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ABSTRACT

Floods are one of the most devastating disasters known to man, caused by both natural
and anthropogenic factors. The trend of flood events is continuously rising, increasing
the exposure of the vulnerable populace in both developed and especially developing
regions. Floods occur unexpectedly in some circumstances with little or no warning,
and in other cases, aggravate rapidly, thereby leaving little time to plan, respond and
recover. As such, hydrological data is needed before, during and after the flooding to
ensure effective and integrated flood management. Though hydrological data collection
in developed countries has been somewhat well established over long periods, the
situation is different in the developing world. Developing regions are plagued with
challenges that include inadequate ground monitoring networks attributed to
deteriorating infrastructure, organizational deficiencies, lack of technical capacity,
location inaccessibility and the huge financial implication of data collection at local and
transboundary scales. These limitations, therefore, result in flawed flood management

decisions and aggravate exposure of the most vulnerable people.

Nigeria, the case study for this thesis, experienced unprecedented flooding in
2012 that led to the displacement of 3,871,53 persons, destruction of infrastructure,
disruption of socio-economic activities valued at 16.9 billion US Dollars (1.4% GDP)
and sadly the loss of 363 lives. This flood event revealed the weakness in the nation’s
flood management system, which has been linked to poor data availability. This flood
event motivated this study, which aims to assess these data gaps and explore alternative
data sources and approaches, with the hope of improving flood management and
decision making upon recurrence. This study adopts an integrated approach that applies
open-access geospatial technology to curb data and financial limitations that hinder
effective flood management in developing regions, to enhance disaster preparedness,

response and recovery where resources are limited.

To estimate flood magnitudes and return periods needed for planning purposes,
the gaps in hydrological data that contribute to poor estimates and consequently
ineffective flood management decisions for the Niger-South River Basin of Nigeria
were filled using Radar Altimetry (RA) and Multiple Imputation (MI) approaches. This
reduced uncertainty associated with missing data, especially at locations where virtual

altimetry stations exist. This study revealed that the size and consistency of the gap
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within hydrological time series significantly influences the imputation approach to be
adopted. Flood estimates derived from data filled using both RA and MI approaches
were similar for consecutive gaps (1-3 years) in the time series, while wide
(inconsecutive) gaps (> 3 years) caused by gauging station discontinuity and damage
benefited the most from the RA infilling approach. The 2012 flood event was also
quantified as a 1-in-100year flood, suggesting that if flood management measures had
been implemented based on this information, the impact of that event would have been

considerably mitigated.

Other than gaps within hydrological time series, in other cases hydrological data
could be totally unavailable or limited in duration to enable satisfactory estimation of
flood magnitudes and return periods, due to finance and logistical limitations in several
developing and remote regions. In such cases, Regional Flood Frequency Analysis
(RFFA) is recommended, to collate and leverage data from gauging stations in
proximity to the area of interest. In this study, RFFA was implemented using the open-
access International Centre for Integrated Water Resources Management—Regional
Analysis of Frequency Tool (ICI-RAFT), which enables the inclusion of climate
variability effect into flood frequency estimation at locations where the assumption of
hydrological stationarity is not viable. The Madden-Julian Oscillation was identified as
the dominant flood influencing climate mechanism, with its effect increasing with
return period. Similar to other studies, climate variability inclusive regional flood
estimates were less than those derived from direct techniques at various locations, and
higher in others. Also, the maximum historical flood experienced in the region was less

than the 1-in-100-year flood event recommended for flood management.

The 2012 flood in the Niger-South river basin of Nigeria was recreated in the
CAESAR-LISFLOOD hydrodynamic model, combining open-access and third-party
Digital Elevation Model (DEM), altimetry, bathymetry, aerial photo and hydrological
data. The model was calibrated/validated in three sub-domains against in situ water
level, overflight photos, Synthetic Aperture Radar (SAR) (TerraSAR-X, Radarsat2,
CosmoSkyMed) and optical (MODIS) satellite images where available, to access model
performance for a range of geomorphological and data variability. Improved data
availability within constricted river channel areas resulted in better inundation extent
and water level reconstruction, with the F-statistic reducing from 0.808 to 0.187

downstream into the vegetation dominating delta where data unavailability is
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pronounced. Overflight photos helped improve the model to reality capture ratio in the
vegetation dominated delta and highlighted the deficiencies in SAR data for delineating
flooding in the delta. Furthermore, the 2012 flood was within the confine of a 1-in-100-
year flood for the sub-domain with maximum data availability, suggesting that in
retrospect the 2012 flood event could have been managed effectively if flood

management plans were implemented based on a 1-in-100-year flood.

During flooding, fast-paced response is required. However, logistical challenges
can hinder access to remote areas to collect the necessary data needed to inform real-
time decisions. Thus, this adopts an integrated approach that combines crowd-sourcing
and MODIS flood maps for near-real-time monitoring during the peak flood season of
2015. The results highlighted the merits and demerits of both approaches, and
demonstrate the need for an integrated approach that leverages the strength of both
methods to enhance flood capture at macro and micro scales. Crowd-sourcing also
provided an option for demographic and risk perception data collection, which was
evaluated against a government risk perception map and revealed the weaknesses in the
government flood models caused by sparse/coarse data application and model

uncertainty.

The C4.5 decision tree algorithm was applied to integrate multiple open-access
geospatial data to improve SAR image flood detection efficiency and the outputs were
further applied in flood model validation. This approach resulted in F-Statistic
improvement from 0.187 to 0.365 and reduced the CAESAR-LISFLOOD model overall
bias from 3.432 to 0.699. Coarse data resolution, vegetation density, obsolete/non-
existent river bathymetry, wetlands, ponds, uncontrolled dredging and illegal sand
mining, were identified as the factors that contribute to flood model and map
uncertainties in the delta region, hence the low accuracy depicted, despite the

improvements that were achieved.

Managing floods requires the coordination of efforts before, during and after
flooding to ensure optimal mitigation in the event of an occurrence. In this study, and
integrated flood modelling and mapping approach is undertaken, combining multiple
open-access data using freely available tools to curb the effects of data and resources
deficiency on hydrological, hydrodynamic and inundation mapping processes and

outcomes in developing countries. This approach if adopted and implemented on a
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large-scale would improve flood preparedness, response and recovery in data sparse

regions and ensure floods are managed sustainably with limited resources.
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CHAPTER 1: INTRODUCTION TO RESEARCH, AIM AND OBJECTIVES
DEFINITION

1. Background

1.1. Flood Hazard and Impact

Floods are arguably one of the most devastating disasters known to man, accounting for
approximately one-third of global natural disasters, and impacting more people than any
other natural or man-made phenomenon (Smith, 1998). Over the past decades, the
impact of floods has been on the rise (Di Baldassarre et al., 2010, Aerts et al., 2014),
resulting in the death of approximately 100,000 persons and affecting over 1.4 billion of
the global populace in the last decade of the 20" century (Jonkman, 2005). Flood events
are strongly linked to climate-change triggered weather variations, resulting in more
severe and frequent storms (Yukiko et al., 2013). As the global population continue to
increase, pushing people to settle in flood-prone regions (Burby et al., 2001), the
exposure to flooding and its impact is expected to rise accordingly. The Global map of
flood occurrences between 1985 to 2016 is presented in Figure 1, showing the spread of

flooding across developed and developing regions.
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Figure 1 Global Distribution of flood occurrences 1985 — 2016 (Source: Dartmouth
Flood Observatory)



Usually, floods transit political boundaries, affecting both developed and developing
countries alike (Biancamaria et al., 2011, Nkwunonwo et al., 2016). However,
vulnerability varies widely from high to low-income regions, as the ability to cope with
and mitigate flood impact varies with economic capacity (Brouwer et al., 2007,
Adelekan, 2011). Godschalk (1999) argued that the low-income populace is naturally
inclined to reside in high-risk regions due to the low cost of settling within such regions,
thereby limiting their capacity to cope with and recover from disastrous events. Nigeria
has experienced increased flooding in recent years (Brakenridge, 2016), with impact
aggravated due to the high number of the vulnerable populace living within floodplains
(Nkeki et al., 2013, Agada and Nirupama, 2015, Daura and Mayomi, 2015). Locations
of flood occurrences in Nigeria are presented in Figure 2, while global and local
(Nigerian) flood impacts are presented in Table 1 (Brakenridge, 2016), and provides

details of impact for occurrences greater than or equal to 1-in-100-year flood.

Legend

®  MigeriaFloodArchive

Rivers

C
|:| Courtries
|:| Nigeria ublic

Figure 2 Distribution of flood occurrences in Nigeria 1985 — 2016 (Source: Dartmouth
Flood Observatory)



Table 1 Estimated global and local (Nigeria) flood impacts from 1985 — 2016 (Source:
Dartmouth Flood Observatory)

Damage Affected  >100 year
Location Occurrence Deaths  Displaced
(‘USD) populace floods

Global 4387 661295 638196277  8.01*10'  4.62*10° 725

Nigeria 58 1444 1881957 1.01*108 4.64*10° 6

Recent reviews on flood risk assessment in Nigeria categorised the causes of flooding in
terms of initiation and exacerbation factors (Nkwunonwo et al., 2016, Ugonna, 2016,
Egbinola et al., 2015). Figure 3 shows a flowchart of the causes of flooding in Nigeria,
including climate change, poor urban planning, urbanisation and anthropogenic
activities. Climate change affects ocean-atmospheric patterns, thus initiating heavy
storms that consequently cause pluvial (rainfall), fluvial (river) and coastal (ocean)
floods (Nkwunonwo et al., 2015). Poor developmental blueprints, policies and
implementation result in the violation of building regulations and settlement of persons
within high-risk floodplains, thereby increasing impervious land surface, run-off and
exposure to flooding. Also, anthropogenic activities such as poor waste management,
upstream dam water releases, poorly designed hydraulic structures, blockage of
waterways and drainages exacerbate flooding (Adeaga et al., 2008, Olukanni and
Alatise, 2008, Etuonovbe, 2011, Raheem 2011, Agbola et al., 2012, Komolafe, 2015,
Nkwunonwo et al., 2016). Although most floods occur independently, in some instances
flood causes criss-cross, resulting in complex flood scenarios and associated risk.

Nevertheless, this study is focused solely on fluvial (river) flooding.

Managing flood disasters sustainably requires the coordination of efforts before
(preparedness), during (response) and after (recovery) flooding (APFM, 2011), to
enable integrated flood management at variable paces to minimize flood effects.

Courteille, (2015) highlighted components of the disaster risk management cycle:

1. Pre-disaster (Preparedness): involves expected risk assessment, mitigation,

prevention, recovery planning and preparedness.
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2. During disaster (Response): includes warning/evacuation, saving people, providing
immediate assistance, and assessing damages to critical infrastructures.

3. Post-disaster (Recovery): encompasses reconstruction (resettlement and relocation),
economic and social recovery, and risk assessment (lessons for recurrence

mitigation and prevention).

Implementing these flood management strategies requires some form of data. Pre-and
Post-flood management measures are usually deliberately paced, adapting existing
methods that require available data. For instance, pre-flood measures can be
accomplished by identifying locations susceptible to flooding based on knowledge of
past flood trends from which annual flood exceedance probabilities are estimated (Reed,
1999). Flood estimates are then propagated through hydrodynamic models to route
flood spread and quantify hazards (i.e. flood depth, velocity, and inundated area)
(Sarhadi et al.,, 2012). Post-flood measures, on the other hand, entails identifying
impacted locations, people and critical infrastructure within inundated areas to quantify
damage and impact for reconstruction and rehabilitation purposes (Eyers et al., 2013,
Thorne, 2014). Responding to floods in the heat of the event is particularly challenging,
as real-time data processing and information are needed for a prompt response (Muller

etal., 2015, Temimi et al., 2004, Garcia-Pintado et al., 2013).

Although several structural and non-structural steps have been taken by various
stakeholders to combat flooding in Nigeria, the results have been poor, judging from
recent flood impacts (Ugonna, 2016, Tami and Moses, 2015, Ojigi et al., 2013). This
failure is attributed to the ad-hoc nature, ineffective and poorly coordinated nature of
flood management efforts (Obeta, 2014a); shortage of quality data, poor stakeholders
flood risk perception and poor citizen inclusiveness; lack of funding, technological

know-how and political will by the government (Maxwell, 2013, Ugonna, 2016).
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Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

1.2. Aim

The aim of this study is to overcome data and resources limitations in developing
regions to adequately model and map flooding, using alternative open-access geospatial
technology within an integrated flood management framework that enhances

preparedness, response and recovery.

1.3. Objectives

1) Identify the causes of data limitations in flood management and alternative

open-access data sources available to fill the data gap.

2) Investigate varying hydrological data filling approaches to curtail missing data

effect on flood frequency estimates.

3) Explore methods by which identified open-access, 3" party and citizen acquired
data can be integratively applied to improve hydrodynamic modelling and flood

mapping in data sparse regions.

4) Assess the limitations of alternative open data application and apply known

concepts to improved flood delineation.



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

1.4. THESIS STRUCTURE

This thesis is structured following the alternative format, composed of eight chapters,

with Six (6) chapters (2-7) drafted to focus on specific research objectives.

Chapter 1: INTRODUCTION TO RESEARCH, AIM AND OBJECTIVES
DEFINITION

Introduces the research problem of flood risk and the need for flood management,
highlighting the key issues and rationale at global and local scales. The research aim

and objectives of the research are also outlined.

Chapter 2: APPLICATIONS OF OPEN-ACCESS REMOTELY SENSED DATA
IN FLOOD MAPPING FOR DATA SPARSE REGIONS: A REVIEW AND CASE
STUDY OF NIGERIA

This chapter presents a review section that focuses on the data challenges and
uncertainties associated with sparse data application in hydrological modelling,
hydrodynamic modelling and flood mapping at global, transboundary and local
(Nigerian) scales. The core causes of data limitations in developing regions are
disclosed, and available alternative open-access remote sensing and third-party data sets
that compensate for ground data deficiency in flood mapping are highlighted. Flood
mapping processes including flood frequency estimation, hydrodynamic modelling, and
inundation mapping are discussed, and ways radar altimetry, digital elevation model,
bathymetry, optical, radar images, and satellite consortium data can be applied to curb
data sparsity for each of these processes. Transboundary flood management challenges
are also emphasised with the prospect of effective flood management through current

and future open - access remote sensing data application.

Chapter 3: INFILLING MISSING DATA IN HYDROLOGY: SOLUTIONS
USING SATELLITE RADAR ALTIMETRY AND MULTIPLE IMPUTATION
FOR DATASPARSE REGIONS

One of the causes of data deficiency disclosed in Chapter 2 is gaps within hydrological

time series, which results in uncertain flood estimates. Chapter 3 explores the use of
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radar altimetry and multiple imputation techniques to fill missing data in hydrological
time series, consequently reducing flood estimates uncertainties. These approaches were
aimed at reconstructing missing annual peak river discharges distorted due to
destructive floods, discontinued gauging stations or inaccessibility to remote locations
during flooding. The magnitudes of the 2012 and 2015 flood events at gauging stations
along Niger and Benue rivers in Nigeria were also evaluated from distinctly filled time-

series, and the application of these techniques in practice discussed.

Chapter 4: ACCOUNTING FOR CLIMATE VARIABILITY IN REGIONAL
FLOOD FREQUENCY ESTIMATES FOR WESTERN NIGERIA

Logistical and financial challenges make it difficult to establish gauge stations at all
required locations, hence the hydrological monitoring networks are often sparse, and
several locations left ungauged (Chapter 2). Also, the increasing influence of climate
change on floods as discussed in Chapter 1 and Chapter 2 annuls the assumption of
stationarity in flood frequency estimation. Chapter 4 presents findings that assess the
effect of climate variability on regional flood frequency estimates in the sparsely
gauged Ogun-Osun River basin in Nigeria. Freely available International Centre for
Integrated Water Resources Management—Regional Analysis of Frequency Tool (ICI-
RAFT) that aids the integration of the National Oceanic and Atmospheric
Administration (NOAA) climate indices into flood frequency estimation was applied,

thereby supporting flood management in regions with limited resources.

Chapter 5: INTEGRATING CROWD-SOURCING AND OPEN-ACCESS
REMOTE SENSING FOR FLOOD MONITORING IN DEVELOPING
COUNTRIES

Monitoring flooding at the peak of occurrence is required to identify flooded locations
to deploy resources to mitigate flood impact. Integrated Near-Real-Time remote sensing
MODIS flood maps and crowdsourcing (Volunteered Geographic Information System)
were applied for flood monitoring during the peak flood season of 2015 (Chapter 5),
and data on the past flood event of 2012 was collected in retrospect. The VGIS

crowdsourcing approach was based on a revised disaster communication model by the
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UN Office for Disaster Risk Reduction (UNISDR), focused on impacted persons
communicating disaster reality to management agencies. Citizen and government
perception of flood risk is evaluated, and citizen risk perception in relation to flood risk
indicators such as Awareness, Worry and Preparedness is also assessed from

supplementary data collected.

Chapter 6: HYDRODYNAMIC MODELLING OF EXTREME FLOODS IN
DEVELOPING REGIONS USING MULTIPLE OPEN-ACCESS REMOTE
SENSING DATA SOURCES

Chapter 6 portrays an integrated flood modelling and mapping approach applied in the
Niger-South river basin of Nigeria (i.e. from Niger river at Baro and Benue river at
Umaisha to the Niger Delta through Nun and Forcados tributaries). The hydrodynamic
model incorporates open-access remote sensing, airborne (overflight), hydrographic and
bathymetric data from multiple sources and third-parties. 2-D CAESAR-LISLFOOD
model is applied using 2012 hydrograph and modified SRTM to recreate the
unprecedented flood event hydraulically. The model was calibrated using a combination
of satellite images (i.e. TerraSAR-X image, MODIS Near-Real-Time flood map,
RadarSat-2, CosmoSkyMed), overflight geotagged photos and water levels available for
three sub-domains. 1-in-100-year flood frequency estimates were modelled and
compared in retrospect to the 2012 flood event to improve planning and management of

subsequent events.

Chapter 7: IMPROVING RADAR IMAGERY FLOOD DETECTION
CAPACITY USING MULTI-CRITERIA DECISION TREE ANALYSIS
TECHNIQUE BUILT ON OPEN-ACCESS DATA

Chapter 6 revealed the deficiency of Synthetic Aperture Radar (SAR) image in
delineating flooding in the vegetation covered Niger Delta using overflight geotagged
photos, due to SAR inability to penetrate vegetation covers and discrepancies in built-up
areas. Chapter 7 combines multiple open-access data sets using a C4.5 algorithm driven
decision-tree to delineate flood extent within the Niger Delta for improved

hydrodynamic flood evaluation.
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Chapter 8: CONCLUSION, CONTRIBUTIONS, LIMITATIONS AND
RECOMMENDATIONS

Concludes the thesis, summarising the main findings and discussing the implications in
regard to flood management. It also Synthesises previous chapters, aligning them within
the integrated flood management framework of preparedness (pre-flood), response
(during the flood) and recovery (post-flood). The contributions of this thesis in filling
the data sparsity gap in developing regions with limited resources are highlighted. The
limitations and recommendations for improvement and future research direction is also

presented.
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CHAPTER 2: APPLICATIONS OF OPEN-ACCESS REMOTELY SENSED
DATA IN FLOOD MAPPING FOR DATA SPARSE REGIONS: A REVIEW
AND CASE STUDY OF NIGERIA

Abstract

Flood mapping generally entails flood frequency estimation, hydrodynamic modelling
and inundation mapping, which requires specific data sets that are sometimes
unavailable especially in developing regions due to financial, logistical, technical and
organisational challenges. This chapter reviews flood modelling and mapping processes,
outlining the data requirements and how open-access remote sensing can supplement for
ground and high-resolution space-borne commercial data. The merits, demerits and
application cases of data sets such as radar altimetry, DEM, optical and radar images are
also discoursed for global, transboundary and local flood risk management. Also, the
role of collaborative satellite information sharing and service delivery in flood disaster

monitoring and management is disclosed.

Keywords: Open-access remote sensing, flood management, Altimetry, Synthetic
Aperture Radar, Optical Satellite, Digital Elevation Model (DEM), Transboundary
floods.

1. Introduction

1.1. Flood modelling and mapping

Managing flood effectively requires a good understanding of historical flood trends,
future expectations, and identification of locations likely to be impacted by flooding.
Flood mapping provides the baseline for acquiring such information, to ensure
prevention, protection and management are efficiently undertaken (Plate, 2002). Flood
mapping is a process that defines the expected extent of water inundation into dryland
as a result of intense precipitation or river water level rise driven by natural or
anthropogenic factors (Merwade et al., 2008). Flood mapping process differs
considerably from project to project, or country to country, depending on specific
project requirements and country-specific guidelines. Also, the scale of flood risk
assessment, available data, resources, technical knowledge and delivery timeline
influences the approach deployed (Moel et al., 2015, Klijn et al., 2008, Biichele et al.,
2006, Ologunorisa, 2004). Nevertheless, the sequence of activities that lead to risk map

outcome is fundamentally the same, and involves flood frequency estimation

11



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

(probability of occurrence of a flood of specific magnitude over a certain period);
hydrodynamic modelling (routing of river discharge or catchment runoff over landscape
to determine water depth and inundation extent); and risk assessment (determining
landscape properties impacted within flooded regions) (ISDR, 2004, Els, 2013, FME,
2005b, Aerts et al., 2009, Martini and Loat, 2007).

Table 1 highlights Flood mapping processes, basic data requirements, expected
outcomes and some case studies. These processes aid flood management by providing
the necessary information needed for planning, flood defence structure design, disaster
response and recovery to mitigate flood effect.

Going forward, this review highlights the scarcity of data needed for mapping processes
(Table 1), detailing how advancements in open-access remote sensing can compensate
for ground monitoring deficiencies in local and transboundary river basins. Remote
sensing data sets such as altimetry, digital elevation models, radar and optical images
application in each flood mapping process are discoursed. To further demonstrate the
usefulness of open-access remote sensing in developing regions, a case study of Nigeria
is presented, emphasising on local and transboundary flood management developments,

data limitations, current role and future prospect of remote sensing.

Table 1 Flood mapping process and fundamental data requirement

Process Data Outcomes Cases

Flood frequency =

Historical data: River discharge, = Flood magnitude at (Awokola and Martins,

estimation water levels and rating specific return periods 2001, Kjeldsen et al.,
curves/equations. (Direct and regional). 2002, Leclerc and Ouarda,
2007, Ahn et al., 2014)
Hydrodynamic Flood frequency outcome * Inundation Extent (Sarhadi et al., 2012, Di
model River discharge = Water depth Baldassarre et al., 2010,
Digital elevation model * Flood velocity and travel =~ Muncaster et al., 20006,
Land use and cover map time Neal et al., 2011a)
Historical flood extent, and
marks
Flood risk Hydrodynamic model outcomes, = Exposure maps (Taubenbock et al., 2011,
assessment demographic, socio-economic * Vulnerability maps Eyers et al., 2013, Neal et

and infrastructure data.

Evacuation plan

al., 2011a)
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2. Data limitations, Prediction of Ungauged Basins (PUB) and Remote sensing
advancement

In recent decades, floods have been perceived to be increasingly frequent, widespread
and more devastating. As such, the spatial network of existing hydrological gauging
stations has become inadequate for optimal data collection (NIHSA AFO, 2014). In
other cases, obsolete equipment, financial and technical challenges hamper sufficient
data collection for flood mapping and management (Olayinka et al., 2013, Maxwell,
2013). Due to increasing global data deficiency and uncertainty associated with sparse
data application for hydrological and hydrodynamic modelling, the International
Association of Hydrological Sciences (IAHS) launched the Prediction of Ungauged
Basins (PUB) initiative to explore alternative data and techniques for improved
Ungauged basin modelling (Sivapalan, 2003). One of the core objectives of the PUB is
to “Advance the technological capability around the world to make predictions in
ungauged basins firmly based on local knowledge of the climatic and landscape that
controls hydrological processes, along with access to the latest data sources, and
through these means constrain the uncertainty in hydrological predictions.” (Sivapalan
et al., 2003). This objective aligns seamlessly with remote sensing, considering that it
provides an alternative data source to improve our understanding of local hydrology and
associated uncertainties in flood mapping for data-sparse regions (Hrachowitz et al.,

2013).

Remote Sensing (RS) has advanced to the stage whereby, in many places, data is now
freely available at a global scale, enabling developing countries to explore its potential
at little to no data acquisition cost (Yan et al., 2015a). This review focuses solely on
open-access (freely available) satellite data integration into flood mapping processes to
compensate for data sparsely faced in developing regions, then emphasises on a
Nigerian cases study, assessing the possibility of leveraging global geospatial
technology for local flood management. Inferences are drawn from previous reviews on
low-cost Geographic Information System (GIS) and remote sensing application in
hydrology, hydrodynamic modelling and flood mapping (Yan et al., 2015a, Schumann
et al., 2009a, Mason et al., 2011, Dano Umar et al., 2011). However, a wider range of
freely available datasets and sources needed for every step listed in Table 1 are explored
in this review, with case studies of application for flood management improvement

discoursed.
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3. Alternative open-access remote sensing data for flood modelling and
management

3.1. Radar Altimetry Water Level and Elevation

River water levels are an essential data input for hydrology and hydrodynamic
modelling, and advancement in remote sensing has improved the way changes in water
surface elevation and slope can be measured since the early 90’s (Alsdorf et al., 2007).
Several radar altimetry missions routinely measure freshwater surface despite being
originally designated to measure ocean water surfaces (Koblinsky et al., 1993, da Silva
et al., 2010). Radar altimetry data is acquired via a process that measures the distance
between the orbiting satellite and water surface in relation to a reference datum, using
satellite sensor echo pulse return intervals from when emitted to when reflection by
water surface and return to satellite (Sulistioadi et al., 2015, Belaud et al., 2010), Figure
1 (A). Altimetry water levels are measured at virtual stations located intermittently
where altimetry satellite tracks cross path with rivers (Birkinshaw et al., 2014b, Musa et
al., 2015); when altimetry tracks pass over dry land, the elevation of the surface
intersected is measured. Figure 1 (B) and (C) shows a sample virtual station and
extracted altimetry time series (Crétaux et al., 2011) along the Niger River in Nigeria.
The water level at a river of interest with reference to a predefined datum (such as Earth

Gravitational Model (EGM 2008)), is expressed as:

h=H — Reor (1)

R.or =R — (c %) — Y.cor 2)

Where, h = water surface elevation in relation to the reference ellipsoid, H = altitude of

satellite (from satellite orbit to reference ellipsoid), R = range (distance between satellite

and open surface water body), Reor = corrected range, ¢ = speed of light, % = the dual
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direction travel time of radar signal, and ) cor = the sum of ionospheric, tidal, wet and

dry tropospheric corrections.

Satellite Altimetry

[\ /| Satellite Orbit
[ -

Propagation error:

- lonosphere

- Wet troposphere -
Dry troposphere

------------------ R - H - Atmosphere

Sea state Bias Correction
- EM Bias
- Skewness Bias

Sea surface

______________________ *\r Reference Ellipsoid External Gaophysical Adjustment
- Geoid (hG)

- Ocean Tidal Height (hT)
Bottom Topograp hV - Atmospheric pressure loading (hA)

Figure 1 (A) Graphic illustration of satellite altimetry height measurement principle
(adapted from (Musa et al., 2015)

Figure 1 (B) Illustration of a virtual station, where altimetry satellite tracks intersect

river Niger
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Figure 1 (C) Typical water level time-series, derived from an altimetry virtual station

The vertical accuracy of altimetry water levels directly affects the results derived from
its application (O'Loughlin et al., 2016a). In comparison to ground (in situ)
measurements, altimetry water level vertical accuracy ranges from approximately 0.01
to 0.05 metres, and Root Mean Squared Error (RMSE) from 0.003 to 0.004 metres for
watershed areas up to 100 km? (Birkett, 1995, Birkett et al., 2002, da Silva et al., 2010,
Frappart et al., 2006). In some cases, the difference between altimetry and in situ water
levels can be as high as 2 metres (Birkinshaw et al., 2010). Variations of altimetry water
level accuracies are presented in Table 2 and are attributed to varying sensor types, the
distance between in situ and virtual station, and location of altimetry track intersection
with the river (Yan et al., 2015a). Other factors that affect altimetry accuracy include
ionosphere, troposphere, instrument noise, geoid, tidal and water surface variations
(Ponte et al., 2007, Chelton et al., 2001, Belaud et al., 2010). River width and tributaries
discharging into main rivers upstream of the virtual station have also been identified as
the external factors that contributed to altimetry water level discordancy from in situ

measurements (Sulistioadi et al., 2015, Pandey and Amarnath, 2015).

The application of radar altimetry has been largely documented, especially in
hydrodynamic modelling in data sparse regions. Four (4) aspects of altimetry
application in data sparse regions are discussed below (Sections 3.1.1 to 3.1.4) include
Altimetry discharge estimation, Altimetry Digital Elevation Model (DEM) accuracy
assessment, Altimetry Bathymetry definition, and Altimetry hydrodynamic model
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calibration and validation. Table 2 Altimetry characteristics Adapted and modified from

(O'Loughlin et al., 2016a)

S/N  Mission Ground Revisit Operation  Accuracy (m) References

footprint (m) time (days) timeline

1 TOPEX/Poseidon ~600 9.9 1993-2003 0.35 (Frappart et al., 2006)

2 ERS-1 ~5000 35 1991-2000 N/A (da Silva et al., 2010)

3 ERS-2 ~400 35 1995-2003 0.55 (Frappart et al., 2006)

4 ENVISAT ~400 35 2002-2012 0.28 (Frappart et al., 2006)

5 Jason-1 ~300 10 2002-2009 1.07 (Jarihani et al., 2015a)

6 ICE Sat/GLAS ~70 - 2003-2009 0.10 (Urban et al., 2008)

7 Cyrosat-2 ~300 369 2010%* <SRTM (Schneider et al.,
2016)

8 Jason-2 ~300 10 2008* 0.28 (Jarihani et al., 2015a)

9 SARAL/Altika ~173 35 2013* 0.11 (Schwatke et al.,
2015¢)

10 Sentinel 3 SRAL ~300 27 2016%* 0.03 (ESA, 2016)

11 Jason-3 ~300 10 2016* 0.03 (NASA, 2016)

12 SWOT ~10 -70 21 2020* 0.10 (Fu et al., 2009)

Current = *, Future = +

3.1.1. Altimetry discharge estimation

River discharge and stage are typical initial/boundary conditions needed in
hydrodynamic modelling and are usually seldom unavailable at remote locations of
most developing regions due to factors previously highlighted in Section 2 (Birkinshaw
et al.,, 2014b, Olayinka et al., 2013). Radar altimetry has been explored in several
studies to curb data limitation challenges and reduce the uncertainty associated with

modelling ungauged rivers, and are discussed in detail below.
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Papa et al., (2010) utilised TOPEX/Poseidon, ERS-2, ENVISAT and Jason 2 altimetry
water levels in combination with in situ rating curve to estimate discharge along Ganga
and Brahmaputra river from 1993-2011to accuracy levels of 0.17 (mean error) and 0.28
(standard error) in comparison to in situ discharge at gauging stations. River discharge
along Godavari river from 2001 to 2014 was derived by combining ENVISAT (2002-
2010), Jason-2 (2008-2014) and SARAL/Altika (2013-2014) radar altimeter water
levels with in situ rating curves at nearby gauging stations, and validated against
hydrodynamic model to a correlation coefficient (R?) value of 0.9 and standard error
varying from 0.15 to 0.40 metres (Sridevi et al., 2016). In an Amazon River basin study,
Getirana and Peters-Lidard, (2013) explored the potential of estimating discharge at 135
gauging stations using altimetry data from 475 ENVISAT virtual stations (2002 —
2005). Using the relationship between in situ water level and discharge, Getirana and
Peters-Lidard, (2013) successfully estimated discharge at 90 virtual stations with mean
relative errors varying from 15 to 84% for large and small river basins respectively.
Discharge was estimated at transboundary rivers including Danube (Austria, Romania,
Bulgaria, Slovakia, Hungary, Ukraine, Croatia, Germany, Serbia, and Moldova),
Mekong (Thailand, Cambodia, Laos, China, Myanmar (Burma and Vietnam), Amazon
(Ecuador, Colombia, Peru, and Brazil), Brahmaputra (India), Amur (China and Russia),
Ob (Russia), Vistula (Poland) and Niger (Nigeria, Mali, Niger, Benin, and Guinea),
using quantile function algorithm approach that exploits ENVISAT altimetry data
(Tourian et al., 2013). This approach resulted in discharge outcomes similar to those

derived from conventional Forecast Rating Curve (FRC) approach.

Typically, estimating river discharge from altimetry water level depends on rating curve
or river geometry availability (Michailovsky et al., 2012). However, several studies
have been able to demonstrate direct river discharge estimation from altimetry water
levels in the absence of in-situ measurements, using supplemental remote sensing data
or models. ENVISAT altimetry data from six virtual stations along Brahmaputra River
from 2008 to 2010 were assimilated into a Muskingum routing model driven by outputs
of a calibrated Budyko type rainfall-runoff model derived from Tropical Rainfall
Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42RT
real-time products. This integrated approach improved the model’s discharge derivation
accuracy (Nash-Sutcliffe efficiency) from 0.78 to 0.84. Also, using a different
hydrodynamic modelling approach, Tarpanelli et al., (2016) combined Moderate-
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resolution Imaging Spectroradiometer (MODIS) Terra and Aqua satellite images with
ENVISAT altimetry using a pixel to water level detection approach to estimate
discharge with a correlation coefficient of 0.96 and Nash-Sutcliffe efficiency of 0.91
when compared to in situ discharge along the Niger and Benue rivers. Sichangi et al.,
(2016) similarly integrated MODIS satellite derived river width and altimetry water
levels into Manning’s equation to estimate discharge at a Continental scale. The derived

discharge Nash-Sutcliffe efficiency varied 0.60 to 0.97.

Other than a few studies including Getirana and Peters-Lidard, (2013), Tarpanelli et al.,
(2016) and Sichangi et al., (2016) that have demonstrated direct river discharge
estimation in the absence of in-situ data, river discharge estimation from altimetry is
usually based on the establishment of an empirical relationship with in sifu gauging
stations available at proximity to virtual stations. Although discharge estimates derived
from altimetry are usually with acceptable levels of uncertainty, factors such as the
distance between virtual and ground stations, contributing tributaries and the width of
the river affect the efficacy of such estimates (Pandey and Amarnath, 2015). The
discussed discharge estimation approaches also reveal that the availability of multiple
supplementary remote sensing data at an ungauged river basin integrated into empirical

formulas and hydrodynamic models can improve discharge estimates.

3.1.2. Altimetry Digital Elevation Model (DEM) accuracy assessment

Once discharge and/or flood magnitude is estimated, it is propagated longitudinally
along river channels and laterally across floodplains in hydrodynamic models governed
by continuity and momentum equations (Casas et al., 2006). The accuracy of DEM that
defines the river channel and floodplain terrain upon which flow is propagated
influences model outcome accuracy (Cook and Merwade, 2009). Therefore, in several
flood modelling studies the accuracy of the primary DEM is assessed prior to usage
against a higher accuracy DEM such a Light Detection and Ranging (LiDAR) or
Differential Global Positioning System (GPS) elevation points (Patro et al., 2009, Wang
et al.,, 2012, Sanyal et al., 2013, Ullah et al., 2016). Acquiring such data sets for
accuracy assessment is cost intensive and in other instances impossible due to terrain
complexity and weather conditions that hinder logistics for effective data collection
(Amans et al., 2013, Isioye and Yang, 2013). ICE Sat/GLAS altimetry data acquired by
the National Aeronautics and Space Administration (NASA) between 12 January, 2003
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and 11 October, 2009 using geoscience laser altimeter system (GLAS) onboard the Ice
Cloud and Land Elevation Satellite (ICE Sat) provides a worthy alternative to ground
elevation due to its high accuracy in comparison to Kinematic GPS measurements
(Zwally et al., 2002). The absolute accuracy of ICE Sat is recorded to be as low as 0.002
and 0.005 meters in Bolivia (Fricker et al., 2005) and French Lake (Jean Stéphane et al.,
2011) respectively, and depend on the slope of the terrain under scrutiny (Satgé et al.,
2015). Over the years ICE Sat/GLAS has been applied in assessing various DEM
accuracies including SRTM (Carabajal and Harding, 2005, Kon Joon Bhang et al.,
2007, Du et al., 2016), ASTER GDEM (Zhao et al., 2010, Satgé et al., 2015), GPS
elevation (Braun and Fotopoulos, 2007), Carto DEM (Rastogi et al., 2015), Canadian
DEM (Beaulieu and Clavet, 2009), InSAR DEM (Yamanokuchi et al., 2000),
TANDEM (Mirzaee et al., 2015) and modified/corrected DEMs (Jarihani et al., 2015a,
Sampson et al., 2015, O'Loughlin et al., 2015).

