun/Ilwo railway 200474 0.218 0.169 0.163 0.111 0.808

Oba/Oya

2 20.808 0.209 0.132 0.198 0.058 0.532
Obgbomoso

2 Ogun/Shepeteri 17.822 0.261 0.128 0.238 -0.018 2.09
Ogun/Oyalseyin

2 131.331 0.322 0.213 0.078 -0.022 1.462
road

3 Oyan/llaji-lle 13.691 0.293 0.026 0.125 -0.034 1.3635

3 Ofiki/Ofiki town 16.270 0.253 0.185 0.159 0.032 0.3348
Ofiki/lgannallere

3 73.918 0.303 0.116  0.129 0.001 0.4341
road

3 Ofiki/lgangan 90.501 0.305 0.142 0.203 0.059 1.3824

3 Ogun/lbaragun 190.916 0.216 0.041 0.187 -0.044 0.975

3 Ogun/Olokemeji 218.108 0.359 0.455 0.346 0.188 0.667

4.3. Regional Distribution and Goodness of Fit Measures

Z Statistics provides a more viable statistical approach that quantifies individual
probability distributions. Table 5 shows the Z Statistics for all distributions for each
subregionand demonstrates that GLO is significant at the 10% confidence int2r@al (
P t@s prescribed byHosking and Wallis(1997) for regions 2 and 3, while
Generalied Extreme Value (GEV) provides the second best distribution for these
regions The Li Moment ratio diagram on the other hand (Figure 3), displays the
relationship betweenegional average kskewness and -kurtosis fitted to varying
probability distributiois for all three regionsThe 3parameter distribution lileurve

closest to kmoment ratio points of sutegional sites portray the optimal distribution
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(Peel et al., 2001, Reed, 199@nd in thiscase,Generalized Lgistic (GLO) curve

satisfies this approximatiohree (3) parameter were selected due to their robustness

and optimal representation of probability distribution parameteislegeorgis and

Alfredsen, 2017)This optimal probability distributiorcorrespond with those applied

in previous sintg-site and regional studies proximity to our study are@Komi et al.,

2016, Izinyon and Ehiorobo, 28). The insignificance othe probabilitydistribution

for the combined sites and regiorfZ.>1.65)shows that all individual sites within this

regionare not definedby a particular distributiorhence the heterogeneity.

Table 5 Z Statistics fadifferent probability distributions for the subgions

L-Kurtosis (t4)

L-Kurtosis (t4)

Region LNO GEV GLO
All -3.97 -3.44 -1.45
1 -4.69 -4.58 -3.13
2 -1.83 -0.50 0.49
3 -3.27 -1.31 -0.23
a = optimal distribution
0.7 0.7
0.5 P/, 05 //
0.3 g
, % 03 ¢ .
~~ » o o~
e . 2 R
0.1 e . 2 o -
a . [ B
0.1~ 0.4
(G))
0.3 @ ®)
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®
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Figure3 L-Moment ratio diagram for the three (3) silgions
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4.4. Regional flood frequency and parameter estimation:

After identifying GLO as the optimal probability distribution for regions 2 anc 3,
flood frequency relationshigvas establishedo derived flood magnitudeshe GLO

probability density function isigen by:

~

. E Il1lp — E =
AD U 5 (2)
— E 1

whereu andEare location, scale and shape parameters, respedti@dking and
Walllis, 1997)

Therange of xisdefinedasb @ v -)E m Hb @ H) E my -
d ) #£ 1

The location parametdr ) dictates the positionf the distribution about a symmetric
axis, the scale parametgr) defined the distributiorspread,and the shape parameter
(Q indicates théoehaviourof the upper tail of the distributioiTheses parameters were
derived from moments, and applied tterive T-yearflood exceedancebased on the
GLO (X) is defined by:

> izl
4 kg 1 B x g 4 E=i 3)
wherey 17y, 4 is the return period and is the growth curve of.

GLO distribution parameters estimated for each-regjfion usingL-momentswere
substituted into equation (3 estimate the sulegional growth factor for ungauged
and sparsely gaugdrhsinsand presented ihable 6.
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Table 6 Regional distribution parameters for theiegions

Region Distribution 3 U k Subregion Growth Factor
T® p WX
1 GLO 0.959 0.219 -0.112 TBOU W ——0 4 8
T p ¢ ' P
T OT U
2 GLO 0.928 0.235 -0.180 _ 8
T ¢ Y s LIJTT% 4 p
™ ¢ P
3 GLO 0.922 0.261 -0.175 T8O C C 4 8
T X l.P P

4.5. Climate Indices and flood relationship

ljaka-Oke, Oba/OyeObgbomoso,Ofiki/lganganllere road andOfiki-lgangan were
identified bybreak pointsand trendgo be heterogeneouand further investigated to
ascertain the influence of climate variability by the correlating peak annual flood and
global climate indices, then regional flood frequency estima&gsdetermined in ICl

RAFT using the highest correlated indices.

Maddern Julian Oscillation (MJO) demonstrated the highest correlation with annual
maximum time series for the four sit@sgure 4),using an optimal lag time of 1 month
selected in IGRAFT, considering thatonly single peak flood for each yeawas
applied Correlation coefficients (B based on MJO (7) (i.e. longitude 40W) were 0.27,
0.50 0.31 and 0.45 for ljakake, Ofiki Igangan, Ofiki/lgann#dere road and Oba/Oyo
Obgomoso, respectivelguggestinghe presence of evidence that shows that between
27 to 50percent of the variability in the annual maximum flood series was induced by
climate dynamics.The correlation values derived in this studgre consistent with
those revealed in other studi@s and Tan, 2015, Liu et al., 2015)onsidering that
local catchmenpropertiesland use/cover changes and hydraulic factsscontibute

to changesin hydrological regimeg¢Leclerc and Ouarda, 2007, Hall et al., 20I@)ese
other @ntributing factors ardeyond the scope of this study.JO is known to be a
strong driver of rainfall variability in tropical regiondMadden and Julian, 1971,
Ventrice et al., 2011, Schreck et al.,, 2Q18pverning atmospheric pressure and
temperature around the equator. The M3Qiso reportedto significanty influence
regional rainfall (Mohino et al., 2012, Lavender and Matthews, 2009, Janicot et al.,
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2009) and prompted the 2012 flood evemtNigeria (ACMAD, 2012). Arnold et al.,
(2015)andCaballero and Hube(2010)furthersuggested in their studiat, due to the
depemlence of MJO onSea $rface Temperature (SST9nd Outgoing Longwave

Radiation (OLR) MJO activity may increse in response to global warmjngsulting
in more frequent MJO influenced events
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Figure 4 (a-d) relationship between climate indices and stations Peak Annual Flood
Time series

4.6. Climate Variability effect and flood quantile estimation

Results capturing climateariability inclusion and omissiomare presentedn Table 7
and Figure 5 and reveal that climate variability effect on flood quantile estimates
increass with a return periodthus demonstratinghe time dependence of the climate
(Hounkpeé et al., 2015b, Machado et al., 20830, climate variability influence was

evidentat sites thaexhbited high correlation with climate indices (i.e. Ofiki Igangan
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and Oba/OyeObgomoso) Crisscrossplot patternsobserved at ljak&®ke for climate
variability inclusion for regional flood frequency estimation, suggests that caution must
be taken when accounting for climate variability effect in FfEApez and Francés
2013) especially when the relationship between climate indices is(RSw= 0.28)

Also, the significance of the homogeneity (0.081) rather than trends (0.301),
identified asthe key indicator ofnorstationarity as evident at ljakaOke gauging

station.

Table 7 Flood frequency estimates (N®tationary, Stationary regional andsae)1

m/s
ljaka-Oke 2 5 20 50 100
Regional/ Climate variability 5 7 9 11 17
Regional 5 7 10 13 15
Direct/Climate variability 5 7 10 13 15
Direct 5 7 10 13 15
Oba/Oyoi Obgbomoso 2 5 20 50 100
Regional/ Climate variability 24 31 41 47 52
Regional 19 27 38 47 54
Direct/Climate variability 24 28 36 44 52
Direct 20 26 35 41 47
Ofiki/lgangan-llere road 2 5 20 50 100
Regional/ Climatevariability 95 123 157 179 196
Regional 70 98 136 163 185
Direct/Climate variability 94 127 168 194 214
Direct 70 103 147 177 203
Ofiki -lgangan 2 5 20 50 100
Regional/ Climate variability 110 143 182 207 227
Regional 86 120 167 200 227
Direct/Climate variability 103 138 193 237 276
Direct 84 125 182 223 257
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At Oba/OyeObgomoso, the regional flood estimates were similar for both climate
variability incluson and omission, for 5§ear flood, but differed slightly (by 2 s)

for a 100year flood andwere highethan the direct flood estimates. F@fiki/lgangan
and Ofiki/lgangarilere road, theoppositewas detected, regional flood estimates for
both climatevariability inclusion and omissionvere less tharthat of direct flood
estimatesFurthermore, Figure feveded that for each approach, the maximdiood
experenceal at each samplsite in the OORBvas less than the-ih-100yearstipulated
for flood management planning Nigeria (FME, 2005b) This suggests that even at
locations whereclimate variableregional flood estimates were less than diraatl
regional counterpartswhen climate variability is not taken into accaquritood
management measures (structural and-starctural) based on sh estimates would

substantially curtail flood impacts, even with reducegital investment

The variatios exhibited among sites when climate variabilitgs takerinto account is
generallysimilar to those revealed 8y6 Br i e n (20bh4yl whBrevaryingtrends at
different sites resulting in varying quantile estimates when climate variabigs
accounted for. Also, In Spain Lopez and Francg2013)observedhat flood estimates
that accounted for climate variabilitwere higher than those predicted under the
assumption of stationarity, while in a different study in Car{@&iaderlik et al., 2007)

the reverse was the case.

5. Conclusions

Managingflooding is particularly challenging whelistorical hydrologiadata issparse

or short, due toadministrative, logistics, financial and technical drawbacKsis
increases the complexity of flood frequency estimatibns promptinghe need fola

shift in focusfrom direct to regional flood frequency that combines data from various
stations to improve data availability and consequently reduce flood estimates
uncertainty associated with poor data usggi@eyon and Ajumka, 2013By combining
regional flood frequency analysis withmatic indices usinghe operaccesdCI-RAFT

tool in this study climate variability effect was accounted for the flood frequency
estimationprocessthereby capturing the mechanism of climate responsible for rainfall

or flow behaviourandvariationin the region(Adeaga, 2006)
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This studyevaluated hydrological data from 17 gauging stations in the @gum river
basin, Western Nigeria, andlentified significant trends andbreakpointsin the
hydrological time seriethat negates the assumption of homogeneity often employed for
flood frequency estimation in the regidizinyon and Ajumka, 2013, Izinyon and
Ehiorobo, 2014, Awokola and Martins, 200Three (3)subregions were delineated
from the river basin, two homogeneous and one heterogeneous, basedamneht
regionalization, and four (4) sample sites of varying trends and -pats selected
from the twohomogeneousregions to assess the impact of climate variability and data

agglomeration in flood frequency estimation.

MaddenJulian Oscillation (MJO) was identified as the miodiuential climate indices,
especially at gauging stations where high climate indicpea# flood correlatiomere

observed, and theffect of climate variability increasedwith retum peiliod. This

revealed the time dependency of climate variability, as well as resulbedre realistic
flood estimatesthat were stillhigher than the maximum floodxperenced in the

OORB

The outcome of this studfurther iterates the need to integrate climate variability into
flood frequencyanalysisand suggeststhe need fora review of flood management
measures based dhe obsoleteassumption(Solecki and Rosenzweig, 2014, Izinyon
and Ajumka, 2013, Sayers et al., 2Q1&)d given that MJO driven everare expected

to be more frequent as average global temperature trends continue Nevisgheless,

it is important to note that the outcome of this section could likely inhabit taimtgzs

that have propagated from in situ hydrological data collection process, rating curve
extrapolation, probability distribution and methodology selection. The quantification of

these uncertainties is however beyond the scope of this study.
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CHAPTER 5: INTEGRAT ING CROWD-SOURCING AND OPEN-ACCESS
REMOTE SENSING FOR FLOOD MONITORING IN DEVELOPING
COUNTRIES

Abstract

Managing floods effectively requiréle efficient coordination of efforts before, during

and after flooding, i.e. planning, response and recovery respectively. Planning and
recovery are usually undertaken at a controlled pace, Wieleesponses undertaken
ratherswiftly to mitigate the immediate efie of the flood event on people, resources,
critical infrastructures and soceconomicactivities Hence during flooding realiear
reaktime flood managemerdata andnformation is requiredo inform decisiormaking

and actiongo minimize immediate flood impact

Thesedatasetsare usually sparse in developing regia&reforehampeing effective
flood managementience remote sensing and crovedurcingprovidean alternativeo
in situ data collection,as it enables floodielineation and information gathering for

flood management in severaimotelocations.

This study was undertaken in 2015 during the peak flood season (September and
October) in Nigeria(a typical developing country). Amtegrated remote sensing and
crowd-sourcing approaclare adapted to (i) optimise recurrent flooddelineation,(ii)

assess the factors that contribute to citizen floskl perceptionand (iii) analyse the

discrepancy between government and citizenpeskeption

The results from this study revealed from MODIS NR/&ter Product floodmages
that 76% of locations flooded in 2015 were previously affected in 20Ehd the
integrated remote sensingMODIS Water Produgt and crowdsourcing approach
adoptedresulted in improved flooded detection in comparisoreash independent
approach asthe methodologyenabled the capturef macro and micrascale floods
Statistical analysisuggests thathe relatiorship between flood risk perception and
flood risk indicator (i.e. awareness, worry and preparedmessinsignificant Thisis
contral to previousstudiesand is likely as a result of the limited data collected during
the peak flood seasdo enable a statisally valid conclusionNonethelessgualitative
analysisof individual themes of indicatoreveakdan understanding of the @¢auses of

flooding, (ii) varying flood management responsibilifyii) lack of knowledge ofthe
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exising flood risk maps, displacement camp locations @myl poor floodinsurance

subscription

Furthermore, thaliscordane between government and citizens flood perception was
apparent suggesting the need for improved floddta collection,modelling and
syrergy between government and citizens to enhance flood management and risk

communication.