The 70-metre ground footprint of ICE Sat (Zwally et al., 2002) coupled with its ability
to penetrate gaps in vegetation canopy to capture underlying bare earth elevation
(Heyder, 2005) makes it a more accurate and useful alternative to ground survey for

DEM accuracy assessment.

3.1.3. Altimetry Bathymetry definition

Accurate digital elevation models combined with detailed river bathymetry delineation
provides the best terrain data for flood routing (Trigg et al., 2009, Casas et al., 2006).
Nevertheless, acquiring such data for remote locations is usually difficult as earlier
discussed. Hence, flood modellers have resorted to exploring alternative options to
compensate for such deficiency. In the Amazon and Napo Rivers in Peru, Chavarri et
al., (2012) examined the applicability of altimetry (ENVISAT) in constraining river
cross-section of a one-dimensional hydraulic model. The results showed reduced model
uncertainty, mostly for rivers with widths less than or equal to 2.5 km. The proposed
Surface Water and Ocean Topography (SWOT) scheduled for launch in 2020 is
expected to provide one of the best altimetry data for water resource monitoring and
management at a global scale (Fu et al., 2009, Bates et al., 2014). Few studies have
experimented on SWOT derived bathymetry for hydrodynamic modelling to improve
outcome accuracy. For example, Durand et al., (2008) experimented on the SWOT

mission, applying data assimilation technique to estimate bathymetric depth and slope at

20



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

five points along a 240 km reach along the Amazon river to within 0.50 m and 0.30 cm
km™! of accuracies respectively. Both derivatives were then integrated into LISFLOOD-
FP hydrodynamic model (Bates and De Roo, 2000) to improve inundation extent and
downstream water surface elevation (WSE). The relationship between river width and
depths established using ENVISAT altimetry was combined with SRTM, Landsat,
MODIS and satellite rainfall data to derive updated river network and adjusted bed
profile was applied in the development of Ganges, Brahmaputra, and Meghna (GBM)
model suitable for large ungauged watersheds (Maswood and Hossain, 2016). The
GBM model data integration resulted in a reduced RMSE from 3.0 to 1.0 metres. In
another study by Yoon et al., (2012), SWOT WSE was assimilated into LISFLOOD-FP
hydrodynamic model using a local ensemble batch smoother (LEnBS) method, resulted
in the generation of bathymetry, depth and discharge estimates. Bathymetry extracted
from SWOT had a RMSE of 0.56 metres, improving with the inclusion of more SWOT

observations in the modelling process.

The proposed SWOT and recently launched Sentinel-3 provides a huge dataset prospect
for future of hydrodynamic studies, and integration into hydrodynamic models can
improve flood extent, discharge and water levels outcomes, particularly when multiple

altimetry data are available along a modelled reach as Yoon et al., (2012) suggested.

3.1.4. Altimetry hydrodynamic model calibration and validation

Hydrodynamic model validation helps reveal how well a model represents what is
expected in reality (Stephens et al., 2014), and is directly linked to the confidence in the
flood management measures implemented as a result of the model outcome. Calibration
is usually undertaken by adjusting various model parameters such as floodplain
roughness, channel roughness, river channel depth, and river width while comparing
flood model outcomes (water level, discharge and/or inundation extent) to what is
expected in reality, derived from in situ or remote sensing measurements (Belaud et al.,
2010, Sun et al., 2012, Van Wesemael et al., 2016, Neal et al., 2015). Commercial high-
resolution optical and radar satellites images, aerial images and hydrological data have
been largely established as the optimal data sources for hydrodynamic model calibration
and validation (Jung et al., 2012, Dung et al., 2011, Pasquale et al., 2014, Wood et al.,
2014). However, the high cost of acquiring such data hinders their application in

developing countries (Andréfouét et al., 2006). Hence, radar altimetry over the past
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decade has been explored globally as an alternate source of data for model calibration

and validation (Domeneghetti, 2016).

Typically, in developing regions river measurements are manually collected using staff
gauges and later converted to discharge using an established rating curve. At the peak of
floods, measurement equipment are usually damaged and access roads inundated, thus
impeding the observation process (Olayinka et al., 2013, Dano Umar et al., 2011).
Therefore, remote sensing radar altimetry provides an alternative river measurement
option that supports hydrodynamic model calibration and validation in the absence of

observed records (Domeneghetti, 2016).

Water level data from three ENVISAT altimetry virtual stations along a 150km reach of
Danube river were applied in the calibration a 2-D LISFLOOD-FP model to reconstruct
the 2006 transboundary flood occurrence (Yan et al., 2015b). Yan et al., (2015b)
realised a Mean Average Error (MAE) of 1.53 m and 1.37 m for altimetry and in situ
model calibration approaches respectively, suggesting that both data sets can be used
interchangeably to improve flood modelling in sparsely gauged river basins.
Domeneghetti et al., (2014) performed hydrodynamic model calibration for a 140 km
reach along the Po river using ERS-2 and ENVISAT altimetry data, resulting in RMSE
of 0.85 m and 0.73 m respectively, and improved Nash—Sutcliffe efficiency (NS) when
altimetry is combined with in situ data for model calibration. Soil and Water
Assessment Tool (SWAT) rainfall run-off model for the sparsely gauged Okavango
transboundary river of Angola, Namibia and Botswana were calibrated using total water
storage derived from Gravity Recovery and Climate Experiment (GRACE) altimetry
satellite and in situ data (Milzow et al., 2011). Also, Sun et al., (2012) assessed the
uncertainty associated with HYdrological MODel (HYMOD) along the Mississippi
River, calibrated against in situ and altimetry data. NS efficiencies of 79.05 and 64.50
were reported for in situ stream flow and radar altimetry (TOPEX/Poseidon)
respectively, showing reduced uncertainty bounds for stream flows calibration in

comparison to altimetry calibration.

From these instances highlighted above, it is evident that radar altimetry can serve as an
alternative to ground observation, especially in data sparse regions. While
hydrodynamic models driven by SRTM DEM have been seen to result in comparable

outcomes when calibrated with altimetry water levels, models driven by LiDAR and
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river survey cross-section embedded terrain result in hugely discordant accuracies when
calibrated with similar datasets (Domeneghetti et al., 2014). This thereby raises the
question of altimetry uncertainty in model calibration and accuracy assessment. Belaud
et al., (2010) applied TOPEX/Poseidon (T/P) and ENVISAT altimetry satellites data in
calibrating a propagation model and disclosed that inherent altimetry uncertainty effect

on the model outcome.

Residual altimetry uncertainties are expected to affect flood model accuracy as
Tommaso et al., (2013) further demonstrated and further emphasised by Domeneghetti
et al., (2014), where ENVISAT proved to provide better accuracy than ERS-2 (See

Table 2 for altimetry accuracy differences).

Despite these deficiencies, the importance of altimetry data in model calibration and
validation in ungauged basins cannot be dismissed. However, it is advised that altimetry
is applied in combination with in sifu data when available (Domeneghetti et al., 2014),
or in situ, data should it takes priority over altimetry as suggested by Sun et al., (2015)
and Sun et al., (2012).

3.2. Open-access Digital Elevation Model (DEM), Modifications and applications

in flood modelling

Topographical data is an essential requirement in hydrological and hydrodynamic
modelling (Yan et al., 2015a), and accounts for a substantial portion of the uncertainty
that propagates through to model outcomes (Cook and Merwade, 2009, Jung and
Merwade, 2015). The effect of terrain accuracy on hydrodynamic models and the need
for accuracy assessment have been discussed briefly in sections 3.1.2., and 3.1.3,
showing how improved river channel definition using altimetry improved flood model
outcomes (Chéavarri et al., 2012, Yoon et al., 2012, Durand et al., 2008). High-resolution
topographical data such as LiIDAR, TanDEM, bathymetry and differential GPS survey
provides the best terrain characterization with reduced uncertainty and error (Neal et al.,
2011a, Mason et al., 2016, Trigg et al., 2009, Bates et al., 2006). However, the cost of
acquiring such data is enormous (Sanyal et al., 2013) and in other cases, remote

locations are inaccessible for in situ data collection (Jarihani et al., 2015a).
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Freely available digital elevation model provides a suitable alternative to commercial
data in data sparse developing regions where resources are limited (Patro et al., 2009,

Lewis et al., 2013).

Shuttle Radar Topography Mission (SRTM) DEM is arguably one of the most widely
used topographical data in developing regions, applied mostly in improving flood
modelling in data-sparse regions (Sanyal et al., 2013, Domeneghetti, 2016, Jarihani et
al., 2015a, Neal et al., 2012). The 30 and 90 metres resolution SRTM was collected
during an 11-day mission in February 2000, through a collaborative effort among the
National Aeronautics and Space Administration (NASA), the National Geospatial-
Intelligence Agency (NGA) and the German Aerospace Centre (DLR), and provides
near-global scale (80%) DEM (Farr et al., 2007, Farr and Kobrick, 2000). The 15 metre
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global
Digital Elevation Model (GDEM) acquired by a joint mission of the U.S. National
Aeronautics and Space Administration and Japan’s Ministry of Economy, Trade, and
Industry is also widely used in flood modelling and mapping (Gichamo et al., 2011,
Demirkesen, 2016, Ullah et al., 2016). However, ASTER GDEM is argued to be less
accurate than SRTM due to inherent elevation pixel voids (Wang et al., 2012, Bates et
al., 2014).

Other open-access topographic data sets such as Altimeter Corrected Elevations 2
(ACE2) GDEM, Global 30 Arc-Second Elevation (GTOPO30) and Global Multi-
resolution Terrain Elevation Data 2010 (GMTED2010) are generally coarse in
resolution and are therefore employed in large-scale models only (Neal et al., 2012,
Schumann et al., 2013). Recently released Advanced Land Observing Satellite (ALOS)
DEM (Tadono et al., 2014) has been evaluated and confirmed to provide more accurate
elevation in comparison to SRTM and ASTER (Santillana et al., 2016), but its
application in hydrodynamic modelling is yet to be seen. Various open-access DEMs,

properties and case studies are presented in Table 3.
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Table 3 Some open source digital elevation models

Sparse Regions of Developing Countries

DEM Spatial Vertical error  Case study Reference
resolution (m) (m)

SRTM 30, 90 +16 Damoda River, (Rodriguez et al., 2006,
India. Sanyal et al., 2013)

ASTER GDEM 30 +25 Lake Tana, (Tarekegn et al., 2010,
Ethiopia. Tachikawa et al., 2011)

ACE 2 GDEM 1000 >10 Balkan Peninsula, (Varga and Basi¢, 2015)
Croatia.

GTOPO30 1000 9-30 Balkan Peninsula, (Varga and Basi¢, 2015)
Croatia.

Bear-Earth SRTM 90 6.05- 12.64 Belize, Honduras.  (Sampson et al., 2015)

(Veg/Urban)

Bare-Earth SRTM 90 4.85-8.667 Global (O'Loughlin et al., 2015)

(Veg)

EarthEnv-DEM90 90 4.13-10.55 Johor River Basin, (Tan et al., 2015, Robinson
Malaysia. etal., 2014)

ALOS 30 +5 Sindh and (Tadono et al., 2014, Jilani
Balochistan, et al., 2007)
Pakistan.

GMTED2010 250 26-30 Shikoku, Japan. (Danielson and Gesch,

2011, Pakoksung and
Takagi, 2016)

The discrepancies between open-access DEM and ground surveyed elevation data that

results in diverse vertical accuracies (Table 3) is attributed to inherent systemic and

external factors (Farr et al., 2007). SRTM system noise coupled with the C and L-band

sensors reflection off forest canopies, water bodies and rooftops in urban areas are the

causes of noisy and poorly estimated terrain properties (Yamazaki et al., 2012, Baugh et

al., 2013, Cook and Merwade, 2009, Kon Joon Bhang et al., 2007).
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Over the years, various methods have been adopted to curb these deficiencies and
reduce the uncertainty associated with open-access SRTM DEM application. Baugh et
al., (2013) reduced STRM uncertainty by combing vegetation canopy heights (Simard et
al., 2011, Lefsky, 2010) and MODIS image to reduce vegetation height effect. Betbeder
et al., (2015) reduced SRTM bias by 64 percent by adopting a systematic approach that
combines vegetation height (Simard et al., 2011), Landsat land cover map and radar
altimetry to produce hydrologically corrected DEM. SRTM derived river cross-sections
were adjusted using limited bathymetric surveys and applied in the one-dimensional
MIKE11 model (Patro et al., 2009) and LISFLOOD-FP two-dimensional model (Sanyal
et al., 2013) to reduce model uncertainty. Neal et al., (2012) adopted an approach that
reduced SRTM uncertainty by characterising hydrodynamic model parameters (i.e.
channel width and depth) as calibratable parameters in a sub-grid LISFLOOD-FP
model, thereby improving simulated water levels, wave propagation and flood extent.
Biancamaria et al., (2009a) experimented by varying river channel depth by 5, 10 and
15 metres when modelling Obi river, and identified 10 meters as the optimal average
river channel depth for the best outcome. In a recent study in Australia, Jarihani et al.,
(2015a) adopted Hydrological Correction (HC) and Vegetation Smoothening (VS)
(Gallant, 2011) approaches to reduce SRTM and ASTER DEM error and deduced that
HC DEM outperformed VS DEM for flood modelling. Though the above described
DEM modification techniques resulted in reduced DEM and flood model uncertainty,
they require specific skill sets, computational power and supplementary data that are not
always readily available. Hence, there is a need to explore globally available off-the-
shelf modified DEM that can be readily applied in developing regions where such
resources are seldom available. At a global scale, errors emanating from satellite system
noise, and sensor beam reflection off vegetation canopy, water surfaces and urban
rooftops have been treated with different techniques, resulting in the development of
freely available new data sets. O'Loughlin et al., (2016b) reduced average vertical bias
from 14.1 m to 5.9 m by systematically combining ICESat Geoscience Laser Altimeter
System (GLAS) ground elevation (Zwally et al., 2002), vegetation height (Simard et al.,
2011), MODIS-derived forest canopy density and climate regionalization maps (Peel et
al., 2007, Broxton et al., 2014). Sampson et al., (2015) reduced SRTM sensor noise
irregularities, urban landscape and vegetation canopy elevation overestimations using a

moving window filtering technique (Gallant, 2011). Their approach reduced RMSE
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from 10.96 m to 6.05 m when compared to LiDAR, and overall flood model bias from
15.08 m to -0.1 m. EarthEnv-DEM90 was developed by Integrating ASTER GDEM2,
CGIAR-CSI SRTM V4.1 and Global Land Survey Digital Elevation Model (GLSDEM)
using a combined Delta surface filling (Grohman et al., 2006) and adaptive DEM noise
smoothing (Gallant, 2011) methodology, resulting in minimised error in comparison to

raw SRTM and ASTER GDEM2 (Robinson et al., 2014).

Since no study currently presents a comparison of all available modified SRTM DEM
for a specific region, this is undertaken for the Niger-South river basin of Nigeria and
presented in Table 4, revealing EarthEnv90 to be the most improved modified open-
access DEM when evaluated against ICE Sat altimetry SPOT heights. The results
presented in Table 4 will later inform the choice of DEM selected for hydrodynamic
modelling in Chapter 6.

Table 4 SRTM and Modifications comparison with ICE Sat SPOT elevation

Elevation Min Max Mean Std.dev. R? RMSE
Bare-Earth SRTM (Urban and Veg)  36.00 68.00  47.28 9.09 095  2.94
Bare-Earth SRTM (Veg) 3445  69.44 4721 9.22 095  2.94
EarthEnv90 36.00  65.00  47.40 8.91 095 285
Raw-SRTM 36.00  63.00 47.34 8.95 094  3.08
ICE Sat 35.62 6433 47.74 8.01 - -

Std. dev = standard deviation, R? = Correlation coefficient

3.3. Open-access Optical and Radar Satellite Images application in Flood
Modelling and Mapping

Optical and Radar images also play a crucial role in flood modelling and mapping, used
for a range of applications including (i) manning’s roughness derivation (Medeiros et
al., 2012), (i1) river width estimation (Andreadis et al., 2013), (iii) geomorphological
properties extraction (Khadri and Chaitanya, 2014), (iv) inundation extent mapping
(Bates et al., 2006), (v) river discharge estimation (Tarpanelli et al., 2013, Gleason and
Smith, 2014), (vi) land use/cover derivation (Sanyal et al., 2014), (vii) bathymetry
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estimation (Karimi et al., 2016) and (viii) hydrodynamic model calibration and
validation (Wood et al., 2016). Remote Sensing (RS) application in flood management
has been well established, with open-access images including Landsat, MODIS, and
ASTER widely used in developing regions (Dano Umar et al., 2011). Until the launch
of the C-Band Sentinel-1 SAR mission by the European Space Agency (ESA) in 2014,
radar imagery application has been limited in developing regions due to the high cost of

acquisition (Townsend and Walsh, 1998, Qasim, 2011).

Optical and Radar Remote sensing data provides unique merits and demerits, and are
characterised based on the source of energy employed during data collection. Optical
(passive) remote sensing relies on solar energy, while radar (active) remote sensing uses
inbuilt energy source onboard the satellite (Dano Umar et al., 2011). Passive RS data
can only be captured in the day-time and depends on cloud-free skies (Asner, 2001).
However, its multispectral characteristics make it a suitable for land use/cover
classification, inundation delineation, drainage mapping, and flood impact assessment
(Musa et al., 2015, Stephen et al., 2015, Alexakis et al., 2013). Active RS beam ability
to penetrate clouds cover and water discrimination potential makes it the optimal data
type for flood mapping when available (Schnebele and Cervone, 2013, Townsend and

Walsh, 1998).

Despite SAR advantages, sensor noise, vegetation and built-up radar backscatter have
been identified as factors that hamper SAR effective flood discrimination (Long et al.,
2014, Lamovec et al., 2013, Giustarini et al., 2013). SAR imagery flood maps are
usually extracted by pixel discrimination, given that flooded pixels tend to have lower
values of back-scatter, due to the weak return signal associated with waters smooth
surface (Henderson and Lewis, 1998); the discrimination method applied can also

grossly impact on the accuracy of the derived flood extent (Veljanovski et al., 2011b).

Some SAR flood extent mapping techniques include statistical active contouring,
radiometric thresholding, histogram thresholding, pixel-based segmentation, fractal
dimensioning of multi-temporal images, neural networks in a grid system, Image

segmentation and decision tree analysis (Long et al., 2014, Im et al., 2008).

Optical image flood extent, on the other hand, are derived mostly from the

discriminating between the spectral signatures of water surface and the surrounding
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landscape in single or multi-temporal images, using classification or spectral indices
approaches (Zhang et al., 2014, Stephen et al., 2015). The properties of some open-
access optical and radar RS images applied in flood modelling and mapping are

presented in Table 5.
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Table 5 Optical and Radar Satellite imageries case studies

Sat. Res.
Case study References
Imagery (m)
Landsat 30 Floodplain inundation delineation ~ (Neal et al., 2012, Seung Oh et al.,
for 2 and 1 — dimensional model 2013)
calibration and validation, Inner
Niger and
MODIS 200 Hydrodynamic model calibration  (Sanyal, 2013, Lewis et al., 2013)
and validation.
Terra 15 Urban sprawl and flood (Franci et al., 2015)
ASTER management Dhaka, Bangladesh.
Sentinel - 1 10 Sentinel-1 and Landsat-8 (Kyriou and Nikolakopoulos,

combination in mapping flooding  2015)

at river Evros, Greece.

Sentinel - 2 10 Water bodies delineation (Herve et al., 2013)

Sat. = Satellite, Res = Spatial resolution

4. Open-access remote sensing application for flood monitoring and management
in Nigeria
Previous sections highlighted flood modelling and mapping processes, data
requirements, and detailing available open-access remote sensing data sets and
application prospects in several locations. Nigeria is located downstream of the Niger
Basin (Figure 2) that collects run-off from a 2156000 km? area through the Niger and
Benue rivers (Aich et al., 2014b). Thus, Nigeria is prone to fluvial flood, exposing
floodplain dweller to diverse negative consequences (Nkeki et al., 2013, Akinbobola et
al., 2015, Agada and Nirupama, 2015, Tami and Moses, 2015). Nigeria recently
experienced unprecedented levels of flooding attributed to poor dam water release

management and risk communication attributed to data unavailability (Ojigi et al.,

2013).

This section focuses on identifying the causes of data deficiencies in Nigeria and

reviewed the literature on applications of open-access applications in Nigeria to identify
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gaps and opportunities for research improvement based on global trends discussed in
the preceding sections. This review section builds of previous reviews on flood risk
management in Nigeria (Komolafe, 2015, Ugonna, 2016, Opolot, 2013, Adeaga et al.,
2008, Ologunorisa and Abawua, 2005), then incorporate data challenges, solutions and

prospect for regional and national flood management using open-access remote sensing.

[ Africa
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Figure 2 Map showing Nigeria, Niger Basin, Africa and the main inflow rivers (Niger

and Benue)
4.1. Data limitations for hydro-meteorological studies in Nigeria

Like in many developing countries, the lack of hydro-meteorological data in Nigeria has
been widely documented, consequently resulting in poor flood management decisions
(Ngene et al.,, 2015). Currently, existing hydrological and meteorological gauge
distribution are below World Meteorological Organization (FMWR, 2013) and Ngene,
(2009) recommendations, i.e. (237 out of 384) and (291 out of 970) respectively. Also,
several of the established stations have been reported to be inactive, decommissioned or
discontinued (Figure 3), contributing to the data sparsity in the country (Ngene et al.,
2015, FMWR, 2013).
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Figure 3 Status of some hydrological gauging stations in Nigeria (F= Functional, NF =

Non-Functional, Unknown)

Lack of financial support, technical deficiency, poor organisational structure and
obsolete equipment/infrastructure have been identified as the factors responsible for
data shortage in Nigeria (Olomoda, 2012, Izinyon and Ehiorobo, 2014, Olayinka et al.,
2013, Ertuna, 1995). Also, Maxwell, (2013) and Ononiwu, (1994) attributed data
inconsistency to poor hydrological data management systems and lack of standards,
resulting in unreliable, fabricated and data format inconsistency. Furthermore, Maxwell
(2013) and Olayinka (2012) argued that even when data is available, custodians store
data in paper formats, thus reducing transferability, applicability and long-

term/sustainable data availability.

Hydro-meteorological data are essentially applied in estimating expected flood
magnitudes based on past trends, and the length of available historical data contributes
to the uncertainty in the derived flood estimates (Merz and Bldschl, 2005, Reed, 1999).
Extended historical data result in more accurate estimates and vice versa (Kjeldsen et

al., 2002).

Meta-analysis of river and rainfall estimation studies (Figure 4) shows that rainfall data
sets are generally longer in duration than those of streamflow data. In 2016, a search

was conducted within the peer-reviewed literature on the google scholar
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(https://scholar.google.com/!) database spanning the years 2000 to 2016. A combination
of the search terms and keywords including “hydrology”, “flood modelling”,
“hydrodynamic modelling”, “flood frequency analysis”, “vulnerability assessment”,
“rainfall frequency analysis”, “flood mapping”, and “GIS and Remote sensing of
flooding”, were used, with the results further refined with keywords such as “Nigeria”,

representing the country of interest.

Majority of hydrological modelling studies are based on historical data of lengths
ranging from 10 to 20 years, hence there is a need for adaptation of an approach that
leverages on data from multiple gauging stations to reduce flood estimate uncertainty

and improve flood management decision making (FME, 2005a).
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Figure 4 Rainfall and streamflow data length variation from previous studies in Nigeria
4.2. Remote sensing application for flood management in Nigeria

Remote sensing (RS) in past three decades has played a crucial role in flood
management globally, regionally and Nigeria in particular (Adeaga et al., 2008, Hughes
et al., 2015, Hrachowitz et al., 2013). Remote sensing allows for the collection of data

without being in direct contact with the object under investigation (Smith, 1997, Kite

! https://scholar.google.com/
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and Pietroniro, 1996), thereby providing an alternative to ground data collection
hindered by factors previously discoursed (Nwilo et al., 2012, Musa et al., 2015). The
spatiotemporal capacity of remote sensing, ease of manipulation of digital data and the
advantage of radar sensors images has enhanced inundation mapping tremendously
(Musa et al., 2015, Ritchie and Rango, 1996). Despite these advantages, RS is not
without limitations, as the time lapse between satellite image captures, high cost
associated with acquisition of high-resolution images, cloud cover, vegetation canopy
and terrain roughness have been reported in several instances to hamper RS application

(Chen et al., 2005, Lewis et al., 2013, Sanyal et al., 2013).

Integrated flood mapping mainly involves flood magnitude estimation, hazard
modelling and impact assessment (Aerts et al., 2009). Seven sub-categories of RS flood
application areas have been identified in Nigeria, including Vulnerability assessment,
Flood frequency analysis, Flood risk mapping, Rainfall frequency (intensity) analysis,
Hydrodynamic modelling, Water resource management and Floodplain encroachment
analysis. Vulnerability analysis entails integrating socio-economic and biophysical
factors to ascertain a regions’ coping capacity in relation to flood exposure (Musa et al.,
2014a, Adelekan, 2011, Tamuno et al., 2003). Flood frequency analysis involves
estimating expected flood magnitudes by fitting historic flood time series to a suitable
probability distribution to or combining hydrological data from regions of
physiographic similarity (Izinyon and Ehiorobo, 2014, Izinyon and Ajumka, 2013,
Fasinmirin and Olufayo, 2006). The rainfall frequency (intensity) analysis applies
rainfall data to estimate expected rainfall intensity and expected runoft (Isikwue et al.,
2012, Ologunorisa and Tersoo, 2006). Once flood estimates are determined, the
outcomes are routed in 1/2 dimensional models in combination with terrain data to
derive flood hazard information such as inundation extent, depths and /or velocity
(Olayinka et al., 2013, Adewale et al., 2010). Other than hydraulically modelling flood
hazard, flood depths and inundation extent for a particular point in time can be directly
determined using satellite images and digital elevations models (Eyers et al., 2013,
Akinbobola et al., 2015). The increasing development of industries and settlements
within the floodplain is directed related to exposure and vulnerability (Padi et al., 2011,
Tamuno et al., 2003). Remote sensing and GIS approaches are usually used to identify
floodplain encroachment, to ensure adherence to, and enforcement of flood

management policies (Oyinloye et al., 2013, Ndabula et al., 2012). Figure 5 illustrates
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flood management application areas mostly focused on in Nigeria, showing high levels

vulnerability mapping, flood frequency assessment and risk assessment.
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Figure 5 Flood studies in Nigeria showing specific application areas

4.3. Open-access remote sensing application in flood management Nigeria

Meta-analysis of 100 flood research journal articles focused on Nigeria shows the range
of data applied in flood management studies (Figure 6), revealing high reliance on
Landsat and SRTM. Various data sets provide contrasting levels of accuracy and
uncertainty (Jung and Merwade, 2015), therefore high spatial resolution data such as
LiDAR and SAR are mostly recommended for flood modelling processes due to the
advantages of terrain complexity detailing and effective water surface discrimination
capacity (Qasim, 2011, Hunter et al., 2008). Figure 7 further shows the variation
between TerraSAR-X (radar) digitized from the flood map derived using histogram
thresholding approach by the Disaster Charter consortium and MODIS (optical) flood
extents automatically generated as Modis Water Product through a collaborative effort
between NASA and Dartmouth Flood Observatory, University of Colorado, USA, using
algorithm that uses a ratio of MODIS 250-m Bands 1 and 2, and a threshold on Band 7
to provisionally identify pixels as water (Nigro et al., 2014).
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Nevertheless, such highly detailed satellite data are costly and therefore seldom applied
in developing countries like Nigeria. However, the constellation of global satellites for
disaster management through the International Charter “Space and Major Disasters”
initiative (Bessis et al., 2004) and other emergency services makes high-resolution data
available for disaster response if activated during flooding. Also, multinationals
companies with large financial capacities such as Shell Petroleum Development (SPDC)
and others operating in the Niger Delta region of Nigeria acquire high-resolution images
for operational purposes, and sometimes use such data for disaster management (Eyers
et al., 2013). Nigerian Satellite images are also seldom available as bureaucratic
bottlenecks and poor data management infrastructure hinder data availability for flood
management and other applications (Agbaje, 2010, Akinyede and Adepoju, 2010).
Other data types and techniques widely applied in Nigerian flood management studies

are presented in Figure 8.
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Figure 6 Remote sensing data application in flood studies in Nigeria
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Figure 7 Radar (TerraSAR-X) and Optical (MODIS) flood extents comparison at

Lokoja, Nigeria
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5. Open-access remote sensing in transboundary flood management

Review studies

Managing flood occurrences in a sovereign nation is challenging enough; the

complexity is increased when flood transcends borders. Floods sometimes originate

from one country, and if hydraulically connected to another country within a single
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catchment area, travels downstream (Bakker, 2009), hence transboundary flooding.
Poor management of excess water releases from dams triggered by climate change and
other anthropogenic factors have been identified as some of the leading causes of
transboundary flooding (Angelidis et al., 2010, Clement, 2012, Zeitoun et al., 2013,
Cooley and Gleick, 2011). In such situations, efforts need to be coordinated between
flood origination and destination countries to ensure effective flood management.
Approximately 2286 transboundary river basins exist globally (Figure 9), encircling
42% of the world’s population within a 62 million km? area, and is responsible for

approximately 50% of global river discharge (Wolf, 2002, TWAP, 2016).
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Figure 9 Global Transboundary River Basins (source: Transboundary Freshwater

Dispute Database)

Coordinating the activities of individual countries within a transboundary water
resource management organisation is particularly challenging due to the diverse
interests, policies and activities of riparian (ECOWAS-SWAC/OECD, 2008, Hooper
and Lloyd, 2011, Chikozho, 2014), thus prompting the need for a shift to remote
sensing approaches that aid independent data collection by riparian countries without

administrative protocols violation (Klemas, 2015).
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Several remote sensing studies have been undertaken in this regard, using radar
altimetry, optical/radar imageries, and hydrodynamic models to solve the data limitation
challenges associated with poorly coordinated transboundary flood management efforts.
Mallinis et al., (2013) delineated transboundary Evros river (Bulgarian/Turkey) flood
extent and damage caused by upstream dam water release using ENVISAT ASAR and
post-flood multi-temporal LANDSAT TM images. The effect of varying flood
magnitudes released from upstream Ivaylovgrad dam (Bulgaria) on the connecting
Ardas River (Greece) was modelled using HEC-HMS, using in situ gauge
measurements and digital terrain data (Serbis et al., 2013), thereby enabling effective
downstream flood planning and management. Mati et al., (2008) investigated changing
land use/cover impact on the Mara transboundary river (Kenya/Tanzania) hydrological
regime, using remote sensing (Landsat MSS, TM/ETM, and SRTM), ground-collected
land wuse/cover data, meteorological and streamflow data integrated within the
Geospatial Streamflow Model (GeoSFM). Biancamaria et al., (2011) established an
empirical relation between downstream altimetry (TOPEX/Poseidon) water levels
(India) and upstream in situ measurements (Bangladesh) for forecasting purpose along
the Ganges and Brahmaputra transboundary river. Hossain et al., (2014) in the same
study area applied a forecasting rating curve approach combined with HEC-RAS
hydraulic model to forecast downstream water levels using upstream JASON-2
altimetry, in situ water levels and rating curve. Seyler et al., (2008) further demonstrated
the value of remote sensing altimetry and SAR satellite missions in transboundary water
resource management, as remote locations along the Beni-Madeira river in the Amazon

was monitored using ENVISAT altimetry and JERS-1 radar images.

The case studies discussed above illustrates the wide range of open-access remote
sensing application in transboundary flood management, with radar altimetry, DEM,
SAR and optical images identified as alternatives to ground survey distorted by
bureaucratic challenges. Remote sensing makes it possible to forecast expected floods,
estimate flood exceedance probabilities and monitor riparian country changes to land

use/cover effect on downstream hydrology.

5.1. Transboundary flood management Nigeria (Niger Basin)

The unprecedented flood event of 2012 in Nigeria was attributed to (i) excess water

release from dams within and outside Nigeria due to intense precipitation; (ii)
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inadequate risk communication; and poor stakeholder collaboration (Ojigi et al., 2013,
Olojo et al., 2013). The lack of transboundary stakeholder collaboration is evident for
instance in Nigeria’s inability to uphold part of the 1980 agreement by Nigeria and
Cameroon to establish Dasin Hausa dam to buffer the effect of Lagdo dam built by
Cameroon along the Benue River (Erekpokeme, 2015, Daura and Mayomi, 2015).

The Niger transboundary river basin (Figure 10) encompasses 12 countries including
Senegal, Guinea, Coéte D'lIvoire Mauritania, Mali, Burkina Faso, Algeria, Niger, Benin,
Nigeria, Cameroon and Chad. The basin encircling 93,617,850 persons within a

2156000 km? area(TWAP, 2016, Aich et al., 2014b).

facfo A Algeria
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Figure 10 Map of Transboundary Niger River Basin, showing constituting countries and

Dams

Figure 10 also highlights the transboundary nature Niger River Basin, constituent
countries and characteristics. The Niger basin is largely regulated by dams, housing
approximately 69 Dams (Lehner et al., 2011) conceived mostly as national and local
projects, but have transboundary impacts (GRP, 2016). To effectively manage
transboundary water resource and impact on riparian countries, the Niger River
Commission (NRC) was established in 1963, now the Niger Basin Authority (NBA) as

reconstituted in 1980 to promote co-operation between member states and ensure
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sustainable Integrated Water Resource Management (GWP, 2016). The Niger basin is

presently controlled by several post-colonial agreements presented in Table 6.

Table 6 Niger River Basin Agreement, Nigeria. Adapted from (Bossard, 2009,
International Waters Governance, 2016, Wolf, 2002)

S/N  Treaty Function Location Year
1 Act regarding navigation and economic co-operation Navigation and Joint Niamey, 1963
between the states of the Niger Basin. management Niger.
2 Agreement concerning the River Niger Commission Navigation, Joint Niamey, 1964
and the navigation and transport on the River Niger. management, information Niger.
exchange
3 Agreement Revising the Agreement Concerning the Navigation, Joint Niamey, Niger 1973
Niger River Commission and the Navigation and management, information
Transport on the River Niger. exchange
4 Convention Creating the Niger Basin Authority (NBA)  Water resource mgt. Faranah, 1980
coordination Guinea
5 Protocol relating to the Development Fund of the Niger ~ Planning funds for NBA Faranah, 1982
Basin Guinea
6 Agreement between Nigeria and Mali Co-operation on water 1988
resource use in the Niger
7 Agreement Nigeria and the Republic of Niger Environmental conservation = Maiduguri 1990
concerning the equitable sharing in the development, and water resource
conservation and use of their common water resources ~ management
8 Nigeria-Cameroon Protocol Agreement Coordinate dam water - 2000
release.
9 Niger Basin Water Charter. NBA review and update. Niamey, 2008
Niger.
10 African Risk Capacity Weather financial risk Pretoria, South 2012

management

Africa.

Despite these various cooperative frameworks, several factors including (i) Poor and

fragmented data collection, (ii) Lack of co-ordination between riparian countries and
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organizations, (iii)) Poor communication and knowledge of legal and institutional
frameworks, (iv) Funding deficiency, (v) Lack of clear objectives, (vi) Lingual
differences, and (vii) Technical limitations (Morand and Mikolasek, 2005, Olomoda,
2002, IWG, 2016), have been identified as the core issues hindering effective water
resource management in the Niger Basin. Grossmann, (2006) also lamented the
deplorable state of the 65 gauging stations set-up by NBA through the “Hydro Niger
Project” initiative. Although the emergence of the Niger-HYCOS (Hydrological Cycle
Observing System) program is expected to restore river monitoring networks to optimal
capacity (Olomoda, 2012, Pilon and Asefa, 2011), the process is currently in progress.
Nigeria, however, further faces specific challenges such as poor engagement, varied risk
perception, lack of interest, poor communication and commitment within the Nigeria
Basin Authority, which hinders effective coordination and integrated water resource

framework implementation (Olomoda, 2012).

5.2. Open-access remote sensing application in Transboundary flood management,
Nigeria

As transboundary floods become more prevalent and intense due to increased storms
triggered by climate change and anthropogenic factors (Earle et al., 2015), sufficient
hydrological data is required for planning, to mitigate flood impact. Also, considering
that transboundary flood management institutions are facing recurring challenges that
limit its functionality and sufficient data acquisition, open-access remote sensing
provides a low-cost and viable alternative that allows transboundary flood monitoring

and management without disrupting any sovereign nation’s autonomy.

Open-access satellite imageries such as Landsat and MODIS have been proven to
provide an easy to visualize the extent of flood transiting from a country of origin to
another downstream, enabling impact quantification needed for prompt response, risk
assessment and evaluation (Mallinis et al., 2013, Skakun et al., 2014). Radar altimetry,
on the other hand, can be applied independently or with satellite images to support

planning, forecasting and flood management in riparian countries.

Tarpanelli et al., (2016) explored the potential of integrating MODIS image and
ENVISAT radar altimetry to predict and forecast discharge along the Niger-Benue
river. The discharge was derived from daily and 8-day 250m resolution MODIS AQUA
(BAND 2-NIR) by establishing an empirical relationship between water-free land pixels
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during peak flood, permanent water pixels within the river and known discharge values.
Pandey and Amarnath, (2015) applied a combined forecasting rating curve approach
(Hossain et al., 2014) and hydraulic (HEC-RAS) model techniques to estimate
discharge from ENVISAT, Jason-2 and AltiKa altimetry virtual station water levels
along the Niger and Benue rivers, resulting in NS and R? of 0.7 and 0.97 respectively.

In other closely related studies in the region, Salami and Nnadi, (2012) monitored
Kainji Lake using TOPEX/Poseidon and ENVISAT altimetry, revealing stronger
correlation between altimetry and in sifu measurements in the wet season (R? = 0.93)
than the dry season (R?> = 0.77), and RMSE varying from 0.50 m to 0.83 m for
TOPEX/Poseidon and ENVISAT respectively. Sparavigna, (2014) studied the
variability of Nasser, Tana, Chad and Kainji lakes using TOPEX/POSEIDON and
Jason-1 altimetry, and Cretaux et al., (2011) combined TOPEX / Poseidon (T/P) and
ENVISAT altimetry with 8-day MODIS Near Infrared band images to monitor water
level variations and inundation along the Niger inner delta, Lake Tchad and Ganaga

river delta.

The high accuracy of water level estimation from radar altimetry during the wet season
along the Niger river (Salami and Nnadi, 2012), suggests that altimetry can potentially
be used in flood monitoring and management in Nigeria and the Niger Basin, and the
varying accuracies of different altimetry missions imply that altimetry data must be
applied cautiously, due to residual uncertainty. With current radar altimetry tracks, such
as Jason-2 (Figure 11), Sentinel 3A/B (Figure 12) and future SWOT (Figure 13) passing
across the Niger basin, the potential for long-term data collection from spaceborne

altimetry for flood management is huge.

43



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

-
P
il ":‘o'oo’ =

4 W
0’0000 00 Wy

LM

0'0" 0 M e
0 N o 0 0‘,, =
l’ W Wi m W w‘,

§
.36 il .‘YQ 0 ; ‘"" "'mmm‘v
;.

s
| 'N N
%}Q;"’& WQ.O‘NM ‘::y!é;" ')w
: ““’"ﬂ! ” ’“““‘p, “

e

ﬂMV‘f
i M

Figure 12 Sentinel 3A/B Altimetry Tracks within the Niger River Basin
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Figure 13 SWOT Altimetry Tracks within the Niger River Basin

6. Consortium of satellites for flood emergency management

Other than open-access remote sensing data, in some instances, commercial, regional
and national satellite organisations collaborative deliver high-resolution images and
services to support flood response and mitigation efforts. This section discusses some of
the available satellite consortiums, disaster support services and cases of application in

Nigeria and hydraulically connected rivers in the Niger Basin.

6.1. International charter “space and major disasters” (ICSMD)

The international charter “space and major disasters” (ICSMD) was established by the
European Space Agency (ESA) and the Centre National d’Etudes Spatiales (CNES)
following the UNISPACE III conference held in Vienna in 1999, and was co-signed by
the Canadian Space Agency (CSA) in 2001 (Bessis et al., 2004). The objective of the
Charter is to provide data to enable critical decision making during environmental or
technological disasters such as flooding, oil spills, fires, earthquake, volcanoes,
hurricanes, landslides and ice hazards, thereby ensuring minimized the impact on people
and infrastructures is minimized (ICSMD, 2015). Between 2001 and 2012, several
satellite agencies including Japan Aerospace Exploration Agency (JAXA), Indian Space
Research Organisation (ISRO), United States Geological Survey (USGS), National
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Oceanic and Atmospheric Administration (NOAA), Argentinean National Commission
on Space Activities (CONAE), Exploration of Meteorological Satellite (EUMETSAT),
German Space Agency (DLR), National Institute for Space Research (INPE) of Brazil,
China National Space Administration, Disaster Monitoring Constellation International
Imaging (DMCii) and Korean Aerospace Research Institute (KARI) joined the
Consortium, thus enhancing the Charter’s prompt high resolution optical and SAR
images acquisition and availability (UNOOSA, 2013).

Between 2000 and 2015 the ICSMD charter has been activated 447 times by more than
110 countries for various disasters (ICSMD, 2015, UNOOSA, 2013). As at 1 August
2016, 500 disaster Charter activations have been recorded (ICSMD, 2016). Up to date
overview of disaster Charter activations for flood monitoring and management is
presented in (Figure 13), with South America, Africa and Asia showing the highest

activations.

Figure 13 Map showing International Disaster Charter Flood Activations (2000 — 2016)
(Source: Disaster Charter)

6.2. Disaster Charter activations in Nigeria

In Nigeria, the charter is usually activated by the National Emergency Management
Agency (NEMA) designated project manager. The activation follows the following five

steps: (1) requisition by authorised person, (2) requestor identification and request
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verification by a 24/7 operator, (3) request analysis and satellite tasking for data capture,
(4) data acquisition and delivery, and (5) support in data processing throughout the
emergency (James et al., 2013). In Nigeria, activation of the disaster charter is relatively
new, and only 6 activations have been made between 2010 and 2012 to monitor
flooding events at Sokoto in 2010 (calls: 324 and 326), Ibadan in 2011 (call: 370), and
in 2012 at Adamawa, Kogi and Bayelsa, (calls: 407, 415 and 416) respectively (James
et al., 2013). Some of the images collected over the course of the activations in Nigeria
includle RADARSAT-2, SPOT-5, TerraSAR-X/TanDEM-X, Landsat ETM,
KOMPSAT, ENVISAT, UK-DMC, and NIGERIASAT (ICSMD, 2016, Olojo et al.,
2013). One of the lingering challenges of the Disaster Charter images is the strict
license and copyright policies that prohibit re-use and distribution of the data (James et

al., 2013), thus limiting the prospect of further data application in research.

Nevertheless, finished products are available via the Charter Activations web page as

high-resolution maps and can be used for flood mapping processes.

6.3. International Water Management Institute (IWMI) Emergency response

products for water disasters

This is a space-based information and rapid mapping platform for emergency response
aimed at providing support for disaster management in Africa and Asia. The platform
was developed from a collaboration amongst the International Water Management
Institute (IWMI), Asia-Pacific Regional Space Agency Forum (APRSAF), European
Space Agency (ESA), the United Nations Office for Outer Space Affairs (UNOOSA)
and the United Nations Platform for Space-based Information for Disaster Management
and Emergency Response (UN-SPIDER). This platform channels an impacted country’s
data request to the Disaster Charter, and also directly processes and applies open-access
remote sensing images (i.e. Landsat, Sentinel 1, MODIS and Global Precipitation
Measurement) to deliver products needed for decision making during a disaster
(Backhaus et al., 2010). So far, the platform has supported five countries including Sri
Lanka, Myanmar, India, Bangladesh, and Nigeria (IWMI, 2016). Also, a total of 37
flood support information has been deployed from open-access satellites, as well as
TerraSAR-X, Radarsat-2, RISAT-1, ALOS-2 PALSAR-2, and JAXA-2 ALOS-2
(IWMI, 2016).

47


https://www.disasterscharter.org/web/guest/activations/charter-activations

Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

6.4. IWMI Emergency response application, Nigeria

This Space-based information and rapid mapping for emergency response platform
between 27" September — 4™ October 2015 has delivered 10 Sentinel-1 flood maps to
support flood management efforts along Niger and Benue rivers in Nigeria. This
emanated from a collaborative effort amongst IWMI, European Space Agency (ESA),
Federal Ministry of Agriculture and Rural Development (FMARD) and Consortium of
International Agricultural Research (CGIAR).

6.5. Copernicus Emergency Management Service

The European Union Copernicus Emergency Management (EMS) provides rapid (i.e.
hours or days) free satellite-based maps to inform decision-making before, during and
after natural and man-made disasters (Copernicus, 2016). Although European nations
are considered a priority for support provision, other countries through an authorised
user can activate the Copernicus EMS. So far, between 1% April 2012 and 19" August
2016, the Copernicus EMS has been activated 175 times (Table 7), with flooding
identified as the highest cause of activation (40%), resulting in 68% of delineation maps
generated.

Table 7 Summary of the Copernicus EMS - Mapping Activations

Number of Number of Number of Number of
Type of Disaster

Activations  Reference Maps Delineation Maps Grading Maps
Earthquake 9 83 31 67
Flood 71 358 692 61

Forest fire,

wildfire 21 47 98 79
Industrial accident 5 12 3 1

Other 55 218 143 127
Wind storm 14 80 45 53
Total 175 798 1012 388
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6.6. Copernicus Emergency Management Service (EMS) application, Nigeria

region

The Copernicus Emergency Management Service (EMS) has not been activated for
Nigeria yet, but have been activated twice (EMSRO18 and EMSRO019) for Niger
(Niamey) and Cameroon (Lake Maga, Garoua-Benue River) respectively in 2012, and
could prove useful for transboundary flood monitoring in Nigeria. Authorised users
France|Centre Operationnel de Gestion Interministeriel de Crises (C.0.G.1.C) and EC
Services|DG JRC activated the Copernicus EMS for the respective countries, providing
Radarsat-2, Rapid Eye, COSMO-SkyMed, and SPOT-5 satellite images flood extent

maps.

6.7. Digital Globe Open Data Program

More recently, Digital Globe, a commercial satellite company launched the “Open Data
Program (ODP)” initiative aimed at providing high-resolution satellite imagery to
support recovery from large-scale natural disasters such as flooding (Price, 2017). ODP
provides pre and post-disaster images, including support via the Tomnod and

Humanitarian OpenStreetMap Team (HOT) crowdsourcing platforms for damage

assessment. (Baruch et al., 2016) So far, the ODP has been activated six times by Haiti,
Nepal, Mexico, Ecuador, Caribbean/United States, and Madagascar, to manage disasters
including earthquakes, hurricanes, and cyclones. The prospect of this initiative is
enormous, as high-resolution imagery will largely improve risk and damage assessment
in remote locations that are usually unobserved in coarse images. Though the ODP is
yet to be deployed in Nigeria, it was deployed for post-disaster assessment of the 2017

Sierra Leone Mudslide disaster. This is its first application case in the African continent.

7. Conclusion

Flood disasters are becoming more frequent, intense and destructive, owing to climate
change and anthropogenic factors. Managing floods requires effective decision making
based on up-to-date and reliable hydrological information (Els, 2013). Typically, data
needed for flood management includes river discharge, water levels, precipitation,
terrain, and land use/cover characteristics collected through the establishment of ground
monitoring stations and field observations/surveys (Kite and Pietroniro, 1996). In

situations where flood transcends administrative boundaries due to natural catchment
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delineations or river network connectivity, transboundary corporations are set up to
enable collaborative data collection, co-operation, risk communication, information
sharing and planning to effectively manage flood impact in riparian countries (Bakker,
2009, Chikozho, 2014). Nevertheless, both independent and transboundary data
collection systems for flood management are usually flawed by organisational,
technical, Institutional, infrastructural and financial challenges that limit inter and intra
organisational co-operation (Olomoda, 2012, Bakker, 2009, Chikozho, 2012, Zeitoun et
al., 2013, Tilleard and Ford, 2016).

The role of remote sensing in supporting transboundary flood monitoring, planning and
management is enormous, as it allows data collection at upstream flood origination
countries by downstream impacted country without the need for bureaucratic
authorization (Angelidis et al., 2010, Sridevi et al., 2016). In independent countries,
remote sensing mostly enables data collection in remote, inaccessible and data sparse
locations to improve flood management practices (Musa et al., 2015).

Advancement in remote sensing has immensely improved flood management,
particularly by making data available free geospatial data to improve flood practices in
data sparse regions of developing countries where ground monitoring network is limited
and the cost of obtaining commercial satellite data is particularly high (Biancamaria et
al., 2011, Yan et al., 2015a). Open-access remote sensing improves flood modelling and
mapping when data sets such as radar altimetry, digital elevation model, optical and
radar satellite imagery are applied independently, in combination with in situ
measurements or integrated into hydrodynamic models as initial or boundary
conditions, thereby reducing flood estimation uncertainty in ungauged river basins
(Birkinshaw et al., 2014b, Sanyal et al., 2013, Jung et al., 2012, Trigg et al., 2009).

It is worth noting that various freely available RS data sets provide varying accuracy
levels, depending on multiple factors. Altimetry Mission accuracies depend on the
satellite ground footprint, virtual station location, river width, tributaries discharging
into the main river and satellite sensor properties (Yan et al., 2015a). Digital elevation
model spatial resolution results in elevation approximation, due to C and X-band radar
inability to penetrate vegetation canopies, and reflection off rooftops and water surfaces,
resulting in elevation over-estimation (Cook and Merwade, 2009, Musa et al., 2015).
Optical imagery applications are hampered by atmospheric conditions and spatial

resolution (Asner, 2001), while one of the core deficiencies of radar images is the
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inconsistency in delineating floods in urban and forested areas (Veljanovski et al.,
2011a).

Despite these deficiencies, the role of individual and collective RS sensor images
application in flood management is huge, especially in developing regions, as it allows
for the estimation and quantification of hydrological parameters at previously
undetected locations once a concept has been proven at a location where in situ data is
available (Tarpanelli et al., 2016).

With remote sensing technology continuously advancing and becoming more freely
available, the reliance on ground observation data is expected to decline, especially
where ground data is unreliable and scanty as evident in Nigeria. Also, with commercial
satellites companies such as Digital globe and other satellite consortiums making
available high-resolution images for disaster management (ICSMD, 2015, Price, 2017),
flood mapping processes will benefit hugely. Despite this obvious advantage of remote
sensing, the role of ground-collected data cannot be disregarded and must take priority
or applied in combination with remote sensing data for enhanced flood mapping

(Domeneghetti et al., 2014, Sun et al., 2012).

7.1. Future research direction for improved flood modelling and mapping in

Nigeria

1. Planning for flood management usually requires flood magnitude estimates at
varying return periods based on historical flood data. In developing regions, such
data are typically short if the gauging station is newly established or discontinued,
and contain gaps (missing data points) caused by equipment malfunction or poor
data collation practices (Maxwell, 2013, Olayinka, 2012). Altimetry can aid
historical river data reconstruction where newly established and old discontinued
gauging stations exist at proximity to virtual stations (Escloupier et al., 2012).
Nevertheless, the low revisit time of altimetry satellites (O'Loughlin et al., 2016a)
can result in the non-capture of peak floods needed for flood magnitude estimation
(Domeneghetti et al., 2014, Yan et al., 2015b) and in other instances, altimetry data
is unavailable at certain locations (Papa et al., 2010). Therefore, it is essential that
the effect of altimetry application is evaluated against another that statistically

infills missing hydrological data to ascertain the influence of both approaches on
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flood frequency estimates, and to understand when these individual approaches can
be used.

The potential of individual satellite data such as altimetry, DEM, optical and radar
images has been demonstrated in this review, with the unique merit, demerit and
application prospect clearly highlighted. In very remote locations of developing
regions, data sparsity is so widespread that uniform data is seldom available for a
whole catchment area. Therefore, a combination of all available open-access RS
data in such unique data-sparse location is recommended, leveraging on merits of
individual data sets to improve all phases of flood mapping processes, i.e.
hydrological modelling, hydrodynamic modelling and inundation mapping.

Satellite consortium images have been proven to be useful in flood risk assessment
when a flood occurs, as pre and post-flood images are provided for comparative
analysis (Olojo et al., 2013). However, strict license and copyright policies prohibit
re-use and distribution of the data (James et al., 2013), thereby restricting a shift in
focus from flood recovery to planning. Nevertheless, end products (i.e. high-

resolution inundation maps) are available via the Charter Activations web page and

can be applied to support flood modelling processes and inform decision making
before, during and after a flood event.

The deficiencies of space-borne images application in flood modelling and
mapping are quite pronounced in various landscapes, irrespective of the sensor type
and their particular advantages (Long et al., 2014, Corcoran et al., 2012). The
private sector has played a vital role in advancing geo-informatics in developing
regions (AARSE and EARSC, 2016), investing hugely in high-resolution satellite
and airborne data needed for operational and disaster management purposes (Eyers
et al., 2013, Nwilo and Osanwuta, 2004). A unique opportunity for collaboration is
identified here, as privately sourced data can be integrated with open-access remote
sensing and crowd-sourcing (Degrossi et al., 2014) to improve flood mapping in
data sparse regions.

Though this literature review focused on fluvial flood modelling and mapping, it is
important to note that precipitation data (in situ and satellite) could also vital in this
process, and has been widely applied, especially in data-sparse regions from flood

modelling and hazard mapping (Yoshimoto and Amarnath, 2017, Komi et al., 2017,
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Yu et al., 2016, Revilla-Romero et al., 2015a). However, this is beyond the scope of
this thesis.
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7.2 Summary of thesis methodologies for analytical chapters 3 - 7

Chapter Gaps address using method Method description Available data
This chapter attempts to fill the gap in | Two approaches, empirical and statistical are | Annual peak flow time series with gaps
hydrological data evident during flooding, | applied to assess the prospect of estimating | varying from 1 to 3 years (consecutive)
that emanates from restricted access to | peak flows needed for direct flood frequency | and > 3 years (inconsecutive).
remote  locations to  acquire river | estimation, as well as ascertain the variation
measurements manually, as well as the | in the flood frequency estimates derived using
’ destruction of measuring equipment during | both approaches. The empirical (Radar
peak floods that deter continuous data | Altimetry) and statistical (Multiple
acquisition. Imputation) are respectively applied to curtail
missing data deficiency at locations where
supplementary data available and unavailable.
In situations where gauging stations are non- | Regional flood frequency is adopted and | Annual peak flow time series for
4 existent or data collected is short in length, | considers climate variability effect. = The | gauging stations within the Ogun-Oshun

regional flood frequency can enable

analysis is executed using the International

river basin of Nigeria, SRTM DEM, and
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hydrological data agglomeration from

nearby stations with similar hydrological

parameters.

Centre for Integrated Water Resources

Management—Regional Analysis of
Frequency Tool (ICI-RAFT) software with
inherent climate indices database to enable
climate variability assessment. Climate
variability is accounted for due to the
significant trends and homogeneity observed

in the available historical data.

global climate indices time series from
the National Oceanic and Atmospheric

Administration (NOAA).

During flooding, swift response is expected,
therefore disaster management authorities
require Real or Near-Real-Time (NRT)
information on exposure to respond, to
mitigate flood impact. Such datasets are
seldom available in many developing
countries.
Typically,

government agencies develop

To deliver the required NRT flood
information, twice daily overpass (Terra and
Aqua satellites) MODIS Water Product
(MWP) is combined with crowd-sourcing in
this chapter. The MWP flood extent is
generated automatically by a NASA through
an algorithm that uses a ratio of MODIS 250

m resolution Bands 1 and 2, and a threshold

Inundation extent derived from the

MWP; georeferenced crowdsourcing

data points of responses from citizens
on knowledge of flooding around their
surrounding (flooded or non-flooded)
and supplementary information that

infer preparedness, response and

recovery; and the Annual Flood
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maps of perceived flood risk before a flood
occurs, to inform flood management
decisions. However, if such flood risk maps
are developed from coarse and inaccurate
data, the perception of flooding will differ

considerably from reality, resulting in flawed

decision making.

of Band 7 to provisionally identify pixels as
water. Crowdsourcing data is acquired using
web GIS application developed by the author
using ArcGIS GeoForm platform.

The discrepancy between government and
citizen flood risk perception is also evaluated
using data acquired from crowdsourcing is
also assessed, as well as factors that affect

citizen preparedness, response and recovery.

Outlook of Nigeria (2015).

Hydrodynamic models provide a viable
approach to estimate known or expected
flood extent and water level needed for flood
management decision making. These models
typically require hydrological, topographic
and calibration (known historical flood
water  levels,

extent, discharge or

Variable degrees of data availability was
evident in the model domain (i.e. Niger-
South, Nigeria). Therefore, the whole study
domain is modelled and calibrated using
CAESAR-LISFLOOD, due to the availability
of input hydrological data upstream of the

domain, while validation is segmented into

Whole domain: Hydrological input
data (Umaisha and Baro gauging
stations, along Benue and Niger rivers
respectively), and SRTM DEM (with
Urban and Vegetation elevations
reduced).

Lokoja: River bathymetry (acquired in
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watermarks) data, which as seldom available

in many developing regions.

sub-domains to reflect the wvariable data
availability. The three (3) sub-domains are

named Lokoja, Onitsha and Niger Delta.

2011), NRT MWP, TerraSAR-X, water
level measurement at Lokoja gauging
station.

Onitsha: River bathymetry (acquired in
2001), NRT MWP, and water level

measurement at  Onitsha

gauging
station.

Niger Delta: NRT MWP, Geotagged
overflight photos, CosmoSkyMed and

RADARSAT-2.

Flood extents extracted from passive and
active satellite images such as MODIS,
RADARSAT 2, and TerraSAR-X are usually
impaired by environmental conditions
including reflectance from vegetation cover,

urban land-use and cloud cover. These

Decision tree based algorithm is adopted and
applied here using WEKA data mining
software. This approach integrates various
open -access datasets including hydrology

(river), geology, soil composition, land

use/cover, DEM and its derivatives to

CosmoSkyMed, RADARSAT-2,

Landsat-8, soil composition, geology
map, SRTM DEM, DEM derivatives

(Topographic Wetness Index, and

Stream Power Index), geotagged

overflight images.

57




Application of Open-access and 3" Party Geospatial Technology for Integrated Flood Risk Management in Data Sparse Regions of Developing Countries

conditions are particularly evident in the | improve radar flood detection potential in the

Niger delta region. mangrove dominated Niger delta region.

Further details of specific methodologies are presented in individual chapters
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CHAPTER 3: INFILLING MISSING DATA IN HYDROLOGY: SOLUTIONS
USING SATELLITE RADAR ALTIMETRY AND MULTIPLE IMPUTATION
FOR DATASPARSE REGIONS

Abstract

Floods are undoubtedly one of the most devastating natural disasters on earth, triggered
mostly by climatic activities and aggravated by anthropogenic factors. Due to the
disastrous consequences of flooding, it is important that proper structural and non-
structural measures be put in place to manage the effects of flooding, and the first step
towards this is the estimation of expected flood magnitude and the probability of
occurrence. Gaps in hydrological data, particularly in developing countries increases the
complexity of flood frequency analysis and could contribute to flood estimates

uncertainty, consequently resulting in poor flood management decisions.

In this study, two methods for filling hydrological data gaps are deployed, (i)
incorporating river level data derived from satellite-based Radar Altimetry and (ii)
Multiple Imputation technique, and the impact of these approaches of derived flood
estimates are quantified. The approaches presented here were applied along the Niger
and Benue rivers in Nigeria to assess scenarios of supplementary data availability and

unavailability, to fill data gaps at specific gauging stations.

The study revealed that Radar Altimetry missing data infilling approach outperformed
Multiple Imputation, especially for widely gapped time series (> 3 years), but did not
differ significantly for data sets with gaps of 1-3 years. Also, previously unquantified
2012 and 2015 flood events in Nigeria were quantified as 1-in-100 and 1-in-50 year
floods respectively, suggesting that the impact of these flood events would have been

mitigated considerably if such information was available, having filled the historic data

gaps.
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This study demonstrates the potential of altimetry and statistical computation for
providing information to support flood management in developing regions where in situ
data is sparse, especially where gauging stations have been destroyed, discontinued or

are newly established.

Keywords

Hydrology, Missing data, Radar Altimetry, Multiple Imputations, Uncertainty, Flood

Frequency Analysis

1. Introduction

Flooding is one of the most devastating natural hazards, increasing in frequency,
magnitude and impact due to changing climatic conditions and anthropogenic
triggers/factors (Lavender and Matthews, 2009). Reliable flood information is required
by flood risk managers and stakeholders when deploying measures to effectively
counter the impacts of floods. Typically, networks of hydrologic gauging stations are
established for this purpose (Hipel, 1995, Herschy, 2008), distributed across several
locations of interest to collect long-term hydrological data. However, operating such in
situ measurement systems, especially in developing regions are often problematic due to
underfunding of implementation agencies by governments (Starrett et al., 2010),
inaccessibility and security challenges at some locations (Ampadu et al., 2013b), lack of
commitment by gauging station operators, and equipment malfunction, replacement,

damage, modification and discontinuity (Olayinka et al., 2013).

These factors contribute to hydrological network inadequacy, and decline of functional
stations and gaps in available records that flood modelling processes can result in
uncertain estimates. Even when data is available, in many cases for developing regions,

these records are usually short, and river water level measurements and discharge
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estimation processes further subjects the available hydrological data to aleatory and
epistemic uncertainties (Merz and Thieken, 2005, Baldassarre and Montanari, 2009,
Beven and Hall, 2014). This paucity of data is particularly severe in developing
countries, further limiting their capacity to mitigate and cope with the impact of

flooding on people, infrastructure and socio-economic activities.

Researchers have explored several techniques to compensate data deficiencies to
estimate flow for ungauged or sparsely gauged river basins, including remote sensing
applications (Bjerklie et al., 2005, Tarpanelli et al., 2013, Birkinshaw et al., 2014a,
Gleason and Smith, 2014), hydrodynamic modelling (Biancamaria et al., 2009a, Neal et
al., 2012, Sanyal et al., 2014), combined remote sensing and hydrodynamic models
(Pereira Cardenal et al., 2010, Tarpanelli et al., 2013, Yan et al., 2015a), catchment
geomorphological and meteorological data applications (Jotish et al., 2010, Grimaldi et
al., 2012, Rigon et al., 2015), and hydrological regionalization (Saf, 2009a, Smith et al.,
2015, Kumar et al., 2015, Rahman et al., 2014). These techniques provide varying
advantages and challenges and are applicable in different scenarios depending on
available data. Furthermore, all of these approaches require some form of ground data
for verification, given that in situ observations provides better insight into local
hydrological processes and catchment response to changing climatic conditions
(Hrachowitz et al., 2013), and the output of each technique is strongly dependent on the

input data accuracy.

Irrespective of the method adapted for flood magnitude estimation, missing data within
the hydrological time-series increases the uncertainty in the estimate, resulting in flawed
flood management decisions (Jung and Merwade, 2015). To curtail this deficiency,

hydrologists have devised several means to fill gaps in hydrological time-series using
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both statistical and empirical methodologies (Campozano et al., 2014). Statistical
techniques are centred on filling missing data by simulating missing data using
trends/patterns from available data using methods such as regression analysis
(Westerberg and McMillan, 2015, Olayinka et al., 2013), interpolation (Lee and Kang,
2015, Hasan and Croke, 2013) and artificial neural networks (Steven et al., 2010,

Starrett et al., 2010).

Traditional missing data infilling approaches generally involve removal of incomplete
data or single data imputation methods such as arithmetic mean or median imputation,
regression-based imputation and principal component analysis-based imputation (Peugh
and Enders, 2004). Though the deletion method is usually convenient (King et al.,
1998), this approach reduces sample size, thereby introducing statistical bias and
reducing the statistical power and precision of standard statistical procedures (Little,
2002). Single imputation approaches contrastingly replace missing data while retaining
the original sample size. However, single imputation techniques lead to distorted
parameter estimates, reduced data variability (Baraldi and Enders, 2010, Little, 2002),
predictable bias, high variable correlation (Donders et al., 2006), and dimensional

subjectivity (Jolliffe, 2002).

To curtail the limitations of the single imputation approach, Multiple Imputation (MI)
has been proposed; an approach that fundamentally replaces missing time series values
using two or more plausible values derived from a distribution of possibilities (Graham
et al.,, 2007, Graham and Hofer, 2000). Multiple imputation is widely used in
hydrological studies (Asian et al., 2014, Khalifeloo et al., 2015, Graham et al., 2007,

Yozgatligil et al., 2013, Tyler et al., 2011, Lo Presti et al., 2010, Li et al., 2015), as it
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provides the unique advantage of accounting for missing data uncertainty, and do not

overestimate correlation error (Lee and Carlin, 2010).

Empirical methods on the other hand fill missing data using supplementary data sets
from upstream or downstream gauging stations close to the location of interest, as well
as other data sets such as digital elevation model (Pan and Nichols, 2013), bathymetry
(Tommaso et al., 2013) and/or satellite imagery data sets (Tarpanelli et al., 2013,
Gleason and Smith, 2014, Birkinshaw et al., 2014b) and radar altimetry (Dubey et al.,
2015, Asadzadeh Jarihani et al., 2013). Of all listed empirical approaches, only
altimetry provides direct water level estimates that can be integrated seamlessly into
existing hydrological time series without complex computation (Pandey and Amarnath,
2015, Silva et al., 2014, Papa et al., 2010). Given that altimetry virtual station networks
are globally distributed (See Figure 11 — 13, Chapter 2), a unique opportunity for
infilling hydrological time series gaps is presented, especially in developing regions
during peak flood seasons when in situ stations are usually disrupted or damaged.
Notwithstanding radar altimetry’s advantages, its application is not without limitation,
as factors including atmospheric state during data acquisition, satellite sensor properties,
temporal resolution, water surface characteristics and altimetry ground footprint
contribute to the measurement variability and uncertainties (Belaud et al., 2010, Jarihani
et al., 2015b, Clark et al., 2014). Furthermore, considering the recent launch of Jason-3
(NESDIS, 2016) and Sentinel-3 (ESA, 2016) in early 2016, and the prospective launch
of Surface Water and Ocean Topography (SWOT) in 2020 (Avisio, 2016), altimetry
data collection is expected to continue, and dominate sustainable water resource

management for years to come.

The objectives of this chapter are detailed as follows:
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I.  Explore the prospect of filling missing hydrological timeseries using radar
altimetry and multiple imputation.
II. Estimate flood frequency and magnitude using contrastingly filled hydrological
time series and the effect of the gap length.
III.  Assess the accuracy and discordancy of derivatives from both approaches
IV.  Quantify the magnitude of the recently experienced flood in 2012 at the location
of interest (Nigeria), using data filled by both approaches, to demonstrate the

practicality of this study.

2. Study region
The Niger south Hydrological Area (HAS) (Figure 1A) is the focus of this study and

encircles 22,170,300 persons within a 54000km? area. The hydrology of the region is
defined by Niger Basin water inflow from Niger and Benue rivers (Figure 1B) travelling
downstream to the Atlantic Ocean through Nun and Forcados distributaries in the Niger
Delta (Figure 1C), and to the Anambra-Imo river basin through Anambra river. Annual
rainfall in the Niger Basin varies from 1100 mm to 1400 mm, while the land cover/use
along the Niger and Benue is comprised of built-up areas, cultivated land, plantations,
wetlands, mixed land use, grasslands, vegetation and bare surfaces (Odunuga et al.,
2015). HA-5 encompasses sections of some of the most impacted states (i.e. Kogi,
Anambra, Imo, Delta Bayelsa and Rivers) during the 2012 and 2015 flood events, of
which the 2012 flood was reported to have caused the greatest impact/damage in 40
years (Ojigi et al., 2013, Tami and Moses, 2015). The impacts include disruption of
socio-economic activities, damage to properties and infrastructure, and sadly deaths
(FGN, 2013, Erekpokeme, 2015). Both events were triggered by intense precipitation
which resulted in the release of excess water from dams in Nigeria (Kainji, Shiroro and

Kiri) and Cameroon (Lagdo), with the impact exacerbated by poor planning due to
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insufficient data and poor communication (Ojigi et al., 2013, Olojo et al., 2013, FGN,
2013). Hence, this study site is valuable as it explores the challenges and opportunities
associated with hydrological data acquisition, the potential of alternative data sources

and their applicability. Figure 1A also shows in situ gauging stations, radar altimetry

tracks and virtual stations along the Niger and Benue rivers.
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Niger

Anambra
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Figure 1: (A) Map of Nigeria showing in situ gauging stations, altimetry virtual stations
and tracks along Niger and Benue Rivers. (B) Map of Africa showing Niger Basin
imprint on Nigeria. (C) Niger South hydrological area showing tributaries (Niger and

Anambra) and distributaries (Nun and Forcados).
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3. Materials and Methods

3.1. In-situ hydrological data

Hydrological data (Discharge, Water level and Rating curve) for the five (5) in situ
stations (Table 1) used in this study were acquired from the Nigerian Hydrological
Service Agency (NIHSA), National Inland Waterways Authority (NIWA) and the Niger
Basin Authority (NBA). Daily mean water level data is manually collected using staff
gauges, then converted to discharge using pre-defined and up-to-date rating curves (i.e.
the relationship between in-situ discharge and water levels), see Appendix 3. The
respective gauging stations were established before the establishment of upstream dams
that alter the Niger and Benue river hydrological regimes (Abam, 2001b), i.e. Baro
(1915), Lokoja (1915), Umaisha (1980), Onitsha (1955) and Taoussa (1954). Therefore,
post-dam establishment hydrological time series is applied to eliminate hydrological
heterogeneity caused by dam creation. Hydrological data for Taoussa gauging station
located in Mali was acquired from the Niger Basin Authority (NBA) for validation
purpose, as none of the datasets available within the area of interest was without gaps
(Supplementary Figure 1 — 3). Only annual maximum flow time series data are used in

this study.
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Table 1 In situ gauge station characteristics

Station River Width ~ Missing annual
River Lat. (°) Long. (°) Area (km?) Period of record GBM (m)

Name (km) peak data
Baro Niger 8.6066 6.4170 730,000 1985 - 2011 57.22 0.64 12
Lokoja Niger 7.8167 6.7333 752,000 1989 - 2012 45.77 1.65 6
Umaisha Benue 8.0000 7.2333 335,000 1985 -2012 18.87 0.61 19
Onitsha Niger 6.1667 6.7500 1,100,000 1989 - 2011 24.14 1.03 16
Taoussa Niger 16.9500 -0.5800 340,000 1985 - 2015 N/A 0.47 0

* GBM: Gauge Bench Mark above Mean Sea Level, N/A: Not Applicable (Source: NISHA, NIWA and NBA)
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3.2. Radar altimetry data collection and application for missing filling data gaps

Radar altimetry data is acquired via a process that measures the distance between the
orbiting satellite and water surface in relation to a reference datum (Earth Gravitational
Model (EGM) 2008), using satellite sensor echo pulse return intervals from when
emitted, to when received upon reflection by the water surface (Sulistioadi et al., 2015,
Belaud et al., 2010). Altimetry water levels are measured at virtual stations located
intermittently where altimetry satellite tracks cross path with rivers (Birkinshaw et al.,
2014b, Musa et al., 2015). Off-the-shelf Topex/Poseidon (T/P), Envisat, Jason-1 and
Jason-2 altimetry missions (See Table 2 for properties) data from the Centre for
Topological studies of the Ocean and Hydrosphere (CTOH) (Crétaux et al., 2011)

database are applied in this study.

Altimetry water level data downloaded from CTOH are pre-processed using the Virtual
Altimetry Stations (VALS) software and takes into cognizance the distance between the
satellite and water body, and uncertainty contributing factors such as the ionosphere,
humid and dry atmospheric conditions, polar tide, and solid earth tide (da Silva et al.,

2010).
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Table 2 Radar Altimetry mission and characteristics

S/N Mission Ground footprint Return period Operation timeline Vertical References

(m) (days) Accuracy (m)
1 Topex/Poseidon ~600 9.9 1993 - 2003 0.35 (Frappart et al., 20006)
2 Envisat ~400 35 2002 - 2012 0.28 (Frappart et al., 2006)
3 Jason-1 ~300 10 2002 - 2009 1.07 (Jarihani et al., 2015a)
4 Jason-2 ~300 10 2008 — 0.28 (Jarihani et al., 2015a)

The EGM 2008 vertical datum for altimetry data used in VALS was converted to MSL which corresponded with the in-situ gauge station

datum. This conversion was performed using datum correction parameters derived from the geoid calculator GeoiedEval

(http://geographiclib.sourceforge.net/cgi-bin/GeoidEval?).

2 http://geographiclib.sourceforge.net/cgi-bin/GeoidEval
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3.3. Missing Data Imputation, Pre-processing and Flood frequency analysis

3.3.1. Missing Data Imputation

Missing data is a regularly occurring phenomenon in hydrological analysis, depicted by
gaps within hydrological time series that emanate due to poor data management,
equipment damage/malfunction and un-acquired data due to inaccessibility, thus
resulting in poor flood magnitude estimates and management decisions. Two
approaches, Radar altimetry and Multiple imputation are explored in this study, aiming
to reduce the uncertainty associated with applying gapped in historical hydrological

datasets.