Keywords: Crowd-sourcing,VolunteerGIS, MODIS Water Product, Ne&eal Time,
Flood monitoring, Flood Risk Perception

1.INTRODUCTION

With flood events becoming increasingly frequent and intense due to climate change
and anthropogenic factors, hydrological and inundation extent information are needed to
make informed flood management decisions and deployment of measures such as early
waming communication, reliefaterials evacuation planning and rehabilitatifiro et

al., 2015, Maxwell, 2013)Typically flood management efforts are coordinated before,
during and aftethe flood to enhance preparedness, response and recovery respectively,
thus ensuring reduced exposure of people, damage to infrastructure and impact on

sociceconomic activities from floodinGAPFM, 2011)

Pre andPostflood management activitiesre usually deliberately paced, adapting
existing methods supported by available dgi&euwei and Blackburn, 2016)For
instance, Annuallood exceedancerobabilities and floodnagnitude estimatesequire
knowledge of past flood trend¢Reed, 1999) which is propagatedthrough
hydrodynamic models to rouf®wods and quantify hazardSarhadi et al., 2012Pre

flood plans carbe implemented based on flood estimates and hydrodynamicl mode
outcomes to reduce exposure when flood occurs, whileflpost measureson the
other handentails identifying impacted locations, settlements and critical infrastructure
to quantifing the damage/impact for reconstruction and rehabilitation purgasess

et al., 2013, Thorne, 2014)

Responding to floods in the heat of the euvsrparticularly challengingn developing
regions as reaktime data processing and informatiequired are usually unavailable

Floods are unexpected occurrenctgereby making it difficult and impractical to
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monitor large scalefloods using groundbased(in situ) approacTemimi et al., 2004)
Nevertheless,technological advancemest such as remote sensingsatellite and
telemetry provide alternativedo in situ data collectionas they enableath acquisition
from remote locabns (Li et al., 2006, Pereira Cardenal et al., 20409 hydrological
informationtransfer(Seneg 2010,Seng 2012) in real and neaealtime to enale early

warning and flood response.

The cost of acquiring such timely datausuallyhigh, and in some instances turbulent
floods disruptin-situ gauges thereby impeding high flow measureme(fayinka et

al., 2013, Yan et al., 2015dppenaccess remote sensing makes available alternative
free satellite data (Imagery and Aletny water évels) including Landsat, MODIS
(Terra and Aqua), Sentinel 1/2, ENVISAT, Topex/Poseidon, Jason 1/AMeisa et

al., 2015) Also, the consortiums of satellites for global disaster monitoring and
managemen(Bessis et al., 2004khen activated provides member natiavigh free

high-resolution satellite data in NeRealTime (James et al., 2013)

Despite the wideapplication of openraccess satellite data in flood modelling dn
mapping in several regions, certain challengessist including coarse spatial
resolution, lowtemporalresolutionand dataprocessingdelivery time frameinherent
system propertiesnd external lagscapecharacteristics whichresult in poor flood
detectionin vegetation and urban landscape dominated regias et al., 2015a, Musa
et al., 2015, Veljanovski et al., 2011d)ue to these deficiencieslternative data
acquisitionapproabes are required to capture the truetstof inundation in pody

detection locationsand persons livingn remotelocaionscan help fill such data gaps.
1.1. Crowdsourcing and Volunteered Geographic Information (VGIS)

Citizen involvement in science has been proven to be an invaluable source of data
inaccessible locationfor flood managemenprocesses that include (i) floodnpact
assessmerfWerritty et al., 2007, Verger et al., 2008)) exposureevaluation(Riggs et

al., 2008) (iii) vulnerability analysis(Ologunorisa, 2004, Kron, 2005)iv) risk
perceptionevaluation (Siegrist and Gutscher, 2006Y) resiliencecapacity assessment
(Brouwer et al., 2007)and (vi) flood model validation(Yu et al., 2016) Crowd

sourcing is particularly usefuh populatedregionsand aided by wideoveraganobile
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telecommunication and internet systefvang et al., 2017)The global population and
internet userare currently estimateét 7,300,000,000 and 3,378,588,043 respectively
(Haub et al., 2011)n Nigerian(the proposed case study for this study),gbpulation

IS approximately186,987,563, of which 48 have access mobile internet an@8are
active social media use(Kemp, 2015, Fadwok, 2016, NBS, 2016Figure 1 shows
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the Nigerian populationtelephone subscribemnd internet users growth in Nigeria

(Doghudije, 2016)
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Figure 1 Population, Telephone subscriberand Internet users growth in Nigeria

(SourcesNBS, Internetlivestats anNigerian Communication Commissipn

Crowds our Cci

(Saxton et al.,, 2013)n a system whereby a virtual crowd (citizens) perfoam
organizationakask such as data collection during an emaeygeusing internet driven

technology. Crowebourcing can be active or passive, depending on the information

ng

(CS)

ntegrates

nfcrowdo,

collection structuréMeek et al., 2014)active CS to refer surveys completed directly

by respondeist while passive CS involves social media mined information.

fiou

With advancement in telecommunication, increasing internet coverage and growing

population, neareaktime data gathering during disaster eventslmamnindertakeover

a large spatial extent/arious social media platforms have been used in acquiring
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crowd-sourced data (passive crowdsourcing), including Twitter, Facebook, Flickr, and
YouTube, which allows victims of disaster to report finand details of oground
situation, thus improving situational awareness data for informed decision making by
policy makers and first respondefilduiji Gao et al., 2011)Some nstances of social
media application irflood monitoring include i) Assessment of road damage due to
flooding using Twitter hashtags (#flood) and crowdsourced images and videos
(Schnebele et al., 2014{(i) Community need assessment using Facebook feeds and
updates in the cities of City of Calgary, Cdaand Boston, UniteStates(Magnusson,
2014, Franks and Evans, 2018nd (ii) Disaster monitoring using combined social
media data sourcéMusaev et al., 2014}urther literature o social media application

in emergency managemastentailed inSimon et al.(2015)

Despite this progression, the practicality of harnessing, validating and leveraging
crowdsourcing data to inform flood management being hampered by the
complexites arising fronthe variabledatastructure, formaand multisourced nature

of the data. Volunteer @graphic Information system (VGIS) provides a platform that
curbs these deficiencies, as it enatites collection coordination and managemeotit
locationbased datan the required formai{Goodchild, 2007) VGIS also enables
thorough disaster impact assessment, considering thaespendentsare victims of
disaster and reside within the impaones at the time othe even(Triglav-L e k ada and
Radovan, 2013, Poblet et al.,, 201#dditionally, VGIS aids crowdsourced data
quality assurancewhich is one of themost predominant issues associated with
crowdsourcedlata collected from anonymo@son-expert)sources avariouslocations
(Foody et al., 2013, Miorandi et al., 2013, Foody et al., 2014)

1.2. About Risk Perception and Indicators

The perceptiorof flooding directly influenceslood mitigationactionsand dependsn
flood risk awareness, worry and preparedndsiked to pastexposureexperiencs,

socioeconomicand demographic characterist{€&aaijmakers et al., 2008, King, 2000)

Understanding the cause of floodi@wareness)s essential for flood management.
Climate change, poor urban plannegfarcement improper drainagesystems, poor

waste disposal, excessive rainfall adtess watereleasd from upstream dams have
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been identified as some of theajor causes of flooding in several developing regions
(Olayinka et al.,, 2013, Nkwunonwo et al., 2016, Ologunorisa, 200fique
management measures aeguireddepending on the flood type/causer instance
poor waste managemergsuls in the blockage of drainage systems ancduction in
drainagehydraulic capacity(Parkinson, 2003)therefore, managingdbd caused by
poor waste management requires the clearirsplod wasterapped in drainage systems
and awareness campaigns for behavioural change to improve waste management
practices(Momodu et al., 2011)Managingexcess water releases fraams on the
otherhand,require improvedeservoirplanning preparatiorfrom scenariebasedevent
models risk communication andeaning from experience (Olojo et al., 2013,
Vanguard, 2015, Ramirez et al., 2016)

Worry depends on the awareness of the frequency of exposure to flood, lsaxarity

and concern for individual or community welfare, ahdreforeprompts preparedness
(Tapsell et al., 2004)This consequentlympact on the coping capacity to manage
expected flood hazar@Raaijmakers et al., 2008, Harvatt et al., 20¥Idrry is usually
based on previous experience of floodisggial responsibility €.g. family size) and
economiccapacity(e.g.employment statugBoamnah et al., 2015)therefore a person or
group of personwould perceive flood risk as high if they have previously experienced
flooding, havea large family size, and have less economic capacity to cope with flood
consequendezcovey and vice versdBrilly and Polic, 2005, Siegrist and Gutscher,
2006, Adelekan and Asiyanbi, 2016)

Preparednesss built on the awareness expected flood hazard and sufficient worry
which therefore prompts planning and resilience improverbefdre a flood event

(Veen and Logtmeijer, 2005Preparedness can be categorized as technical, social,
economic or institutionalwhere (i) Technical preparednesgntails putting in place
structural measures that modgifthe ewironment or building/properties to reduce
potential impact and exposufe.g. flood walls, dykes, dredging, etc()i) Social
preparedness refers to personal skill development and knowledge gathering to manage
expected flood impadie.g. awarenessampaigng (Bucklandand Rahman, 1999jiii)
Economic preparedness denotes the financial capacity to cope with flood impact, or
measures put in place to reduce financial brss$ risk transfe¢e.g.insurance); andiv)

Institutional preparedness involves the design, conication and implementation of a
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disaster management plan to reduce flood risk and impact through measures such as
evacuation and emergency stedipacity developmerfRaaijmakers et al., 20D&lood

risk maps aralsoessential for preparedness, asriblegown planners and residents
understandnfrastructural development astciceconomicactivities exposure to flood
hazard and management measureguired to mitigate disastereffect (Porter and
Demeritt, 2012)

1.3.Study Objectives

This studyis aimedat leveraging opeaccess remote sensing and cresedircing data
for flood monitoring in developing countries in NdealTime, with the specific

objectives of:

1 Comparerecurring flood events and impact to assess management measure
efficiency

1 Explore the feasibility of applying crowdourcing for NeaReatTime flood
monitoring.

1 Integrae crowdsourcedand operaccess remote sensidgtato enhance near
reaktime flood monitoringand mapping

1 Analyse flood risk elements; Awareness, Worry and Preparednessation to
flood risk perception using crowsburcing data.

1 Evaluat citizen andgovernmentflood risk perception using crowdourcing

dataand government flood modedspectively

2.STUDY AREA

Nigeria is located at the downstream end of the Niger Basin (Figuf@@)Niger Basin
drains a 2,111,475 Kmareaand encircles 93,617,850 persons from 12 countries
(TWAP, 2016) Multi-decadal climatic variation intensifies precipitation in the region,
resulting in frequent flooding (Adeaga, 2006) In the past decade, Nigeria has
experienced severe flood everigssng from extreme precipitation and excess water
releases from upstream dams within Nigeria a&inji, Jebba, Shiroro, Kiri, etc.) and
Cameroon (i.e. Lagdo) along Niger and Benue river respectividly,the 2012 event
reported to have caused the greatest flood impact/damage in 4@QTaarsand Moses,
2015, Qjigi et al., 2013)These high magnitudéoods have resultedn the damageto
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properties and infrastructures, displacement of people, disruption of-esmmomic
activities and loss of liveg-GN, 2013)

|:| Africa

Legend

—— Niger_Benue River

[/ Niger Basin
[ ]nigeria

0 320 640 1,280 Km

Figure2 Map of the Niger River Basin within Africa and across Nigeria

The recent flood events in Nigeria coupled with the growing vulnerable population,
internet subscribers and social media users trend presents a unique opportunity for
crowd-sourcing exploration in Nigeria as will be demonstrated in this sididiiough

citizen science has been previously explored in Nigeria, the focus has been on pre and
postflood data gathering using questionnai(€guaroje et al., 2015, Raheem 2011,
Jinadu, 2014, Adelekan and Asiyanbi, 2016, Adelekan, 200Hi} study proposes to
apply crowdsourcing for neareattime flood data gathering in Nigeria, toform flood
management during floodingchnebele and Cervone, 2013, Schnebele et al., 2014, de
Brito Moreira et al., 2015)

3.METHODOLOGY
3.1. Research framework forcrowdsourcing

The United Nations Office for Disaster Risk Reductiofy NISDR) disaster
communication frameworkeveloped to communicatiBsaster warning at a local scale

to inform decision/responge adapted for this studyrhe communicatioriramework
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comprises offive componentsncluding (i) a crediblesource (ii) a duly designed
message (iii) anefficient communicatiorchannet (iv) a specificAudience and §) a

feedbackprocess to enable message scrutiny and local input.

Audience

Channel

Message

v
w
v

Source

h 4

Fecdback

F

Figure 3UNISDR Disaster Communication Modadlapted for this study

This studyapplies theUNISDR Disaster Communication Model (FigureiB)reverse
with a sourceof information being the people and audied@pictingthe responsible
agencies (gover nanenrtgi,nghte.ncleh ei cmeosvdia g e
flooded or not, and the channel is a Geographic Information System (GE)
Volunteered GI§ while the feedback refers to the action by the agensigsh as

resources distributiomgscuepr evacuatioruring a flood event
3.2. Data and Analysis

Data for this study were simultaneousbcquiredusing remote sensing and crowd
sourcing techniges during the peak flood season (between September and October) of
2015 in Nigeria.