3.3.1.1. Radar Altimetry Missing Data Imputation

This approach involves establishing a correlation relationship between upstream or
downstream altimetry virtual station datasets those of a nearby in-situ gauging station
when water level data exist at both stations. The established relationship is then applied
to estimate missing in-situ data when only altimetry data is available. At locations
where data is not available at similar dates for in-situ and altimetry virtual stations to
establish an empirical relationship, previously established relationship from a nearby
altimetry station can be adopted, provided the distance between both virtual stations is
minimal, the change in river width is negligible, no hydraulic structure or tributary exist
between both virtual stations (Papa et al., 2010, Pandey and Amarnath, 2015). This
approach is consistent with previous studies (Papa et al., 2010, Michailovsky et al.,
2012, Dubey et al., 2015), where the rating curve for a nearby gauging station was
adapted for another station where data was unavailable. The newly estimated water at
In-situ station is then converted to discharge using a pre-defined rating curve/equation.
Figure 1 showed the altimetry virtual stations chosen for this study which was along

Niger and Benue rivers located upstream and downstream of the in-situ gauging
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stations. The framework presented in Figure 2 describes the methodology for infilling

missing data using altimetry, while the characteristics of altimetry virtual stations are

presented in Table 3.

In Situ Water In Situ
» Rating Curve/Equation [« .
Level > g /Ea Discharge
A
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Correlation, Extension ‘/

Predicted Discharge
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Altimetry Water
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v

In situ

\ 4
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Figure 2 Methodology for estimating missing discharge data using radar altimetry, in

situ water level and rating curves
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Table 3 Characteristics of the altimetry virtual stations within the study area

Name Mission  River Temporal Latitude Longitude Distance from GOI Data match points ,
coverage (km) (Alt vs In situ) K
Env_702 01 Envisat  Niger 2002-2010 6.6500 6.6500 115.4 (Lokoja)-DS 42 0.59
Env_029 01 Envisat  Niger 2002-2010 5.9900 6.7200 23.7 (Onitsha)-DS 9 0.95
Env 158 01 Envisat  Benue 2002-2010 8.0200 7.6700 54.3 (Umaisha)-US 15' 0.934'
tp198 4 moy T/P Nun 1993-2002 6.0981 4.7563 234.7 (Onitsha)-DS 88 0.66
j2.020_1 Jason-2  Benue 2002-2011 8.0082 7.7540 62.9 (Umaisha)-US 15 0.95
j2 211 3 Jason-2  Niger 2002-2011 8.3675 6.5570 33.8 (Baro)-US 20 0.94
j2_161 1 Jason2  Niger 2002 - 2015 17.0107 -1.5247 112.5 (Taoussa) -US 14 0.92

GOI: Gauge of interest, DS = Downstream of in situ gauge, US = Upstream of in situ gauge, R? = correlation coefficient, (!) denotes that

the correlation relationship at the J2 020 1 virtual station was adopted for Env_158 01 due to the absence of in sifu measurements near

that virtual station. The distance between the two virtual stations was limited (9.3 km).
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Table 3 (R?) indicates that the correlation between RA-derived and in situ stage data
was higher as the distances between virtual and in situ gauge stations reduce and vice
versa. Also, the reduced correlations between virtual stations (Env 702 01 and
tp198 4 moy) and in situ stations water levels at Lokoja and Onitsha respectively are
attributed to tributaries discharging into the main rivers. These findings are consistent
with other studies at Brahmaputra river (Dubey et al., 2015), Lake Argyle (Asadzadeh
Jarihani et al., 2013) and Lake Victoria (Crétaux et al., 2011, Asadzadeh Jarihani et al.,

2013, Dubey et al., 2015) and Benue river (Pandey and Amarnath, 2015).

3.3.1.2. Missing Data Multiple imputation

Multiple imputation (MI) allows for the infilling of missing data in situations where
supplementary data such as radar altimetry is unavailable and is widely applied in
hydrological studies (Gill et al., 2007, Schneider, 2001, Lo Presti et al., 2010, Graham
et al., 2007). MI has also been found to outperform traditional techniques such as mean
imputation, missing indicator and complete case analysis (Roderick, 2011, Schafer,
1997, van der Heijden et al., 2006). MI fills data gaps by generating a plausible number
of values after fitting the existing data to a distribution based on the statistical
parameters such as mean and standard deviation of the dataset, while accounting for
uncertainty about the supposed true value (Li et al., 2015, Rubin, 1987, Yozgatligil et
al., 2013). The term “Multiple imputation” implies the missing data is simulated
multiple times, in this case (5 times) using XLSTAT Ms Excel add-in, thus quantifying
the uncertainty in the simulation process and reducing false precision attainable with
single imputation (Li et al., 2015). The MI algorithm is implemented in XLSTAT which
adopts the Markov Chain Monte Carlo approach (van Buuren, 2007), whereby missing

values are estimated by random sampling from a distribution of plausible values derived
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from multiple simulations undertaken using mean and standard error parameters similar

to that of the original dataset under the assumption of normal distribution.

3.3.2. Pre-processing

3.3.2.1. Preliminary Analysis Prior to Flood Frequency Estimation

Preliminary analysis is an integral part of flood frequency estimation, as it ensures the
applied dataset meets the required prerequisite to ensure the data sets applied does not
contribute additional uncertainty to probability distributions and flood frequency
estimates (Lamontagne et al., 2013). These include test for outliers, trends, homogeneity

and serial correlation

Grubbs and Becks (Grubbs and Beck, 1972) and multiple Grubbs and Becks outlier

test: applied to identify Potentially Influential Low Floods (PILFs).

» Mann-Kendall test (Mann, 1945, Kendall, 1975): applied to assess trends in the
time-series.

= Pettit’s test (Pettitt, 1979): assess historical data homogeneity

= Lag-1 correlation coefficient statistics (Kendall and Stuart, 1969): test the serial

correlation between the independent observations of a time-series.

All data pre-processing except the multiple Grubbs and Becks test (mGBt) was
undertaken using XLSTAT MS Excel Add-in. The mGBt was performed in Flike flood
frequency analysis software (Kuczera, 1999, Lamontagne et al., 2013). mGBt assesses
the anomaly of the (k™) smallest sample in comparison to the peak flood population
dataset (n) and uses a threshold to remove this anomaly. Nonetheless, Pedruco et al.,
(2014) warned on the need to be cautious when removing PILFs to ensure data that
significantly affects the quantile estimate is not eliminated. Other uncertainties factors

that contribute to hydrological data uncertainty include changes in land cover,
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catchment geomorphological, river channel, and the construction of hydraulic
structures; these are somewhat curtailed by consistently updated rating curves (Dubey et

al., 2015).

3.3.2.2. Simple Rating Curve extrapolation uncertainty assessment

In addition to the impact of missing peak flow data on flood frequency estimates, the
rating curve from which discharge is derived can contribute to design-flood uncertainty
(Baldassarre and Montanari, 2009, Di Baldassarre et al., 2012, Kuczera, 1983). Rating
curves present the relationship between in-situ stage and discharge at gauging station
(Haddad et al., 2014). This, therefore, allows for the estimation for discharge from river
water level measurement acquired using staff gauge, which is usually the case in most
developing countries due to the absence of sophisticated equipment (van Meerveld et
al., 2017). Typically, rating curves are developed from data collected within river
boundaries. However, during flooding rivers rise above known boundaries used in
rating cures derivation, resulting in extrapolation uncertainty (Herschy, 2008). Other
factors that contribute to rating curve uncertainty include rating curve overfitting
(Haque et al., 2014, Baldassarre and Montanari, 2009), river cross-section changes due
to erosion or aggradation, land cover change, hydraulic structure design (Jalbert et al.,

2011), and measurement errors (Baldassarre and Montanari, 2009).

A simple Ratings Ratio (RR) approach is applied to identify stations with a high degree
of extrapolation uncertainty (Haddad et al., 2010). RR is ascertained by dividing the
maximum discharge for each year (Qr) by the maximum measured discharge applied in
the ratings curve development (Qwm). The equation below defines RR as:

_ Qe

RR
Qm

(2)
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If the RR value is less than 1, the corresponding Qr value is assumed to be free from
extrapolation uncertainty and the presence of extrapolation uncertainty is pronounced if

RR is much greater than (>>) 1 (Haque et al., 2014).

3.3.3. Flood frequency estimation

Flood frequency estimation is a process that entails establishing a relationship between
flood quantile and the probability of occurrence. “Flood frequency” generally refers to
the likelihood of a flood of specific magnitude/threshold being met or exceeded at any
given point in time, and “time” being expressed as return period (Reed, 1999). This is
undertaken by fitting a predefined probability distribution to historic Annual Maximum
Series (AMS) or partial series data from a single or combination gauging stations, thus

capturing the probability of a peak flood occurrence (Stedinger and Griffis, 2008).

The length of available data also contributes to flood estimates uncertainty, thus the
availability of more historical data implies improved flood estimates and confidence in
the decision made from such estimates. The Reed (1999) Flood Estimation Handbook
(FEH) 5T rule of thumb for length of data required for flood estimation is adopted, i.e.
the historical data should be at least five times the target return periods, thus providing

acceptable uncertainty limits.

Varying probability distributions including Generalized Extreme Value (GEV),
Generalized Logistic (GLO), Extreme Value (type 1 — 3), Generalized Pareto (GPA),
and Log-Pearson type 3 (LP3) have been applied to fit Annual Maximum time series,
and providing contrasting levels of flood estimates, even for the same dataset (Laio et
al., 2009). Typically, a suitability analysis is undertaken to access the best probability
distribution (Peel et al., 2001), but GEV is adopted to estimate flood frequency and

magnitude in this study, due to its robustness, flexibility (Komi et al., 2016,
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Hailegeorgis and Alfredsen, 2017, Papalexiou and Koutsoyiannis, 2013) and wide
applicability in the area of interest, for consistency (Izinyon and Ehiorobo, 2014, Garba
et al., 2013b, Fasinmirin and Olufayo, 2006). GEV probability distribution estimates are
however affected by tropical cyclones and extratropical weather systems that results in
extremely large shape parameters (Smith et al., 2011, Villarini and Smith, 2010), and
these events do not manifest in Nigeria. Furthermore, GEV like other probability
distributions is affected by short hydrological time series, resulting in uncertain flood

estimates (Ragulina and Reitan, 2017, Botto et al., 2014).

GEYV is expressed as thus:

A=

—1
{1 - K(X - T) }K whenl<>0,x<1:+g ;Whem{<0,x>r+g (3)

o o 7] e

where, 1, a, and k represents location, scale and shape parameters of the distribution

function.

Once the GEV parameters were fitted to the peak flood historical data for each station,
the uncertainty limits (i.e. upper and lower boundaries) are ascertained by a bootstrap
approach that samples the original dataset to create random data series with similar
parameters as the original dataset, then applies the pre-defined distribution function to
estimate various flood magnitudes at different return periods (Efron, 1979a, Efron,
1979b, Kuczera, 1999, Hu et al., 2013).Flood frequency analysis was undertaken in the

Flike flood frequency analysis software.
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3.3.4. Comparative Analysis (Permutation test and Kolmogorov-Simonov test):

Permutation and Kolmogorov-Simonov tests are applied to ascertain the significance of
the missing data imputation approaches on the flood estimates and variation in the
quantile distributions respectively. Permutation test is the non-parametric alternative to
parametric t-test, used in ascertaining the difference between two treatments (Good,
2000), i.e. Multiple Imputation and Radar Altimetry Imputation in this case, while the
Kolmogorov-Simonov test (Kolmogorov, 1991) assesses if two distributions are the
same or if a distribution differs from a reference distribution. Both analysis was

undertaken in R.

3.3.5. Infilling method evaluation for contrastingly gapped data at Taoussa, Mali:

To further evaluate the effect of the infilling approaches applied on flood estimates,
complete hydrological time series available at Taoussa gauging station in Mali (See
location map in Supplementary Figure 1) was acquired from the Niger Basin Authority

Database: http://nigerhycos.abn.ne/user-anon/htm/3, due to the absence of gap-free data

in Nigeria. Historical water levels were converted to discharge using ratings curve
presented in Supplementary Figure 2. Flood estimates derived from data filled using
Multiple Imputation (MI) and Radar Altimetry (Alt) for both consecutively (< 3 years)
and inconsecutively (> 3 years) gapped data are then compared to estimates derived

from complete data using Permutation and Kolmogorov-Simonov tests.

3 http://nigerhycos.abn.ne/user-anon/htm/
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4. Results and Discussion

4.1. Missing Data Infilling: Radar Altimetry (RA) and Multiple Imputation (MI)

Figure 3 (a-d) shows the Annual Maximum Series data for each of the four gauging
stations, with gaps filled using RA and MI data infilling approaches. Both approaches
respectively address situations of supplementary data (i.e. remote sensing) availability
and unavailability and provides options for hydrological data gaps infilling, considering

that altimetry tracks and virtual stations are not present at every river.

Points of data overlap between the MI and RA time-series depicts points where
historical data exist, and the space between time-series represents peak flood estimated
by the varying approaches. The RA derived discharge is higher its MI counterpart at
Umaisha, compared to any other station. At Baro, Lokoja and Onitsha gauging stations,
RA peak flood estimates were mostly lower than those estimated by MI, and higher
only in 1993 at Baro and Onitsha, and 1995 and 2001 at Baro only. The consistently
low peak flood estimates displayed at Umaisha reveals the deficiency of MI, especially
when estimating missing data for time series with wide gaps (Tyler et al., 2011). The
higher Altimetry peak flood estimates at Baro and Onitsha is also consistent with
historical flood events reported by the Dartmouth Flood Observatory (DFO) Archive.
The high discharge values estimated from the RA infilling method compared to MI

were most evident for data sets with inconsecutive (>3 years) missing data.
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Figure 3 (a) Baro station MI and RA Infilled time series
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Figure 3 (b) Lokoja station MI and RA Infilled time series
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Figure 3 (c) Umaisha station MI and RA Infilled time series
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Figure 3 (d) Onitsha station MI and RA Infilled time series
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Figure 4 (a - b) shows the time series for Taoussa reference station in Mali, used as the
validation station for the methods applied in this study for consecutively and
inconsecutively spaced historical time-series. Both figures generally reveal that
estimated peak discharge discordant from the real values, but RA estimates were closer
to the in-situ measurements, compared to MI estimates, especially for consecutively
gapped data. Results from the further quantitative analysis are presented and discussed
in section 4.6, and more information on the exacted figures of these outcomes are

presented in Supplementary Figure 1.
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Figure 4 (a) Taoussa Complete and Consecutive missing data
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Figure 4 (b) Taoussa Complete and Inconsecutive missing data

4.2. Preliminary data analysis

Results of the preliminary analysis, i.e. outlier, trend, homogeneity and serial (lagl)
correlation for each gauging station is presented in Table 4. P-values greater than (>)
0.05 implies that significant outliers do not exist within the dataset, inferring that high
and low flood levels captured in the historical series are consistent with years of
recorded flood events. The results of the outlier test further suggest the historical data
sets responded to real flood events rather than of equipment faults. Table 4 also shows
the results of the (i) Mann-Kendall trend test demonstrated the absence trends for all
gauge stations at 5% significance level, (i1) Homogeneity (Pettit) test which assesses the
variability in the hydrological data is specified in the homogeneity (p-value) and (ii1)
Serial (Lag 1) correlation within gauge records results ranging from -1 to 1, where 1
infer perfect correlation and -1 perfect non-correlation. Mann-Kendall and
Homogeneity p-values vary from (0.170 - 0.917) and (0.052 - 0.963) respectively,
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suggesting the absence of significant hydrological trends and homogeneity
(breakpoints), indicating stationarity. These results indicate the long-term consistency of
environmental and physical conditions within the catchment at the time of data
collection (Kang and Yusof, 2012). Although dams upstream of the gauge stations have
altered the hydrological regime of the Niger and Benue rivers when established (Abam,
2001b, Olayinka et al., 2013), this study used data sets acquired after dam construction,
thus sudden changes in discharge were not observed. Also, average serial correlation of
all sites ranging from (-0.044 — 0.519) suggests the absence of statistically significant

correlation between peak floods for each site.
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Table 4. Preliminary analysis results (Mean, Homogeneity, Trend, Outlier, Serial correlation)

Station n Mean Homo. (P-Value) Trend (P-value [+/-]) Outlier LO - UO (P-Value) Lag]l correlation
MI RA MI RA MI RA MI RA MI RA
Baro 27 5414.464 5282.514 0.568 0.567 0.680[+] 0.967 [+] 1805.638 - 8679.583 (0.149) 1805.638 - 8679.583 (0.664) -0.044  -0.021
Lokoja 23 18912.48 17805.802 0.663 0.142 0.433[+] 0.228[+]  13846.000 - 23797.980 (0.415) 10752.972 - 23797.980 (0.364) 0.26 0.291
Umaisha 27 11838.31 12416.21 0.887 0.525 0.869[-] 0.680 [+] 8775.407 - 15318.597 (0.209) 10138.233 - 13408.253 (0.893) 0.05 0.519
Onitsha 23 16742.22 15457.1 0.963 029 0917[-] 0.403[-] 15161.802 - 19829.556 (0.063) 10451.462 - 19829.556 (0.286)  -0.103 0.119
Taoussa! 23 1759.316 1697.879 0.208 0284 0.256[-] 0.132[-] 1542.080 - 1984.615 (0.208) 1286.796 - 1984.615 (0.352) 0.060 -0.113
Taoussa®> 23 1774.456 1652.969 0.129 0.052 0.791[+] 0.170 [] 1536.970 - 1984.615 (0.980) 1044.185 - 1984.615 (0.054) -0.072 0.191

MI = Multiple Imputation, RA = Altimetry, LO = Lower Outlier, UO = Upper Outlier, n = Number of data points, (-) = negative trend, (+)

= positive trend, Taoussa' = Consecutively gapped, Taoussa® = Inconsecutively gapped.
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4.3. Rating Ratio: rating curve extrapolation uncertainty

Figure 5-9 shows plots of Rating Ratios (RR) of peak flood data derived from the two
infilling approaches (MI and RA), in relation to the threshold value of 1. As suggested
by Haque et al., (2014), a RR much greater than (>>) 1 implies the presence of residual

uncertainty in the discharge estimates due to ratings curve extrapolation.

From the results presented, the maximum RR values are observed at Baro (1.0172) and
Taoussa (1.045) gauging stations, and are slightly greater than (>>) 1, suggesting
minimal rating curve extrapolation uncertainty. Therefore further analysis is not
undertaken to integrated rating curve extrapolation effect into the flood frequency
estimation procedure using approaches such as Coefficient of Variation (CV),
Likelihood framework and Bayesian framework suggested by Haque et al., (2014),

Petersen-Overleir and Reitan, (2009) and Lang et al., (2010).
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Figure 5 Baro ratings ratio (RR)
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Figure 7 Umaisha ratings ratio (RR)
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Figure 9 Taoussa ratings ratio (RR)

Figure 5 -9 ratings ratio (RR) for all stations, Multiple Imputation (MI) and Radar

Altimetry (RA) comparison

88



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

4.4. Flood frequency estimation, uncertainties and application

Flood quantiles estimates, upper and lower confidence limits based on 90% confidence
interval for five return periods (1-in-2, 1-in-5, 1-in-20, 1-in-50 and 1-in-100 year flood
events) are presented in table 5 - 8, and the flood frequency plots for Lokoja and
Umaisha gauging stations are presented in Figure 10 (a-d). At Lokoja, an equal number
of missing data were filled with radar altimetry and Multiple Imputation, while Umaisha
has the most missing data (gaps). Presenting the results from these stations with varying
gaps allowed for the assessment of the effect of the two missing data infilling
approaches for datasets. The dash lines above and below the expected quantile line
(Figure 10 a-d) represent the upper and lower uncertainty boundaries, and the area
within the uncertainty boundaries defines the confidence or credibility limits of the
derived estimates, i.e. the smaller, the better and vice versa. Flood frequency curves of

other sites are presented in Supplementary Figure 4 — 8.

The difference between MI and RA infilled flood estimates generally tend to increase
with increasing return periods, and these differences are more pronounced for
inconsecutively gapped historic time series such as Umaisha (Table 7), where MI
approach resulted in much lesser flood estimates than RA. MI is typically known for its
ineffectiveness in filling inconsecutive missing data points (Tyler et al., 2011), thus this
result was expected. At Baro, Lokoja and Onitsha gauging stations that exhibited
consecutive gaps, the MI flood estimates were higher than those of RA (Table 5, 6 and
8). These results imply that both methods can be applied interchangeably for
consecutively gapped time-series. Nevertheless, the statistical significance of these
results is further evaluated by permutation and Kolmogorov - Simonov tests and

presented in section 4.5.1.
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Table 5 Baro flood quantile estimates and uncertainty boundaries for MI and RA filled

datasets
Expected quantile Lower Uncertainty Limit Upper Uncertainty Limit
Return (m?/s) (m?/s) (m3/s)
Period
(1-in-Year) MI RA MI RA MI RA
2 5415.9 52443 4906.3 4676.8 5770.9 5858.3
5 6753.9 6741.0 5949.4 6090.3 7444.5 7565.0
20 8018.9 8267.1 7209.9 7408.6 11870.9 10194.6
50 8614.7 9039.3 7845.3 7971.0 17085.9 12145.3
100 8980.1 9536.3 8229.0 8271.4 23207.5 13887.6

Table 6 Lokoja flood quantile estimates and uncertainty boundaries for MI and RA

filled datasets
Expected quantile Lower Uncertainty Upper Uncertainty
Ret‘.lm (m3/s) Limit (m%/s) Limit (m3/s)
Period
(1-in-Year)
MI RA MI RA MI RA
2 19006.2 17934.5 17947.2 16529.0 20198.5 19479.5
5 22200.2 22013.5 20653.9 20115.6 24413.6 24548.2
20 26592.40 27139.4 23856.4 24056.5 32051.6 33002.4
50 29529.4 30294.0 25698.7 26172.6 39055.4 39780.8
100 31812.1 32611.4 26987.0 27559.2 45774.8 45710.1
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Sparse Regions of Developing Countries

filled datasets
Expected quantile Lower Uncertainty Upper Uncertainty
Return (m3/s) Limit (m?/s) Limit (m?/s)
Period
(I-in-Year) MI RA MI RA MI RA
2 11868.8 12409.9 11540.7 11723.9 12232.2 13140.8
5 12995.2 14478.52 12489.1 13573.6 13672.2 15642.9
20 14676.3 17019.0 13718.3 15580.5 16370.9 19756.0
50 15887.6 18549.5 14497.5 16615.7 18832.8 23108.6
100 16878.1 19657.8 15071.1 17269.6 21156.0 25951.1

Table 8 Onitsha flood quantile estimates and uncertainty boundaries for MI and RA

filled datasets
Expected quantile Lower Uncertainty Upper Uncertainty
Return (m?/s) Limit (m?/s) Limit (m>/s)
Period
1-in-Y
(1-in-Year) MI RA MI RA MI RA
2 16575.0 15649.5 16167.9 15110.1 17029.2 16229.4
5 17723.2 17110.0 17151.4 16419.0 18565.1 18063.1
20 19302.0 18901.5 18272.96 17806.3 22009.8 21251.1
50 20357.7 19979.5 18840.6 18508.7 25557.4 24003.6
100 21178.3 20759.5 19194.3 18947.0 29506.5 26585.8
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Figure 10 (a) Lokoja-MI flood frequency plot
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Figure 10 (c) Umaisha-MI flood frequency plot
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Figure 10 (d) Umaisha-RA flood frequency plot

Figure 4 (a-d): Probability distribution plots (PDP) of flood quantiles based on Multiple

Imputation (MI) and Radar Altimetry (RA) filling methods.
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4.5. 2012 and 2015 floods return period estimations

The unprecedented flood of 2012 was reported as one of the most devastating floods in
Nigeria in 40 years, followed by subsequent flood event of 2015. The post-flood need
assessment report (FGN, 2013), revealed (i) economic and infrastructure loss worth
16.9 billion US Dollars, (ii) displacement of 3.8 million people, and (ii) loss of 363

lives.

A retrospective approach was undertaken in this study to categorise the flood
magnitude that resulted in these devastating impacts having filled the data gaps. The
results are presented with better details in Table 6 and 7 revealed that the peak flood
magnitudes of 2012 (31700 m>®/s at Lokoja; 18800 m?/s at Umaisha) and 2015 (22700
m?/s at Lokoja) detailed in the Nigerian Flood Outlook (NIHSA, 2016) were within the
90% confidence level bounds of 1-in-50 and 1-in-100-year flood events. This implies
that radar altimetry application in filling gaps in hydrological datasets can be
instrumental in improving flood management decisions in data-sparse regions through
the provision of substantial information that would enhance mitigation efforts to reduce

the impact of flooding on the potentially exposed populace.

At Baro (Niger River), the 2012 and 2015 flood events were captured as 1-in-100 year
flood events i.e. 13200 m*/s and 13000 m?/s respectively from data derived from both
missing data infilling methods. Furthermore, the upper uncertainty boundaries of the
quantile estimates derived from MI was greater than RA’s, depicting the possibility of
design over-estimation in practice, if MI flood estimates are implemented for flood risk

management.
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4.6. Assessment of missing data infilling method effect on flood quantile estimates

4.6.1. Assessment of Radar Altimetry and Multiple Imputation infilling, Niger and
Benue rivers, Nigeria

The results of the Permutation and Kolmogorov - Simonov tests presented in Table 9
assesses statistical significance of the difference between flood quantiles estimated
using multiple imputation and radar altimetry infilling approaches. Radar altimetry data
was not available for all the missing data years, hence the Missing /infilled-RA column
of Table 9 shows the number of missing data points and available altimetry data points.
Umaisha gauging station had the most missing data (19), of which (14) radar altimetry
data points where available to fill the gaps, and the remaining (5) filled with multiple
imputation. At Lokoja, the 6 missing data points where equality filled with multiple
imputation and radar altimetry approach, thus providing a reference station for equal

comparison of both approaches.

Permutation test results (Pperm = 0.02) at Umaisha station with inconsecutively gapped
data suggests that flood frequency estimates derived from MI and RA imputation
approaches differed significantly, and the Dxs statistic = 0.571 and Pxs = 0.017 for the
Kolmogorov - Simonov test further reveals the difference in the quantile distribution for
both estimates. This deviation is attributed to the high number of missing data filled by
the contrasting techniques i.e. 14 out of 19 missing data, and MI inability to accurately
fill inconsecutively gapped datasets (Graham et al., 2007, Rochtus, 2014, Tyler et al.,
2011). At Lokoja station where an equal number of missing data were filled by both
techniques, the difference between derived flood frequency estimates and distributions
was not statistically significant (Pperm = 0.713, Dxs = 0.143, and Pys = 0.98). Similarly, at
Onitsha and Baro, the estimated quantiles and probability distribution were not
statistically different (P> 0.05), implying that the application of altimetry in filling
missing data did not result in any viable change in the quantile estimates and
distributions when compared to MI. Therefore, both approaches can be applied
interchangeably depending on the number of gaps and spread within the historical time

series.
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Table 9: Kolmogorov-Simonov and Permutation test results

Stations Missing/infil Permutation test Kolmogorov - Simonov test
led-RA
Pperm-Value K-S Statistic (Dxs) Pys-Value
Umaisha 19 (14) 0.020 0.57143 0.0017
Onitsha 16 (9) 0.407 0.19048 0.8531
Lokoja 6 (6) 0.713 0.14286 0.9870
Baro 12 (1) 0.063 0.38095 0.0948

4.6.2. Assessment of Radar Altimetry and Multiple Imputation infilling at Taoussa,
Mali

Flood frequency estimates and the upper and lower uncertainty bounds for a 1-in-2 to 1-
in-100year flood events are presented in Table 10 to capture varying scenarios of gaps
(consecutive and inconsecutive) and infilling approaches (Radar Altimetry and Multiple
Imputation). The results show that flood estimates for both infilling approaches are
within the uncertainty bounds of the complete data flood events for all return periods,
except the 1-in-2year flood derived from inconsistently gapped data filled with radar
altimetry. Permutation and Kolmogorov - Simonov test results (Table 11) further
revealed that though flood estimates did not significantly differ (Pperm™> 0.05), the Dis
and Pis-Values for the radar altimetry estimates for both consecutive and
inconsecutively gapped time series showed significant differences in distribution when
compared to complete data. The observed difference in distribution suggests that the
two complete and RA imputed flood estimates are not drawn from the same distribution
despite not being significantly different (Ewemoje and Ewemooje, 2011). Therefore, an
assessment of the optimal probability distribution for fitting the historical time series

derived infilling the varying infilling approaches is suggested, rather than using a
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predefined distribution such as GEV as was the case in this study, given that varying
probability distribution can result in very different flood estimates even for the same

dataset (Laio et al., 2009).

Table 10: Taoussa flood quantile estimates and uncertainty boundaries for complete

historical data and consecutively and Inconsecutively gaped missing data filled with MI

and RA approaches
) Lower Upper Discharge Discharge Discharge Discharge
Return  Discharge o o i . . .
] Limit Limit (Consecutive) (Consecutive) (Inconsecutive) (Inconsecutive)
Period Complete
(Complete) (Complete) MI RA MI RA
2 1787.79 1734.88 1842.2 1760.15 1709.32 1779.18 1669.77
5 1898.39 1850.91 1954.0 1874.26 1861.13 1887.62 1835.12
20 1983.25 1938.07 2087.7 1978.07 1984.19 1976.08 1986.4
50 2015.89 1967.17 2170.6 2025.17 2034.14 2012.2 2055.43
100 2033.39 1978.96 2229.2 2053.36 2061.89 2032.35 2096.89
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Table 11 Kolmogorov-Simonov and Permutation test results, Taoussa gauging station

Kolmogorov - Simonov test

- - ) Permutation
ata gap infilling comparison
s s (Pperm-Value) .
K- S Statistic (Dxs) Py - Value

Complete Vs Consecutive (MI) 0.731 0.381 0.095
Complete Vs Consecutive (RA) 0.870 0.429 0.041
Complete Vs Inconsecutive (MI) 0.997 0.238 0.603
Complete Vs Inconsecutive (RA) 0.873 0.476 0.016

5. Conclusion

Missing data in hydrological time series is an unavoidable part of ground monitoring
and emanates due to varying factors that include natural, technical, physical, procedural
and financial constraints. These challenges consequently result in uncertain design flood
estimates (Tyler et al., 2011, Starrett et al., 2010), thus increasing flood exposure and/or
cost of flood control and management measures implementation based on such results.
Advancement in open-access radar altimetry provides reasonably accurate continuous
water level measurements not hampered by gaps as evident in in situ measurements
(Escloupier et al., 2012), especially during extreme flood events. Also, advances in
computational hardware and software have reduced the challenges associated with

undertaking complex statistical imputations to estimate missing data (Little, 2002).

This study applies Radar Altimetry and Multiple Imputation to fill gaps in hydrological
historical time-series and flood frequency estimations, thereby capturing scenarios of
supplementary data availability as unavailability respectively, as usually, the case along

several rivers in developing regions. Furthermore, the effect of both approaches on
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flood frequency estimates was evaluated for gauging stations along the Nigeria and
Benue rivers, accounting for the variation in missing data apparent in the study area, i.e.
consecutive (1-3 years) and inconsecutive (> 3 years). To further evaluate the most
suitable infilling approach, data was deliberately removed from complete dataset to

depict these missing data variations.

Results from this study revealed (i) improved correlation between in situ water level
measurements and radar altimetry as the distance between them reduce and vice versa,
(i1) the size of the gaps in the hydrological time series (consecutive and inconsecutive)
determines to a large extent the missing data imputation approach applied; (iii) Radar
Altimetry missing data infilling approach outperformed Multiple Imputation, especially
for widely gapped time series (> 3 years), but did not differ much for data sets with gaps
of 1-3 years, hence can be applied interchangeably for datasets with consecutive gaps;
and (iv) the previously unquantified 2012 and 2015 flood events in Nigeria were
quantified as 1-in-100 and 1-in-50year floods respectively, and can be applied to inform
flood management decisions having filled the historic data gaps. Despite the progress
and potential portrayed in this study, the outcome could contain residual uncertainties
that have propagated from in situ and altimetry hydrological data collection process,
rating curve extrapolation, probability distribution and methodology selection. The
quantification of these uncertainties is however beyond the scope of this study.
Furthermore, hydrodynamic flood modelling and mapping of flood depth and extent

based on the outcome of this section will be undertaken in Chapter 6.
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Chapter 3 Supplementary Figures and Tables
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Supplementary Figure 1. Approach validation in-sifu and Altimetry virtual station
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Supplementary Figure 2. Taoussa Rating Curve
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In situ Station Water Level (Taoussa)

In SItu = 0.9226*Altimetry - 180.48
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Supplementary Figure 3. In situ Station (Taoussa) vs Virtual Station (Taoussa)

Supplementary Table 1. Radar Altimetry Missing data filling outcome

Altimetry Water  Filled Water level Filled Discharge

S/N  Year
level (m) (m) (m3/s)
1 2002 200.773 4.754 1487.468
2 2003 199.642 3.710 1044.185
3 2004 200.730 4.714 1470.615
4 2005 200.992 4.956 1573.303
5 2006 201.056 5.015 1598.387
6 2007 201.268 5.210 1681.478
7 2008 200.947 4914 1555.666
8 2009 201.205 5.152 1656.786
9 2010 200.846 4.821 1516.080
10 2013 200.790 4.769 1494.131
11 2014 200.743 4.726 1475.710
12 2015 200.261 4.281 1286.796
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Supplementary Figure 5 Taoussa Consecutive Altimetry flood frequency plot
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Supplementary Figure 7 Taoussa Inconsecutive Altimetry flood frequency plot
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CHAPTER 4: ACCOUNTING FOR CLIMATE VARIABILITY IN REGIONAL
FLOOD FREQUENCY ESTIMATES FOR WESTERN NIGERIA

Abstract

Extreme flood events are becoming more frequent and intense, owing to climate change
and other anthropogenic factors. Nigeria recently has been impacted immensely,
resulting in damage to infrastructures, displacement of people, and loss of lives. To
reduce such impacts in the future, effective planning is required, underpinned by
analytical work based on reliable data and information. Such data is however sparse in
developing regions, owing to financial, technical and organisational drawbacks.
Regional Flood Frequency analysis (RFFA) is applied in this study to curtail data
unavailability and short record deficiency challenges, by agglomerating data from
various sites with (i) similar hydro-geomorphological characteristics, (ii) governed by a
similar probability distribution, and (iii) differ only by an “index-flood” that can be
estimated using proxy information. Using ICI-RAFT tool to implement the RFFA,

climate indices are integrated to account for climate variability effect.

Data from seventeen gauging stations within the Ogun-Osun River basin in western
Nigeria were analysed, resulting in the delineation of three sub-regions delineated, of
which two were homogeneous and one non-homogeneous. Generalized Logistic (GLO)
distribution was fitted to the annual maximum flood series for the two homogeneous
regions to estimate flood magnitudes and probability of occurrence while accounting for
climate variability. The influence of climate variability on flood estimates was linked to
Madden-Julian Oscillation (MJO) and resulted in an increased probability of high return
period flood (i.e. 1-in-100year) occurrence. The results reiterate the importance of
taking climate variability into account in flood frequency estimation and suggests a

review flood management measures based on the assumption of stationarity.

Keywords: Climate variability; Regional flood frequency; climate-indices; L-moment,

Madden-Julian Oscillation (MJO); Generalised Logistic (GLO)

1. Introduction

Floods are natural hazards aggravated by anthropogenic factors and result in the
destruction of agricultural landforms, livestock and crops, disruption of socio-economic
activities, damage to properties and infrastructures, loss of lives and financial loss

(FGN, 2013). In Nigeria (the case study of this research), the recent unprecedented
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levels of flooding and impact resulted in increased public, government and other
stakeholders concern and curiosity about the probability of flood recurrence, in order to
plan and implement appropriate mitigation measures to reduce flood impact (Agada and
Nirupama, 2015). Knowledge of flood frequency estimates is crucial in ensuring that
socio-economic activities and infrastructural development are planned appropriately
(Hosking and Wallis, 1997). Accurate estimates of flood frequency estimates, also
known as Annual Exceedance Probabilities (AEP) are also important for design of flood
defence structures (dykes, levees, dams, etc.), construction of hydraulic structures
(Bridges and culverts), development for floodplains and urban land-use regulations,
emergency management and insurance policy development (Kjeldsen et al., 2002, Saf,
2009b). Under-estimation of the design flood can lead to increased flood risk with
potentially damaging consequences, while overestimation can lead to resource wastage

and flood aggravation upstream or downstream (Mishra et al., 2009).

To accurately estimate AEP, networks of gauging stations are established to collect
hydrological data over a long period (Herschy, 2008). However, it is logistically
difficult due to harsh topography and cost intensive to establish gauging stations at
every location of interest. Hence, some locations are usually left ungauged or with short
data for newly established stations. In several developing regions many catchments are
poorly/sparsely gauged, due to (i) lack of commitment by station operators, (ii)
deteriorating conditions of observation equipment, (iii) insecurity challenges, and (iv)
inaccessibility to remote locations (Ampadu et al., 2013a, Olayinka et al., 2013). The
absence of quality and sufficient data leads to poor flood predictions, as often the case
in developing regions (Dano Umar et al., 2011). Therefore, It is essential to explore
techniques with the capacity to extract the maximum value from any available data, to

develop reasonable flood frequency estimates (Oyegoke and Oyebande, 2008).

Generally, the choice of techniques for flood frequency estimation depends on the
availability of historical flood records at/or around the specific site of interest (Reed,
1999). When sufficient historical flood data are available, AEP is estimated by the
application of direct (at-site) flood frequency analysis which involves fitting predefined
probability distribution to the annual maximum flood or partial flood time series
(Herschy, 2008). Where data is insufficient, indirect flood estimation procedures are

used which includes (i) the adoption of hydro-meteorological data from other locations
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similar in characteristics to the site of interest (Hrachowitz et al., 2013, Wagener, 2007,
Gupta et al., 2008) and (ii) the incorporation of data from other sources such as remote
sensing (Smith et al., 2015, Owe and Neale, 2007). In the present study, the former
approach is adopted while in our ongoing related work the merits of the latter approach

are being investigated.

A major factor that affects future flood regimes and must be considered when
estimating flood magnitudes is the changing climatic conditions, which results in more
intense and frequent flooding (Kunkel, 2003). Estimating frequencies under climate
variable conditions require the incorporation of non-stationarity effects defined by
statistically significant breakpoints (Pettitt, 1979) and trends (Kendall and Stuart, 1969)
within historical time series. While stationary flood frequency methods entail directly
fitting predefined probability distributions to historical data, non-stationary approaches
are not as straight and requires the integration climate variability using climatic indices -
a mechanism for depicts climatic influence (O’Brien and Burn, 2014, Kochanek et al.,
2013, Hounkpé et al., 2015b). Several studies have demonstrated the benefits of
incorporating climatic variability into flood frequency estimation procedures (Kochanek
et al., 2013, Li and Tan, 2015, Machado et al., 2015, O’Brien and Burn, 2014), and
emphasized the need for a paradigm shift in approach to enable the development of
robust and resilient predictions (Hounkp¢ et al., 2015b, Solecki and Rosenzweig, 2014).
Also, recent evidence from studies in West Africa (Mouhamed et al., 2013, New et al.,
2006, Diatta and Fink, 2014) and Nigeria (Salau et al., 2016) further supports this
argument and provides evidence of strong correlations between climatic variability and
hydro-meteorological events in these regions (Aich et al., 2014a, Hounkpé¢ et al., 2015b,
De Paola et al., 2013).

Therefore, this study aims to tackle the problem of data sparsity and limited resources to
estimate flood frequency while taking into consideration climate variability effect, as
often the case in developing countries. In subsequent sections, (2) describes the study
area and data sources; (3) details preliminary analysis and L-moment based regional
flood frequency techniques, taking climate variability effect into account; (4) presents
the results of preliminary analysis, direct and regional L-moment based flood frequency
estimates; and (5) concludes one the findings and implication of the results on flood

management.
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2. Study Area and Data Sources

The Ogun-Osun River Basin (OORB) is in western Nigeria (6°30" - 8°20'N latitude and
3°23'- 5°10'E longitude), and encompasses four states including Ogun, Osun, Oyo and
Lagos, within a 66,264 km? area. The basin is drained by two major tributaries, Ogun
and Osun, and other minor tributaries including Yewa, Ibu, Ona, Sasa and Ofiki Rivers.
The climate of OORB is influenced by tropical continental and maritime air masses
(Adeaga et al., 2006), and experiences an annual rainfall of 1400 mm to 1500 mm;
mean annual air temperature between 25.7°C and 30°C; and relative humidity varying
from 37% — 85% for dry and wet seasons respectively (Adeleke et al., 2015). OORB
has experienced recurring flooding recent years, caused by factors such as intense
precipitation; poor urban planning and waste management; and failure of upstream
hydraulic systems, resulting in socio-economic, infrastructural, ecological and

environmental impacts (Jinadu, 2015, Komolafe, 2015).

Hydrological data (discharge, water levels and rating curves) used for this study were
provided by the Ogun-Osun River Basin Development Authority (OORBDA), the
agency responsible for the collection and management of data in the basin. Additional
data sets for two hydrological station, i.e. Yewa Mata and Ona River/Sala village were
extracted from published research Olukanni and Alatise (2008) and Ewemoje and
Ewemooje (2011) respectively, using the WebPlotDigitizer (Rohatgi, 2014). The
catchment area for each station was delineated from 30 m Shuttle Radar Topography
Mission (Farr et al., 2007) using Arc Hydro in ArcMap. The properties of the gauging
stations for OORB is presented in Table, and the spatial distribution of gauges is
presented in Figure 1, showing the spread and sparsity of the hydrological monitoring
network. Climate indices were provided by the National Oceanographic and
Atmospheric Administration (NOAA) (GCOS-AOPC/PPOC, 2016), available within
the International Centre for Integrated Water Resources Management (ICIWaRM)
Regional Analysis of Frequency Tool (ICI-RAFT) database, and includes multi-decadal
meteorological events such as Pacific Decadal Oscillation, El Nino/Southern

Oscillation, Madden—Julian Oscillation (MJO), North Atlantic Oscillation and others.
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Table 1 Gauge stations properties

S/N  Station ID Years Data Lat. Long. Missing Cat. Area (km?)

1 Eggua 19802012 26 105 292 0 0.64

2 Idogo 19802012 24 083 292 0 0.923

3 Ajilete 19802012 29 670 292 0 2.89

4 Oba/Oyo-Obgbomoso 1966-1988 23 6.70 2.92 0 2.90

5 Ebute Igboro 19802012 25 690 290 0 7.92

6 YewaMata 1982-1994 14 695 2920 24.05

7 ljaka-Oke 1980-2012 27 718 290 0 63.15

g Ogun/Oyo-Iseyin road 1966-1988 23 7.85 3.94 0 578.00
o  Ofiki/Ofiki town 19661088 23 763 321 1 715.00
10 Ogun/Shepeteri 1966-1988 23 8.63 3.65 0 1190.00
11 Oyan/Ilaji-Ile 19822009 26 /98 3.00 1 1460.00
1o Ofiki/lganna-Tlereroad 19661988 23 795  3.23 0 3978.00
13 Ofiki/Igangan 1966-1988 23 7.68 3.18 0 2732.00
14 Oshun/lwo railway 1965-1988 24 785 393 0 4325.00
15 Onariver/Sala Village 1982-1999 18 7.01  3.015 0 8500.00
16 Ogun/Olokemeji 19661087 22 745 3.09 0 9140.00
17 Ogun/Ibaragun 19651088 24 677 333 0 21660.00
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Figure 1: The OORB study region.

3. Methodology
3.1. Data Preparation and Preliminary analysis

Data preparation is a prerequisite for RFFA, and entails data formatting, filling of
missing data gaps and statistical test analysis. River water levels were converted to
discharge using rating curves provided by the OORBA. Multiple imputation techniques
(van Buuren, 2007) was applied to fill the gaps in the hydrological data due to the
consecutive gaps of 1-3years inherent in the hydrological data (Khalifeloo et al., 2015).
Multiple imputations were executed using Microsoft Excel XLSTAT add-on that
implements a coupled Markov Chain Monte Carlo and ordinary least squares regression

approach to estimate missing annual peak flows (van Buuren, 2007).

RFFA application is also based on the assumption that the data used satisfies the
conditions of randomness, serial non-correlation, outliers absence and homogeneity, to

reduce the inherent data uncertainty (Kang and Yusof, 2012).
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The randomness of hydrologic data points at each station was estimated using the trend
identification function Mann-Kendall (M-K) test (Mann, 1945). The M-K test assesses
the upward and downward trends in the time series (Yue and Wang, 2002). Serial
correlation within hydrological records at a particular site results in discrepancies in
regional variance and increased data skewness (Stedinger, 1983), thus contributing to
uncertainty in regional flood frequency estimates (Kuczera, 1983, Hosking and Wallis,
1997). To assess the magnitude of the serial correlation, Lagl correlation coefficients
(Kendall and Stuart, 1969) was applied to derive values ranging from -1 (perfect non-
correlation) to 1 (perfect correlation). The presence of outliers also affects data quality,
and consequently flood estimates. Outliers are attributed to gauge failure, sampling
inconsistencies, typo errors, or gauge disruptions, and are not considered part of the real
flood population data set (Pedruco et al., 2014). Outliers were identified by using the
Grubbs and Beck test (Grubbs and Beck, 1972). Finally, breakpoint analysis (Pettitt,
1979) was applied to assess significant homogeneity within the hydrological time series,

attributed to changing climatic conditions.

3.2. Climate indices - climate variability effect

Climate variability affects the frequency and magnitude of extreme flood events (Kwon
et al.,, 2008, Gutiérrez and Dracup, 2001). Warmer climate implies increased
evaporation and atmospheric water moisture, resulting in persistent precipitation and
consequently flooding (CEDEAO-ClubSahel/OCDE/CILSS, 2008). While in the past
hydrologic models have assumed stationarity, current climate change conditions imply
that the future is expected to vary despite what is known of the past (He et al., 2006,
Sayers et al., 2015). Processes in the ocean-atmosphere system that influence
precipitation, atmospheric pressure and temperature can be defined by climatic indices
and is useful in tracking long-term hydrological changes (Li and Tan, 2015, Machado et
al., 2015, Loépez and Francés, 2013, Giovannettone, 2015). Some key climate indices
that characterize the frequency, intensity and duration of extreme climatic events
include the Arctic Oscillation (AO), North Pacific Oscillation (NPO), North Atlantic
Oscillation (NAO), Pacific Decadal Oscillation (PDO), Pacific/North American Index
(PNA), EI Nino/Southern Oscillation (ENSO), and Madden—Julian Oscillation (MJO)
(Mouhamed et al., 2013).
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In this study, the correlation between the annual maximum series and climatic indices
are evaluated, and the influence of these indices on the hydrologic time-series are
accounted for within the flood frequency estimation process (Hounkpe et al., 2015b,
Giovannettone, 2015). The International Centre for Integrated Water Resources
Management (ICIWaRM) Regional Analysis of Frequency Tool (ICI-RAFT) developed
by Giovannettone and Wright, (2011) embeds various climate indices, including those
previously mentioned to enable analysis and inclusion of climate variability for the
estimation of Annual Exceedance Probability (AEP). ICI-RAFT tends to correlate peak
flood values with each climate indices, to determine that with the highest correlation

coefficient (R?) (Giovannettone, 2015), thus inferring the influence of climate indices.
3.3. L-moment - Index Flood Regional Flood Frequency Analysis (RFFA)

Regional flood frequency analysis is based on the agglomerate hydrological data in
regions characterised by similar physiographical parameters including catchment area,
catchment slope, stream length, precipitation, and/or elevation. Hydrological data
available at the sites within the defined region are used to estimate the regional flood
quantile based on the assumption that they are defined by the same probability
distribution, and differ only by the index flood (Hosking and Wallis, 1997). This
process therefore reduces the inconsistencies associated with data shortage (Mishra et

al., 2009).

The Index flood technique developed by Dalrymple (1960) has been applied widely in
determining flood estimates for catchments of varying sizes, gauged and ungauged,
applied at global, regional and local scales (Smith et al., 2015, Padi et al., 2011, Izinyon
and Ajumka, 2013). The general assumption for this technique is that the probability
distributions of the annual maximum floods across sites in the region are similar, and
differ only by a site-specific scaling factor termed the “index flood — mean or median”

(Hosking and Wallis, 1997, Reed, 1999, Dalrymple, 1960).

The flood quantile (Qt) for a T-year return period at a site of interest (i), given a
regional  probability distribution factor (Xp), common to all sites, can be

mathematically expressed as:

Qriy = (Q index)Xt 4)
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Index-flood (Q jngex) for an ungauged site of interest is usually derived from an
established relationship between available catchment characteristics information such as
catchment area and the index-flood of gauged sites within the homogeneous region
(Stedinger and Griffis, 2008). The regional probability distribution is a dimensionless
parameter determined using a best-fit statistical approach discussed in a later section of

this study.

L-moment based flood frequency analysis was undertaken using ICI-RAFT
(Giovannettone and Wright, 2011), and the procedure includes (i) data screening of
clustered sites using the discordancy measure (D), based on Wards hierarchical
clustering approach, (ii) regional homogeneity testing using the heterogeneity measure
(H), (ii1) selection of the appropriate distribution using the goodness-of-fit measure (Z),
for the estimation of the frequency distribution using the index flood procedure
(Hosking and Wallis, 1997). L-moment is a widely-preferred method for RFFA due to
the robustness of Linear (L) - moments in comparison to ordinary moments in handling
extreme values over a wider range of probability distributions, and its reduced
susceptibility to bias. The components of L-moment analysis are detailed in Hosking
and Wallis (1997) and other studies (Izinyon and Ehiorobo, 2014, O’Brien and Burn,
2014, Kjeldsen et al., 2002, Saf, 2009a, Peel et al., 2001). The individual L-moment

components and processes are not explained in details but summarised below.

Data screening: The discordancy measure is based on L-Moments (L-Mean, L-
Covariance, L-Kurtosis and L-Skewness), and identifies sites whose L-Moment ratio
are discordant from that of the whole group, denoted by a critical value of (D > 3).
Homogeneity testing: Heterogeneity measure (H) compares the variation between L-
moments for a group of sites and what is expected of a homogeneous region to justify
that the group of sites are defined by a similar probability distribution. The region is
deemed acceptably homogeneous if H <1, possibly heterogeneous if ] <H <2, and H >
2 if the region is definitely heterogeneous (Hosking and Wallis 1997). Probability
distribution selection: The Z-Statistic is a goodness-of-fit measure that assesses the
probability distribution that best fits the weighted-average regional L-moment
parameters of each site in a homogeneous region (L-Skewness and L-Kurtosis)
(Borujeni and Sulaiman, 2009). An optimal probability distribution can also be

visualised using L-moment diagram (L-Kurtosis vs. L-Skewness), with the best
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distribution is approximated as the distribution curve closest to the majority of the

sample data points (Komi et al., 2016).

4. Results and Discussion

4.1. Data characteristics and preliminary analysis

Data preparation results for this study are presented in Table 2. Lagl correlation results
show that the serial correlation between data sets at each site varied from -0.002 to
0.516 (-1 = perfect non-correlation; 1 = perfect correlation), suggesting the absence of a
strong relationship among peak floods at each site. No low outlier was detected from the
Grubbs and Beck test, and high outliers identified at Oba/Oyo-Obgbomoso, Ofiki/Ofiki
town, Ofiki/Iganna-Ilere road, Ofiki/Igangan, Ogun/Shepeteri, Ogun/Oyo-Iseyin road,
and Ogun/Ibaragun gauging stations were consistent at each site, as well as with flood
events recorded in past literature (Olukanni and Alatise, 2008). The trend and
breakpoint analysis (homogeneity test) result revealed that significant upwards trends
were evident at [jaka-Oke, Oyan/Ilaji-Ile, and Oba/Oyo-Obgbomoso stations, while no
significant trends were identified at the remaining sites. These trends were consistent
with those of the neighbouring Oueme River Basin in the Benin Republic (Hounkpe et
al., 2015b), influenced by similar climatic conditions. The time series plots presented in
Figure 2 (a - d) show the annual maximum discharge of the four stations selected for
further analysis. These selections capture the varying spectrum of trends displaying
spikes and troughs that represent peak flood variability at I[jaka-Oke and Ofiki -Igangan
(Figure 2 (a-b)), while changes in hydrologic regimes defined by the breakpoints
analysis are for Ofiki/Iganna-Ilere road and Oba/Oyo-Obgbomoso stations are presented
in Figure 2 (c-d). Changes in the hydrological regime are evident in the breakpoint
analysis plots from 1965 to 1957 and 1979 to 1988, corresponding to documented years
of changes in precipitation patterns in Nigeria and West Africa that depict dry to wet
(intense drought to rainfall) zone transition (New et al., 2006, Oguntunde et al., 2011,
Ogungbenro and Morakinyo, 2014, Adeaga, 2006).
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Table 2 Preliminary test results

S/N  Station ID N Missing Outlier Trend (+/-) Homogeneity Lagl cor.
1 Ijaka-Oke 33 6 0.464  0.001 + 0.081 0.516
2 Eggua 33 7 0.017 0.721 + 0.149 0.083
3 Ebute Igboro 33 8 0.005 0420 + 0.193 0.083
4 Idogo 33 9 0.001 0.768  + 0.776 0.330
5 Ajilete 33 4 0.016  0.457 - 0.290 -0.025
6 Yewa Mata 14 0 0.049 0.518 - 0.885 -0.209
7 Oyan/Ilaji-Ile 26 0 0.838  0.000 - 0.548 0.319
8 Ona river 18 0 0.955 0.654 - 0.439 0.019
9 Oshun/Iwo railway 24 0 0.061 0.132 + 0.189 0.305
10  Oba/Oyo-Obgbomoso 23 0 0298 0.016 + 0.001 0.272
11 Ofiki/Ofiki town 23 1 0.128 0.566  + 0.659 -0.254
12 Ofiki/Iganna-Ilere road 23 0 0.370  0.057 + 0.013 0.302
13 Ofiki/Igangan 23 0 0398 0.057 + 0.047 0.274
14 Ogun/Shepeteri 23 0 0.079 0.172  + 0.183 -0.164
15 Ogun/Oyo-Iseyinroad 23 0 0.312 0.566  + 0.444 0.125
16  Ogun/Ibaragun 24 0 0279 0472 + 0.463 -0.018
17  Ogun/Olokemeji 22 0 0.000 0.617 - 0.170 0.077

Trend-direction (+/-), Outlier, and Homogeneity depicted by p-values, Lagl correlation varies from -

ltol
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Where: mu; (---) and mu; (---) represent the mean discharge of both break points,

representing the average difference in hydrological regimes.

Figure 2 (a-d) Trends and breakpoints plots for some of the non-stationary gauging

stations

4.2. Identification of homogeneous regions and determination of discordancy

measure

Regional L-moment statistics, discordancy (D) and heterogeneity (H) statistics are
presented in Table 3, while site-specific results of same statistics are presented in Table
4. An H statistic value of 8.89 (i.e. H>1) reported for the entire catchment area reveals
the variable land cover, hydrologic and catchment characteristics over the Ogun-Osun
River Basin (Oyegoke and Oyebande, 2008). Consequently, the region was divided into

three sub-regions and tested for homogeneity (Table 3), and the L-moment statistics of
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sites constituting each sub-region are presented in Table 4. The H-Statistics for sub-

regions 2 and 3 showed homogeneity (H<1), while sub-region 1 was heterogeneous

(Table 3). For the H and L-statistics of all defined regions are presented in Table 4, only

Idogo was discordant (D = 4.2232) and was removed from further analysis. All other

sites within the homogeneous sub-regions were within the prescribed critical limit for

discordancy (D<3). The combination of gauging station historic data within the

homogeneous sub-regions provides a means to improve long-term flood magnitude

estimation by using a combined data set record of 126 years (sub-region 2) and 141

years (sub-regions 3), thus satisfying in excess the Nigerian guideline of time series

length for RFFA of 30 years in Nigeria (FME, 2005b).

Table 3 Regional Average L-Statistics and H-Statistic for defined regions

Region No of Mean L-CV  L- L-Kurt.  Dis. H Homogeneity
Stations Skew. (D)

All 17 66.144  0.252 0.146 0.198 3.000 8.89 Heterogeneous

| 6 35458 0.224 0.112 0.226 0.165 12.42 Heterogeneous

2 5 70.680  0.248 0.180 0.172 1.333  0.62 Homogeneous

3 6 98.865 0.275 0.175 0.171 1.648 0.87 Homogeneous

L = Linear, CV = Covariance, Skew = Skewness, Kurt = Kurtosis, Dis = Discordancy, H =

Heterogeneity

Table 4 L-Moments and Discordancy Statistics for the Sites in the three Sub-regions

Region  Station ID Mean L-CV  L-Skew. L-Kurt. LM-ratio E)lj

1 Eggua 7.965 0.456 0.449 0.296 0.134 1.587
1 Ebute Igboro 17.312 0.219 0.189 0.235 0.114 0.279
1 Ajilete 31.219 0.120 0.176 0.229 0.129 0.854
1 Idogo* 11.905 0.049  -0.434 0.276 -0.211 4.223
1 Yewa Mata 10.203 0.461 0.352 0.159 0.143 1.264
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Ona river/Sasa

1 189.723  0.137 0.053 0.033 0.016 0.667
Village

2 [jaka-Oke 5.613 0.234 0.236 0.178 0.021 0.633

2 Oshun/Iwo railway 200.474  0.218 0.169 0.163 0.111 0.808

Oba/Oyo-

2 20.808 0.209 0.132 0.198 0.058 0.532
Obgbomoso

2 Ogun/Shepeteri 17.822 0.261 0.128 0.238 -0.018 2.09
Ogun/Oyo-Iseyin

2 131.331  0.322 0.213 0.078 -0.022 1.462
road

3 Oyan/Ilaji-Ile 13.691 0.293 0.026 0.125 -0.034  1.3635

3 Ofiki/Ofiki town 16.270 0.253 0.185 0.159 0.032  0.3348
Ofiki/Iganna-Ilere

3 73.918 0.303 0.116 0.129 0.001  0.4341
road

3 Ofiki/Igangan 90.501 0.305 0.142 0.203 0.059  1.3824

3 Ogun/Ibaragun 190.916  0.216 0.041 0.187 -0.044 0975

3 Ogun/Olokemeji 218.108  0.359 0.455 0.346 0.188 0.667

4.3. Regional Distribution and Goodness of Fit Measures

Z Statistics provides a more viable statistical approach that quantifies individual
probability distributions. Table 5 shows the Z Statistics for all distributions for each
sub-region and demonstrates that GLO is significant at the 10% confidence interval (Z <
|1.64 |as prescribed by Hosking and Wallis (1997) for regions 2 and 3, while
Generalised Extreme Value (GEV) provides the second best distribution for these
regions. The L-Moment ratio diagram on the other hand (Figure 3), displays the
relationship between regional average L-skewness and L-kurtosis fitted to varying
probability distributions for all three regions. The 3-parameter distribution line/curve

closest to L-moment ratio points of sub-regional sites portray the optimal distribution
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(Peel et al., 2001, Reed, 1999), and in this case, Generalized Logistic (GLO) curve

satisfies this approximation. Three (3) parameter were selected due to their robustness

and optimal representation of probability distribution parameters (Hailegeorgis and

Alfredsen, 2017). This optimal probability distribution corresponds with those applied

in previous single-site and regional studies in proximity to our study area (Komi et al.,

2016, Izinyon and Ehiorobo, 2014). The insignificance of the probability distribution

for the combined sites and region 1 (Z >1.65) shows that all individual sites within this

region are not defined by a particular distribution, hence the heterogeneity.

Table 5 Z Statistics for different probability distributions for the sub-regions

Region LNO GEV GLO
All -3.97 -3.44 -1.45
1 -4.69 -4.58 -3.13
2 -1.83 -0.50 0.49%
3 -3.27 -1.31 -0.23%
a = optimal distribution
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Figure 3 L-Moment ratio diagram for the three (3) sub-regions
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4.4. Regional flood frequency and parameter estimation:

After identifying GLO as the optimal probability distribution for regions 2 and 3, a
flood frequency relationship was established to derived flood magnitudes. The GLO
probability density function is given by:

—k-lln(1—@) k%0

X—

b

_ atexp(-(1-K)y)
f) = — e

)
k=0

o

where &, a and k are location, scale and shape parameters, respectively (Hosking and

Wallis, 1997).

The range of x is defined as—oo < x SE+%Ifk>O—00<x < oo; Ifk =0; E+%<

x<o[fK<O.

The location parameter (&) dictates the position of the distribution about a symmetric
axis, the scale parameter (a) defined the distribution spread, and the shape parameter
(k) indicates the behaviour of the upper tail of the distribution. Theses parameters were

derived from L-moments, and applied to derive T-year flood exceedances based on the

GLO (Xr) is defined by:
Xp= 4§+ A-T-DF=§1+7A-T-DH =8z 3)
where § = /€, T is the return period and Zg is the growth curve of T.

GLO distribution parameters estimated for each sub-region using L-moments were
substituted into equation (3) to estimate the sub-regional growth factor for ungauged

and sparsely gauged basins and presented in Table 6.
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Table 6 Regional distribution parameters for the sub-regions

Region Distribution & o k Sub-region Growth Factor
0.2197
1 GLO 0959 0219 -0.112 ) — (1 —(T-1)"(0112)
0959+_0.1123(1 (T-1)
0.2345
2 GLO 0.928 0.235 -0.180 _ = (1 — (T — 1)~ (-0.180)
0928+—0.1803(1 (T-1)
0.261
3 GLO 0922 0261 -0.175 0.922 + (1— (T —1)~(-0175)

—0.175

4.5. Climate Indices and flood relationship

Ijaka-Oke, Oba/Oyo-Obgbomoso, Ofiki/Igangan-Ilere road and Ofiki-Igangan were
identified by break points and trends to be heterogeneous, and further investigated to
ascertain the influence of climate variability by the correlating peak annual flood and
global climate indices, then regional flood frequency estimates were determined in ICI-

RAFT using the highest correlated indices.

Madden—Julian Oscillation (MJO) demonstrated the highest correlation with annual
maximum time series for the four sites (Figure 4), using an optimal lag time of 1 month
selected in ICI-RAFT, considering that only single peak flood for each year was
applied. Correlation coefficients (R?) based on MJO (7) (i.e. longitude 40W) were 0.27,
0.50 0.31 and 0.45 for Ijaka-Oke, Ofiki Igangan, Ofiki/Iganna-ilere road and Oba/Oyo-
Obgomoso, respectively, suggesting the presence of evidence that shows that between
27 to 50 percent of the variability in the annual maximum flood series was induced by
climate dynamics. The correlation values derived in this study were consistent with
those revealed in other studies (Li and Tan, 2015, Liu et al., 2015), considering that,
local catchment properties, land use/cover changes and hydraulic factors also contribute
to changes in hydrological regimes (Leclerc and Ouarda, 2007, Hall et al., 2014). These
other contributing factors are beyond the scope of this study. MJO is known to be a
strong driver of rainfall variability in tropical regions (Madden and Julian, 1971,
Ventrice et al., 2011, Schreck et al., 2013), governing atmospheric pressure and
temperature around the equator. The MJO is also reported to significantly influence

regional rainfall (Mohino et al., 2012, Lavender and Matthews, 2009, Janicot et al.,
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2009), and prompted the 2012 flood event in Nigeria (ACMAD, 2012). Arnold et al.,
(2015) and Caballero and Huber, (2010) further suggested in their study that, due to the
dependence of MJO on Sea Surface Temperature (SST) and Outgoing Longwave
Radiation (OLR), MJO activity may increase in response to global warming, resulting

in more frequent MJO influenced events.
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Figure 4 (a-d) relationship between climate indices and stations Peak Annual Flood

Time series

4.6. Climate Variability effect and flood quantile estimation

Results capturing climate variability inclusion and omission are presented in Table 7
and Figure 5, and reveal that climate variability effect on flood quantile estimates
increases with a return period, thus demonstrating the time dependence of the climate
(Hounkpeg et al., 2015b, Machado et al., 2015). Also, climate variability influence was

evident at sites that exhibited high correlation with climate indices (i.e. Ofiki Igangan
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and Oba/Oyo-Obgomoso). Criss-cross plot patterns observed at Ijaka-Oke for climate
variability inclusion for regional flood frequency estimation, suggests that caution must
be taken when accounting for climate variability effect in FFA (Lopez and Francés,
2013), especially when the relationship between climate indices is low (R* = 0.28).
Also, the significance of the homogeneity (0.081) rather than trends (0.001), is
identified as the key indicator of nonstationarity, as evident at Ijaka-Oke gauging

station.

Table 7 Flood frequency estimates (Non-Stationary, Stationary regional and at-site) —

m3/s
Ijaka-Oke 2 5 20 50 100
Regional/ Climate variability 5 7 9 11 17
Regional 5 7 10 13 15
Direct/Climate variability 5 7 10 13 15
Direct 5 7 10 13 15
Oba/Oyo — Obgbomoso 2 5 20 50 100
Regional/ Climate variability 24 31 41 47 52
Regional 19 27 38 47 54
Direct/Climate variability 24 28 36 44 52
Direct 20 26 35 41 47
Ofiki/Igangan-Ilere road 2 5 20 50 100
Regional/ Climate variability 95 123 157 179 196
Regional 70 98 136 163 185
Direct/Climate variability 94 127 168 194 214
Direct 70 103 147 177 203
Ofiki-Igangan 2 5 20 50 100
Regional/ Climate variability 110 143 182 207 227
Regional 86 120 167 200 227
Direct/Climate variability 103 138 193 237 276
Direct 84 125 182 223 257
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Figure 5 Probability plots of regional and direct (at-site) flood frequency analysis taking climate variability into account.
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At Oba/Oyo-Obgomoso, the regional flood estimates were similar for both climate
variability inclusion and omission, for 50-year flood, but differed slightly (by 2 m?/s)
for a 100-year flood, and were higher than the direct flood estimates. For Ofiki/Igangan
and Ofiki/Igangan-Ilere road, the opposite was detected, regional flood estimates for
both climate variability inclusion and omission were less than that of direct flood
estimates. Furthermore, Figure 4 revealed that for each approach, the maximum flood
experienced at each sample site in the OORB was less than the 1-in-100year stipulated
for flood management planning in Nigeria (FME, 2005b). This suggests that even at
locations where climate variable regional flood estimates were less than direct and
regional counterparts when climate variability is not taken into account, flood
management measures (structural and non-structural) based on such estimates would

substantially curtail flood impacts, even with reduced capital investment.

The variations exhibited among sites when climate variability was taken into account is
generally similar to those revealed by O’Brien and Burn (2014), where varying trends at
different sites resulting in varying quantile estimates when climate variability was
accounted for. Also, In Spain, Lopez and Francés (2013) observed that flood estimates
that accounted for climate variability were higher than those predicted under the
assumption of stationarity, while in a different study in Canada (Cunderlik et al., 2007),

the reverse was the case.

5. Conclusions

Managing flooding is particularly challenging when historical hydrologic data is sparse
or short, due to administrative, logistics, financial and technical drawbacks. This
increases the complexity of flood frequency estimation, thus prompting the need for a
shift in focus from direct to regional flood frequency that combines data from various
stations to improve data availability and consequently reduce flood estimates
uncertainty associated with poor data usage (Izinyon and Ajumka, 2013). By combining
regional flood frequency analysis with climatic indices using the open-access ICI-RAFT
tool in this study, climate variability effect was accounted for in the flood frequency
estimation process, thereby capturing the mechanism of climate responsible for rainfall

or flow behaviour and variation in the region (Adeaga, 2006).
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This study evaluated hydrological data from 17 gauging stations in the Ogun-Osun river
basin, Western Nigeria, and identified significant trends and breakpoints in the
hydrological time series that negates the assumption of homogeneity often employed for
flood frequency estimation in the region (Izinyon and Ajumka, 2013, Izinyon and
Ehiorobo, 2014, Awokola and Martins, 2001). Three (3) sub-regions were delineated
from the river basin, two homogeneous and one heterogeneous, based on L-moment
regionalization, and four (4) sample sites of varying trends and break-points selected
from the two homogeneous regions to assess the impact of climate variability and data

agglomeration in flood frequency estimation.

Madden-Julian Oscillation (MJO) was identified as the most influential climate indices,
especially at gauging stations where high climate indices to peak flood correlation were
observed, and the effect of climate variability increased with return period. This
revealed the time dependency of climate variability, as well as resulted in more realistic
flood estimates that were still higher than the maximum flood experienced in the

OORB.

The outcome of this study further iterates the need to integrate climate variability into
flood frequency analysis and suggests the need for a review of flood management
measures based on the obsolete assumption (Solecki and Rosenzweig, 2014, Izinyon
and Ajumka, 2013, Sayers et al., 2015), and given that MJO driven events are expected
to be more frequent as average global temperature trends continue to rise. Nevertheless,
it is important to note that the outcome of this section could likely inhabit uncertainties
that have propagated from in situ hydrological data collection process, rating curve
extrapolation, probability distribution and methodology selection. The quantification of

these uncertainties is however beyond the scope of this study.
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CHAPTER 5: INTEGRATING CROWD-SOURCING AND OPEN-ACCESS
REMOTE SENSING FOR FLOOD MONITORING IN DEVELOPING
COUNTRIES

Abstract

Managing floods effectively requires the efficient coordination of efforts before, during
and after flooding, i.e. planning, response and recovery respectively. Planning and
recovery are usually undertaken at a controlled pace, while the response is undertaken
rather swiftly to mitigate the immediate effect of the flood event on people, resources,
critical infrastructures and socio-economic activities. Hence, during flooding real/near-
real-time flood management data and information is required to inform decision-making

and actions to minimize immediate flood impact.

These datasets are usually sparse in developing regions, therefore hampering effective
flood management. Hence, remote sensing and crowd-sourcing provide an alternative to
in situ data collection, as it enables flood delineation and information gathering for

flood management in several remote locations.

This study was undertaken in 2015 during the peak flood season (September and
October) in Nigeria (a typical developing country). An integrated remote sensing and
crowd-sourcing approach are adapted to (i) optimise recurrent flood delineation, (ii)
assess the factors that contribute to citizen flood risk perception and (iii) analyse the

discrepancy between government and citizen risk perception.

The results from this study revealed from MODIS NRT Water Product flood images
that 76% of locations flooded in 2015 were previously affected in 2012, and the
integrated remote sensing (MODIS Water Product) and crowd-sourcing approach
adopted resulted in improved flooded detection in comparison to each independent
approach, as the methodology enabled the capture of macro and micro scale floods.
Statistical analysis suggests that the relationship between flood risk perception and
flood risk indicator (i.e. awareness, worry and preparedness) was insignificant. This is
contrary to previous studies and is likely as a result of the limited data collected during
the peak flood season to enable a statistically valid conclusion. Nonetheless, qualitative
analysis of individual themes of indicators revealed an understanding of the (i) causes of

flooding, (ii) varying flood management responsibility, (iii) lack of knowledge of the
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existing flood risk maps, displacement camp locations and (iv) poor flood insurance

subscription.

Furthermore, the discordance between government and citizens flood perception was
apparent, suggesting the need for improved flood data collection, modelling, and
synergy between government and citizens to enhance flood management and risk

communication.

Keywords: Crowd-sourcing, Volunteer-GIS, MODIS Water Product, Near-Real-Time,

Flood monitoring, Flood Risk Perception

1. INTRODUCTION

With flood events becoming increasingly frequent and intense due to climate change
and anthropogenic factors, hydrological and inundation extent information are needed to
make informed flood management decisions and deployment of measures such as early-
warning communication, relief materials, evacuation planning and rehabilitation (Lo et
al., 2015, Maxwell, 2013). Typically flood management efforts are coordinated before,
during and after the flood to enhance preparedness, response and recovery respectively,
thus ensuring reduced exposure of people, damage to infrastructure and impact on

socio-economic activities from flooding (APFM, 2011).

Pre and Post-flood management activities are usually deliberately paced, adapting
existing methods supported by available data (Ekeu-wei and Blackburn, 2016). For
instance, Annual flood exceedance probabilities and flood magnitude estimates require
knowledge of past flood trends (Reed, 1999), which is propagated through
hydrodynamic models to route floods and quantify hazards (Sarhadi et al., 2012). Pre-
flood plans can be implemented based on flood estimates and hydrodynamic model
outcomes to reduce exposure when flood occurs, while post-flood measures, on the
other hand, entails identifying impacted locations, settlements and critical infrastructure
to quantifying the damage/impact for reconstruction and rehabilitation purposes (Eyers

etal., 2013, Thorne, 2014).

Responding to floods in the heat of the event is particularly challenging in developing
regions, as real-time data processing and information required are usually unavailable.

Floods are unexpected occurrences, thereby making it difficult and impractical to
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monitor large-scale floods using ground-based (in situ) approach (Temimi et al., 2004).
Nevertheless, technological advancements such as remote sensing satellite and
telemetry provide alternatives to in situ data collection, as they enable data acquisition
from remote locations (Li et al., 2006, Pereira Cardenal et al., 2010) and hydrological
information transfer (Sene, 2010, Sene, 2012) in real and near-real-time to enable early

warning and flood response.