3.2.1. Questionnaire Survey

Quantitative and qualitative data on hazard impact/awaredesggraphic andocio
economiccharacteristics used as indicators for flood risk perceptions were acquired
using a customdesigned ESRI GeoForm web applicati@ppendix 4) The platform
allows for the collection of Geocoded alphaumeric and photo data that che
extractedfor spatialanalysis in ArcMap. The offline submission option was enabled

within the GeoFormsetting toallow for data collection and storageithout internet
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coverage The GeoFormaccessiblethrough the link: http://arcg.is/1SBCXG* was

sharedon Facebook within different social groups encompassing members from the
various states in Nigeri&0 responses were collected for analysighis stug during

the peak flood season.
3.2.2. MODIS NearRealTime (NRT) Flood Maps

Global 250 metres resolution NeRealTime binary flood maps derived from
Moderate Resolution Imagingpectro radiometgiMODIS) Bands (1, 2 and 7) using
Dartmouth Flood Observatory (DFO) algorittiMigro et al., 2014yvas appliedn this
study. MODIS instrumenonboardthe National Aeronautics and Space Administration
( NASA) 6s Ter r a aquides optical satelstairnagds foi 1ttoe Zdays that
are automaticallyprocessed by the Dartmouth Floaffjorithm to produceMODIS
Water Product (MWR) and can be downloaded through the webpage
http://oas.gsfc.nasa.gov/floodmapRevilla-Romero et al., 2015bYhe algorithmuses

a ratio of MODIS 256m Bands 1 and 2, and a threshold on Band 7 to provisionally

identify pixels as water Nigro et al. (2014)further disclosed that the perimance of

the NRT MWP vares from 40% to 66% for clouded and clofige conditions
respectivelyfor good, excellent, almost pertetood detection that captures from half

to almost all flooded surfaceslso, poor and fair flood detection that captures no flood,
poorly classify fleded surfaces and less than half the flooded area, vary from 23% to

34% for clouded and clodftiee conditions respectively.

A combination of the MWRime seriesfor Septembeand October of 2012 and 2015
that corresponds witthe peak rainfall and river flovgeasonn Nigeria wereappliedto
delineate NRT flood extenMODIS imagery has been widely appliedsimilar respect
for flood monitoring and mapping(Nkeki et al., 2013, Zhang et al., 2014, Revilla
Romero etal.,, 2015b)and is known for widecoverage flood delineation and high
temporal resolutionNeverthelessMODIS flood maps are usually distorted by spatial
resolution, cloudtoverss, andrugged terrair(Nigro et al., 2014)resulting in inundation

underestimationand consequently flawed decision makiBy integrating MODIS and

4 http://arcq.is/1sn5CXG

® http://oas.gsfc.nasa.gov/floodmap/
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Crowd-sourcing in this study, we hope to leverage onntieeits ofboth approaches to

improve NRT flood monitoring and mapping.

3.2.3. Government Flood Risk Perception: The Annual Flood Outlook (AFO),

Nigeria

Communicating flood risk to the general public is an important and integral part of
flood management, to ensure precautionary measures are put in place to mitigate flood
impact (HagemeieiKlose and Wagner, 2009)n Nigeria (the case study for this
research), the technical guideline on flood manageme(fitederal Ministry of
Environment, 2005b}ktipulates the need to prepare and publish flood risk maps to
sensitse the public.The aftermath of the unprecedented flood in 2012 resulted in the
initiation of the Annual Flod Outlook (AFO) through a collaboratidretweenthe
Nigerian Hydrological Service Agency (NIHSA) and the Nigerian Meteorological
Agency (NIMET), with the aim ofproviding flood hazard information to mitigate the
impact of flood on the populacepcioeconomicactivities and infrastructuréNIHSA

AFO, 2013) This information is used by the government to dianflood events and
advise citizens at risk of flooding to relocate.

The AFO is generated based on the Geospatial Stream Flow Model (GeoSFM) and Soill

and Water Assessment Tools (SWAT), ugitagasetssuch aghe previous flood extent

of 2012,Nigerian Meteorologicabhgengy (NIMET) Seasonal Rainfall Prediction (SRP),

SRTM DEM, Land use/cover, streaand rain gauge historical data and satellite
precipitation datato categorizestate andocal governmengcaleflood risk exposure as

high, medium andow (NIHSA AFO, 2014, NIHSA AFO, 2015, NIHSA AFO, 2013)
Furthermore, théAFO exist as papebpased maps aneportsand wasconverted toa

digital format compatible with ArcMap for spatial analysis and comparison with citizen

flood risk perception.l n t hi s study, government 6s f 1l o
against that ofhe citizens, to assess whetlgewvernmentflood management measures

are effectively deployeds required by the affected populace.
3.2.4.Geo-Spatial data and Analysis

Administrative shapefilesthat outline national, state, local government and settlement

boundaries were downloaded from the DPZAS databas€Hijmans et al., 2004)
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while population density @mateswere acquirecas Gridded Population (GPW: v4),
from the Socioeconomic Data and Applications Centre (SEDAC) dataldee.
combinedMODIS Water Product (MWP) composites were mosaic to extract inundated
areasand spatialanalysis(overlayand zonal statistica)ndertakerto identify flooded
states, local governmerdettlementsand theinundated populace. All spatial analysis
wasperformedn ArcMap 10.2 after importingGeoForm data from ArcGI8nline

Chi-square test and MasWwhitney U statistical analysis were undertaken in SPNE&

et al., 1975)0 assesshe relationship between floatsk perception and risk elements
Chi-square test evaluates the relationship between two categorical vafiehézd
Statistics, 2016a)while MannWhitney U test assesses the relationship between
categorical and continuous variablgserd Statistics, 2016bYhe 50 aowd-sourced
data responses (flooded/nflaoded) were compared with MODIfood extractsand
latercombined taassespossible improvemenftood detection. Flooded locations from
both approaches westsocompared to media reports i.e. online newspsbulleting
blogs, and post from establishedutlets such asVanguard Independent Today,

Tribune andNationas some form of validity check

4. RESULTS AND DISCUSSION
4.1.NRT-MODIS Flood River Niger and Benue flood extents of 2012 and 2015

In this study, a retrospective approach &so applied to quantify flood extent and
impactsof the 2012 and 2015 flooglvents using remote sensing and GIS technology.
At the national level35 out of the 36 states in Nigeria were flooded in 2®dith the
exemptionof Borno, while in 2015 Borno, Enugu and Yobe weredta¢es not flooded
Similarly, 58% and 41% of thé&74 LocalGovernmentAreas in Nigeria were affected
in 2012 and 2015espectively corresponding to 8,876 and 4,884 settleméatsns)
for the respetive years,out of 56012 settlements (towns)Further details of both
impactsare presenteth Table 1.Comparative spatial analysi$ 2012 and 2015 flood
events showed that 76% of the locations affected in 2848 previously impacted in
2012 despite he reduced flood extent in 20Hs a result othe agreement between
Nigeria and Cameroon in 2013 tonanage excess water release frbagdo dam
(Jinadu, 2015)Therecurrent flood affected00,181persons, thus reiterating the need
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to manage recurring flood risk despite the agreements that resulted in reduced flooding
originating from riparian countriegigure 4 shows the extent of flooding2012 (Red)
2015 Greern), and recurrent floodn both years (Blue)and corresponding crowd

sourced data pointgith similar colour codefor the respective years.

In 2015 the United Nations Office for the Coordination of Humanitarian Affairs
(OCHA, 2015)reported reduced levels flooding, owing to the agreement between
Nigeria and Cameon to collaboratively manage dam subsequent water releases and
communicate risk effectivelyJinadu, 2015) This studyportraysthe effect of that
agreement and decision, evident in the reduced extent of inundated area in 2015 when
compared to 2012espite the less than 1 metre water levels variation between both
years along th Benue river Kainji LakgSchwatkeet al., 2015afrom which flow
contributed to both flood events (Seepplementary Figure 1-(3).

Tablel Quantitative flood risk assessment based on MODIS NRT Flood Data

Flood Event FloodedArea States Local Govt. Settlements Impact
(km?) Population
2012 12,050.80 35 446 8,876 1,927,390
2015 4,337.57 33 321 4,884 528,803
2012& 2015 3,716.57 33 174 3511 400,181

Settlement based onkm buffer. The total numbebf states = 36, Local Governments =47
Settlements = 56012.
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Figure 4 Overlay map of Flood extents (ext.) and crowdsourced data (Map) for 2012
and 2015 flood events

4.2. NRT-MODIS and Crowd-sourang VGIS Integration

Crowdsourcedlata was compared with MODIS NRT flood maspresented in Figure

4 for 2012 and 2015 flood events, then combit@daccess improvement iood
detectionin relation tomedia report Table 2 show higher levels of remote sensing
flood detection than crowsourcing in 2012 and 201(e. the percentage of flooded
data points) Integrating both approaches resulted in an increase in flood detection
percentagdor both yearsThis resultaligns with tle resolve thatrowdsourceddata
allows for the capture ahicro-scaleflood, while the 250m resolution MODIS satellite
image enables macro scale flood detec{ioel et al., 2015, Pennirgowsell, 2014)
The microscaleapproach(crowdsourcing)provide the unique advantage ofability

for specific need/damage assessment, while macro flood outcome elaatpescale
planning at the national or state levélsie Integrated approach was further compared

to online media reportgnd the results showed’5% and 53%greements in 2012 and
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2015 respectivelyThe high level obnline mediaagreement with the integrated ret®
sensing and crowsourcingflood detected areas 2012is likely due to thewide extent
and impact of the 2012 flood evemhich resulted inntense media publicitySome of
the locations identified by medraportsas well as this study are presented in Figure 5,
including Ughelli, Patani, and Amassom@lamy, 2012, Voice of America, 2012,
Koriake, 2015)

Table 2Percentage of floodetection pointérom respondentsMODIS and VGIS

Integration
Year MODIS VGIS VGIS and (VGIS and MODIS vs
MODIS Media
2012 531 49.0 816 755
2015 32.7 204 714 531

(C3)
Legend w
I 2012-2015-Floodext
2015-Flood-ext

I 2012-Flood-ext
[ INiger Delta
[ ILocal Govt
[ Nigeria
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Figure 5Zoomedin flooded locations (Ughelli (C1), Amassoma (C2) and Patani (C3))
in the Niger Delta (B).
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The crowd-sourcing platform was designed to enable photo colle@®®evidence of
flooding to enable validationas well asprovide flood hazard, impactand socic
economicinformation Figure 6 (AB) shows flood scenario &maratain Yenagoa
Nigeria captured at the point afrowdsourcingdata collection, showing rainfall and
urban flood resulting from local conditions, thereby revealing the advantagewaf-cro
sourcing to capture micrdimate phenomenorMuller et al., 201% More photos could
not be captured due to technical challenged experienced using the VGIS platform.
Figure 6 (CD) shows evidence dfluvial flood at Amassoma highlighted by media
reports(Koriake, 2015) which resultedrom Nun river overflow due tthe releaseof
excess dm water alongupstreamNiger and Benue rivers. The flood scenario in
Amassoma wasaptured by both MODIS and crosourcing, due tdargescaleextent
andlocalizedimpact(Akintoye et al., 2016, Ohimain et al., 2014)

(D)

Figure 6 (AB) Amarata, VGIS detected flood in Yenagoa, Bayelsa state (2015), and
(C-D) Media reported flood ilmassoma, Bayelsa state (2015).
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4.3. Flood Risk Indicator Analysis

Outcomesof the flood riskindicatorsanalysis are presented in Table 3, encompassing
flood risk elements of awareness, worry and preparations as the key tihameder
flood risk perception as earlier disclosefl.total of 50 responseswvere recovered,

coveringll out of the 37 Njerian states.
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Table 3 Descriptive Statistics Summary of Flood Risk Indicators

Responses to questions
Themes Variables
option(1) option(2) option(3) option(4)
Awareness | Flood Cause Heavy Rain (14) Poor Drainage & Waste (6( Dam Release (12 All causes (14)
Rivers Proximity No (30) Yes (70) - -
FloodManagement Federal Govt. State Govt. (34) Local Govt. (20) Individual (26)
responsibility (20)
Worry Risk perception Low (44) Medium (44) High (12) -
PreviouslyAffected No (24) Yes (76) - -
Family size 1(6) 2-4 (30) 5-Above (64) -
Employment status Unemployed (18) Employed (56) Student (26) -
Preparednes| Aware of FloodVap No (86) Yes (14) - -
Property Insurance No (88) Yes (12) - -
Displacement Camp No (72) Yes (28) - -

Results presented as percentage of recipients (%)
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4.31. Flood Risk Awareness
The awareness elements assessed in this study Hreknowledge offlood causation

factors (ii) nearness to hazaeahd(iii) flood managementesponsibility given that the
understanding of the cause of flooding influences the management measure deployed by

the responsible authority.

4.31.1. Flood Cause
Intense precipitation is the underlying causk flooding globally, aggravated by

changing climatiand anthropogeniconditions thatesultin more frequent and intense
storms (Hounkpe et al., 2015a, Giustarini et al., 201Hpoding in Nigeriahas been
attributed to factors including climate change, padi@inageplanning,urbansationand

other anthropogenic activities such as dam water releases and hydraulic structures
design failurg(Nkwunonwo et al., 2016 Resuls presented in Table 3 reveals that 60%

of the respondents identified poor drainage and waste management as the primary cause
of flooding, 14%heavy rainfall 12 % dam water release and the 14% suggested a
combination of factors. The results reveal aogeition of a broad range dfood-
causingfactors in Nigeria apreviousy highlighted byShabu and Tyonun{2013)and

Agbola et al.,(2012) where intense rainfall, drainage blockage due dor pvaste

disposal, and dam breakagerealsoidentifiedas thdeadingcauses of flooding.