The cost of acquiring such timely data is usually high, and in some instances turbulent
floods disrupt in-situ gauges, thereby impeding high flow measurements (Olayinka et
al., 2013, Yan et al., 2015a). Open-access remote sensing makes available alternative
free satellite data (Imagery and Altimetry water levels) including Landsat, MODIS
(Terra and Aqua), Sentinel 1/2, ENVISAT, Topex/Poseidon, Jason 1/2, etc. (Musa et
al., 2015). Also, the consortiums of satellites for global disaster monitoring and
management (Bessis et al., 2004) when activated provides member nations with free

high-resolution satellite data in Near-Real-Time (James et al., 2013).

Despite the wide application of open-access satellite data in flood modelling and
mapping in several regions, certain challenges persist, including coarse spatial
resolution, low temporal resolution and data processing delivery time frame, inherent
system properties and external landscape characteristics which result in poor flood
detection in vegetation and urban landscape dominated regions (Yan et al., 2015a, Musa
et al.,, 2015, Veljanovski et al., 2011b). Due to these deficiencies, alternative data
acquisition approaches are required to capture the true state of inundation in poorly

detection locations, and persons living in remote locations can help fill such data gaps.

1.1. Crowdsourcing and Volunteered Geographic Information (VGIS)

Citizen involvement in science has been proven to be an invaluable source of data in
inaccessible locations for flood management processes that include (i) flood impact
assessment (Werritty et al., 2007, Verger et al., 2003), (i1) exposure evaluation (Riggs et
al., 2008), (iii) vulnerability analysis (Ologunorisa, 2004, Kron, 2005), (iv) risk
perception evaluation (Siegrist and Gutscher, 2006), (v) resilience capacity assessment
(Brouwer et al., 2007) and (vi) flood model validation (Yu et al., 2016). Crowd-

sourcing is particularly useful in populated regions and aided by wide-coverage mobile
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telecommunication and internet systems (Wang et al., 2017). The global population and
internet users are currently estimated at 7,300,000,000 and 3,378,588,043 respectively
(Haub et al., 2011). In Nigerian (the proposed case study for this study), the population
is approximately 186,987,563, of which 46 % have access mobile internet and 8 % are
active social media users (Kemp, 2015, Facebook, 2016, NBS, 2016). Figure 1 shows
the Nigerian population, telephone subscribers and internet users growth in Nigeria

(Doghudje, 2016).
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Figure 1 Population, Telephone subscribers and Internet users growth in Nigeria

(Sources: NBS, Internetlivestats and Nigerian Communication Commission)

Crowd-sourcing (CS) integrates “crowd”, “outsourcing” and “internet technology”
(Saxton et al.,, 2013) in a system whereby a virtual crowd (citizens) perform an
organizational task such as data collection during an emergency using internet driven
technology. Crowd-sourcing can be active or passive, depending on the information
collection structure (Meek et al., 2014); active CS to refer surveys completed directly

by respondents, while passive CS involves social media mined information.

With advancement in telecommunication, increasing internet coverage and growing
population, near-real-time data gathering during disaster events can be undertaken over

a large spatial extent. Various social media platforms have been used in acquiring
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crowd-sourced data (passive crowdsourcing), including Twitter, Facebook, Flickr, and
YouTube, which allows victims of disaster to report first-hand details of on-ground
situation, thus improving situational awareness data for informed decision making by
policy makers and first responders (Huiji Gao et al., 2011). Some instances of social
media application in flood monitoring include (i) Assessment of road damage due to
flooding using Twitter hashtags (#flood) and crowdsourced images and videos
(Schnebele et al., 2014); (i1) Community need assessment using Facebook feeds and
updates in the cities of City of Calgary, Canada and Boston, United States (Magnusson,
2014, Franks and Evans, 2015); and (iii) Disaster monitoring using combined social
media data sources (Musaev et al., 2014). Further literature on social media application

in emergency management is entailed in Simon et al., (2015).

Despite this progression, the practicality of harnessing, validating and leveraging
crowd-sourcing data to inform flood management is being hampered by the
complexities arising from the variable data structure, formats and multi-sourced nature
of the data. Volunteer Geographic Information system (VGIS) provides a platform that
curbs these deficiencies, as it enables the collection, coordination and management of
location-based data in the required format (Goodchild, 2007). VGIS also enables
thorough disaster impact assessment, considering that the respondents are victims of
disaster and reside within the impact zones at the time of the event (Triglav-Cekada and
Radovan, 2013, Poblet et al., 2014). Additionally, VGIS aids crowd-sourced data
quality assurance, which is one of the most predominant issues associated with

crowdsourced data collected from anonymous (non-expert) sources at various locations

(Foody et al., 2013, Miorandi et al., 2013, Foody et al., 2014).
1.2. About Risk Perception and Indicators

The perception of flooding directly influences flood mitigation actions and depends on
flood risk awareness, worry and preparedness, linked to past exposure experiences,

socio-economic and demographic characteristics (Raaijmakers et al., 2008, King, 2000).

Understanding the cause of flooding (awareness) is essential for flood management.
Climate change, poor urban planning/enforcement, improper drainage systems, poor

waste disposal, excessive rainfall and excess water released from upstream dams have
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been identified as some of the major causes of flooding in several developing regions
(Olayinka et al., 2013, Nkwunonwo et al., 2016, Ologunorisa, 2004). Unique
management measures are required depending on the flood type/cause. For instance,
poor waste management results in the blockage of drainage systems and a reduction in
drainage hydraulic capacity (Parkinson, 2003), therefore, managing flood caused by
poor waste management requires the clearing of solid waste trapped in drainage systems
and awareness campaigns for behavioural change to improve waste management
practices (Momodu et al., 2011). Managing excess water releases from dams, on the
other hand, require improved reservoir planning, preparation from scenario-based event
models, risk communication and learning from experiences (Olojo et al., 2013,

Vanguard, 2015, Ramirez et al., 2016).

Worry depends on the awareness of the frequency of exposure to flood hazard, severity
and concern for individual or community welfare, and therefore prompts preparedness
(Tapsell et al., 2004). This consequently impacts on the coping capacity to manage
expected flood hazard (Raaijmakers et al., 2008, Harvatt et al., 2011). Worry is usually
based on previous experience of flooding, social responsibility (e.g. family size) and
economic capacity (e.g. employment status) (Boamah et al., 2015), therefore a person or
group of persons would perceive flood risk as high if they have previously experienced
flooding, have a large family size, and have less economic capacity to cope with flood
consequence/recovery and vice versa (Brilly and Polic, 2005, Siegrist and Gutscher,

2006, Adelekan and Asiyanbi, 2016).

Preparedness is built on the awareness of expected flood hazard and sufficient worry
which therefore prompts planning and resilience improvement before a flood event
(Veen and Logtmeijer, 2005). Preparedness can be categorized as technical, social,
economic or institutional; where (i) Technical preparedness entails putting in place
structural measures that modify the environment or building/properties to reduce
potential impact and exposure (e.g. flood walls, dykes, dredging, etc.); (ii) Social
preparedness refers to personal skill development and knowledge gathering to manage
expected flood impact (e.g. awareness campaigns) (Buckland and Rahman, 1999); (iii)
Economic preparedness denotes the financial capacity to cope with flood impact, or
measures put in place to reduce financial loss and risk transfer (e.g. insurance); and (iv)

Institutional preparedness involves the design, communication and implementation of a
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disaster management plan to reduce flood risk and impact through measures such as
evacuation and emergency staff capacity development (Raaijmakers et al., 2008). Flood
risk maps are also essential for preparedness, as it enables town planners and residents
understand infrastructural development and socio-economic activities exposure to flood
hazard and management measures required to mitigate disaster effect (Porter and

Demeritt, 2012).
1.3. Study Objectives

This study is aimed at leveraging open-access remote sensing and crowd-sourcing data
for flood monitoring in developing countries in Near-Real-Time, with the specific

objectives of:

e Compare recurring flood events and impact to assess management measure
efficiency

e Explore the feasibility of applying crowd-sourcing for Near-Real-Time flood
monitoring.

e Integrate crowdsourced and open-access remote sensing data to enhance near-
real-time flood monitoring and mapping.

e Analyse flood risk elements; Awareness, Worry and Preparedness in relation to
flood risk perception using crowd-sourcing data.

e Evaluate citizen and government flood risk perception using crowd-sourcing

data and government flood model respectively.

2. STUDY AREA

Nigeria is located at the downstream end of the Niger Basin (Figure 2). The Niger Basin
drains a 2,111,475 km? area and encircles 93,617,850 persons from 12 countries
(TWAP, 2016). Multi-decadal climatic variation intensifies precipitation in the region,
resulting in frequent flooding (Adeaga, 2006). In the past decade, Nigeria has
experienced severe flood events arising from extreme precipitation and excess water
releases from upstream dams within Nigeria (i.e. Kainji, Jebba, Shiroro, Kiri, etc.) and
Cameroon (i.e. Lagdo) along Niger and Benue river respectively, with the 2012 event
reported to have caused the greatest flood impact/damage in 40 years (Tami and Moses,

2015, Ojigi et al., 2013). These high magnitude floods have resulted in the damage to
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properties and infrastructures, displacement of people, disruption of socio-economic

activities and loss of lives (FGN, 2013).
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Figure 2 Map of the Niger River Basin within Africa and across Nigeria

The recent flood events in Nigeria coupled with the growing vulnerable population,
internet subscribers and social media users trend presents a unique opportunity for
crowd-sourcing exploration in Nigeria as will be demonstrated in this study. Although
citizen science has been previously explored in Nigeria, the focus has been on pre and
post-flood data gathering using questionnaires (Eguaroje et al., 2015, Raheem 2011,
Jinadu, 2014, Adelekan and Asiyanbi, 2016, Adelekan, 2011). This study proposes to
apply crowd-sourcing for near-real-time flood data gathering in Nigeria, to inform flood
management during flooding (Schnebele and Cervone, 2013, Schnebele et al., 2014, de
Brito Moreira et al., 2015).

3. METHODOLOGY
3.1. Research framework for crowdsourcing

The United Nations Office for Disaster Risk Reduction (UNISDR) disaster
communication framework developed to communicate disaster warning at a local scale

to inform decision/response is adapted for this study. The communication framework
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comprises of five components including (i) a credible source; (ii) a duly designed
message; (iii) an efficient communication channel; (iv) a specific Audience; and (v) a

feedback process to enable message scrutiny and local input.

Audience

Channel

Source

Message

v
L4
v
¥

Fecdback

F

Figure 3 UNISDR Disaster Communication Model adapted for this study

This study applies the UNISDR Disaster Communication Model (Figure 3) in reverse,
with a source of information being the people and audience depicting the responsible
agencies (government), hence “crowd-sourcing”. The message is whether a location is
flooded or not, and the channel is a Geographic Information System (GIS) (i.e.
Volunteered GIS), while the feedback refers to the action by the agencies, such as

resources distribution, rescue, or evacuation during a flood event.

3.2. Data and Analysis

Data for this study were simultaneously acquired using remote sensing and crowd-
sourcing techniques during the peak flood season (between September and October) of

2015 in Nigeria.
3.2.1. Questionnaire Survey

Quantitative and qualitative data on hazard impact/awareness, demographic and socio-
economic characteristics used as indicators for flood risk perceptions were acquired
using a custom designed ESRI GeoForm web application (Appendix 4). The platform
allows for the collection of Geocoded alpha-numeric and photo data that can be
extracted for spatial analysis in ArcMap. The offline submission option was enabled

within the GeoForm setting to allow for data collection and storage without internet
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coverage. The GeoForm accessible through the link: http:/arcg.is/1sn5SCXG* was

shared on Facebook within different social groups encompassing members from the
various states in Nigeria. 50 responses were collected for analysis in this study during

the peak flood season.
3.2.2. MODIS Near-Real-Time (NRT) Flood Maps

Global 250 metres resolution Near-Real-Time binary flood maps derived from
Moderate Resolution Imaging Spectro radiometer (MODIS) Bands (1, 2 and 7) using
Dartmouth Flood Observatory (DFO) algorithm (Nigro et al., 2014) was applied in this
study. MODIS instrument onboard the National Aeronautics and Space Administration
(NASA)’s Terra and Aqua satellites acquires optical satellite images for 1 to 2 days that
are automatically processed by the Dartmouth Flood algorithm to produce MODIS
Water Product (MWP), and can be downloaded through the webpage
http://oas.gsfc.nasa.gov/floodmap/® (Revilla-Romero et al., 2015b). The algorithm uses

a ratio of MODIS 250-m Bands 1 and 2, and a threshold on Band 7 to provisionally
identify pixels as water. Nigro et al. (2014) further disclosed that the performance of
the NRT MWP varies from 40% to 66% for clouded and cloud-free conditions
respectively, for good, excellent, almost perfect flood detection that captures from half
to almost all flooded surfaces. Also, poor and fair flood detection that captures no flood,
poorly classify flooded surfaces and less than half the flooded area, vary from 23% to

34% for clouded and cloud-free conditions respectively.

A combination of the MWP time series for September and October of 2012 and 2015
that corresponds with the peak rainfall and river flow season in Nigeria were applied to
delineate NRT flood extent. MODIS imagery has been widely applied in similar respect
for flood monitoring and mapping (Nkeki et al., 2013, Zhang et al., 2014, Revilla-
Romero et al., 2015b) and is known for wide-coverage flood delineation and high
temporal resolution. Nevertheless, MODIS flood maps are usually distorted by spatial
resolution, cloud covers, and rugged terrain (Nigro et al., 2014), resulting in inundation

underestimation, and consequently flawed decision making. By integrating MODIS and

4 http://arcg.is/1sn5CXG

> http://oas.gsfc.nasa.gov/floodmap/
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Crowd-sourcing in this study, we hope to leverage on the merits of both approaches to

improve NRT flood monitoring and mapping.

3.2.3. Government Flood Risk Perception: The Annual Flood Outlook (AFO),

Nigeria

Communicating flood risk to the general public is an important and integral part of
flood management, to ensure precautionary measures are put in place to mitigate flood
impact (Hagemeier-Klose and Wagner, 2009). In Nigeria (the case study for this
research), the technical guideline on flood management (Federal Ministry of
Environment, 2005b) stipulates the need to prepare and publish flood risk maps to
sensitise the public. The aftermath of the unprecedented flood in 2012 resulted in the
initiation of the Annual Flood Outlook (AFO) through a collaboration between the
Nigerian Hydrological Service Agency (NIHSA) and the Nigerian Meteorological
Agency (NiMET), with the aim of providing flood hazard information to mitigate the
impact of flood on the populace, socio-economic activities and infrastructure (NIHSA
AFO, 2013). This information is used by the government to plan for flood events and

advise citizens at risk of flooding to relocate.

The AFO is generated based on the Geospatial Stream Flow Model (GeoSFM) and Soil
and Water Assessment Tools (SWAT), using data sets such as the previous flood extent
of 2012, Nigerian Meteorological Agency (NIMET) Seasonal Rainfall Prediction (SRP),
SRTM DEM, Land use/cover, stream and rain gauge historical data and satellite
precipitation data, to categorize state and local government scale flood risk exposure as
high, medium and low (NIHSA AFO, 2014, NIHSA AFO, 2015, NIHSA AFO, 2013).
Furthermore, the AFO exist as paper-based maps and reports and was converted to a
digital format compatible with ArcMap for spatial analysis and comparison with citizen
flood risk perception. In this study, government’s flood risk perception is evaluated
against that of the citizens, to assess whether government flood management measures

are effectively deployed as required by the affected populace.
3.2.4. Geo-Spatial data and Analysis

Administrative shapefiles that outline national, state, local government and settlement

boundaries were downloaded from the DIVA-GIS database (Hijmans et al., 2004),
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while population density estimates were acquired as Gridded Population (GPW: v4),
from the Socioeconomic Data and Applications Centre (SEDAC) database. The
combined MODIS Water Product (MWP) composites were mosaic to extract inundated
areas and spatial analysis (overlay and zonal statistics) undertaken to identify flooded
states, local government, settlements, and the inundated populace. All spatial analysis

was performed in ArcMap 10.2, after importing GeoForm data from ArcGIS online.

Chi-square test and Mann-Whitney U statistical analysis were undertaken in SPSS (Nie
et al., 1975) to assess the relationship between flood risk perception and risk elements.
Chi-square test evaluates the relationship between two categorical variables (Laerd
Statistics, 2016a), while Mann-Whitney U test assesses the relationship between
categorical and continuous variables (Laerd Statistics, 2016b). The 50 crowd-sourced
data responses (flooded/non-flooded) were compared with MODIS flood extracts and
later combined to assess possible improvements flood detection. Flooded locations from
both approaches were also compared to media reports i.e. online newspapers, bulletins,

blogs, and post from established outlets such as Vanguard, Independent, Today,

Tribune, and Nation as some form of validity check.

4. RESULTS AND DISCUSSION

4.1. NRT-MODIS Flood River Niger and Benue flood extents of 2012 and 2015

In this study, a retrospective approach is also applied to quantify flood extent and
impacts of the 2012 and 2015 flood events using remote sensing and GIS technology.
At the national level, 35 out of the 36 states in Nigeria were flooded in 2012, with the
exemption of Borno, while in 2015 Borno, Enugu and Yobe were the states not flooded.
Similarly, 58% and 41% of the 774 Local Government Areas in Nigeria were affected
in 2012 and 2015 respectively, corresponding to 8,876 and 4,884 settlements (towns)
for the respective years, out of 56012 settlements (towns). Further details of both
impacts are presented in Table 1. Comparative spatial analysis of 2012 and 2015 flood
events showed that 76% of the locations affected in 2015 were previously impacted in
2012, despite the reduced flood extent in 2015 as a result of the agreement between
Nigeria and Cameroon in 2013 to manage excess water release from Lagdo dam

(Jinadu, 2015). The recurrent flood affected 400,181 persons, thus reiterating the need
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to manage recurring flood risk despite the agreements that resulted in reduced flooding
originating from riparian countries. Figure 4 shows the extent of flooding in 2012 (Red),
2015 (Green), and recurrent flood in both years (Blue), and corresponding crowd-

sourced data points with similar colour codes for the respective years.

In 2015 the United Nations Office for the Coordination of Humanitarian Affairs
(OCHA, 2015) reported reduced levels flooding, owing to the agreement between
Nigeria and Cameroon to collaboratively manage dam subsequent water releases and
communicate risk effectively (Jinadu, 2015). This study portrays the effect of that
agreement and decision, evident in the reduced extent of inundated area in 2015 when
compared to 2012 despite the less than 1 metre water levels variation between both
years along the Benue river Kainji Lake (Schwatke et al., 2015a) from which flow

contributed to both flood events (See Supplementary Figure 1 (a-b)).

Table 1 Quantitative flood risk assessment based on MODIS NRT Flood Data

Flood Event Flooded Area States Local Govt. Settlements Impact
(km?) Population
2012 12,050.80 35 446 8,876 1,927,390
2015 4,337.57 33 321 4,884 528,803
2012 & 2015 3,716.57 33 174 3511 400,181

Settlement based on 5 km buffer. The total number of states = 36, Local Governments = 774,
Settlements = 56012.
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Figure 4 Overlay map of Flood extents (ext.) and crowdsourced data (Map) for 2012
and 2015 flood events

4.2. NRT-MODIS and Crowd-sourcing VGIS Integration

Crowdsourced data was compared with MODIS NRT flood maps as presented in Figure
4 for 2012 and 2015 flood events, then combined to access improvement in flood
detection in relation to media report. Table 2 shows higher levels of remote sensing
flood detection than crowd-sourcing in 2012 and 2015 (i.e. the percentage of flooded
data points). Integrating both approaches resulted in an increase in flood detection
percentage for both years. This result aligns with the resolve that crowdsourced data
allows for the capture of micro-scale flood, while the 250m resolution MODIS satellite
image enables macro scale flood detection (Moel et al., 2015, Penning-Rowsell, 2014).
The microscale approach (crowd-sourcing) provide the unique advantage of usability
for specific need/damage assessment, while macro flood outcome enables large-scale
planning at the national or state levels. The Integrated approach was further compared

to online media reports, and the results showed a 75% and 53% agreements in 2012 and
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2015 respectively. The high level of online media agreement with the integrated remote
sensing and crows-sourcing flood detected areas in 2012 is likely due to the wide extent
and impact of the 2012 flood event which resulted in intense media publicity. Some of
the locations identified by media reports as well as this study are presented in Figure 5,
including Ughelli, Patani, and Amassoma (Alamy, 2012, Voice of America, 2012,
Koriake, 2015).

Table 2 Percentage of flood detection points from respondents - MODIS and VGIS

Integration
Year MODIS VGIS VGIS and (VGIS and MODIS) vs
MODIS Media
2012 53.1 49.0 81.6 75.5
2015 32.7 20.4 71.4 53.1

(C3)
Legend w
I 2012-2015-Floodext
2015-Flood-ext
I 2012-Flood-ext
[ INiger Delta
[ ILocal Govt
[ Nigeria
# 2012-Flood
@ 2015-Flood
# 2012-2015-Flood
& 2012-2015-Non-Flood

0 125 250 500 750 1,000 Km

Figure 5 Zoomed-in flooded locations (Ughelli (C1), Amassoma (C2) and Patani (C3))
in the Niger Delta (B).
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The crowd-sourcing platform was designed to enable photo collection as evidence of
flooding to enable validation, as well as provide flood hazard, impact and socio-
economic information. Figure 6 (A-B) shows flood scenario at Amarata in Yenagoa,
Nigeria captured at the point of crowd-sourcing data collection, showing rainfall and
urban flood resulting from local conditions, thereby revealing the advantage of crowd-
sourcing to capture micro-climate phenomenon (Muller et al., 2015). More photos could
not be captured due to technical challenged experienced using the VGIS platform.
Figure 6 (C-D) shows evidence of fluvial flood at Amassoma highlighted by media
reports (Koriake, 2015), which resulted from Nun river overflow due to the release of
excess dam water along upstream Niger and Benue rivers. The flood scenario in
Amassoma was captured by both MODIS and crowdsourcing, due to large-scale extent

and localized impact (Akintoye et al., 2016, Ohimain et al., 2014).

Figure 6 (A-B) Amarata, VGIS detected flood in Yenagoa, Bayelsa state (2015), and
(C-D) Media reported flood in Amassoma, Bayelsa state (2015).
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4.3. Flood Risk Indicator Analysis

Outcomes of the flood risk indicators analysis are presented in Table 3, encompassing
flood risk elements of awareness, worry and preparations as the key themes that infer
flood risk perception as earlier disclosed. A total of 50 responses were recovered,

covering 11 out of the 37 Nigerian states.
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Table 3 Descriptive Statistics Summary of Flood Risk Indicators

Responses to questions
Themes Variables
option (1) option (2) option (3) option (4)
Awareness Flood Cause Heavy Rain (14) Poor Drainage & Waste (60) Dam Release (12)  All causes (14)
Rivers Proximity No (30) Yes (70) - -
Flood Management Federal Govt. State Govt. (34) Local Govt. (20)  Individual (26)
responsibility (20)
Worry Risk perception Low (44) Medium (44) High (12) -
Previously Affected No (24) Yes (76) - -
Family size 1 (6) 2-4 (30) 5-Above (64) -
Employment status Unemployed (18) Employed (56) Student (26) -
Preparedness | Aware of Flood Map No (86) Yes (14) - -
Property Insurance No (88) Yes (12) - -
Displacement Camp No (72) Yes (28) - -

Results presented as percentage of recipients (%)
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4.3.1. Flood Risk Awareness
The awareness elements assessed in this study are (i) the knowledge of flood causation

factors, (ii) nearness to hazard and (ii1) flood management responsibility, given that the
understanding of the cause of flooding influences the management measure deployed by

the responsible authority.

4.3.1.1. Flood Cause
Intense precipitation is the underlying cause of flooding globally, aggravated by

changing climatic and anthropogenic conditions that result in more frequent and intense
storms (Hounkpe et al., 2015a, Giustarini et al., 2015). Flooding in Nigeria has been
attributed to factors including climate change, poor drainage planning, urbanisation and
other anthropogenic activities such as dam water releases and hydraulic structures
design failure (Nkwunonwo et al., 2016). Results presented in Table 3 reveals that 60%
of the respondents identified poor drainage and waste management as the primary cause
of flooding, 14% heavy rainfall, 12 % dam water release and the 14% suggested a
combination of factors. The results reveal a recognition of a broad range of flood-
causing factors in Nigeria as previously highlighted by Shabu and Tyonum, (2013) and
Agbola et al., (2012), where intense rainfall, drainage blockage due to poor waste

disposal, and dam breakage were also identified as the leading causes of flooding.

4.3.1.2. Distance from River
The rise in river water level as a result of precipitation runoff that consequently causes

fluvial flooding has been documented in the EM-DAT: International disaster database
(Guha-Sapir et al., 2014) to account for 80% of flood events in Nigeria. Therefore, the
distance from hazard source (i.e. river) contributes to people’s perception of flood risk
(Tehrany et al., 2013). Usually, the further the person lives from a hazard source, the
less exposed they are and vice versa (Heitz et al., 2009). Although 70% of the
respondents specified knowledge of residing close to the river, Mann-Whitney statistics
indicated otherwise when knowledge of exposure to flood hazard was compared to the
actual distance from the river estimated from google earth (U = 135.5, Z = -2.690 and P
= 0.007). This evidence suggests that people’s knowledge of hazard source (river) and
actual distance from river differed significantly, indicating a poor sense of hazard source

identification from respondents.
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4.3.1.3. Flood Management and Stakeholder Responsibility Mapping
Flood management is usually undertaken at an individual, local or central government

(White et al., 2016, Porter and Demeritt, 2012, Box et al., 2013), depending on the scale
of flood impact, the resource required or urgency of intervention needed. In this study,
74% of the respondents maintain that the flood management is solely the responsibility
of the government, operating at the local, state or federal levels. In the early 1960’s in
Nigeria, individuals were solely responsible for flood management, prior to the
establishment of government parastatals for organised flood management (Obeta, 2009,
Obeta, 2014b). The Government of Nigeria through several federal, state and local
government parastatals are now responsible for data collection, flood prediction,
planning and flood management strategy implementation (FMWR, 2013, FME, 2005a).
These duties highlighted in the Action Plan for Erosion and Flood Control (FME,
2005a) were divided based on risk management cycle components stipulated in the
Associated Programme on Flood Management (APFM, 2011), i.e. Preparedness;
Response; Recovery and Rehabilitation (Table 4) to show the role of specific agencies
in an integrated flood management framework and further foster collaboration between

key stakeholders.

Flood management at a national scale is mostly handled by the Federal Government,
including cost-intensive projects such as dams establishment (FMWR, 2016), and
recovery implementation such as the deployment of relief materials and the
establishment of displacement camps (NEMA, 2012). State and Local scale flood
management efforts are focused on small-scale structural and non-structural measures
such as river channelization, dredging (Chisa et al., 2015), city Masterplan development

and response to local flood hazards (Adejuwon and Aina, 2014).

The results in table 3 also revealed low levels (12%) of subscription to property
insurance against flooding. Lack of societal awareness, lack of incentives to insurance
companies and poor flood data availability have been cited as the factors that contribute

to poor insurance policy in Nigeria (Nkwunonwo et al., 2015).
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Table 4 Flood Risk Cycle and Stakeholder Mapping

Risk Management Cycle Content Federal State Local
Preparedness Data collection, Early Warning Systems, FMENYV, FMI, NIMET, FMWR, SG, SEMA LG
Planning, Prediction, Education, Code NIWA, NEMA, NIHSA, RBDA,
Enforcement, Flood Risk Mapping. NIOMR, NASRDA, FMP, FMARD.
Response Infrastructure protection (Dams, Levees, CBO, NGOs, NEMA, FMWR, RBDA, SG, SEMA LG
Dikes), Evacuation, Channels, FMP.
Displacement camp establishment.
Recovery and Rehabilitation | Repair and Reconstruction of critical NDDC, NEMA, FMHUD, FMW, FMP, | SG, SEMA LG

infrastructures (Water supplies,
Electricity, Roads, Post Risk Assessment,

telecommunication, etc.).

FMARD.

See Supplementary Table 1 for acronym definitions

Adapted from (Ologunorisa, 2004, Federal Ministry of Environment, 2005a).
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4.3.2. Flood Hazard Worry

4.3.2.1. Flood Risk Perception and Worry element
Bradford et al. (2012) and Raaijmakers (2008) discussed the relationship between flood

risk perception and worry, suggesting that persons afraid (worried) of flood risk are
more likely to take preventive actions. Flood risk perception was therefore used as an
indicator for worry, as the question of “level of worry” was not directly asked in the
survey. High-risk perception is expected to indicate a high degree of worry and vice
versa. (Table 5). Results from the analysis of flood risk perception in relation to worry
elements (Table 5) revealed no significant evidence to support the argument of a strong
relationship between flood worry elements and risk perception, contrary to other studies
(Adelekan, 2011). This lack of relationship is likely due to the bias caused by limited
responses (Ronald et al., 2015). Nevertheless, the results revealed that 76% of the
respondents have previously been affected by flooding, and corresponds with the results
from the remote sensing MODIS approach, where 76% of the populace affected in 2015
had experienced the 2012 flood (Table 1).

Table 5 Flood worry elements analysis

Worry Citizen (P-value)
Previously Affected 0.850
Family Size 0.925
Employment status 0.428

4.3.3. Flood Management Preparedness

4.3.3.1. Flood Management Preparedness and Risk Perception
How an individual or community perceives and prepares for flood risk also depends on

knowledge of exposure, which informs the instigation of mitigation actions for expected
impact (Miceli et al., 2008). The preparedness elements assessed were knowledge of
flood risk map for planning, awareness of displacement camp location for relocation
during flooding and subscription to flood insurance to enhance recovery (Ologunorisa,
2004, Agada and Nirupama, 2015, Nkeki et al., 2013). Results from Table 6 shows that
there was no statistically significant relationship between preparedness elements and
risk perception, contrary to the proven concept that high perception of flood risk

instigates preparedness for future flood occurrences (Miceli et al., 2008, Wachinger et
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al., 2013). This is likely due to the limited data collected and skewed nature of the
responses (Choi and Pak, 2004, Ronald et al., 2015). The results, however, indicate that
86% of the respondents are unaware of the availability of flood risk maps, 72%
oblivious of displacement camp locations and 88% are not subscribed to flood
insurance, thus revealing gaps in communication, institutions and the national flood

management strategy (Obeta, 2014a).

Table 6 Flood Risk Perception Relationship with Preparedness Elements

Preparedness Citizens (P value)
Aware of Flood Map 0.148
Property Insurance 0.354
Displacement Camp 0.417

4.4. Government and Citizens Flood Perception Analysis in Nigeria

The role of the Nigerian government in flood management has been well established at
all levels in table 4, which includes flood management plan implementation; structural
and non-structural mitigation measures deployment; and resource prioritisation and
distribution during flooding. These actions rely on their perception of flood risk in a
particular region of the country, that is based on the annual flood map developed bases
using combined GeoSFM and SWAT model (Kellens et al., 2011, NIHSA AFO, 2013),
to designated a region as high, medium or low flood risk area. Figure 7 shows
individual flood risk perception overlaid on local government scale government risk
perception, and it revealed the discordancy in risk perception by both parties.
Comparative analysis also showed that 34% of the risk perceived by the government
was same as the citizens’, while the remain 66% differed considerably. Furthermore,
30% of citizens perceived higher risk than the government, and 34% of the citizen’s
responses indicated the reverse, suggesting that risk perception variability mostly
influenced by localized flood experiences. Chi-square statistical analysis further
supported this finding (X? = 2.037, P = 0.729), revealing the absence of significant
similarity between government and citizen flood risk perception at corresponding

locations.
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The NIHSA AFO identified mostly regions hydraulically connected to river systems as
high and medium risk flood risk zones, hence accounting mostly for fluvial flooding
(Adetunji and Oyeleye, 2013, Nkwunonwo et al., 2016). Crowd-sourcing contrastingly
capture micro-environmental flooding caused by localised climate and anthropogenic
conditions (Muller et al., 2015, Muller et al., 2013), thereby providing the advantage of
identifying flood caused by factors that are seldom captured by models developed from
coarse data. Also, given that citizens have first-hand flood experiences, personal risk
perception is mostly based on empirical knowledge (Jacobs and Worthley, 1999), while
government risk perception is based on flood models likely affected by inherent model
and data uncertainties (Rowe and Wright, 2001, Beven and Hall, 2014, Siegrist and
Gutscher, 2006).
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2@ Low

No Indicator
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|:| Medium
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240 480 Km
' |

Figure 7 Overlay map of NIHSA 2015 Annual Flood Outlook (AFO), crowd-sourcing
risk perception, and MODIS NRT flood overlay (2012 and 2015).

5. CONCLUSION

Understanding flood hazard exposure and impact is essential in flood management,
especially during flooding to improve response and mitigate immediate flood impact.
Ground-based flood monitoring and assessment are largely incapable/insufficient of

efficient flood data gathering due to the logistical challenges that emanate when flood
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hits peak and inundates transport infrastructure that links remote locations. Remote
sensing becomes particularly useful in such cases, as it enables large scale flood risk
assessment without being in direct contact with the region of interest. Remote sensing is
however hampered by financial, technical temporal, spatial, satellite sensor and
environmental drawbacks (Musa et al., 2015, Yan et al., 2015a, Wood et al., 2014).
Also, considering that flood events sometimes occur rapidly with little or no notice
(especially in riparian countries), estimating the schedule time for satellite devices
capture the event can be particularly challenging. Citizen involvement in data collection
(crowd-sourcing) to support scientific research and decision making has been found to
be one of the compensatory approaches that allow data collection at a wide spatial scale
and even in vegetated and rugged locations where satellite technology is deficient
(Goodchild, 2007, Baruch et al., 2016). This has been proven to provide first-hand
empirical evidence to enhance and validate scientific models and predictions over the

years (Yu et al., 2016, Goodchild and Glennon, 2010).

This study evaluated the feasibility of integrating open-access remote sensing and
crowd-sourcing for Near-Real-Time flood monitoring, to draw from the strength of both
approaches during the peak flood season of 2015 in Nigeria to improve flood detection.
This study also collected retrospective data on a past 2012 flood event, to enable
comparison with the current 2015 flood event, to enable the assessment the riparian
flood management agreement effect on downstream flooding and other flood
management efforts by the government. Flood risk indicator effects on citizen flood risk
perception were assessed, and citizen flood risk perception is further evaluated against
government’s flood risk perception that is based on annual flood risk maps, upon which

flood management decisions are based.
From the results of this study, the following conclusion has been drawn:

1. This study highlighted recurrent flooding in several locations using both remote
sensing and crowd-sourcing methodologies, despite reduced flooding in 2015 due
to the riparian dam water release agreement between Nigerian and Cameroon in
2013. This, therefore, suggests the need for a revised flood management approach
in these regions (Egbinola et al., 2015), with a focus on repeatedly flooded

locations, to improve flood mitigation and recovery.
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Combining remote sensing (MWP) and crowdsourcing resulted in increases flood
detection compared to when individual approaches were applied individually,
especially in 2012 when high magnitude flood was experienced. This improved
flood detection took advantage of the spatial resolution of both approaches, which
allows for the capture of macro and micro scale flooding caused by a combination
of regional and local factors (Muller et al., 2015, Revilla-Romero et al., 2015b), i.e.
fluvial and urban flooding. Therefore, an integrated remote sensing and crowd-
sourcing approach is recommended, given that it provides the best approach to
flood detection especially in mangrove dominated, urban areas, rugged terrains and
cloud covered areas where individual approaches could be deficient.
The relationship between flood risk perception and flood risk indicator elements
(Worry, Awareness and Preparation) was statistically insignificant, and owing to
the limited data collected, no decisive conclusion can be made. Nevertheless, the
responses obtained revealed an appreciation of the diverse causes of flooding and
flood management responsibility designations, while knowledge of existing flood
maps, displacements camps and flood insurance was limited.
Citizen and government flood risk perception varied considerably, owing to
inherent model and data uncertainties, and in the integrated SWAT and GeoSFM
model (Yang et al., 2008, Daggupati et al., 2015, Tan et al., 2015) from which
government flood perception is based. Also, the government flood model is biased
towards fluvial flood risk detection, while crowdsourcing's is capable of capturing
flooding caused by local factors such as intense precipitation in poorly drained
urban areas and drainages clogged by poor waste management practices. As such,
an integrated approach is suggested for effective flood risk assessment,
incorporating citizen risk detection and improved flood models based on sufficient
in situ and satellite remote sensing data (Renschler and Wang, 2017).
A unique challenge of reluctance to divulge socio-economic information in
combination with flood impact during active crowd-sourcing is revealed in this
study, peculiar to developing regions, owing to experiences and perception of
internet fraud in recent years (Jegede, 2014).
Although the prospect of crowd-sourcing for improving flood detection is clearly

evident in this work, the responses received and used in the analysis presented are
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quite limited, as such the outcomes of this section are not definitive due to this

limitation.

Having understood the potential of integrated crowdsourcing and remote sensing for
near-real-time flood monitoring, going forward it is expected that such an approach if
coordinated by a designated disaster management agency such as the National
Emergency Management Agency (NEMA) in Nigeria would improve citizen
participation, and can aid large-scale flood detection, damage impact assessment and
resource prioritization and distribution to alleviate immediate flood impact and inform

rehabilitation activities (Dashti et al., 2014, Roxanne and Andrej, 2014).
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Chapter 5 Supplementary Figures and Tables
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Supplementary Table 1. Definition of acronyms

S/N

1

10

11

12

13

14

15

16

17

18

Name of Ministries

Federal Ministry of Water Resources
Nigerian Meteorological Agency

Nigerian Inland Waterways Agency

River Basin Development Authorities
Nigerian Hydrological Service Agency
Federal Ministry of Environment

National Emergency Management Agency
Federal Ministry of Housing and Urban Development
Federal Ministry of Works

State Government

Local Government

Niger Delta Development Commission

National Institute of Oceanography & Marine Research

Federal Ministry of Information
Community Based Organisation

Non-Governmental Organisation

Federal Ministry of Agriculture and Rural Development

Federal Ministry of Power
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Acronyms
FMWR
NIMET
NIWA
RBDA
NIHSA
FMENV
NEMA
FMHUD
FMW
SG

LG
NDDC
NIOMR
FMI
CBO
NGO
FMARD

FMP
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CHAPTER 6: HYDRODYNAMIC MODELLING OF EXTREME FLOODS IN
DEVELOPING REGIONS USING MULTIPLE OPEN-ACCESS REMOTE
SENSING AND 3R PARTY DATA SOURCES.

Abstract

The sparsity of hydrological data hampers flood modelling in many developing regions,
due to the logistical, administrative and financial challenges associated with the data
collection processes. As floods become more frequent and increase in magnitude,
alternative data sources need to be explored in order to provide reliable information
required for managing known and expected flood impacts. This study explores the
contribution of open-access remote sensing datasets in all stages of fluvial flood
modelling and mapping including (i) flood frequency estimation, (ii) hydrodynamic

modelling, and (iii) inundation mapping.

It uses a case study of Niger South region of Nigeria and integrates radar altimetry,
digital elevation model, optical and Synthetic Aperture Radar (SAR) images, 3" party
(independent organization) acquired bathymetric survey data and aerial geotagged
photos in the CAESAR-LISFLOOD-FP 2D hydrodynamic model to simulate flooding.
The model was calibrated/validated by varying the Manning's roughness from 0.01 to
0.045, with 0.04 established as the optimal roughness value for maximum accuracy. A
combination of SAR and optical satellite images was found to improve the model
predictive accuracy in comparison to when only optical imagery was used, due to the
presence of cloud cover during the wet season in the Niger Delta section of the study
domain. Breaking the study domain into three sections for validation showed how
hydrodynamic model prediction varied with data availability and geomorphology,
resulting in F-Statistics of 0.81, 0.53 and 0.19 at Lokoja, Onitsha and Niger Delta
respectively for combined SAR and optical images, decreasing with reduced data
availability. The RMSE of modelled water levels evaluated against in Situ
measurements at Lokoja and Onitsha were 0.56, 3.65 m respectively. Geotagged
overflight photos showed an improved model to reality accuracy, revealing SAR
inundation delineation deficiency in the Niger Delta dominated by mangrove cover.
Incorporating the 1-in-100 year AEP flood into the study at Lokoja where less error was
evident revealed that the 2012 flood event was the 90% confidence level bounds of the
1-in-100-year. This implies that open-access remote sensing and 3rd party data can be

instrumental in improving flood management decisions in data-sparse regions through
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the provision of substantial information that would enhance mitigation efforts to reduce

the impact of flooding on the potentially exposed populace.

Keywords: Open-access remote sensing; hydrodynamic model; 2012 Flood Nigeria;

Radar Altimetry; Digital Elevation Model; Optical and Radar Satellite images.

1. Introduction

The magnitude and frequency of flood events are continuously increasing, and with
climate change altering long-term climate and short-term weather patterns this scenario
is not expected to change in the foreseeable future (Balbus et al., 2013). The total global
cost of flood damage stands at a staggering 46 trillion US Dollars and is projected to
increase to 158 trillion Dollars by 2050, based on growing population and GDP rates
(Jongman et al., 2012). Population increase and urban sprawl typically result in the
migration of people towards settling in floodplains, which are flooded annually during
peak flow periods (Yukiko et al., 2013, McGranahan et al., 2007, Syvitski et al., 2012).
Hallegatte, (2014) documented a 170% increase in the number of floodplain dwellers
between 1970 and 2010 globally. As a typical example of a developing country, Nigeria
has seen a substantial increase in population inhabiting floodplains over the recent
decade (Mahmoud et al., 2016, Komolafe, 2015, Daura and Mayomi, 2015, Mayomi et
al., 2013, Tamuno et al., 2003). Thus there is a need for the development of measures to

reduce flood exposure as the upward trends in urbanization and population continue.

To manage floods and their impacts efficiently, accurate information that depicts
the extent of the hazard (i.e. inundation extent, flood depth and propagation velocity) is
essential (Els, 2013). However, deriving such information requires detailed data inputs
for flood modelling procedures such as flood frequency estimation, flood routing and
hazard mapping (Aerts et al., 2009). Flood frequency estimation requires the
approximation of the magnitude of flood at a certain return period by fitting a defined
probability distributions to the annual maximum or partial discharge time series
(Kuczera, 1999, Reed, 1999) when enough data is available. For ungauged rivers ,
alternative methods based on runoff estimation (Merz and Bloschl, 2005, Rogger et al.,
2012), empirical altimetry forecast rating curve extrapolation (Pandey and Amarnath,
2015, Clark et al., 2014) and regionalization techniques (Haddad et al., 2014, Izinyon
and Ajumka, 2013, Lopez and Francés, 2013, O’Brien and Burn, 2014) can be applied.

Flood routing models (1 and 2 — Dimensional) utilise topography data (river channel
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and floodplain terrain details), hydrographic data, and river channel and floodplain
roughness that define terrain resistances, in order to derive water depth, velocity,
propagation timeline, and inundation extent (Aerts et al., 2009, Seung Oh et al., 2013,
Skinner et al., 2015). Lastly, flood maps communicate the outcomes of hydrology and
hydrodynamic models in an easy to assimilate and implementable format (Kron, 2005),
and have recently become interactive, allowing public involvement via volunteer
geographic information systems and crowd-sourcing (Degrossi et al., 2014, Bordogna et
al., 2016). Flood maps can be presented in probabilistic or deterministic forms,
depending on the type of flood information and accompanying uncertainty to be

communicated (Di Baldassarre et al., 2010, Domeneghetti et al., 2013).

In many developing countries, flood modelling and mapping are hampered by a lack of
sufficient in situ hydrological data (Sanyal, 2013, Yan et al., 2015a). This data sparsity
challenge results in uncertain outcomes used in flood management (Sanyal et al., 2013,
Yan et al., 2015a), consequentially causing aggravated exposure and socio-economic

loss when planning is based on poorly derived information (Mishra et al., 2009).

River gauge stations are usually set-up to collect hydrological data (Bshir and Garba,
2003), however logistical and financial challenges in developing countries restrict
spatial coverage of gauge networks (Ngene, 2009). Where gauge stations do exist they
often collect insufficient data due to disruption of infrastructure due to intense floods,
poor planning and organization (Izinyon and Ehiorobo, 2014, Olayinka et al., 2013,
Ngene et al., 2015). Likewise, detailed high-resolution ground survey or satellite data
that capture terrain details are cost-intensive, hence researchers have recently shifted
focus to open-access remote sensing data to curb the cost associated with such data

collection (Patro et al., 2009, Yan et al., 2015b, Yan et al., 2015a).

There have been advancements in open-access remote sensing over the past decade,
with applications in many different aspects of flood modelling and mapping having
been demonstrated. Brief reviews of the application of open-access remote sensing are
presented later in Section (2.1), with emphasis on optical and Synthetic Aperture Radar
(SAR) satellite images, radar altimetry, Digital Elevation Models (DEMs), and
bathymetry. In this chapter, the use of multiple open-access geospatial technologies
(data and model) is explored, complemented by 3™ party (independent organization)

collected datasets with the aim of modelling flood dynamics, simulating the extent and
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depths of a high magnitude flood event at the chosen study site and assessing in
retrospect the extent in comparison to a 1-in-100-year Annual Exceedance Probability
(AEP) flood for management purposes. The Limitations associated open-access data
usage in flood modelling are addressed, including the implications of missing in situ
data in hydrological flood magnitude estimation, the accuracy of the Shuttle Radar
Topography Mission (SRTM) derived DEM used in hydrodynamic modelling, and the

discrepancies associated with flood extent mapping based on optical and SAR Images.
1.1. Study area

The study area Figure 1(A) is located within hydrological area 5 (Niger South) in
southern Nigeria, encompassing a substantial part of the Niger and Benue rivers, which
meet at Lokoja and travel downstream to discharge into the Atlantic Ocean via Nun and
Forcados rivers (Abam, 2001a). The Niger basin covers a large proportion of West
Africa (2,170,500 km?) and is represented in Figure 1 (B). The Niger Basin drains into
the Niger South hydrological area, collecting an average discharge of 6000 m®/s from
11 riparian countries (Gaston, 2013). Due to these high flows, many rivers within the
basin have been dammed for hydroelectric power generation, irrigation and flood

control (Aich et al., 2014b, Andersen and Golitzen, 2005).

In recent years the Niger and Benue rivers have been heavily influenced by excess water
released from upstream reservoirs in Nigeria, Niger and Cameroon (Ojigi et al., 2013,
Olojo et al., 2013), resulting in flooding of the low-lying settlements within floodplains
(FGN, 2013, Agada and Nirupama, 2015, Odunuga et al., 2015). The annual average
rainfall in the region varies from 750 to 1600mm, and the average temperature from 18

to 28°C.

The flood model domain used in this study is represented by the DEM area in Figure 1,
while subdomains defined by the red rectangles in Figure 1 (Lokoja, Onitsha and Niger
Delta) were selected for subsequent analysis and accuracy assessment given the
differences in data availability and geomorphological characteristics i.e. River

confluence, Canyon and delta.

The three sub-domains were among the most affected when Nigeria experienced
unprecedented levels of flooding in 2012 (Ojigi et al., 2013, Tami and Moses, 2015,
Nkeki et al., 2013, Olojo et al., 2013). The interflow of water from the Niger and Benue
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rivers initiated flooding at Lokoja (Odunuga et al., 2015), the Onitsha/Asaba floodplain
was flooded due to constricted channels and high upstream flow (Efobi and Anierobi,
2013); and the Niger Delta region was flooded as a result of its low-lying topography
and the influx of rising upstream water levels (Tami and Moses, 2015, Olojo et al.,

2013).

6°0'0"E 7°0'0"E 8°0'0"E 9°0'0"E 10°0'0"E

8°0'0"N

Legend

[ ] Afica
m Niger Basin
l:l Nigeria

[ niger South HA5) ®)
Legend

[ nigernettanon

A Gauging stations

7°0'0"N

6°0'0"N

Main Rivers

+ ICEsat

- Makurdi-Lokoja Bathymetry
y Baro - Aboh Bathymetry
Niger Delta DEM (Study domain)

500N o High : 672,98

B low: 258204

0 40 80 160 Km
. . , @)

6°0'0"E 7°0'0"E 8°0'0"E 9°0'0"E 10°0'0"E

Figure 1 (A) Map of study area, showing the Niger-South river basin (hydrological area
5), gauging stations, ICESat elevation points, bathymetry points, DEM/Model domain
and sub-domains. Figure 1 (B) Map of Africa showing the Niger Basin that discharges
through the HA-5 into the Atlantic Ocean.

2. Methodology
2.1. Data sources and their application

The flowchart of the overall study methodology is presented in Figure 2, detailing how

the various datasets were integrated for flood modelling and risk evaluation in the
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Niger-South Basin of Nigeria. Further details are presented in subsequent sections 2.1.1

to 2.4.
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Figure 2 Conceptual flowchart of integrated flood modelling and mapping in the Niger
South

2.1.1. Optical and Radar Satellite Images, and their application
The passive remote sensing Moderate Resolution Imaging Spectroradiometer (MODIS),

Landsat and the recently made open-access Advanced Spaceborne Thermal Emission
and Mission Radiometer (ASTER) images have been the most widely applied satellite
data in flood management processes (Forkuo, 2011, Qi et al., 2009, Gareth et al., 2015,
Nigro et al., 2014). The high temporal resolution of MODIS (1-2days) and the high
spatial resolutions of Landsat and ASTER (i.e. 30 and 15 meters respectively) provides
unique advantages for varying scales and frequencies of flood mapping (Ojinnaka et al.,
2015, Ojigi et al., 2013, Jeb and Aggarwal, 2008, Tarpanelli et al., 2013). Nevertheless,
optical satellite data application is hampered by cloud cover, especially during the wet
season when cloud formation leads to rain and consequently runoff and flooding (Asner,

2001, Musa et al., 2015, Revilla-Romero et al., 2015b). To minimise these deficiencies
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and improve optical imagery application, several techniques have been proposed and
applied, including imagery fusion to leverage the best features of combined images. For
example, Zhang et al. (2014) combined MODIS and Landsat to map inundation extent
in urban regions of New Orleans, thus improving the spatial and temporal resolution of
the outputs. Phuong and Yuei-An (2015) employed MODIS and Landsat-8 in mapping
inundation over rice paddies downstream of the Mekong River in Cambodia. MODIS
and ASTER were also combined and applied in validating the Coupled Routing and
Excess Storage (CREST) hydrologic model in the ungauged basin of Nzoia (Khan et al.,
2011). Trigg et al., (2013) developed and applied a gap filling approach that improved
the hydraulic connectivity of the MODIS flood water extent for large-scale flood
detection by accounting for spatial uncertainty, using geostatistical connectivity
approach that quantifies the probability of a location being flooded given a known flood
location and specified distance (Pardo-Igiizquiza and Dowd, 2003).

Active sensor SAR, on the other hand, allows for day and night image acquisition and
penetrates cloud cover, thus allowing for an effective inundation extent delineation
process (Musa et al., 2015). Commercial SAR satellite data has dominated flood
mapping studies for decades, due to their high spatial resolution and capacity for water
discrimination. Some examples include low-cost ERS SAR/Envisat ASAR,
CosmoSkyMed, Radarsat 1 and 2, TerraSAR-X, and ALOS PALSAR (Betbeder et al.,
2015, Frappart et al., 2006, Garcia-Pintado et al., 2013, Yan et al., 2015a). Although
open-access 10-metre resolution SAR Sentinel-1is now available for flood mapping in
several developing regions (Kyriou and Nikolakopoulos, 2015, Donato et al., 2014), at
the time of the flood event of interest for this study occurred in 2012, Sentinel 1 was yet
to be launched. Hence, the emphasis in this study is on commercial satellites made
freely available by independent organizations (3™ parties) operating in the flood-prone
region of interest. Despite the advantages associated with SAR imagery, the inability of
C and X-band sensors to penetrate vegetation cover and the misinterpretation of
imagery over different land use types have been identified as significant limitations

(Bruce et al., 2015), and must be considered when applying SAR data.

In the context of the present study, remotely sensed data will be used to assess the
capacity of a hydrodynamic model to depict the observed extent of flooding. A
combination of TerraSAR-X, MODIS Near-Real-Time flood maps, Radarsat2 and
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CosmoSkyMed images acquired at the time of the 2012 flood event in Nigeria were
used in mapping the inundation extents. Optical and radar images were combined to
capture the alignment of flood extents with hydrographic changes throughout the flood
event (rise, peak and fall), thereby compensating for the deficiencies in inundation
extent derived from both sensors (Wood et al., 2014, Mason et al., 2016, Garcia-Pintado
et al., 2013). Details of the images used, dates of acquisition and discharge measured at
upstream gauging stations (which are mapped in Figure 1) are presented in Table 1.
MODIS coverage was deficient in the Niger Delta due to high cloud cover in the region
(Uchegbulam and Ayolabi, 2013), hence the SAR data compensated for this gap. SAR
images with Horizontal-Horizontal (HH) polarisation only were used as they provided
good discrimination between flooded and non-flooded area pixels (Mason et al., 2016).
The MODIS Near-Real-Time (NRT) Water Product was developed by the National
Aeronautics and  Space  Administration (NASA) and available via
https://oas.gsfc.nasa.gov/floodmap/, TerraSAR-X from the disaster charter activated in

2012, while Radarsat2 and CosmoSkyMed provided by the Shell Petroleum

Development Company (SPDC) Nigeria (Appendix 5), acquired on the 18" 19" and
201 of October 2012. The SAR images flood extent was extracted by histogram
thresholding approach (Long et al., 2014). In addition to the MODIS and SAR
imageries which covered specific locations of the study domain, Landsat 8 Operational
Land Imager (OLI) was acquired for the whole study area. This was used to derive land
use maps following similar maximum likelihood supervised classification approach
employed by Butt et al., (2015), in order to determine the built-up area inundated, based

on satellite and modelled derived flood extents.

Furthermore, given the deficiencies of optical and SAR satellite images previously
highlighted, this study took a further step by incorporating geotagged overflight photos
acquired from a helicopter over the Niger Delta region during the peak of flooding in
2012 using NIKON D7000 camera. Geotagged photos points (287) were manually
classified as flooded and non-flooded, and applied in extracting corresponding values
for the model and observed flood extents for comparative analysis (Section 3.3). The
geotagged photos were captured at an average distance of 2 km from focus on the
helicopter (see Supplementary Figure 5), thus a 2 km buffer was created and spatial

zonal statistics applied to select the dominant (majority) cell value (flooded/Non-
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flooded) contained within the buffer area, to identify flooded areas detected by the
model and SAR imagery in 2012.

Table 1 Satellite imagery used in the study with acquisition dates and corresponding

upstream gauge station discharge values and Annual Exceedance Probability (AEP).

Dates Images Baro AEP Umaisha  AEP
[YYYY-MM- Gauge Gauge
DD] (m3/s) (m3/s)
TSX MDS R2 CSKD
2012-09-03 - X X - 5,187 2 12,303 2
2012-09-25 X X - - 8,533 50 20,328 100
2012-10-09 - X X - 6,969 5 17,378 50
2012-10-11 - X X - 6,696 5 16,771 20
2012-10-12 - X X - 6,504 5 16,520 20
2012-11-06 - X X X 3,270 2 7,955 2

TSX = TerraSAR-X, MDS = MODIS, R2 = Radarsat2, CSKD = CosmoSkyMed

2.1.2. Radar Altimetry and application in study
Recent advancements in open-access remote sensing have led to the availability of high

temporal and spatial resolution radar altimetry data sets (European Space Agency
(ESA), 2016, NESDIS, 2016, Donato et al., 2014). This means that hydrological data
(water levels) can now be captured in remote and inaccessible locations that have
previously been ungauged or with newly established gauges with short records.
Altimetry is applicable in several aspects of hydrodynamics modelling and flood
mapping, discharge estimation at ungauged or data sparse river basins (Papa et al.,
2010, Sridevi et al., 2016, Getirana and Peters-Lidard, 2013, Tarpanelli et al., 2016),
digital terrain data accuracy evaluation (Carabajal and Harding, 2005, Fricker et al.,
2005, Kon Joon Bhang et al., 2007), river bathymetry characterisation and assimilation
(Chavarri et al., 2012, Yoon et al., 2012) and hydrodynamic model calibration and
validation (Domeneghetti et al., 2014, Sun et al., 2012, Sun et al., 2015).

Gaps in hydrological time series due to intermittent gauging station recording or

disruption to the station network, which frequently occurs in most developing countries,
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resulting in uncertain flood frequency estimates (Gill et al., 2007, Lee and Kang, 2015).
In the present study, altimetry data sets (Topex/Poseidon, Envisat, Jason 1, and Jason 2)
were used to fill missing data for flood frequency estimation, using the method

described in Chapter 3 (Section 3.1.1.1).

Ice, Cloud, and land Elevation Satellite (ICESat)/Geoscience Laser Altimeter System
(GLAS) SPOT points were applied in this study to assess the accuracy of the SRTM
DEM in the absence of ground surveyed elevation (again a typical situation in
developing countries). Also, for the Niger Delta region where bathymetry data is
unavailable, the average elevation difference between the two systems was deducted
from the DEM river channel delineated from Landsat OLI, based on the Patro et al.
(2009) approach, to compensate for SRTM C-band radar inability to penetrate water

surface.

Altimetry datasets were downloaded from the Database for Hydrological Time Series of
Inland Waters (DAHITI) (Schwatke et al., 2015b, Schwatke et al., 2015a), the Centre
for Topographic studies (CTOH) of the Ocean and Hydrosphere archive
(HYDROWEB) and ICESat-derived inland water surface spot heights (IWSH) data was
downloaded from the recently developed database (O'Loughlin et al., 2016a). All digital
elevation models were directly compared to ICESat spot height “n05e005_GLA14”, as
all data sets were on the same vertical datum WGS96-Geiod and projected to
WGS 1984 UTM_ Zone 32N. The properties of the altimetry missions used in this
study are listed below (Table 2):

Table 2 Altimetry data and properties for sources used in this study (O'Loughlin et al.,
2016a)

Mission Ground Vertical Frequency (days) Operation timeline

Footprint (m)  Accuracy (m)

Jason-2 ~ 300 0.28 10 2008 - active
Jason-1 ~300 1.07 10 2002 - 2009
Envisat ~ 400 0.28 35 2002 - 2012
ICESat ~70 0.10 - 2003 - 2009
T/P ~ 600 0.35 9.9 1993 - 2003
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2.1.3. Digital Elevation Model (DEM), Bathymetry, accuracy assessment and
application
DEMs are essential in hydrodynamic modelling as they provide a continuous

topographical surface upon which the flood is routed. Shuttle Radar Topography
Mission (SRTM) DEM (Farr et al., 2007) is one of the most widely applied open-access
terrain datasets for hydrological and hydrodynamic modelling globally (Biancamaria et
al., 2009a, Neal et al., 2012, Sanyal et al., 2013, Gleason and Smith, 2014, Smith et al.,
2015) and Nigeria in particular (Bas van de et al., 2012, Olayinka et al., 2013, Adeaga
et al., 2006). Despite the wide applicability of SRTM, the C and X-band radar cannot
penetrate the water surface to detect channel geometry, therefore resulting in an
overestimation of the bed elevation and consequently flawed flood model outcomes
(Yan et al., 2015a). Other challenges linked to SRTM usage are its inability to
completely penetrate vegetation cover in forested areas and reflections of radar signals
off the top of building in urban areas, resulting in positively biased elevation estimates
(Brown et al., 2010, Neal et al., 2012) and consequently biased outcomes when applied
in hydrological and hydrodynamic modelling studies (Yamazaki et al., 2012).

Several studies have adopted various techniques to curb this deficiency at local scales.
In Baugh et al., (2013), 50 to 60 percent of the vegetation height estimated from
MODIS, ICESat vegetation canopy height, as well as the Simard et al. (2011) and
Lefsky (2010) global vegetation height data sets were reduced from SRTM DEM. This
resulted in SRTM vegetation correction and improved model accuracies when
compared to Topex/Poseidon and JERS (Japanese Earth Resources Satellite)
observations. Betbeder et al., (2015) reduced vegetation bias by adopting a systematic
method in the Amazon that harnesses vegetation height (Simard et al., 2011), Landsat
land cover and Radar altimetry to deliver a hydrological corrected DEM, thereby
reducing SRTM DEM bias by 64 percent. Patro et al., (2009) and Sanyal et al., (2013)
refined SRTM DEM-derived channel cross-section used for one-dimensional MIKE 11
and two-dimensional LISFLOOD-FP flood models respectively. This was done by
subtracting the average errors derived from comparing STRM DEM cross sections and
Differential GPS survey data sets. Neal et al., (2012) adopted a hydrodynamic model
approach that reduces channel and floodplain elevation overestimations by defining
calibratable hydraulic geometry parameters (i.e. channel depth and width) within the
two-dimensional sub-grid LISFLOOD-FP model. This led to significant improvements
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in water level, wave propagation and inundation extent accuracies. In Siberia,
Biancamaria et al., (2009a) applied a simple approach that reduced the SRTM derived
channel elevation by 5, 10 and 15 metres to determine an appropriate assumption for
optimal flood modelling for Obi Rivers. This resulted in 10 metres being identified as

the optimal river depth estimates for efficient hydrodynamic modelling for Obi rivers.

At a global scale, a few studies have derived hydrologically corrected SRTM DEMs,
aimed at reducing elevation errors caused by voids, vegetation non-penetration and
urban rooftop bounce-off. O'Loughlin et al. (2015) systematically combined SRTM,
MODIS vegetation canopy (DiMiceli et al.,, 2011), ICESat GLAS and varying
percentages of satellite-derived vegetation (Simard et al., 2011) to produce the Global
Bare-Earth SRTM DEM (BARE) with reduced uncertainties in various climatic zones
(Broxton et al., 2014, Peel et al., 2007). This approach resulted in the reduction of
average vegetation bias from 4.94 to 0.4 m, and standard deviation from 7.12 to 4.80 m
in comparison to ICESat and cross-sections of LiDAR respectively. Sampson et
al.(2015) applied an alternative approach to correct SRTM bias caused by vegetation
and urban land use/cover to generate the Bare Earth SRTM Terrain (BEST). This
approach uses a moving window filter algorithm (Elvidge et al., 2007) to reduce
urbanization elevation bias, while similar algorithm adopted by O'Loughlin et al.
(2015), 1.e. adaptive smoothing (Gallant, 2011) is applied to reduce vegetation bias. The
BEST model resulted in a RMSE reduction from 10.96 to 6.05 m in comparison to local
LiDAR-derived validation data and an overall bias reduction from 15.08 to -0.1 m.
Robinson et al. (2014) developed a global DEM from a combination of CGIAR-CSI
SRTM version 4.1, ASTER GDEM and Global Land Survey Digital Elevation Model
(GLSDEM) to fill voids in the DEM data and systematically reduced noise by applying
an adaptive smoothing approach by (Gallant, 2011), thereby reducing SRTM vertical

error to between 4.13 and 10.55 m.

In the present study, the BARE and BEST DEMSs covering the study domain were
combined using the ArcGIS 10.2 mosaic “minimum” function that outputs the
minimum cell value of two overlapping cell, based on the assumption that the lowest
DEM value represents bare earth elevation. This approach is intended to curb

overestimation bias that results from unremoved vegetation and urban areas heights
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from individual DEMs. Mean Error (M.E.) and Root Mean Squared Error (RMSE) was

used for accuracy assessment and were applied in this study, defined by:

1 n
RMSE = [;Z(yi—y'f] (1)

Where “n" is the total data points, "y;" the ICESat elevation, "y," the SRTM DEM-
extracted elevation points, ")." summation and EZ{Ll(yi - yl)z]is the Mean Error

(ME).

M.E informs us of the vertical bias in the DEM, quantifying the consistency in elevation
underestimation (negative M.E) and overestimation (positive M.E) in relation to the
reference (ICESat elevation) value. RMSE on other hand characterizes the overall DEM

surface error by a single quantity (Patel et al., 2016).

In the Niger Delta region where river bathymetry data is unavailable, the vertical bias
was applied in correcting the offset between ICESat and DEM elevations. The mosaiced
and river channel adjusted DEM was then converted to contour points and combined
with bathymetric survey data points, then interpolated at a 90-metre grid spacing using
the nearest neighbour method (Sibson, 1981). This resulted in a hydrologically
smoothed DEM (Arun, 2013), that was then converted to ASCII format for use in the
CAESAR-LISFLOOD model.

Surveyed bathymetry enables improved river geometry detailing, leading to improved
hydrodynamic model outputs with reduced uncertainties (Sanyal et al., 2013). In
Nigeria, most bathymetry data are restricted and subject to confidentiality, thus creating
artificial data scarcity. For this study, bathymetric data were obtained from two
companies after signing confidentiality documents that the data would be used for
research purposes only. Digital Horizon Co. is a private company contracted to survey
from Lokoja (Confluence) to Makurdi (Benue River), over a 240km distance. The
survey was undertaken between 8th March to 16™ April 2011 using HYDROSTAR
ELAC 4300 DUAL Echo-sounder and C-Nav 2050 differential GPS systems. The
bathymetric data were projected in Clarke 1880 Minna datum and UTM Zone 32.

Bathymetric survey data from Jamata to Aboh — 300km along the Niger river was
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obtained from Royal Haskoning. These data were collected on-behalf of Nigerian
Inland Waterways Authority (NIWA) in 2002 using an Ashtech Z12 Real Time
Kinematics (RTK) GPS, Navisound 210, Navisound 50 and Raytheon 210Kc digital and
analogue echo sounders. The bathymetric surveys were based on a Mean Sea Level

(MSL) vertical datum and WGS84 spatial reference.

2.1.4. Hydrological Data, Flood Frequency Estimation and application

Flood magnitude for a specific return period is essential in planning for flood events and
designing hydraulics structures to mitigate flood impact (Reed, 1999). In this study a
Generalised Extreme Value (GEV) probability distribution was fitted to annual
maximum flood series (Jenkinson, 1955), an approach that has been widely adopted in
hydrological studies in several regions (Leclerc and Ouarda, 2007, Kochanek et al.,
2013, El-Jabi et al., 2015, Smith et al.,, 2015, O’Brien and Burn, 2014). See

supplementary material and Chapter 3 for more details.

Hydrological data from Baro, Umaisha, Lokoja and Onitsha were obtained from the
Nigerian Hydrological Service Agency (NIHSA) and the National Inland Waterways
Authority (NIWA), the agencies responsible for hydrographic data collection and
management in Nigeria. Discharge values at Baro and Umaisha were used as input
boundary conditions for the model (Di Baldassarre, 2012) for simulating floods for the
hydrological year of 2012 (See Supplementary Figure 6 for the input hydrographs), and
those at Lokoja and Onitsha were used in the model calibration and validation
downstream (See Figure 1A or Figure 1 in Chapter 3). The maximum flood quantile
(upper uncertainty bound) for the 1-in-100 Year AEP flood obtained from Chapter 3
was modelled for comparison with the 2012 hydrograph. Flood frequency plots from
Chapter 3 are further presented as supplementary materials in this study (Supplementary
Figure 1 - 2). The choice of upper uncertainty bound application is supported by the fact
that the high discharges are often underestimated when using the rating curve (Di

Baldassarre and Claps, 2011), coupled with the need to plan for the worst-case scenario.

2.2. CAESAR-LISFLOOD (CL) Hydrodynamic Model Description and Setup

CAESAR-LISFLOOD hydrodynamic and geomorphological (erosion and deposition)
modelling tool (Van De Wiel et al.,, 2007) embeded with the LISFLOOD-FP code
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(Bates et al., 2010) was selected for this study due to its effectiveness and applicability
for fluvial flood modelling in data sparse regions, using coarse resolution terrain data
sets (Biancamaria et al., 2009b, Trigg et al., 2009, Neal et al., 2012, Sanyal et al., 2013,
Yan et al., 2015a, Seenath, 2015, Luke et al., 2015, Skinner et al., 2015). The
CAESAR-LISFLOOD 2-Dimensional grid discretized flood plain model calculates
fluxes flow between two Cartesians coordinates (X and Y) driven by gravity as a result

of the free surface height between two elevation cells, given by the equation:

Q
Ah+z
q - ghﬂowAt%
= 2 10/3 AX (2)
(1 + ghﬂowAtn |q|/hﬂow)

where Q is defined as the flow between neighbouring cells, q is the flux between cells
from previous time steps, g is the acceleration due to gravity, n is the manning’s
roughness coefficient, h is the water depth, z is the bed elevation, hq,y, Is the maximum
flow depth between cells, Ax is the grid resolution, and t is time. The depth of water

within each cell is defined by:

ij i-1,j i Lj—-1 L
Ah" _ QX — Qx + Qx — Xx

At Ax? ®3)

Where i and j are the cell coordinates. The model time step controlled by the shallow

water Courant-Friedrichs-Lewy (CFL) conditions is defined by:

Ax
Aty = 0—— 4)

\/gh
Where a is a coefficient factor (courant number) that varies from 0.3 to 0.7 depending
on the cell size, and influences the model stability (Almeida et al., 2012, Bates et al.,
2010). High values of a increase model time-step and reduced model run time, but can
result in more unstable models. For this study, a was approximated as 0.7 based on

suggestions by Coulthard et al., (2013) for cell size greater than 50 metres.

In the present study, DEM was resampled from 90 to 270 metres, reducing the number
of cells to 1,793,400 (active = 1,256,656) within a 9,1610 km? domain area, thus
reducing the computational cost and SRTM DEM noise (Neal et al., 2012, Craig et al.,
2012), to meet CAESAR-LISFLOOD cell computation limit of fewer than 2 million
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cells (Seoane et al., 2015). The river channel width within the study area varied from
0.3 to 1.5 km, represented by 1 to 6 cells after resampling. Final model outcomes were
post-processed in ArcMap using the model presented in Appendix 6. The model
parameters and sediment input grain sizes and distribution adapted from Olayinka

(2012) are presented in Appendix 8.

2.3. Model Calibration and Validation

Flooded model calibration is usually undertaken by adjusting the manning’s roughness
(n) coefficients for the river channels and floodplains corresponding to input discharge
parameters, while comparing the resultant outputs (Inundation extent and water depth)
to observations from other data sources such as radar altimetry (Belaud et al., 2010),
optical and radar satellite imagery (Sanyal et al., 2013, Trigg et al., 2009, Lewis et al.,
2013, Garcia-Pintado et al., 2013), aerial photography (Neal et al., 2011b) and/or in situ
river measurements (Skinner et al., 2015, Luke et al., 2015, Jung et al., 2012). The aim
is to ensure the model is capable of predicting reality within acceptable uncertainty
limits fit for a particular purpose (Di Baldassarre, 2012, Hunter et al., 2007); in this case
flood risk assessment. Usually, a range of roughness coefficient is predetermined based
on existing literature (Chow, 1959, Arcement and Schneider, 1989, Kalyanapu et al.,
2010), assigned to represent the degree of flow resistance caused by varying land
use/cover types (Medeiros et al., 2012). Depending on the level of details required,
spatially distributed or static roughness values can be assigned to the model (Seenath,
2015). In this study static manning’s roughness was applied, which varied from 0.01 to
0.045 to capture the roughness that defines the Niger South region broadly (Olayinka,
2012).

Several test statistics including Root Mean Squared Error (RMSE) (Lewis et al., 2013),
F-Statistics (Amarnath et al., 2015, Horritt, 2006, Md Ali et al., 2015), Nash-Sutcliffe
efficiency (Sanyal et al., 2013, Neal et al., 2012), P-error, Skill value (Skinner et al.,
2015), and R-Squared (Lewis et al., 2013, Garcia-Pintado et al., 2013) have been used
as goodness-of-fit measures for flood models. In the present studies, the F-Statistic
(Critical Success Index), BIAS, percentage (%) flood capture and RMSE were adopted
as the validity measures, to enable the comparison of model output comparison with

independent data on flood extent and water surface elevation (Di Baldassarre, 2012).
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The RMSE equation used was similar to that previously presented in Equation 1

(Section 2.1.3), with "y;" depicting in situ water levels and "y," The simulated value.
The F-Statistics was defined as:

A

F= ATB+C ()

Where A = (Simulated wet and observed wet), B = (Simulated wet but observed dry), C
= (Simulated dry but observed wet) and D = (Simulated dry and observed dry) are
defined in Table 3, and F can range from O to 1, increasing in levels of accuracy. The F-
measure applied herein does not apply D, as a different measure would be needed and
its inclusion is known to result in bias in the flood fit, as model domains usually contain
larger dry areas than flooded (Wood et al., 2016). Stephens et al., (2014) however
highlighted the limitations of this performance measure, as it tends to be biased towards
high magnitude floods. Nevertheless, for this study, the measure is suitable as it was

applied for relative comparison of flood extents only.