4.3.1.2 Distance from River
Therisein river waterlevel as a result of precipitation runoff thewnsequentlauss

fluvial flooding has been documented in the HMT: International disaster database
(GuhaSapir et al., 2014jo account for 80% of flood events in Nigerigherefore, the

distance from hazard source (teer) contri butes to peopl ebs
(Tehrany et al., 2013)Jsually, the further the person lives frarhazard sourcehe

less exposed theyare and vice versaHeitz et al.,, 2009) Although 70%of the
respondentspecifiedknowledge of residing close theriver, MannWhitney statistis

indicaed otherwise when knowledge of exposure to flood hazardoeagparedo the

actual distance frortheriver estimated from google earf = 135.5, Z =2.690 and P

= 0.007) This evidence suggedisatp e opl edés knowl edge of haza
actual distance from river differed significantly, indicating a poor sehkazard source

identificationfrom respondents.
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4.3.1.3.Flood Managementand StakeholderResponsibility Mapping
Flood management is usually undertaken ainaividual, local or central government

(White et al., 2016, Porter and Demeritt, 2012, Box et al., 2@Epending on the scale

of flood impact,the resourcerequired or urgency of interventioreededIn this study

74% of the respondentsaintain thathe floodmanagemenis solely the responsibility

of the governmentoperating at the local, state or federal leveitheear | y h©h9 600 s
Nigeria, individuals were solely respmsibe for flood managment prior to the
establishment ofjovernment parastatals forgansed flood managemenfObeta, 2009,
Obeta, 2014b)The Government of Nigeria through several federal, state and local
government parastatals ar®w responsible for data collection, flood prediction,
planning andlood management strategy implementat{&MWR, 2013, FME, 2005a)
These dutieshighlighted in the Action Plan for Erosion and Flood ConteME,
2005a)were divided based on risk management cycle components stipulated in the
Associated Programme on Flood Managemg@hPFM, 2011) i.e. Preparedness
ResponsegRecovery and Rehabilitatioffable 4 to show the role of speafagencies

in an integrated flood management framework and further foster collaboration between

key stakehdtders

Flood management at a national sdalenostly handledy the Federal Government,
including costintensive projects such as dams establishm@aWR, 2016) and
recovery implementation such as the deployment of relief materials tiaad
establishmenbof displacement camp@NEMA, 2012) State and Local scale flood
management efforts are focused smaltscalestructuraland nonstructuralmeasures
such as river channelization, dredgii@hisa et al., 2015xity Masterplan development
and response to local flood haza¢dsejuwon and Aina, 2014)

The results in table 3 also revealed low levels (12%)uddscription to property
insurance against flooding. Lack of societal awareness, lack of incentives to insurance
companies and poor flood data availability have been cited as the factors thatut®n

to poor insurance policiyn Nigeria(Nkwunonwo et al., 2015)
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Table 4 Flood Risk Cycle arfstakeholder Mapping

Risk ManagementCycle Content Federal State Local
Preparedness Data collectionEarly WarningSystems | FMENV, FMI, NIMET, FMWR, SG,SEMA LG
Planning, Prediction, Education, Code | NIWA, NEMA, NIHSA, RBDA,

Enforcement, Flood Riskapping NIOMR, NASRDA, FMP, FMARD.
Response Infrastructure protection (Dams, Levees| CBO, NGOs, NEMA, FMWR, RBDA, | SG, SEMA LG
Dikes), Evacuation, Channels, FMP.

Displacement camp establishment.

Recovery and Rehabilitation] Repair and Reconstruction of critical NDDC, NEMA, FMHUD, FMW, FMP, | SG, SEMA LG
infrastructures (Water supplies, FMARD.
Electricity, Roads Post Risk Assessment

telecommunicationgtc).

See Sipplementarylable 1for aconym definitions

Adapted from(Ologunorisa, 2004, Federal Ministry of Environment, 2005a)
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4.3.2.Flood Hazard Worry

4.3.2.1. Flood Risk Perception and Worry element
Bradford et al(2012)and Raaijmakeri2008)discussedhe relationship between flood

risk perception and worry, suggesting that persons afraid (worried) of flood risk are
more likely to take preventive actions. Flood risk perceptvas therefore used as an

i ndicator for worry, as the question of
survey.High-risk perception is expected to indicaaehigh degreeof worry and vice
versa. (Table 5). Results from thaalysis offlood risk perceptionin relation toworry
elemens (Table 5)revealedno significant evidence to support the argument stf@ng
relationship between flood worry elements and risk perception, contrary to other studies
(Adelekan, 2011) This lack of relationship is likely dut the bias caused by limited
responsegRonald et al., 2015)Neverthelessthe results revealed th&d6% of the
respondentlavepreviously been affected by floodingnd ©rrespond with theresults

from the remote sensing MODIS approach, where 76% of the populace affected in 2015
had experienced the 2012 flood (Table 1).

Table 5 Flood worry elements dysis

Worry Citizen (Rvalue)
Previously Affected 0.850
Family Size 0.925
Employment status 0.428

4.3.3.Flood ManagementPreparedness

4.33.1. FloodM anagementPreparedness and Risk Perception
How an individualor communityperceivesand prepares for floodsk alsodepends on

knowledge of exposurgyhich informsthe instigation omitigation actions foexpected

impact (Miceli et al., 2008) The preparedness elements assessed were knowledge of

flood risk map for planning, awareness of displacement camp location for relocation

during flooding andsubscription to floodnsuranceto enhanceecovery(Ologunorisa,

2004, Agada and Nirupama, 2015, Nkeki et al., 20R85ults fromTable 6 shows that

there was no statistically significant relationship between preparedness elements and
risk perception,contrary tothe proven concept that high perception of flood risk

instigates preparedness for future flamzturrencegMiceli et al., 2008, Wachinger et
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al., 2013) This is likely dueto the limiteddata collected rad skewed nature of the
response¢Choi and Pak, 2004, Ronald et al., 20IH)eresults howeverndicate that
86% of the respondents are unawarethd availability of flood risk maps,72%
oblivious of displacement camp locations and 8&%¥ not subscribed to flood
insurance thus revealing gaps inommunication, institutiosm and the national flood

management strateg@beta, 2014a)

Table 6 Flood Risk Perception Relationship with Preparedness Elements

Preparedness Citizens (P value)
Aware of FloodMap 0.148
Property Insurance 0.354
Displacement Camp 0.417

4.4. Government andCitizens Flood Perception Analysisn Nigeria

Therole ofthe Nigerian governmenin flood managemertias been well established

all levelsin table 4,which includesflood management plaimplementation structural

and nonstructural mitigation measuresleployment and resourceprioritisation and
distribution during flooding These actions relgn their perception of flood risk in a
particular region of the country, that is based on the annual flood map developed bases
using combinedGeoSFM and SWAM™odel(Kellens et al., 2011, NIHSA AFO, 2013)

to designated a region as high, medium or low flood risk. dfegure 7 shows

individual flood risk perception overlaid on locgovernment scale government risk
perception and it revealed thediscordancy in risk perception by both parties.
Comparative analysis also showed that 34% of the risk perceived by the government
was same as the <citi zenscdonsidenablyHurthermoree r e me
30% of citizens perceived higher risk than the government, and 34% ofithe i zend s
responsesndicated the reversesuggestingthat risk perception variabilitymostly
influenced by localized flood expences Chisquare statigical analysis further
supported this findindX? = 2.037 P = 0.729, revealing the absence of significant
similarity between government and citizédlood risk perceptionat corresponding

locations.
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The NIHSA AFO identified mostly regions hydraulicallyreeected to river systems as
high and medium risk floodisk zones hence accounting mostly for fluvial flooding
(Adetunji and Oyeleye, 2013, Nkwunonwo et al., 200@pwd-sourcingcontrastingly
capture micreenvironmental floodingcausedby localisedclimate and anthropogemi
conditions(Muller et al., 2015, Muller et al., 201,3hereby providing the advantage of
identifying flood caused by factothiat areseldom captured by models developed from
coarsedata.Also, giventhat citizens have firdtand flood experiences, personal risk
perception is mostly based on empirical knowlefl@eEobs and Worthley, 199%yhile
government risk perception is based on flood models likely affected by inherent model
and data uncertaintiglRkowe and Wright, 2001, Beven and Hall, 2014, Siegrist and
Gutscher, 2006)

Citizen
@® High
@ Medium
2@ Low

No Indicator

B 20 15-Flood-ext
I 2012-Flood-ext
Government
- High

|:| Medium

Low

240 480 Km
' |

Figure7 Overlay map oNIHSA 2015 Annual Flood Outlook (AFQErowdsourcing
risk perceptionand MODIS NRT flood overlay (2012 and 2015).

5. CONCLUSION

Understanding flood hazarelxposure and impact is essential in flood management,
especially during floodingo improve response and mitigate immediate flood impact
Groundbasedflood monitoring andassessmendre largely incapablimsufficient of
efficient flood data gathering due to the logistical challenges that emanatefladain
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hits peak and inundates transport infrastructure thaks remote locations. Remote
sensing becomes patrticularly useful in such cases, as it enables largeoschiesk
assessment without being in direct contact with the region of interest. Remote sensing is
however hampered by financial, technical temporal, spasatellite sensorand
environmental drawback@usa et al., 2015, Yan et al., 2015a, Wood et al., 2014)
Also, considering that flood evensometimesoccur rapidly with little or no notice
(especially in riparian countriesgstimating the schedulime for satellite devices
capturethe eventan be particularly challengin@itizen involvement in data collection
(crowd-sourcing to support scientific research and decision makingbeas found to
be one of theompensairy approaches thallow data collection at a wide spatscale
and evenin vegetated and ruggeldcations where satellite technology is deficient
(Goodchild, 2007, Baruch et al., 2018)his has been proven tgrovide first-hand
empirical evidence to enhance and validate scientific modelpdictionsover the
years(Yu et al., 2016, Goodchild and Glennon, 2010)

This study evaluated the feasibility of integrating openess remote sensing and
crowd-sourcing for NeaRealTime flood monitoringto draw from the strength of both
approaches during the peak flood season of 2015 in Nigeniaprove flood detectian
This study also collected retrospectivedataon a past 2012 flood event, to enable
comparison with the currer2015 flood event, toenable the assessmehe riparian
flood management agreement effect on downstream ifigoénd other flood
management efforts by the governmeéibod riskindicator effects on citizen flood risk
perceptionwere assessedand citizenflood risk perceptions furtherevaluated against
government 6s f Ithatasdbased os &nupl doodrsigps upanwhich

flood managemerdecisionsare based.
From the results of this study, the following conclusion has bessand

1. This gudy highlighted recurrent flooding in several locatiarssng both remote
sensingand crowdsourcing methodologies, despite reduced flooding in 2015 due
to the riparian dam water release agreement between Nigerian and Cameroon in
2013.This, therefore suggestshe need for aevisedflood management approach
in these regions (Egbinola et al., 2015)with a focus on repeatedlyflooded

locatiors, to improve flood mitigation and recovery.
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2. Combiningremote sensingMWP) and crowdsourcingresulted inincreass flood
detection compared to whendividual approacheswvere applied individually
especially in 2012 when high magnitude flosds experiencedThis improved
flood detectiontook advantage of the spatial resolution of both approaches, which
allows for the capturef macro and micro scale floodirggused by a combination
of regional ad localfactors(Muller et al., 2015, RevilldlRomero et al., 2015pj).e.
fluvial and urban floodingTherefore, anntegratedremote sensing androwd-
sourcingapproachis recommended, given that firovides the best approach to
flood detectiorespecially in mangrove dominated, urban areas, rugged terrains and
cloud covered areas where individual approaches could be deficient.

3. The relationship between flood risk perception and flood risk indicator elements
(Worry, Awareness and Preparation) veatistically insignificantand owing to
the limited data collected, no decisive conclusion can be made. Nevertheless, the
responses obtained revealed an appreciatidheotliverse causes @iboding and
flood management responsibility designasiowhile knowledge of existing flood
maps, displacements camps and flood insurance was limited.

4. Citizen and government flood risk perception variednsiderably owing to
inherentmodel and data uncertainties, and in ithiegratedSWAT and GeoSFM
model (Yang et al., 2008, Daggupati et al., 2015, Tan et al., 20b%) which
government flood perception is based. Also, the government flood nsduiaked
towards fluvial flood risk detection, whilerowdsourcings is capable otapturing
flooding caused by local factors such as intense precipitation in poorly drained
urban areaand drainages clogged by poor waste management pra&gessich,
an integrated approach is suggestefor effective flood risk assessment,
incorporatingcitizen risk detection and improvéidod models based on sufficient
in situand satellite remote sensing déenschler and Wang, 2017)

5. A unique challengeof reluctanceto divulge sociceconomic information in
combination with flood impact duringctive crowdsourcing isrevealedin this
study, peculiar to developing regions, owing to experiences and perception of
internetfraudin recent year§legede, 2014)

6. Although the prospect of crowsburcing forimproving flood detection isclearly

evident in this work, the responses received and used in the analysis presented are
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quite limited, as such the outcomes of this section are not defiitigeto this

limitation.

Having understood the potentialf integratedcrowdsourcing and remote sengifor
nearreattime flood monitoring, going forward it is expected tathan approach if
coordinated by a designated disaster management agency such as the National
Emergency Management Agency (NEMA) in Nigerigould improve citizen
participation, anccan aid largescaleflood detection, damage impact assessment and
resource prioritization and distribution adleviate immediate flood impacand inform
rehabilitation activitiegDashti et al., 2014, Roxare and Andrej, 2014)
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Chapter 5 Supplementary Figures and Tables
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Supplementary Table Definition of acronyms

S/N  Name ofMini stries Acronyms
1 Federal Ministry of Water Resources FMWR
2  Nigerian Meteorological Agency NIMET
3 Nigerian Inland Waterways Agency NIWA
4  River Basin Development Authorities RBDA
5 Nigerian Hydrological Service Agency NIHSA
6  Federal Ministry of Environment FMENV
7 National Emergency Management Agency NEMA
8  Federal Ministry of Housing and Urban Development FMHUD
9  Federal Ministry of Works FMW
10 State Government SG
11 Local Government LG
12 Niger Delta Developmer@ommission NDDC
13 National Institute of Oceanography & Marine Research NIOMR
14  Federal Ministry of Information FMI
15 Community Based Organisation CBO
16  Non-Governmental Organisation NGO
17  Federal Ministry of Agriculture and Rural Development FMARD
18 Federal Ministry of Power FMP
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CHAPTER 6: HYDRODYNAMIC MODELLING OF EXTREME FLOODS IN
DEVEL OPING REGIONS USING MULTIPLE OPEN -ACCESSREMOTE
SENSING AND 3RP PARTY DATA SOURCES.

Abstract

The sparsityof hydrological datdaampers flood modelling in many developing regions,
due tothe logistical, administrative and financial challenges associated with the data
collection processes. As floods become more frequent and increase in magnitude,
alternative datasourcesneed to be exploreth order to providereliable information
requiredfor managng known and expectedflood impacts.This study exploreshe
contribution of @enaccessremote sensinglatasetsin all stages of fluvial flood
modelling and mappingncluding (i) flood frequency estimation, (ii) hydrodynamic

modelling, and (iii) inundation mapping.

It uses a case study of Niger South region of Nigeria ategrstesradar altimetry,
digital elevation modeloptical and $nthetic ApertureRadar (SAR)images, 3 party
(independent organizatipracquired bathymetric surveglata and aerial geotagged
photos in the CAESARISFLOOD-FP 2D hydrodynamic model to simulate flooding.
The model wagalibratedyalidated by varying thdannings roughness from 0.01 to
0.045, with 0.04 established as the optimal roughness value for maximum accuracy. A
combination of SAR and optical satellite images was found to improve the model
predictive accuracy in comparison to when oaptical imagerywas ugd, due to the
presence of cloud cover during the wet sednaatme Niger Delta sectionf the study
domain. Breaking the study domain into three sections for validation showed how
hydrodynamic model prediction varied with data availability and geomorphgjo
resulting in FStatistics of 0.8, 0.53 and 0.DP at Lokoja, Onitsha and NigeDelta
respectively for combined SAR and optical imgagdecreasing with reduced data
availability. The RMSE of modelled water levels evaluated agaimstStu
measurements at Lokoja and Onitsha werg6, 3.65m respectively.Geotagged
overflight photos showedn improved model to reality accuracy, revealing SAR
inundationdelineationdeficiency in the NigemDelta dominated by mangrove cover
Incorporating the <in-100 year AEP flood into the study at Lokoja where less error was
evident revealed that the 2012 flood event w&s90% confidence levélourds of the
1-in-100-year This implies that opeaccess remote sensing and 3rd party databe

instrumental in improving flood management decisions in-gaggise regions through
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the provision of substantial information that would enhance mitigation efforts to reduce

the impact of flooding othe potentially exposed populace

Keywords: Openraccess remote sensing; hydrodynamic model; 2012 Flood Nigeria;
Radar Altimetry; Digital Elevation Model; Optical and Ra&atelliteimages.

1. Introduction

The magnitude and frequency of flood eveate continuously increasing, and with
climate chage altering longerm climate and shoterm weather patterns this scenario
is not expected to change in the foreseeable fiBakous et al., 2013)'hetotal global

cost of flood damage stands at a staggering 4étrilUS Dollars and is projected to
increase to 158 trillion Dollarby 2050, based on growing population and GDP rates
(Jongman et al., 2012Populationincreaseand urban sprawl typicallyresultin the
migration of people towards settling in floodplains, which flseded annually during
peak flow periodgYukiko et al, 2013, McGranahan et al., 2007, Syvitski et al., 2012)
Hallegatte,(2014) documented a 170% increase in the number of floodplain dwellers
between 1970 and 2010 global®s a typical example of a developing countdygeria

has seem substantiaincrease in population inhabiting floodplains owke recent
decadgMahmoud et al., 2016, Komolafe, 2015, Daura and Mayomi, 2015, Mayomi et
al., 2013, Tamuno et al., 2003)husthere is a need for the development of measures to

reduce flood exposure #se upward trends iarbanization anghopulation continue.

To manage flodsandtheirimpacts efficiently, accurate information that depicts
the extent of thdazard(i.e. inundation extent, flood depth and propagation velocity) is
essentialEls, 2013) However, deriving such information requires detailed data inputs
for flood modellingprocedures such dod frequencyestimation, floodrouting and
hazard mapping(Aerts et al.,, 2009) Flood frequency estimation requirdbe
approximaton o the magnitude oflood at a certain return period Higting a defined
probability distributions to the annual maximum or partial discharge time series
(Kuczera, 1999, Reed, 1999)hen enough data is availabléor ungaugedrivers ,
alternative methods based on runoff estimafierz and Bldschl, 2005, Rogger et al.,
2012) empirical altimetry forecast rating curve extrapolati®andey and Amarnath,
2015, Clark et al., 2014nd regionalization techniqué¢sladdad et al., 2014, Izinyon
and Ajumka, 2013, Lépez ariir anc ®s 2013, O OcBrr beapptied.a n d
Flood routing models (1 andi2 Dimensional) utilise topography data (river channel
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and floodplain terrain details), hydrographic daaad river channel and floodplain
roughness that define terrain resistandasprder to derivewater depth, velocity,
propagation timeline, and inundatientent(Aerts et al., 2009, Seung Oh et al., 2013,
Skinner et al., 2015) astly, flood maps communicate the outcomes of hydrology and
hydrodynamianodels in an easy to assimilate and implementable fafikman, 2005)

and have recently become interactive, allowing public involvementvelanteer
geographic information systesand crowdsourcing(Degrossi et al., 2014, Bordogna et
al., 2016) Flood maps can be presented probabilistic or deterministic form
depending on the type of flood information and accompanying uncertainty to be
communicatedDi Baldassarre et al., 2010, Domeneghetti et al., 2013)

In manydeveloping countries, flooohodelling andmappingarehampered by lack of
sufficientin situ hydrologicaldata(Sanyal, 2013, Yan et al., 20153his data sparsity
challenge results in uncertain outcomes used in flood manag€gamnal et al., 2013,
Yan et al., 2015a)consequentiallycausing aggravateexposure andgociceconomic
loss when planning is based on poorly derived informdtishra et al., 2009)

River gauge stationare usually setip to collecthydrological datagBshir and Garba,

2003) however logistical andinancial challengesn developing countries restrict
spatial coverage of gauge netwo(kigene, 2009)Wheregauge stationdo exist they

often collect insufficient data due to disrupi of infrastructuredue to intensdloods,

poor planning and organizatidiieinyon and Ehiorobo, 2014, Olayinka et al., 2013,
Ngene et al., 2015) ikewise, detailed highresolution groundsurveyor satellite data

that capture terrain details acestintensive hence researchers harecently shifted

focus toopenaccess remote sensing data to curb the cost associated with such data
collection(Patro et al., 2009, Yan et al., 2015b, Yan et al., 2015a)

There have been advancementjpenaccess remote sensing over the past decade,
with applications inmany different apecs of flood modelling and mappinfaving
been demonstrate8rief reviews ofthe application obperaccessemotesensingare
presented later in Secti¢B.1), with emphasis on optical aynthetic Aperture Radar
(SAR) satellite images, radar altimetry, Digital Elevation MaddDEMs) and
bathymetry.In this chapter,the use of multipleopenaccess geospatial technologies
(data and model) is exploredoraplemented by '3 party (independent organization)
collecteddatasetsvith the aim of modelling flood dynamics, simulating the extent and
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depths ofa high magnitwle flood event at thechosenstudy siteand assessingn
retrospecthe extent incomparison to a-in-100-year AnnualExcee@nce Probability
(AEP) flood for management purp@sdhe Limitations associated opancess data
usage in flood modelling are addressed, includirgyimplications ofmissingin situ
data in hydrological flood magnitude estimatidhe accuracy of th&huttle Radar
Topography Mission (SRTMjlerived DEM used inydrodynamic modelling, and the

discrepancies associated with flood extent mapping blaseptical andSAR Images
1.1. Studyarea

The study area Figure 1(A) is located within hydrological area 5 (Niger South)
southern Nigeriagncompassing substantial part dhe Niger and Benue riversyhich
meetat Lokoja andravd downstream to discharge into the Atlantic Ocean via Nun and
Forcados riverdAbam, 2001a) The Niger basircovers a large proportion of West
Africa (2,170,500 krf) and isrepresented in Figure 1 (Byhe Niger Basirdrains into

the Niger South hydrological area, collecting anrage discharge of 6000°%a from

11 riparian countriegGaston, 2013)Due to these high flowspanyrivers within the
basin have beendammed forhydroelectric power generation, irrigation and flood
control(Aich et al., 2014b, Andersen and Golitzen, 2005)

In recent years the Niger and Benue rivers have beavilyinfluenced by excess water
released fromupstreanresevoirs in Nigeria Nigerand CameroorfOjigi et al., 2013,
Olojo et al., 2013 resulting in flooding othelow-lying settlements within floodplains
(FGN, 2013, Agada and Nirupama, 2015, Odunuga et al., 20hB)annual average
rainfall in the region varies from 750 to 1600mm, dimelaveragegemperature from 18
to28 C.

The flood model domainsed in this studis representetly the DEM area in Figure 1,
while subdomainglefined by the red rectangles in Figure 1 (Lokoja, Onitsha and Niger
Delta) were selectedfor subsequent analysis and accuracy assessment given the
differences in data availability and geomorphologicdiaracteristicsi.e. River
confluenceCanyonand delta.

The threesubdomainswere among the most affecteslhen Nigeria experienced
unprecedeted levels of flooding in 20120jigi et al., 2013, Tami and Moses, 2015,
Nkeki et al., 2013, Olojo et ak013) The interflow of water fronthe Niger and Benue
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riversinitiated flooding at Lokoja (Odunuga et al., 2015)he Onitsha/Asaba floodplain
was flooded due to constricted channels and high upstream(Efmli and Anierobi,
2013) and theNiger Delta region was flooded as a result ofiats-lying topography
and the influx of rising upstream water lev€llami and Moses, 2015, Olojo et al.,
2013)
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Figure 1 (A) Map of study area, showirtge Niger-South river basin (hydrological area
5), gauging stations, ICESat elevation points, bathynpeiyts DEM/Model domain

and subdomainsFigure 1 (B) Map of Africa showing the Niger Basin that discharges
through the HAS into the Atlantic Ocean.

2. Methodology
2.1. Datasourcesand their application

The flowchart of the overall study methodology is presented in Figure 2, detailing how

the various datasetswere integratedfor flood modelling and risk evaluation in the

160



Application of Operaccessand 3¢ Party Geospatial Technology for Integrated Flood Risk Management in Data

SparseRegions of Developing Countries

Niger-SouthBasinof Nigeria. Further detailare presentesh subsequent sections 2.1.1
to 2.4.
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Figure 2 Conceptual flowchart of integrated flood modelling and mapping in the Niger
South

2.1.1. Optical and Radar Satellite Images, antheir application
Thepassive remote sensing Moderate Resolution Imaging Spectroradiometer (MODIS),

Landsat and the recentlyatie openaccessAdvanced Spaceborne Thermal Emission
and Mission Radiometer (ASTER) images have beékea most widely applied satellite

data in flood management proces@esrkuo, 2011, Qi et al., 2009, Gareth et al., 2015,
Nigro et al., 2014)The high temporal resolution of MODIS-Rdays) and the high
spatial resolutions of Landsat and ASTER (i.e. 30 and 15 meters respectively) provides
unique advantagdsr varying scales and frequeesof flood mapping Ojinnaka et al.,

2015, Ojigi et al., 2013, Jeb and Aggarwal, 2008, Tarpanelli et al., 20&8¢rtheless,
optical satellite data application lmmpered by cloudower, especially during the wet
season when cloud formation leads to rain and consequently runoff and flQasimey,

2001, Museet al., 2015, RevilllRomero et al., 2015bYo minimise these deficiencies
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and improve opticalmageryapplication several techniques have been proposed and
applied, including imageryusionto leverage the best features of combined imdg@s.
example Zhang et al(2014)combined MODIS and Landsat to map inundation extent
in urban regions of New Orleans, thus improving the spatial and temporal resolution of
the outputsPhuong and Yuehn (2015)employed MODIS and Lands&tin mapping
inundation over rice paddies downstreanttaf Mekong River in Cambodia. MODIS
and ASTERwere also combined and applied validatingthe Coupled Routing and
Excess Storage (CREST) hydrologic model in the ungauged basin of (Khaia et al.,
2011) Trigg et al.,(2013)developed and applied a gap filling approach that improved
the hydraulic connectivity of theMODIS flood waterextent for largescale flood
detection by accounting fospatial uncertainty, using geostatistical conndgtiv
approachthat quantifies the probability of a location being flooded given a known flood

location and specified distan{fardelgizquiza and Dowd, 2003)

Active sensoiSAR, on the other hanallows for day and night image acquisition and
penetrates cloud cover, thus allowing fam effectiveinundation extent delineation
process(Musa et al.,, 2015)Commercial SAR satellitedata has dominated flood
mapping studies for decades, dudheir high spatialresolutionand capacity for water
discrimination Some examples includdow-cost ERS SAREnvisat ASAR,
CosmoSkyMed, Radarsat 1 and 2, TerraSARand ALOS PALSAR(Betbeder et al.,
2015, Frappart et al., 2006, Garflmtado et al., 2013, Yan et al., 20154although
openaccesslO-metreresolutionSAR Sentinellis now available for flood mapping in
severaldeveloping regiongKyriou and Nikolakopoulos, 2015, Donato et al., 2054)

the time of the flood evemf interest for this study occurred in 2012, Sentinel 1 was yet
to be launchedHence, the emphasis in this study is on commercial satellites made
freely available by independent organization¥ (farties) operating in the flogarone
region of interestDespite the advantages associated with SAR imagery, the inability of
C and X-band sensos to penetrate vegetation cover atite misinterpretationof
imagery over differentand use types havieeen identifiedas significant limitations

(Bruce et al., 2015andmust beconsidered when applying SAR data.

In the context of the present study, remotely sensedwidditdve used toassess the
capacity ofa hydrodynamicmodel to depictthe observedextent of flooding. A

combination of TerraSARX, MODIS NearRealTime flood maps, Radarsat2 and
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CosmoSkyMedmagesacquiredat the timeof the 2012 flood event in Nigeriaere

used in mapping the inundation exter®ptical and radar images were combined to
capturethe alignment of flood ernts withhydrographic changasroughout the flood
event (rise, peak and fall)thereby compensatinfpr the deficiencies in inundation
extent derived from both sens@¥Wood et al., 2014, Mason et al., 2016, GaRii@ado

et al., 2013)Details of the images used, dates of acquisition and discharge measured at
upstream gauging stations l{iwh are mapped in Figure 1) are presenteddhble 1.
MODIS coverage was deficient in the Niger Delta due to high cloud cover in the region
(Uchegbulam and Ayolabi, 2013)encethe SAR data compensated for this gap. SAR
images with HorizontaHorizontal (HH) polarisation only were useas they provided
gooddiscrimination between floodeghd norflooded area pixel§Mason et al., 2016)

The MODIS NearRealTime (NRT) Water Product was developedby the National
Aeronautics and Space Administration (NASA) and available via
https://oas.gsfc.nasa.gov/floodmaperraSARX from the disaster chartectivated in
2012 while Radarsat2 and CosmoSkyMeprovided by the Shell Petroleum
Development Company (SPD®)igeria (Appendix 5)acquiredon the 18, 19" and

20" of October 202. The SAR images flood extenwas extracted by histogram
thresholding approaciiLong et al., 2014)In addition to te MODIS and SAR
imageries which covered specific locations of the study dorhaimgjsat 8 Operational
Land Imager (OLI) was acquirddr the whole study ared his was used to derive land
use maps following similamaximum likelihood supervised classifizat approach
employed byButt et al.,(2015), in order to determine the builip area inundatedased

on satellite and modellederivedflood extents

Furthermore, giverthe deficiencies of optical and SAR satellite images previously
highlighted, this study took a further step by incorporating geotagged overflight photos
acquiredfrom a helicopterover the Niger Delta region during the peak of flooding in
2012 using NIKOND7000 camera. Geotagged photos poir87( were manually
classified as flooded and ndlooded, and applied in extracting corresponding values
for the model and observed flood extents for comparative analysis (Sectioit&3).
geotagged photowere captured at an average distance okn2 from focuson the
helicopter(see Supplementary Figure 5), thus akéh buffer was created and spatial

zonal statistics applied to select the dominant (majority) cell value (flooded/Non
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flooded) containedwithin the buffer area to identify flooded areas detected by the

model and SAR imagery in 2012.

Table 1 Satelliteimageryused in the study with acquisition dates and corresponding

upstream gauge station discharge values and Annual Exceedance Probability (AEP).

Dates Images Baro AEP Umaisha AEP
[YYYY -MM- Gauge Gauge
DD] (m3/s) (m3/s)
TSX MDS R2 CSKD

201209-03 - X X - 5,187 2 12,303 2
20120925 X X - - 8,533 50 20,328 100
20121009 - X X - 6,969 5 17,378 50
20121011 - X X - 6,696 5 16,771 20
20121012 - X X - 6,504 5 16,520 20
201211-06 - X X X 3,270 2 7,955 2

TSX = TerraSARX, MDS = MODIS, R2 = Radarsat2, CSKD = CosmoSkyMed

2.1.2. Radar Altimetry and application in study
Recent advancements apentaccess remote sensihgve led to theavailability of high

temporal and spatiatesolutionradar altimetrydata sets(European Space Agency
(ESA), 2016, NESDIS, 2016, Donato et al., 20I®)is means thdtydrological data
(water levels) can now be captured in remote and inaccessible locatiorsatieat
previously been ungauged or with newly established gauges with short records
Altimetry is applicable in several aspects of hydrodynamics modelling and flood
mapping, discharge estimation at ungauged or data sparse river (Renas et al.,
2010, Srideviet al., 2016, Getirana and Peterdard, 2013, Tarpanelli et al., 2016)
digital terrain data accuracy evaluati@@arabajal and Harding, 2005, Fricker et al.,
2005, Kon Joon Bhang et al., 2007yer bathymetrycharacterisatiomnd assimilation
(Chavarri et al., 2012, Yoon et al., 201&)d hydrodynamic model calilitan and
validation(Domeneghetti et al., 2014, Sun et al., 2012, Sun et al., 2015)

Gaps in hydrological time seriedue to intermittent gauging station recording or

disruption to the station network, which frequently occunnastdeveloping countries,

164



Application of Operaccessand 3¢ Party Geospatial Technology for Integrated Flood Risk Management in Data

SparseRegions of Developing Countries

resuling in uncertain floodrequencyestimategGill et al., 2007, Lee and Kang, 2015)

In the presenstudy,atimetry data set¢Topex/Poseidon, Envisat, Jason 1, and Jason 2)
were usedto fill missing data for flood frequency estimationsing the method
descrbedin Chapter 3 (Section 3.1.1.1)

Ice, Cloud, and land Elevation Satellite (ICESat)/Geoscience Laser Altimeter System
(GLAS) SPOT points were applied in this study to assess the accuracy SR

DEM in the absence of ground surveyed elevat{again a typicalsituatian in
developing countries)Also, for the Niger Delta region where bathymetry data is
unavailable, lie average elevation differendmetween the two systems wdsducted

from the DEM river channetlelineated from Landsat OlLbased on the Patro et al.
(2009) approach, to compensafer SRTM Gband radar inability to penetrate water

surface

Altimetry datasetsvere downloaded from the Database for Hydrological Time Series of
Inland Waters DAHITI) (Schwatke et al., 2015b, Schwatke et al., 201 Centre

for Topographic studies (CTOH) of the Ocean and Hydrosphere archive
(HYDROWERB) and ICESaterived inland water surface spot height¥$H) data was
downloackd from the recently developeathtabas€O’'Loughlin et al., 2016aAll digital

el evation models were directly compared
all data setswere on the same vertical datum WGSS6od and projected to
WGS 1984 UTM_Zone_32NThe propertiesof the altimetry missions used in this
studyarelisted below (Table 2):

Table 2 Altimetry data and properties for sources used in this stOtyoughlin et al.,
2016a)

Mission Ground Vertical Frequency (days Operation timeline

Footprint (m)  Accuracy (m)

Jasor2 ~ 300 0.28 10 2008- active
Jasonl ~ 300 1.07 10 2002- 2009
Envisat ~ 400 0.28 35 2002- 2012
ICESat ~70 0.10 - 2003- 2009
T/P ~ 600 0.35 9.9 1993- 2003
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2.1.3. Digital Elevation Model(DEM), Bathymetry, accuracy assessment and
application
DEMs are essential in hydrodynamic modelling as they provide a continuous

topographical surface upon which the flo@ routed Shuttle Radar Topography
Mission (SRTM) DEM(Farr et al., 2007 one of the most widely applisapenaccess
terraindatasetdor hydrological anchydrodynamiamodelling globally(Biancamaria et

al., 2009a, Neal et al., 2012, Sanyal et al., 2013, Gleason and Smith, 2014, Smith et al.,
2015)and Nigeria in particulagBas van de et al., 2012, Olayinka et al., 2013, Adeaga

et al., 2006) Despite thewide applicability of SRTM, the C and -¥and radar cannot
penetrate the water surface tietect channel geometrytherefore resulting in an
overestimationof the bed elevation andonsequentlyflawed flood model outcomes

(Yan et al., 2015a)Other challenges linked to SRTM usage are its inability to
completely penetrate vegetation cover in forested areas and reflections of radar signals
off the top of building in urban areas, resultingowsitively biased elevation estimates
(Brown et al., 2010, Neal ai., 2012)and consequently biased outassnwhen applied

in hydrologicaland hydodynamicmodellingstudes (Yamazaki et al., 2012)

Several studies have adopted various techniquesrtnthis deficiency at local scales.

In Baugh et al.,(2013) 50 to 60 percent of the vegetatioeight estimated from
MODIS, ICESat vegetation canopy heighs well as the Simard et gR011) and
Lefsky (2010)global vegtation height data setgere reduced from SRTM DEM his
resulted in SRTM vegetation correction andnproved model accuracies when
compared to Topex/Poseidon and JERS (Japanese Earth Resources Satellite)
observationsBetbeder et al.(2015)reduced vegetation bias by adopting a systematic
method in the Amazon that harnesses vegetation hggintard et al., 2011)Landsat
land cover andRadar dtimetry to deliver a hydrological corrected DEM, thereby
reducing SRTMDEM bias by 64 percenBatro et al.(2009)and Sanyal et al (2013)
refined SRTMDEM-derived channetrosssection usedor onedimensionaMIKE 11

and two-dimensional LISFLOOD-FP flood models respectivelyrhis was doneby
subtrating the average errors derived from comparing STB#M cross sections and
Differential GPS surveylata setsNeal et al.,(2012) adopted ehydrodynamicmodel
approach that reduces channel dlmbdplain elevation overestimations by defining
calibratablehydraulic geometry parameters (i.e. channel depth and widthjn the

two-dimensional sugrid LISFLOOD-FP model Thisled to significant improvements
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in water level, wave propagation and inundation extent accuracies. In Siberia,
Biancamaria et al(2009a)applied a simple approach thr@ducedthe SRTM derived
channel elevation by 5, 10 and 1®tnes to determine an appropriate assumption for
optimal flood modellingor Obi Rivers This resulted irlO metresbeingidentified as

the optimalriver depthestimategor efficient hydrodynamic modellindor Obi rivers

At a global scale, a few studies have derived hydrologically corr&fRioM DEMSs,
aimed at reducing elevation errors caused by voids, vegetatiopematration and
urban rooftop bouneeff. O'Loughlin et al.(2015) systematically combined SRTM,
MODIS vegetation canopyDiMiceli et al., 201}, ICESat GLAS and varying
percentages of satelliderived vegetatioiSimard et al., 2011fo produce theGlobal
BareEarth SRTM DEM (BARE) with reduced uncertainties in various climatic zones
(Broxton et al., 2014, Peel et al., 2007)his approach resulted in the reduction of
average vegetatn bias from 4.94 to 0.4 m, and standard deviation from 7.12 taw.80
in comparison to ICESat and cressctions of LIDAR respectivelySampson et
al.(2015) applied an alternative approach to correct SRTM bias caused by vegetation
and urban land use/covén generate thdBare Earth SRTM Terrain (BEST)his
approach uss a moving window filter algorithm(Elvidge et al., 20070 reduce
urbanization elevation biasyhile similar algorithm adopted byO'Loughlin et al.
(2015) i.e.adaptive smoothin@Gallant, 2011)s appliedto reduce vegetation biahe
BEST model resulted iaRMSE reduction from 10.96 to 6.0% in comparison tdocal
LIDAR-derived validation datand an overall biaseductionfrom 15.08 to-0.1 m.
Robinson et al(2014) developed a global DEM from a combination of CGI&RSI
SRTM version 4.1, ASTER GDEM and Global Land Survey Digital Elevation Model
(GLSDEM) to fill voids in the DEM data and dgenatically redued noise by applying

an adaptive smoothing approach (@allant, 2011) thereby reducing SRTM vertical
error to between 4.13 and 10.55 m.

In the present study, the BARE and BE®EMs covering the studgomainwere
combined usingthe Ar cGI'S 10. 2 mo duadtian thdt routputs e mo
minimum cell value of two overlapping cell, based on the assumption that the lowest
DEM value represents bare earth elevatidmis approach is intended to curb

overestimation bias thatesuls from unremoved vegetation and urban areaghte
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from individual DEMs.Mean Error (M.E.) and Root Mean Squatador (RMSE)was

used for accuracgssessmemndwere appliedn this study, defined by:

2-3%

()

U Wz P

Wherefl ¢s the total data points, @the ICESat elevationg dthe SRTMDEM-
extractecelevation pointsgBe summation and-B U UDz is the Mean Error

(ME).

M.E informs us of the vertical bias in the DEM, quantifying the consistency in elevation
underestimation (negative M.E) and overestimation (positive M.E) in relation to the
reference (ICESat elevation) value. RMSE on other hand characterizes the ovétall DE

surface error by a single quant{®atel et al., 2016)

In the Niger Delta region where river bathymetry data is unavaildideyertical bias
was applied in correcting the offset between ICESat and DEM elevalioesosaiced
andriver channeladjusted DEM washen converted tocontourpoints and combined
with bathymetric survey data pointben interpolated at @3-metregrid spacing using
the nearest neighbour methd&ibson, 1981) This resulted in a hydrologically
smoothed DEMArun, 2013) that was thermonverted to ASCII format for use in the
CAESAR-LISFLOOD model.

Surveyed bathymetry enables improved river geometry detailing, leading to improved
hydrodynamic model outputs with reduced uncertain{®@anyal et al., 2013)In
Nigeria, most bathymetry data are restricted and subject to confidentiality réating
artificial data scarcity. For this study, bathymetric data were obtained from two
companies after signing confidentiality documents that the data would be used for
research purposes only. Digital Horizon Co. is a private company contracted tp surve
from Lokoja (Confluence)to Makurdi (Benue River) over a 240km distance. The
survey was undertaken between 8th March t8 Afril 2011 using HYDROSTAR
ELAC 4300 DUAL Echesounder andC-Nav 2050differential GPS systems. The
bathymetric data were projected Clarke 1880 Minna datum and UTM Zone 32.

Bathymetric survey data frodamatato Abohi 300km along the Niger rivewas
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obtained from Royal Haskoning. These data were collectedebalf of Ngerian

Inland Waterways Authority (NIWA) in 2002 using an Ashtech Z12 Real Time
Kinematics (RTK) GPS, Navisound 210, Navisound 50 and Raytheon 210Kc digital and
analogue echo sounders. The bathymetric surveys were based on a Mean Sea Level
(MSL) vertical catum and WGS84 spatial reference.

2.1.4. Hydrological Data, Flood Frequency Estimation and application

Flood magnitude for a specific return period is essential in planning for éeeatsand
designing hydraulics structures to mitigate flood impg&sed, 1999)In this studya
Generalied Extreme Value (GEV) probability distributiowas fitted to annual
maximum flood seriegJenkinson, 1955yan apprach that has beenidely adopted in
hydrological studies in several regiofiseclerc and Ouarda, 2007, Blwanek et al.,
2013, E¥J abi et al ., 2015, Smith et . Sed . , 2 (

supplementary materiahd Chapter 8r more details

Hydrological data from Baro, Umaisha, Lokoja and Onitaleae obtainedrom the
Nigerian Hydrological Service Agency (NIHSA) and the National Inland Waterways
Authority (NIWA), the agencies responsible for hydrographic data collection and
managementn Nigeria Discharge values at Baro and Umaisheare usedas input
boundaryconditions for the moddDi Baldassarre, 201Zpr simulating floods for the
hydrological year of 2018See Supplementary Figure 6 for the input hydrogra@rs)
those at Lokoja and Onitsha were used in the model calibratmeh validation
downstream(See Figure 1Aor Figure 1 in Chapter)3 The maximum flood quantile
(upper uncertainty bound) for theiri-100 Year AEP flood obtained froi@hapter 3
was modelledor comparison withthe 2012 hydrograph. Flood frequency plots from
Chapter Jrefurtherpresenteds supplementary materials in this stulygplementary
Figurel - 2). The choice of upper uncertainty bound applicatsosupportedy the fact

that the high dischargeare often underestimatewhen using the rating curvéDi

Baldassarre and Claps, 201d9upledwith the ned to plan fotheworstcasescenario.

2.2. CAESARLISFLOOD (CL) Hydrodynamic Model Description and Setup

CAESAR-LISFLOOD hydrodynamicand geomorphological (erosion and deposition)
modelling tool (Van De Wiel et al.,, 2007¢mbeded with the LISFLOOPBP code
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(Bates et al., 2010)as selected for this study due to its effectiveness and applicability
for fluvial flood modelling in data sparse regions, using coarse resolution tdetn
sets(Biancamaria et al., 2009b, Trigg et al., 2009, Neal et al., 2012, Sanyal et al., 2013,
Yan et al., 2015a, Seenath, 2015, Luke et al., 2015, Skinner et al.,. 20iH)
CAESAR-LISFLOOD 2-Dimensional griddiscretzed flood plain model calculates
fluxes flow between two CartesiansordinategX and Y) driven by gravityas a result

of the free surface height between two elevation agilen by the equation:

1
N veegE Y
YO
N — YO C
p GE YO f§E '

wherel is definedas the flow between neighbouring cellsis the flux between cells

from previous time steps; is the acceleration due to gravity,is themanni ngo s
roughness coefficienE is the water deptt)is the bed elevatios  Isthe maximum

flow depth between cell&/@is the grid resolution, anBis time. The depth of water

within each cell is defined by:

o = 0)

WhereEand Eare the cell coordinate¥he model time step controlled by the shallow
water CouranfriedrichsLewy (CFL) conditions is defined by:

o A yo

YO e T

CE

Where] is a coefficient factofcourantnumber)that varies from 0.3 to 0.depending
on the cell size, and influences the model stabjityneida et al., 2012, Bates et al.,
2010) High values of] increase model timstepand reduced model run timleut can
result in more unstable modelsor this study,|] was approximated a8.7 based on

suggestion®y Coulthard et al.(2013)for cell size greater than 50 metres.

In the present study, DEMas resampled from 90 to 270 metres, reducing the number
of cells to 1,793,400 (active = 1,256,656) within a 9,161 Eomain area, thus
reducing the computational cost and SRTM DEM ng¢i¢eal et al., 2012, Craig et al.,
2012) to meetCAESAR-LISFLOOD cell computation limit offewer than 2 million
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cells (Seoane teal., 2015) The river channel width within the study area varied from
0.3 to 1.5 km, represented by 1 to 6 cells after resamgiingl model outcomes were
postprocessed in ArcMapusing the model presenteéd Appendix 6.The model
parameters andedment input grain sizes and distributiadapted from Olayinka
(2012)are presented in Appendix 8.

2.3. ModelCalibration and Validation

Flooded model calibration is usually undertaken by adjustingntaen n i roughdess

(n) coefficients for the river channels and floodplains corresponding to input discharge
parameters, while comparing the resultant outputs (Inundation extent and water depth)
to observations from other data sources such as radar alti(Betgud et al., 2010)
optical and radar satellite imagef$anyal et al., 2013, Trigg et al., 2009, Lewis et al.,
2013, GarcigPintado et al., 2013nerial photographfNeal et al., 2011bgandor in situ

river measuremeniSkinner et al., 2015, Luke et al., 2015, Jung et al., 201 aim

is to ersure the model is capable of predicting reality within acceptable uncertainty
limits fit for a particular purposéDi Baldassarre, 2012, Hunter et al., 2Q0i)this case

flood risk assessmeritlsually, a range of roughness coefficieatpredetermined based

on existing literaturdChow, 1959, Arcement and Schneider, 1989, Kalyanapu et al.,
2010) assigned to represent the degreeflofv resistance caused by varying land
use/cover typegMedeiros et al., 2012)Depending on the level of details required,
spatially distributed or static roughness values lmarassignedo the modelSeenath,
2015) In this study statima n n i rough@essvasapplied,which varied from 0.01 to
0.045 to capture the ughness that defines the Niger South region bro@dlsyinka,

2012)

Several test statistics including Root Mean Squared Error (RNLSH)is et al., 2013)
F-Statistics(Amarnath et al., 2015, Horrite006, Md Ali et al., 2015)NashSutcliffe
efficiency (Sanyal et al.,, 2013, Neal et al., 201PJerror, Skill value(Skinner et al.,
2015) and RSquaredLewis et al., 2013, Garciintado et al., 2013)ave been used
as goodnessf-fit measures for flood modtke In the present studies, theStatistic
(Critical Success Index), BIAS, percentage (%) flood capture and RiMs&adopted
as the validity measures, to enabiie comparison omodel output comparison with

independent data diood extent andvater surface elevatiqii Baldassarre, 2012)
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The RMSE equatiorused wassimilar to thatpreviously presented inEquation 1

(Section 2.1.3)with ¢ @depictingin situwater levels ande @ Thesimulatedvalue

The F-Statisticswasdefinedas:

Where A= (Simulated wet and observed wet)=BSimulated wet but observetly), C

= (Simulated dry but observed wet) and=D(Simulated dry and observatty) are
definedin Table 3, and [Ean rangdrom 0 to 1 increasing in levels of accuracy. The
measureapplied herein does not apply D, as a different measure would be needed and
its inclusionis known toresult in bias in the flood fit, as model domains usually contain
larger dry areas than floodgdlVood et al., 2016)Stephens et al(2014) however
highlighted the limitations of this performance measure, as it tends to be biased towards
high magnitude floods. Nevertheless, for teiady the measurés suitable as itvas
appliedfor relative comparison of flood extents only.

To assess the BIAS and percentage of observed flood correctly capottedhdices

are stipulateds:

!
") ! 3—! r (0]

|
b &I '|'#‘AADOO@A—|"# X

Table 3 Parameter definition for performance indices

Observedvet  Observed dry

Simulated wet A B

Simulated dry C D
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2.4. Evaluating model outcome and Flood Management Implications

To access the flood management implications of this stodgrlay analysis was
performedin order to identifythe population, settlemeniwillages) built-up areasand

road networks affected by the observed, modelled (2012)-amd.Q0 year floodsThe
populationdata (Gridded Population of the World (GPW), wias acquiredfrom the
SEDAC databasesettlements pais obtained from SPDC Nigeria Limited, land use
(built-up area) derived from Landsat 8 OLI (Path:189/Row:55) imagig similar
approach a8hatti and Tripath{2014) while Road networks were acquired from the
SocioEconomic Data and Application Centre (SEDAC) database (Global Roads Open
Access Data SegROADS), 2010 update)

3. Results and Discussion
3.1. Floodplain DEM Accuracy assessment with ICESat

River channel andloodplain elevation statistics extracted from corresponding ICESat
and DEMs points, and the descriptive statistMg, and RMSE are presented in Table

4, while the correlation between ICESat dhd combinedBARE and BEST DEMss
displayedin Figure 3.Combining these DEMs by their minimum values, reduced the
ME (and RMSE) from 14.51 m (3.81 m) and 15.28 m (3.91 m) for BARE and BEST
DEMs respectively, to 12.16 m (3.49 m), thereby improving the vertical accuracy when
compared withlCESat data. The spatial distribution of ICESat elevation correlated
better with the merged DEM, resulting in a slight improvement of the correlation
coefficient of (R = 0.994) (seeSupplementary Figure $or others DEMSs). The
difference in elevation betwed@ESat and thecorrected DEMwas consistent with the
average error levels records from previous studiebligeria that evaluated SRTM
DEM againstdifferential GPS elevatiodata(lsioye and Jobin, 2012, Isioye and Yang,
2013, Menegbo and Doosu, 2015, Ozah #&udoniyi, 2008) To compensate for
riverbed elevation overestimation ithe SRTM DEM at the Niger Delta suolomain
where bathymetric data was awailable the average difference betweKIESat and

DEM elevation of 1.053 meters was subtracted from the SRTM river channel elevation

using raster calculatdunction inArcMap.
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Table 4 Digital Elevation Model Comparative statistics (units [m])

DEMs Points Min Max Mean  Std. Dev. ME RMSE
BARE 694 130 30265 3364 4595 1451 381
BEST 694 200 30600 3393 4563 1028 391
SRTM90 694 200 30900 3444 4536 103 413
BARE+BEST 694  1.38 30265 3328 4559 1216 349
ICEsat 694 0297 290.45 33.39 4551
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Figure 3 Correlation between ICESat and BARE + BEST DEM points. (see
Supplementary Figurefdr others DEMS)

3.2 Model Calibration and Validation

The modelled flood extentvas quantitatively evaluatedgainstcombined MODIS
NearRealTime (NRT) Water Product TerraSARX, Radarsat2 and CosmoSkyMed,
where availabldSee Supplementary Table, 1p reduce the effect afptical imagery
limitations The model Fstatistic was found to decrease as clooder, and forested

land use increased downstream of the study domain. A similar decrease in model
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performance away from domain input was also observd@kmner et al., 2015)as
uncertainty increases with datanbiguity To compare evaluation criteria based on
varying imagery types (optical and SAR}atic roughnesgaraneterswas variedrom

0.01 to 0.045(Figure 4)at an interval of 0.050 determine the optimaha nni ngd s
roughness (n = 0.043t Lokoja, Onitsha and the Niger Delta sigmainsrespectively

The TerraSARX imagery flood extentat Lokoja was applied for comparison with
MODIS analysis, while RADARSAT2 and CosmoSkyMed images inNfger Delta

region to improve inundation mapping given the limitations of MO[Hgure 4 and

Table 5). For simplicity otomparisonthe uncertainties associated with flood extent
delineation from satellite image were not considered in this study, but are understood

and highlighted in image integration for improved inundation delineation.

The overall Fstatistics is observed to be geally low in Figure 4 and Tables 5 and 6,
owing to the variation in available topographic, bathymetric and calibration datasets
(Supplementary Table)1that contributes to the overall uncertainty of the model
outcome This also goes to revetie value of and need for improved data collection.
This is further demonstrated in the sddmain division predictivenessassessment

revealed the effect @patialand datadisparity.

The adoption of TerraSAK imagery resulted in an insignificant change in the (F =
0.7884) acquired when compared to MODIS (F = 0.7869), varying only by 0.00i5.

is attributed tothe low degree of cloud cover at Lokdjdames et al., 2013Yhe F
Statistic in the NigemDelta region changed from 0.02864 to 0.15&2cause othe
switch from MODIS to SAR imagery validatiomata setsan 81.726 improvement in
model prediction capacity. The BIAS and % flood capture accuracy also improved
substantially, especially in thidiger Delta region(See Table 5 and 6)n a previous

study within the regionbased on a-D SODEK model(MUSA et al., 2015) optimal
channel and channel over bank roughness were 0.01 and 0.04 respectively, when
comparing simulated andh situ water levels at a crosection at Onitsha. Some
description of roughnegzarametersvithin the channel and floodplain include matured
crops, scattered bush, heavy weeds, short graady growth vegetation and
meandering chann€Arcement and Schneider, 1989, Chow, 199%) Onitsha, this
modelappears to bsteady forma n n i raughéessbove 0.025, owing to thaishlike

geomorphology of the terrain thauppors continuous water intake and gradual
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propagationdespite increased inflowand higher ma n n i nougliness The BIAS
presented in Tables 6 is also consistent witbtdtistic performance measure,
increasing downstream, while the % Flood captuteghk at locations where SAR flood

extentwasavailable.
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Figure4 F-Statistic (Critical Success IndexgrsusManning's roughness (n)

The reduced model accuracy in the Niger Delta region can be attributed to the lack of
bathymetry datan the flat terrain area, resulting in flood ovestimationdue to ease of
eater conveyance from shallow river® tadjacentfloodplains Also, undocumented
levelssand mining activities, watesaturated mangrove and poor dredging practree
identified as factors contributing to the model uncertainty within the reghm.
undocumented amount of dredging has been reported ir Biglta, beginning in the

late 1990s till date(Lubke et al., 1984, Abam, 2001a, Tamuno et al., 20@3)lting in
hydrological change@~agbami et al., 1988, Okonkwo, 2012, Agunwamba et al., 2012)
Dredging of the delté&s aimedat deepening the river to alleviate flooding effects and
improve river transportatioiOhimain, 2004, Okonkwo, 2012}hereby resulting in

sociceconomic benefits anchprovedoperational logistics for oil producing companies
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in the region. Nevertheless, heaps of dredged andreandg materials along river
banks and floodplains complicate terrain and river channel properties, altering
mangrove characteristics aratt as barriers/levees alorttpe river over banks that
reduce mundation, drainage and river overtoppi(@himain, D04, Ohimain et al.,
2004)

Table 5 Performance Matrices for optimahnning'soughness calibration (MODIS)

Performance Overall Lokoja Onitsha Niger Delta
F 0.235 0.729 0.534 0.095
BIAS 4.245 1.183 1.140 9.661
% Flood Capture 99.972 92.012 74.545 92.186

Table 6 Performance Matrices for optimahnning'soughness calibration (TerraSAR
X/IMODIS/RADARSAT2/CosmoSkyMed)

Performance Overall Lokoja Onitsha Niger Delta
F 0.273 0.808 0.529 0.187
BIAS 2.511 0.918 1.132 3.432
% Flood Capture 75.308 85.679 73.802 69.946

3.3. CAESAR-LISFLOOD Model outputs: evaluation of inundation maps and

water levek

The modelled flood extent patterns derived from the CAE&ISFLOOD model were
similar those observed from satellif€igure 5(A-C)). In situ gauging station water
levels at Lokoja and Onitsha were also compared to model water levels during the rainy
season (June till September) defined by thedycphy of 2012igure 6 (A) and (B) to

supplement the inundation extent evaluation.

Thesepatternsin Figure 5 (AC) shows(i) flooding spreading out at the confluence in
Lokoja where the Niger and Benue rivers meet, (ii) extended flooding at Onitsha
resulting from the constricted river channel at Asaba that causes backwater filling of the

upgream disHike floodplain, (iii) the NigerDelta inundationspreadresulting from
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excess upstreamater spreading over thew-lying topography, and overflow frortie

Nun and Forcados distributarieBhe overall inundation coverage pattern at Lokoja,
Onitsha and the Niger Delta are similar to those previously simulated in the region
using global flood model§Trigg et al., 2016, Sampson et al., 201wjth the model
agreement index (MAI) decreasing downstream fthmnarrowy confined floodplain

into the wetland of the Niger Delta due to DEM and model limitations resulting from
the flat terrain and channel bifurcation in the déliagg et al., 2016)
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Legend
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Figure5 Lokoja (A), Onitsha (B) and Niger Delta (CAESAR-LISFLOOD Model outcome and satellite (Combined MODIS and SAR)

observation comparison
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Water levels extracted from the CAER-LISFLOOD model results at river sections
(2-D cells) around the gauge locatiovas appliedin assessing the accuracy of the
model atin situ gauging stationgsee Supplementary Figure 4 and Tahléor location
coordinates and mgpshowinga risinglimb from June until peak rainfall in September
and beginning to fall in October. & RMSE and Coefficient of determination?Rat
Lokoja and Onitsha gauging stations were (0.564, 3.653and (0.987,0.998)
respectively Giventhe residual error in the data (discharge, DEM, Satellite image)
well as model uncertaintythe RMSE atLokoja was within reasonable uncertainty
limits, similar to other studies in dasparse regiongkomi et al., 2017, Neal et al.,
2012, Trigg et al., 2013)Figure 6 indicates that theptimal value ofmanni ng o s
roughnessletermined through calibratiomas high for water level estimatioowing to

the poor river channeldefined by obsolete bathymetric daia the model (Niger
(2001), Benue (2011)Also, the RMSEof this studywas within thdimit observed by
Baugh et al.(2013) LISFLOOD-FP modelstudy usingBareEath SRTM floodplain
DEM and validated against TOPEX/POSEIDON altimetry water |éM& discrepancy
between model and observed water levels at Onitshaeattributedo the absence of
downstream bathymetmn the Niger Delta regionand obsolete upstream bathymetry
data appliedn the modelling proces@sautier, 2002) which was acquired priorto
dredgingactivitiesin 2010(Van Der Burg, 2010)This is likely to result irbackwater
propagation angvater leveloverestimatiordue to low downstream river slofeaiva et
al., 2013) This was expected as the locations where hydrographicvadataavailable
was modelled using DEM with channel bathymetry embedded, resulting in improved
outcomes as seen in other studies that integrated river bathymetrglectisn surveys
(Casas et al., 2006, Sanyal kbt 2013, Seenath, 2015)he results presented in Figures
5 and 6 further suggessthat water level estimationgthin the riverchannelis more
sensitive tohydrologic, bathymetric and topographic uncertainties thamdation
extent acrosthe floodplain This consistent overestimation of water level by the model
(Figure 6 (A and B)) could also Heecause othe simplified river characterization
within the applied DEM at 290 m resoluti@s well as the hydrodynamic modelling
process which does notcapture explicitly details such asriver anabrancks and

meandering that would likely attenuate watdeased from the main river channel.

The improvanent in flood delineation usin§AR imageryresulted inthe improved

model to observation alignme(ifable 5 and 6, Figure 5 (8)). However, SAR is not

181



Application of Operaccessand 3¢ Party Geospatial Technology for Integrated Flood Risk Management in Data

SparseRegions of Developing Countries

without its limitations, especially in mangrovayams and built up areaf_ong et al.,
2014, Phuong and Yudin, 2015, Musa et al., 20150 assess the variation in
accuracy assessment due to SddRciencies in the Niger Delta regiomodel accuracy

was comparewith SAR flood extracts andassifiedoverflight geotagged photo points
(Figure 7 (AD)). The geotagged phote@gere not captureds orthophotos, hence could
not be applied to extract tlyrometric extent of flooding. The quantitative outcomes of
the comparisorare presentedh Table 7, with the overall accuracy (i.e. percentage
match) of the model performing better when compared to overflight data points (69%)
than SAR observationswhich was a 13% match Figure 8 shows the typical
environmentdphysicalvariaion in the Niger Delta regiorfA) mixed land use (buHtip

area greater than vegetatip(B) mixedland use (vegetation greater tHauilt-up); (C)

bare land, sparsely bui#tnd vegetatedands and (D) matured mangrove vegetation.
These variationsfluencedthe CAESAR-LISFLOOD model and SAR flood inundation
capacities, as seen in Table 7, with sect{@)sand (B) revealing the highest alignment
with model and SARoutcomesrespectively when compared to overflight datigh

level of alignment between model outcome, SAR inundation and overflight photos was
observed in sectiofC), while flooded locations withithe mangrove dominatesction

(D) known to hamper SAR and coarse DElkivenflood model outcomewere mostly
identified by overflight photosnly. This provides a novel approacth ascertaininghe
deficiencies bhydrodynamic models @hSAR images in complex terrains usiingyd-

party daa collected byrgansationsoperating inthe study area
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Figure 7 Niger Delta overflight geotagged photo points comparison with model and

SAR observation outcomes (Photos for greemtgadf focus shown in Figure 8)
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Figure 8 Sectional example®f overflight photos of flooded areas compared to

observed and modelled flood in tBelta region, showing points of focus (Figure 7).
(A) = match between model and photo, (B) = match between SAR and photo, (C) =

match béwveen model, SAR and photo, (D) = only the overflight showing flooding.

Table 7 Comparativeanalysis of overflight data points, model and SAR observation

flood extents

Points of focus Data Points (n = 287) Hits Miss % Accuracy
A Overflight and Modeflooded 196 91 69
B Overflight and SAR flooded 37 250 13
C Overflight, Model and SAR 43 244 15
flooded
D Overflight only flooded 62
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3.4. Model extent and Flood Management Implications

Estimates of 4n-100 year floodpeak at Baro and Umaisha gauging statiomsre
estimatedas 13,887 and 19,589%s respectively\Chapter 3 The %in-100 year flood
eventis stipulatedas theAEP for planning and infrastructural development purposes in
Nigeria by the Ministry oEnvironment(FME 2005b) The estimated floodhagritude

is essentiain understandinghe NigerSouthexposure to upstream dam water release as
was the case in 201% inform policy implementation. The-ih-100-year event was
simulated and comparedwith the 2012 flood event to ascertawhether the
actions/plans based on aintl00 Year flood as stipulated in the National Flood
Management guideline would have likely mitigated the impact ofettteemeflood
event.Actual (2012) and expected-{1-100year) floodexposurewasassessed by ria
area, population, settlemenByilt-up areas and roadspactedandpresented in Table
8 and Figure 6 The emphasis of this assessment is at Lokdjere the highest
agreement between modelledputsand observation wamminentdueto optimal data
availability for flood modelling and mappinglinety-seven(97) percent ofthe flooded
area identified from satellite image was captuesd a 1-in-100 yearflood event;
nevertheless, the model could likely &eaggeraté, given thepossibé propagation of
river discharge, DEM and calibration uncémntees unto the final model ocdme.
Notwithstanding the results are promising artovethe value of opefaacess and '8
data integration for flood modelling and mapping in developing regibms.inundated
area and exposure estimates for impacted population, settlerbeifiisip areasand
roadsfor the observed and modelled flood extent, anel presenteith Table 8and

Figure 9 for visualization

Table 8 Model, Observed andri-100-yearflood exposure comparisons

Flood Area Population  Settlements Built-up Roads
(km?) (km?) (km)

1-in-100 year 427.2 32,867 14 12.834 32.987

modelled

2012 Model 425.8 32,703 14 12.648 34.573

2012 Observed 440.2 34,391 21 12.326 37.287
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Figure 9 (A) comparison of SAR observed 2012 anth1100 year modelled flood
extents, and(Bromparison of SAR observed 2012 and modelled flood extents for the
same period, as well as impacted settlements, roads andifpaiteas in both A and B

at Lokoja.

4. Conclusion

In order to fill data gaps that hinder effective flood modelling, mapping and
consequently flood management decisiortss tstudy presents an approach that
incorporates mulsourceopenaccesgeospatial andemotesensingor hydrodynamic
modelling of extreme flooding in the Niger south hydrological area of Nigeria, with the
aim of reducing model outcome uncertainties in the redibe. approach applied here
systematically fills missing data gaps for flood procedures of flooadleting and
mapping including (i) flood frequency estimation, (iiydrodynamic modelling, and
(iii) inundation mappingmostpronounced in developing countriddultiple geospatial
data setsvere usedncluding MODIS NRT flood map, Landsat 8 Olegetation and
urban areas elevation corrected SRDEM, Radar Altimetry (ICESat, Envisat, Jason 2
and Topex/Poseidon) and party capturedTerraSARX, Radarsat2, CosmoSkyMed
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bathymetryand geotagged overflight photoBhese data werapplied at varios stages

of the flood modelling and mapping process as followsb#&ged orthe outcome of
Chapter 3radaraltimetry was applied to fill missing data in the hydrological time series
in flood frequency estimation, (ii) ICESdata were usetb assess thBEM accuracy
due to the lack of ground elevation datad to improve river channelevation where
bathymetry data was unavailapl@i) bathymetrydata weremerged with Bardcarth
SRTM DEM for routing upstream hydrography, and (iv) geotagged photasalpphd
SARIiImageswere usedor hydrodynamianodelcalibration,validation and comparative

analysis.
The following conclusions are drawn from this study:

1. Other than flow data being one of the predominant sources of uncertainty in
hydrodynamic modelsDEMs, especially those with low or medium resolution
that average out terrain propertieen result in flawed model outcomespecially
in built-up and mangrove dominatedeas Nevertheless, where recent bathymetric
data is available as was the caselLokoja, within a constricted river channel,
improvedmodelaccuracy is expected and this should be the basicetpuael for
flood routing in developing regions.

2. The role of remote sensing in modetay hydrology,hydrodynamicsand flood
mapping cannadbe overemphasized, especially in developing regions whecess
to in situ data is limited. Evidence from this studyggest the availability of data
in even very remote locations of Nigeria (a typical developing country), though
segmente@dndin varying formats and resolution&.consciouseffort must be made
to scout for and integrate multiptiatasetsvhen mapping flooding in developing
regions. We conclude that data is always available in most remote locations,
however, accessibility, valiti and accuracy remains a challenge.

3. When modellingloods inlarge catchments usingultiple remote sensing datan
understanding othe landscap, climate and seasonal vahdity are essentials,
considering their effecon optical and SAR imagery efficiency and usability.
Upstream of the Niger south catchment (Lokoja) for instangaastly sparsely
vegetated analoud-free during thewet seasonhencethe negligible difference
between SAR (TerraSAK) and optical (MODIS) inundatioaxtent when used for

the model calibratiomnd validation Contrastingly in the Niger Delta region, the
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mangrove vegetated and cloudy atmosphere resulted in very limited MODIS flood
captue and evenaffected SAR inundation delineation capacityfrhis thereby
promptedan alternative measure (overflight photos) that enbfdted detection
within pockets of themangrove and buHip areas where SAR imagery was
deficient.

4. Thevalue of baseline data availability was evident at Lokoja, where the 2012 flood
event was quantified as 1-in-100 year flood event, anthe effect of thenodeled
and observed floodon the populace, builip areas and road infrastructure
simulated. The eteriorating effect of data qualityasalso evident at Onitsha and
the Niger Delta regianrespectively. These outcomes furtisaggestthe need for
improved data collection by agencies such the National Inland Waterways
Agency (NIWA), Nigerian Hydrological Service Agency (NISHA) and the Niger
Basin Authority (NBA)for improved flood management

5. Modelling the Niger Delta region of Nigeria is a complex task that requires detailed
and upto-date bathymetrisurvey, high-resolutionterrain landscape information
andin situriver measurementdhe complexity of the region is further exacerbated
by the wetland nature of the region that promadéenuation and anthropogenic
activities such asand mining and dredging activiti€®konkwo, 2012, Ohimain et
al., 2004, Ohimain, 2004, Awelewa, 2016at alters the hydrological regime and
hydraulic connectivity of the region.

6. Throughout the modelling process, it is evident thaality hydrological input,
digital elevation model, bathymetry, and calibration datasets contain uncertainties
that propagate onto the model outcome. Although because to simplicity and the
huge computational cost of combined hydrological and hydrodynamic siondati
the effects of these uncertainties are not quantified, the calibration process curtails
the uncertainties to a reasonable extéhtpugh the definition of aroptimal

manni ngds r ou tlermdesthe sipwatioa of @ knewn flood extent
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Chapter 6 Supplementary Materials

In this study Generalized Extreme Value (GEV) probability distribution is fitted to

annual maximum flood seri¢denkinson, 1955widely adopted in hydrological studies

in several regiongLeclerc and Ouarda, 2007, Kochanek et al., 2@l3]abi et al.,

2015, Smith et al ., 2@EYVBexprésseBstiue n and Burr

§L- M‘?’k k>0, x<t +% k<0, x>t +%

e & - :
~exp - exps —* 5 If k=0
§ a 10 7% 2 b

Wher e: U, U, and k represent |l ocation, s

distribution function.

Supplementary Table 1: Spatial data availability matrix for stdomains

Locations
Spatial Data (Imagery and Survey)

Lokoja Onitsha Niger Delta

MODIS a a X
TerraSARX a X X
Radarsa® X X a
CosmaeSkyMed X X -
Geotagged Photos X x 3
Bathymetry a a X
Radar Altimetry a a a
SRTM DEM a a a
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Supplementary Figure Water level points for accuracy assessment

Supplementaryable2 Coordinates of Water level points for accuracy sssent

Lokoja Onitsha
S/N Northing (X) Easting (Y) Northing (X) Easting (Y)
1 255224.796577 873550.54681 252253.53001 683194.262142
2 254945.095998  872659.407754 | 252961.522103  683089.984237
3 872659.407754  872633.389095 253458.21423 682958.264778
4 254684.909412  871807.296685 | 253996.068688 683188.773831

192



Application of Operaccessand 3¢ Party Geospatial Technology for Integrated Flood Risk Management in Data

SparseRegions of Developing Countries

egend
iy © Overlight
Wodeled Flooded ||
Observed Floodedf|
T TR
T

0 005 0.1 0.2 Km

193



Application of Operaccessand 3¢ Party Geospatial Technology for Integrated Flood Risk Management in Data

SparseRegions of Developing Countries

Supplementary Figurelodel, Observation and Overflight line of sight overlaid on

high-resolutionGeoEye Imagery.
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