To assess the BIAS and percentage of observed flood correctly captured, both indices

are stipulated as:

BIAS = AtD 6

A+C ©
A

% Flood Capture = ATC (7

Table 3 Parameter definition for performance indices

Observed wet  Observed dry

Simulated wet A B

Simulated dry C D
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2.4. Evaluating model outcome and Flood Management Implications

To access the flood management implications of this study, overlay analysis was
performed in order to identify the population, settlements (villages), built-up areas and
road networks affected by the observed, modelled (2012) and 1-in-100 year floods. The
population data (Gridded Population of the World (GPW), v4) was acquired from the
SEDAC database, settlements points obtained from SPDC Nigeria Limited, land use
(built-up area) derived from Landsat 8 OLI (Path:189/Row:55) image, using similar
approach as Bhatti and Tripathi (2014), while Road networks were acquired from the
Socio-Economic Data and Application Centre (SEDAC) database (Global Roads Open
Access Data Set (gROADS), 2010 update).

3. Results and Discussion
3.1. Floodplain DEM Accuracy assessment with ICESat

River channel and floodplain elevation statistics extracted from corresponding ICESat
and DEMs points, and the descriptive statistics, ME and RMSE are presented in Table
4, while the correlation between ICESat and the combined BARE and BEST DEMs is
displayed in Figure 3. Combining these DEMs by their minimum values, reduced the
ME (and RMSE) from 14.51 m (3.81 m) and 15.28 m (3.91 m) for BARE and BEST
DEMs respectively, to 12.16 m (3.49 m), thereby improving the vertical accuracy when
compared with ICESat data. The spatial distribution of ICESat elevation correlated
better with the merged DEM, resulting in a slight improvement of the correlation
coefficient of (R?> = 0.994) (see Supplementary Figure 3 for others DEMs). The
difference in elevation between ICESat and the corrected DEM was consistent with the
average error levels records from previous studies in Nigeria that evaluated SRTM
DEM against differential GPS elevation data (Isioye and Jobin, 2012, Isioye and Yang,
2013, Menegbo and Doosu, 2015, Ozah and Kufoniyi, 2008). To compensate for
riverbed elevation overestimation in the SRTM DEM at the Niger Delta sub-domain
where bathymetric data was unavailable, the average difference between ICESat and
DEM elevation of 1.053 meters was subtracted from the SRTM river channel elevation

using raster calculator function in ArcMap.
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Table 4 Digital Elevation Model Comparative statistics (units [m])

DEMs Points Min Max Mean Std. Dev. ME RMSE
BARE 694 130  302.65 3364 4595 14> 38
BEST 694 200 30600 3393 4563 > 391
SRTM90 604 200 30900 3444 4536 84D
BARE+BEST 694 138 30265 3328 4559 1216 34
ICEsat 694 0297 29045 3339 4551
350 +
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Figure 3 Correlation between ICESat and BARE + BEST DEM points. (see

Supplementary Figure 3 for others DEMs)

3.2 Model Calibration and Validation

The modelled flood extent was quantitatively evaluated against combined MODIS

Near-Real-Time (NRT) Water Product, TerraSAR-X, Radarsat2 and CosmoSkyMed,

where available (See Supplementary Table 1), to reduce the effect of optical imagery

limitations. The model F-statistic was found to decrease as cloud cover, and forested

land use increased downstream of the study domain. A similar decrease in model
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performance away from domain input was also observed in (Skinner et al., 2015), as
uncertainty increases with data ambiguity. To compare evaluation criteria based on
varying imagery types (optical and SAR), static roughness parameters was varied from
0.01 to 0.045 (Figure 4) at an interval of 0.05 to determine the optimal manning’s
roughness (n = 0.04), at Lokoja, Onitsha and the Niger Delta sub-domains respectively.
The TerraSAR-X imagery flood extent at Lokoja was applied for comparison with
MODIS analysis, while RADARSAT2 and CosmoSkyMed images in the Niger Delta
region to improve inundation mapping given the limitations of MODIS (Figure 4 and
Table 5). For simplicity of comparison, the uncertainties associated with flood extent
delineation from satellite image were not considered in this study, but are understood

and highlighted in image integration for improved inundation delineation.

The overall F-statistics is observed to be generally low in Figure 4 and Tables 5 and 6,
owing to the variation in available topographic, bathymetric and calibration datasets
(Supplementary Table 1), that contributes to the overall uncertainty of the model
outcome. This also goes to reveal the value of and need for improved data collection.
This is further demonstrated in the sub-domain division predictiveness assessment

revealed the effect of spatial and data disparity.

The adoption of TerraSAR-X imagery resulted in an insignificant change in the (F =
0.7884) acquired when compared to MODIS (F = 0.7869), varying only by 0.0015. This
is attributed to the low degree of cloud cover at Lokoja (James et al., 2013). The F-
Statistic in the Niger Delta region changed from 0.02864 to 0.1562 because of the
switch from MODIS to SAR imagery validation data sets, an 81.7% improvement in
model prediction capacity. The BIAS and % flood capture accuracy also improved
substantially, especially in the Niger Delta region (See Table 5 and 6). In a previous
study within the region based on a 1-D SODEK model (MUSA et al., 2015), optimal
channel and channel over bank roughness were 0.01 and 0.04 respectively, when
comparing simulated and in situ water levels at a cross-section at Onitsha. Some
description of roughness parameters within the channel and floodplain include matured
crops, scattered bush, heavy weeds, short grass, early growth vegetation and
meandering channel (Arcement and Schneider, 1989, Chow, 1959). At Onitsha, this
model appears to be steady for manning’s roughness above 0.025, owing to the dish-like

geomorphology of the terrain that supports continuous water intake and gradual
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propagation despite increased inflow and higher manning’s roughness. The BIAS
presented in Tables 6 is also consistent with F-Statistic performance measure,
increasing downstream, while the % Flood capture is high at locations where SAR flood

extent was available.
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Figure 4 F-Statistic (Critical Success Index) versus Manning's roughness (n)

The reduced model accuracy in the Niger Delta region can be attributed to the lack of
bathymetry data in the flat terrain area, resulting in flood over-estimation due to ease of
eater conveyance from shallow rivers to adjacent floodplains Also, undocumented
levels sand mining activities, water-saturated mangrove and poor dredging practice are
identified as factors contributing to the model uncertainty within the region. An
undocumented amount of dredging has been reported in Niger Delta, beginning in the
late 1990s till date (Lubke et al., 1984, Abam, 2001a, Tamuno et al., 2009), resulting in
hydrological changes (Fagbami et al., 1988, Okonkwo, 2012, Agunwamba et al., 2012).
Dredging of the delta is aimed at deepening the river to alleviate flooding effects and
improve river transportation (Ohimain, 2004, Okonkwo, 2012), thereby resulting in

socio-economic benefits and improved operational logistics for oil producing companies

176



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

in the region. Nevertheless, heaps of dredged and sand-mining materials along river
banks and floodplains complicate terrain and river channel properties, altering
mangrove characteristics and act as barriers/levees along the river over banks that
reduce inundation, drainage and river overtopping (Ohimain, 2004, Ohimain et al.,

2004).

Table 5 Performance Matrices for optimal manning's roughness calibration (MODIS)

Performance Overall Lokoja Onitsha Niger Delta
F 0.235 0.729 0.534 0.095
BIAS 4.245 1.183 1.140 9.661

% Flood Capture 99.972 92.012 74.545 92.186

Table 6 Performance Matrices for optimal manning's roughness calibration (TerraSAR-

X/MODIS/RADARSAT2/CosmoSkyMed)

Performance Overall Lokoja Onitsha Niger Delta
F 0.273 0.808 0.529 0.187
BIAS 2.511 0.918 1.132 3.432
% Flood Capture 75.308 85.679 73.802 69.946

3.3. CAESAR-LISFLOOD Model outputs: evaluation of inundation maps and

water levels

The modelled flood extent patterns derived from the CAESAR-LISFLOOD model were
similar those observed from satellite (Figure 5 (A-C)). In situ gauging station water
levels at Lokoja and Onitsha were also compared to model water levels during the rainy
season (June till September) defined by the hydrography of 2012 figure 6 (A) and (B) to

supplement the inundation extent evaluation.

These patterns in Figure 5 (A-C) shows (i) flooding spreading out at the confluence in
Lokoja where the Niger and Benue rivers meet, (ii) extended flooding at Onitsha
resulting from the constricted river channel at Asaba that causes backwater filling of the

upstream dish-like floodplain, (iii) the Niger Delta inundation spread resulting from
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excess upstream water spreading over the low-lying topography, and overflow from the
Nun and Forcados distributaries. The overall inundation coverage pattern at Lokoja,
Onitsha and the Niger Delta are similar to those previously simulated in the region
using global flood models (Trigg et al., 2016, Sampson et al., 2015), with the model
agreement index (MAI) decreasing downstream from the narrowly confined floodplain
into the wetland of the Niger Delta due to DEM and model limitations resulting from

the flat terrain and channel bifurcation in the delta (Trigg et al., 2016).

178



Application of Open-access and 3" Party Geospatial Technology for Integrated Flood Risk Management in Data Sparse Regions of Developing Countries

Legend

- River
I:l Sub-domain

- Modelled and Observed wet

- Over Estimation

Under Estimation

Figure 5 Lokoja (A), Onitsha (B) and Niger Delta (C) CAESAR-LISFLOOD Model outcome and satellite (Combined MODIS and SAR)

observation comparison
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Figure 6 (A) Lokoja model and observed (in situ) water level comparison, (B) Onitsha

modelled and observed (/n situ) flood water level comparison
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Water levels extracted from the CAESAR-LISFLOOD model results at river sections
(2-D cells) around the gauge location was applied in assessing the accuracy of the
model at in situ gauging stations (see Supplementary Figure 4 and Table 2, for location
coordinates and map), showing a rising limb from June until peak rainfall in September
and beginning to fall in October. The RMSE and Coefficient of determination (R?) at
Lokoja and Onitsha gauging stations were (0.564, 3.653 m) and (0.987, 0.998)
respectively. Given the residual error in the data (discharge, DEM, Satellite image) as
well as model uncertainty, the RMSE at Lokoja was within reasonable uncertainty
limits, similar to other studies in data-sparse regions (Komi et al., 2017, Neal et al.,
2012, Trigg et al., 2013). Figure 6 indicates that the optimal value of manning’s
roughness determined through calibration was high for water level estimation, owing to
the poor river channels defined by obsolete bathymetric data in the model (Niger
(2001), Benue (2011)). Also, the RMSE of this study was within the limit observed by
Baugh et al., (2013) LISFLOOD-FP model study using Bare-Earth SRTM floodplain
DEM and validated against TOPEX/POSEIDON altimetry water level. The discrepancy
between model and observed water levels at Onitsha can be attributed to the absence of
downstream bathymetry in the Niger Delta regions and obsolete upstream bathymetry
data applied in the modelling process (Gautier, 2002), which was acquired prior to
dredging activities in 2010 (Van Der Burg, 2010). This is likely to result in backwater
propagation and water level overestimation due to low downstream river slope (Paiva et
al., 2013). This was expected as the locations where hydrographic data were available
was modelled using DEM with channel bathymetry embedded, resulting in improved
outcomes as seen in other studies that integrated river bathymetry/cross-section surveys
(Casas et al., 2006, Sanyal et al., 2013, Seenath, 2015). The results presented in Figures
5 and 6 further suggests that water level estimations within the river channel is more
sensitive to hydrologic, bathymetric and topographic uncertainties than inundation
extent across the floodplain. This consistent overestimation of water level by the model
(Figure 6 (A and B)) could also be because of the simplified river characterization
within the applied DEM at 290 m resolution as well as the hydrodynamic modelling
process, which does not capture explicitly details such as river anabranches and

meandering that would likely attenuate water released from the main river channel.

The improvement in flood delineation using SAR imagery resulted in the improved

model to observation alignment (Table 5 and 6, Figure 5 (A-C)). However, SAR is not
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without its limitations, especially in mangrove, swamps and built up areas (Long et al.,
2014, Phuong and Yuei-An, 2015, Musa et al., 2015). To assess the variation in
accuracy assessment due to SAR deficiencies in the Niger Delta region, model accuracy
was compared with SAR flood extracts and classified overflight geotagged photo points
(Figure 7 (A-D)). The geotagged photos were not captured as orthophotos, hence could
not be applied to extract the geometric extent of flooding. The quantitative outcomes of
the comparison are presented in Table 7, with the overall accuracy (i.e. percentage
match) of the model performing better when compared to overflight data points (69%)
than SAR observations, which was a 13% match. Figure 8 shows the typical
environmental/physical variation in the Niger Delta region: (A) mixed land use (built-up
area greater than vegetation); (B) mixed land use (vegetation greater than built-up); (C)
bare land, sparsely built and vegetated lands; and (D) matured mangrove vegetation.
These variations influenced the CAESAR-LISFLOOD model and SAR flood inundation
capacities, as seen in Table 7, with sections (A) and (B) revealing the highest alignment
with model and SAR outcomes respectively when compared to overflight data. High
level of alignment between model outcome, SAR inundation and overflight photos was
observed in section (C), while flooded locations within the mangrove dominated section
(D) known to hamper SAR and coarse DEM driven flood model outcomes were mostly
identified by overflight photos only. This provides a novel approach to ascertaining the
deficiencies of hydrodynamic models and SAR images in complex terrains using third-

party data collected by organisations operating in the study area.

182



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

Legend

A Points of focus
Overflight
Non-Flooded
#  Flooded

l:l River
B s+ Fiooded

0 10 20 40 Km I 11odetied Flooded

Figure 7 Niger Delta overflight geotagged photo points comparison with model and

SAR observation outcomes (Photos for green points of focus shown in Figure 8)
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R S e et

FLY 4 4

Figure 8 Sectional examples of overflight photos of flooded areas compared to
observed and modelled flood in the Delta region, showing points of focus (Figure 7).
(A) = match between model and photo, (B) = match between SAR and photo, (C) =
match between model, SAR and photo, (D) = only the overflight showing flooding.

Table 7 Comparative analysis of overflight data points, model and SAR observation

flood extents

Points of focus  Data Points (n = 287) Hits Miss % Accuracy
A Overflight and Model flooded 196 91 69
B Overflight and SAR flooded 37 250 13
C Overflight, Model and SAR 43 244 15
flooded
D Overflight only flooded 62
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3.4. Model extent and Flood Management Implications

Estimates of 1-in-100 year flood peak at Baro and Umaisha gauging stations were
estimated as 13,887 and 19,589 m?/s respectively Chapter 3. The 1-in-100 year flood
event is stipulated as the AEP for planning and infrastructural development purposes in
Nigeria by the Ministry of Environment (FME 2005b). The estimated flood magnitude
is essential in understanding the Niger-South exposure to upstream dam water release as
was the case in 2012, to inform policy implementation. The 1-in-100-year event was
simulated and compared with the 2012 flood event to ascertain whether the
actions/plans based on a 1-in-100 Year flood as stipulated in the National Flood
Management guideline would have likely mitigated the impact of the extreme flood
event. Actual (2012) and expected (1-in-100year) flood exposure was assessed by land
area, population, settlements, Built-up areas and roads impacted and presented in Table
8 and Figure 6. The emphasis of this assessment is at Lokoja where the highest
agreement between modelled outputs and observation was imminent due to optimal data
availability for flood modelling and mapping. Ninety-seven (97) percent of the flooded
area identified from satellite image was captured as a 1-in-100 year flood event;
nevertheless, the model could likely be exaggerated, given the possible propagation of
river discharge, DEM and calibration uncertainties unto the final model outcome.
Notwithstanding, the results are promising and prove the value of open-access and 3™
data integration for flood modelling and mapping in developing regions. The inundated
area and exposure estimates for impacted population, settlements, built-up areas and
roads for the observed and modelled flood extent, and are presented in Table 8 and

Figure 9 for visualization.

Table 8 Model, Observed and 1-in-100-year flood exposure comparisons

Flood Area Population  Settlements Built-up Roads
(km?) (km?) (km)

1-in-100 year 427.2 32,867 14 12.834 32.987

modelled

2012 Model 425.8 32,703 14 12.648 34.573

2012 Observed 440.2 34,391 21 12.326 37.287
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Figure 9: (A) comparison of SAR observed 2012 and 1-in-100 year modelled flood
extents, and(B) comparison of SAR observed 2012 and modelled flood extents for the
same period, as well as impacted settlements, roads and built-up areas in both A and B

at Lokoja.

4. Conclusion

In order to fill data gaps that hinder effective flood modelling, mapping and
consequently flood management decisions, this study presents an approach that
incorporates multi-source open-access geospatial and remote sensing for hydrodynamic
modelling of extreme flooding in the Niger south hydrological area of Nigeria, with the
aim of reducing model outcome uncertainties in the region. The approach applied here
systematically fills missing data gaps for flood procedures of flood modelling and
mapping including (i) flood frequency estimation, (ii) hydrodynamic modelling, and
(111) inundation mapping, most pronounced in developing countries. Multiple geospatial
data sets were used including MODIS NRT flood map, Landsat 8 OLI, vegetation and
urban areas elevation corrected SRTM DEM, Radar Altimetry (ICESat, Envisat, Jason 2
and Topex/Poseidon) and 3™ party captured, TerraSAR-X, Radarsat2, CosmoSkyMed,
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bathymetry and geotagged overflight photos. These data were applied at various stages
of the flood modelling and mapping process as follows: (i) based on the outcome of
Chapter 3, radar altimetry was applied to fill missing data in the hydrological time series
in flood frequency estimation, (ii) ICESat data were used to assess the DEM accuracy
due to the lack of ground elevation data and to improve river channel elevation where
bathymetry data was unavailable, (iii) bathymetry data were merged with Bare-Earth
SRTM DEM for routing upstream hydrography, and (iv) geotagged photos, optical, and
SAR images were used for hydrodynamic model calibration, validation and comparative

analysis.
The following conclusions are drawn from this study:

1. Other than flow data being one of the predominant sources of uncertainty in
hydrodynamic models, DEMs, especially those with a low or medium resolution
that average out terrain properties can result in flawed model outcomes, especially
in built-up and mangrove dominated areas. Nevertheless, where recent bathymetric
data is available as was the case in Lokoja, within a constricted river channel,
improved model accuracy is expected and this should be the basic data required for
flood routing in developing regions.

2. The role of remote sensing in modern-day hydrology, hydrodynamics and flood
mapping cannot be over-emphasized, especially in developing regions where access
to in situ data is limited. Evidence from this study suggests the availability of data
in even very remote locations of Nigeria (a typical developing country), though
segmented and in varying formats and resolutions. A conscious effort must be made
to scout for and integrate multiple datasets when mapping flooding in developing
regions. We conclude that data is always available in most remote locations,
however, accessibility, validity and accuracy remains a challenge.

3. When modelling floods in large catchments using multiple remote sensing data, an
understanding of the landscape, climate and seasonal variability are essentials,
considering their effect on optical and SAR imagery efficiency and usability.
Upstream of the Niger south catchment (Lokoja) for instance is mostly sparsely
vegetated and cloud-free during the wet season, hence the negligible difference
between SAR (TerraSAR-X) and optical (MODIS) inundation extent when used for

the model calibration and validation. Contrastingly in the Niger Delta region, the
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mangrove vegetated and cloudy atmosphere resulted in very limited MODIS flood
capture and even affected SAR inundation delineation capacity. This thereby
prompted an alternative measure (overflight photos) that enabled flood detection
within pockets of the mangrove and built-up areas where SAR imagery was
deficient.
The value of baseline data availability was evident at Lokoja, where the 2012 flood
event was quantified as a 1-in-100 year flood event, and the effect of the modelled
and observed flood on the populace, built-up areas and road infrastructure
simulated. The deteriorating effect of data quality was also evident at Onitsha and
the Niger Delta regions respectively. These outcomes further suggest the need for
improved data collection by agencies such as the National Inland Waterways
Agency (NIWA), Nigerian Hydrological Service Agency (NISHA) and the Niger
Basin Authority (NBA) for improved flood management.
. Modelling the Niger Delta region of Nigeria is a complex task that requires detailed
and up-to-date bathymetric survey, high-resolution terrain, landscape information
and in situ river measurements. The complexity of the region is further exacerbated
by the wetland nature of the region that promotes attenuation, and anthropogenic
activities such as sand mining and dredging activities (Okonkwo, 2012, Ohimain et
al., 2004, Ohimain, 2004, Awelewa, 2016) that alters the hydrological regime and
hydraulic connectivity of the region.
Throughout the modelling process, it is evident that quality hydrological input,
digital elevation model, bathymetry, and calibration datasets contain uncertainties
that propagate onto the model outcome. Although because to simplicity and the
huge computational cost of combined hydrological and hydrodynamic simulations,
the effects of these uncertainties are not quantified, the calibration process curtails
the uncertainties to a reasonable extent, through the definition of an optimal

manning’s roughness parameter to enable the simulation of a known flood extent.
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Chapter 6 Supplementary Materials

In this study Generalized Extreme Value (GEV) probability distribution is fitted to
annual maximum flood series (Jenkinson, 1955), widely adopted in hydrological studies
in several regions (Leclerc and Ouarda, 2007, Kochanek et al., 2013, El-Jabi et al.,
2015, Smith et al., 2015, O’Brien and Burn, 2014). GEV is expressed as thus:

F (x|, a, and k) =

1 1
- -1
l expy — {l - M} ) {1 - M}K K>0,x<r+g ;K<O,x>r+g
K

tof 5o 7]

Where: 1, a, and k represent location, scale and shape parameters respectively of the

distribution function.

Supplementary Table 1: Spatial data availability matrix for sub-domains

Locations

Spatial Data (Imagery and Survey)
Lokoja Onitsha Niger Delta

MODIS 3 J x
TerraSAR-X N x x
Radarsat-2 X X ~
Cosmo-SkyMed X X \
Geotagged Photos X x N
Bathymetry N N y
Radar Altimetry N N N
SRTM DEM N N N
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Supplementary Table 2 Coordinates of Water level points for accuracy assessment
Lokoja Onitsha
S/N Northing (X) Easting (Y) Northing (X) Easting (Y)
1 255224.796577 873550.54681 252253.53001 683194.262142
2 254945.095998 872659.407754 252961.522103 683089.984237
3 872659.407754 872633.389095 253458.21423 682958.264778
4 254684.909412 871807.296685 253996.068688 683188.773831
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Supplementary Figure 5 Model, Observation and Overflight line of sight overlaid on
high-resolution GeoEye Imagery.
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CHAPTER 7: IMPROVING RADAR IMAGERY FLOOD DETECTION
CAPACITY USING MULTI-CRITERIA DECISION TREE ANALYSIS
TECHNIQUE BUILT ON OPEN-ACCESS DATA

Abstract

Remote sensing has become one of the most widely used data set for flood modelling
processes due to the challenges associated with acquiring in situ data for hydrodynamic
and flood mapping studies, particularly in developing regions. Active sensor Synthetic
Aperture Radar (SAR) is one of the primarily used satellite images in flood mapping
due to the advantages of cloud-free imagery capture, day and night operationality and
ease of flooded and non-flooded areas discrimination. Despite these advantages, SAR
image flood detection capacity is limited by inherent (system) and external (landscape

properties) factors.

This study aims to reduce external deficiency effect on SAR extracted inundation maps
by combining multiple open-access data sets using J48 (C4.5) decision tree algorithm to
enhance SAR flood discrimination capacity in the vegetation dominant Niger Delta
region, Nigeria. This approach is intended to improve the flood map used for CAESAR-
LISFLOOD hydrodynamic model evaluation in the region. Historic flood extent derived
from histogram thresholding approach, land use/cover maps, hydrologic parameter
(rivers), and Digital Elevation Model (DEM) derivatives were trained using overflight
geotagged photos that capture real flooded locations even within pockets of the

mangrove where SAR could not penetrate.

The results show improved inundation extent in comparison to histogram threshold
(only) technique when evaluated against crowd-sourcing and overflight data sets. Also,
the overall hydrodynamic model accuracy (F-Statistic) improved by 51%. Nevertheless,
high levels of model to flood extent mismatch was still evident, and this can be
attributed to model uncertainty due to the coarse DEM and poorly defined river
bathymetry data used for the modelling, as well as several hydro-morphological
activities within the region such as uncontrolled dredging activities and permanent

wetlands, that contribute to the complexity of modelling the Niger Delta terrain.

Keywords: Decision Tree (DT), Flood mapping, Synthetic Aperture Radar (SAR),
Niger Delta, CAESAR-LISFLOOD and Open-access Remote Sensing.
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1. Introduction

Remote sensing has gained considerable influence in flood mapping, hydrology and
hydrodynamic applications in recent years, mostly due to the lack of spatially sufficient
ground data (Musa et al., 2015). Data limitations emanate from a combination of factors
including (i) technological and cost challenges (Sanyal et al., 2013, Seung Oh et al.,
2013), (ii) inaccessibility to rugged and remote terrains (Quinn et al., 2010, Isioye and
Jobin, 2012), and (iii) organizational and capacity drawbacks in developing countries
(Olayinka et al., 2013). Therefore, remote sensing (open-access) provides an alternative
which allows for capture of aerial images that infers land properties and composition
without being in direct contact with the object of interest (Dano Umar et al., 2011),
thereby overcoming the aforementioned deficiencies. Depending on the source of
energy during the data capture process, remote sensing can be classified as passive or
active. Passive remote sensing depends on natural energy (solar) source resulting in
optical imagery that measures landscape reflectance properties along various
electromagnetic spectrums. Hence optical images can only be captured in the daytime
and depend on cloud-free skies for optimal imagery acquisition (Musa et al., 2015).
Active remote sensing contrastingly uses satellite built-in energy source and quantifies
the properties of target objects by measuring the return signal (backscatter) intensity,
hence Synthetic Aperture Radar (SAR) sensors have the ability to penetrate cloud to
capture underlying objects and provide day/night coverage (Grandoni, 2013).

1.1. SAR flood mapping challenges

Despite the obvious advantages of SAR, its application is not without challenges. Most
notable in hydrological applications is the difficulties associated with discriminating
between water and other smooth surfaces such as wetlands, roads and radar shadows in
mountainous regions, that shows similar reflectance characteristics as flooded surfaces,
which results in inundation over-estimation (Qasim, 2011, Long et al., 2014). Urban,
forested and cultivated regions, on the other hand, pose the challenge of under-
estimation as features such as trees, plants, rails tracks, houses and traffic lights inhibit
SAR beam penetration and emit high-intensity reflectance hamper optimal flood
delineation (Veljanovski et al., 2011b). Other factors that contribute to poor SAR

imagery flood delineation potential is the system inherent deficiency that results in the
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generation of granule pattern features called speckle noise (Sheng and Xia, 1996, Qiu et

al., 2004).

Recent reviews by Musa et al., (2015) and Hong et al., (2015) highlighted the impact of
meteorological conditions such as wind and rainfall on SAR imagery, as well as
vegetation cover, urban landscape, topography, satellite inclination angle and the
satellite polarization mode at the time of image acquisition on SAR derived inundation
extent. These factors distort the return pulse efficiency and consequently reduce the

discriminating potential of the imagery in flood mapping applications.

Polarization mode which defines the direction of radar wave oscillation employed
during imagery acquisition i.e. Horizontal-Horizontal (HH), Vertical-Horizontal (VH)
and Vertical-Horizontal (VH) and Vertical-Vertical (VV) also impacts flood
delineation. HH polarization acquired SAR images are known to be more efficient for
flood extent delineation than its VH and VV polarization counterparts, especially in
vegetation covered and wetland areas (Wood et al., 2014). HH polarization provides a
higher backscatter ratio of flooded to non-flooded areas than VV wunder similar
conditions of wavelength and angle of inclination (Wang et al., 1995, Wood et al.,
2014). Nonetheless, VV polarization mode image is valuable in highlighting vertical
features such as vegetation (Schumann et al., 2007), while the horizontal profile of VH
polarization mode is useful in delineating smooth flood surface due to its low sensitivity
to waves (Henry et al., 2006). Peter et al., (2013) also highlighted the possible challenge
of misidentifying other items such as mud and debris during as flood rapid floodplain

water outflow.

1.2. Some challenge compensation approaches

System inherent deficiencies such as Speckle noise are usually reduced using
appropriate filter modules available in image analysis software such as ERDAS
Imagine, ENV1, and e-cognition, while incident angle defects and shadow reflections
can be managed by ortho-rectification that incorporates auxiliary digital elevation
model data (Veljanovski et al., 2011b). Discriminating surface water from other features
1s somewhat straightforward also, but depending on the method applied, the accuracy of
flood extent varies (Qasim, 2011, Veljanovski et al., 2011b, Long et al., 2014, Gala and

Melesse, 2012). Some commonly applied SAR processing approaches include visual
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interpretation (Schumann et al., 2009b), multitemporal image differencing, histogram
thresholding (Long et al., 2014), image segmentation (Phuong and Yuei-An, 2015),
multi-polarized image combination, statistical active control model (Horritt et al.,
2001), radiometric thresholding (Giustarini et al., 2013), artificial neural network
(Kussul et al., 2011) and decision tree analysis (Corcoran et al., 2012). Also, combining
SAR Imagery with supplementary data sets such as optical images, and derivatives
digital elevation models have been found to improve flood delineation in urban, forested
and wetland regions (Corcoran et al., 2012, Phuong and Yuei-An, 2015, Malinowski et
al., 2015).

1.3. Study Description

A previous chapter using overflight geotagged photos in the Niger Delta region of
Nigeria (Chapter 6), revealed the deficiency of SAR imagery in delineating flooding in
the mangrove dominated regions. To overcome this deficiency, a Decision Tree (DT)
approach is proposed in this study, combining multiple open-access data sets to improve
SAR flood delineation capacity in the region. The DT flood extents are then compared
to that derived from Histogram Thresholding (HT) technique in a previous chapter (6)
and applied in the evaluation of hydrodynamic model accuracy in the Niger Delta
region of Nigeria based on three performance measures F-Statistic, BIAS and

percentage flood capture.

2. Methodology
2.1. Study Area

This study focuses on a section of the Niger-South hydrological area within the Niger
Delta region of Nigeria (Figure 1), covering a 5671 km? area. The section constitutes of
three states (Delta, Bayelsa and Rivers) in the oil-producing region of Nigeria that was
part of the most impacted during the 2012 flood event (FGN, 2013, Ojigi et al., 2013).
The low-lying topography of the region makes it vulnerable to flooding, coupled with
the settlement of persons and development of infrastructure within floodplains that
further aggravates and compounds flood risk and exposure in the regions (Tamuno et
al., 2003, Eyers et al., 2013). These challenges and the recurrent exposure to flooding

has raised genuine concerns and the need for improved flood mapping.
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Figure 1 Map of study area showing Location in Nigeria, the Niger South river Basin

and States.

2.2. Data requirements

2.2.1. Flood Inventory and Overflight geotagged photos
Accurate maps of historical floods play a crucial role in delineating flood extent in

susceptible locations (Merz et al., 2007, Rahmati et al., 2016), as past flood occurrences
provide the baseline for assessing future expectations under similar or heightened
hydrological conditions. Flooded locations were identified from overflight geotagged
photos and radar images acquired by Shell Petroleum Development Company (SPDC),
Nigeria during the peak flood season of October in 2012. This flood experience was
reported to have caused the greatest impact/damage in 40 years (Ojigi et al., 2013, Tami
and Moses, 2015), affecting people, settlements, infrastructures and distorting socio-
economic activities in the Niger Delta region (Jinadu, 2015, Eyers et al., 2013).
Overflight geotagged photo data points (325) were visually assessed and assigned
binary codes “0” and “1” to indicate non-flooded and flooded locations respectively,

and used for training the flood conditioning factors. Radar flood extent derived by
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histogram thresholding was assumed to underestimate inundation due to vegetation

cover in the region and was applied as the historic flood maps to be improved upon.

2.2.2. Flood Conditioning Factors
Besides radar derived inundation extent that directly depicts actual flood at the time of

image acquisition, other factors contribute to flooding and can be applied in
combination with other landscape properties to indirectly infer the presence or potential
of flood where SAR imagery is deficient. Furthermore, radar images are sometimes
insufficient in delineating flood extent in vegetated, built-up and rugged terrain (Long et
al., 2014).Therefore, the combination of factors that contribute to flood susceptibility,
such as Geology, Soil type, Distance from water bodies, Land use/cover types,
Topography and DEM derivatives such as Topographic Wetness Index (TWI), Stream
Power Index (SPI), curvature and slope (Pradhan, 2009, Dano Umar et al., 2014,
Tehrany et al., 2014, Rahmati et al., 2016, Siddayao et al., 2014), will further enhance

flood delineation.

2.2.2.1. Geological Formation
Geology contributes to flooding because various lithological units respond differently to

hydrological processes, thus influencing the spatial extent of the river basin hydrology
and sedimentation over time (Rahmati et al., 2016). Reijers, (2011) disclosed the
geological formation of the Niger Delta, revealing the effect of lithological variability
on flooding and erosion within the region. Geological structures impacts on landscape
erodibility and permeability, consequently defining river channels and drainage density
(Reynolds et al., 2013, Celik et al., 2012). Geological data was acquired from the
nationwide geological map (1: 2,000,000) obtained from the Nigerian Geological
Survey Agency (NGSA). Lithological composition, percentage coverages and

descriptions are presented in Table 1.
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Table 1 Study area geology, Adopted from (Reijers, 2011)

Geological Lithology Description %

Age

Quaternary Freshwater swamp Sands, gravel and clays 46
Sombreiro Deltaic Formation  Sands, clay and mangrove swamps 19
Mangrove Swamp Sands, clay and mangrove swamps 10
Abandoned beach ridges Sand and Pebbles 1
Coastal plains sands Sand and clays 21

Tertiary Lignite Formation Clays, lignite and shales 3

2.2.2.2. Soil Type
The ability of a landscape to hold, retain and transport water depends strongly on soil

properties (Shi et al., 2007, Pradhan, 2009, Yahaya et al., 2010), consequently
influencing surface run-off and inundation extent. Soil dataset was downloaded from
the International Soil Reference and Information Centre (ISRIC) soil repository (Hengl
et al., 2014), and comprises of various soil classes. Gleysols class which counts for 51%
of the soil composition in the study area is known for its prolonging wetness due to its
nearness of groundwater. The main components of dominant soils in the region are
loamy, clay, sand, gravel and humus. Percentages of all major soil compositions are
presented in Table 2.

Table 2 Study area soil constituents, Adapted from (Hengl et al., 2014)

ISRIC Soil Reference  Class Composition % composition
CN 019,CN 017 Acrisols Loamy Sand 20
CNO022, CNO028 Alisols Loamy Sand 8

IT 016 Andosols Volcanic deposits 1

CN 018 Ferralsols Water-dispersible clay 6

TH 001 Fluvisols Sand and Gravel 9
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DE 006 Gleysols Humus, sand, and Clay 51
CN 046, CN 003 Luvisols Clay 5

2.2.2.3. Distance from Waterbodies
Other than the location with permanent water bodies, rivers overflow its boundaries

during peak flood seasons, resulting in inundation at locations that are usually dry
(Okoye and Ojeh, 2015). Hence distance from rivers is an important hydrological factor
in flood mapping as locations nearest to water bodies are more likely to be flooded than
those farthest when overbank flow route across adjacent landscapes (Kazakis et al.,
2015). River locations were derived from the Landsat8 image acquired during a low
flow season in 2015 using Normalized Difference Water Index (NDWI) and Euclidean

distance outcome from rivers generated using the spatial analyst toolbox of ArcMap.

2.2.2.4. Digital Elevation Model (DEM) and derivatives
Topography influences hydrodynamic modelling and inundation mapping to a large

extent and controls the dynamics of water from rivers to adjacent floodplains (Cook and
Merwade, 2009). However, the DEM accuracy significantly influences the accuracy of
flood outcomes (Jung and Merwade, 2015). DEM and its derivatives such as Stream
Power Index (SPI), Topographic Wetness Index (TWI), Slope, and Curvature were
applied in this study. The TWI was developed by Beven and Kirkby, (1979) to quantify
the effect of local runoff on flood generation, and supports evidence of moisture within
the landscape as a result of surface water accumulation (Qin et al., 2011, Kopecky and
Cizkova, 2010, Gokceoglu et al., 2005). SPI supports flooding conditions as it describes
the catchment water flow and erosion (Jebur et al., 2014, Cao et al., 2016). Slope and
curvature also affect catchment hydrology and flow accumulation as run-off generally
flows from high regions to accumulate in low-lying areas (Kazakis et al., 2015). Slope
and curvature were generated from DEM using ArcMap Spatial Analyst Surface
Toolbox, SPI derived using ArcMap raster calculator and TWI using the Topography
Tool developed by Tom Dilts of the University of Nevada Reno.

2.2.3. Land use/cover classification

Land use/cover characterizes landscape roughness that is directly linked to run-off
dynamics resistance and eventual flow accumulation (Arcement and Schneider, 1989,

Medeiros et al., 2012). Bare soils tend to allow swift flow compared to vegetated or
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croplands (Tehrany et al., 2013), while built-up areas covered with impervious surfaces
aggravate run-off (Zhou et al., 2015, Miller et al., 2014). Land use/cover was extracted
from Landsat 8 OLI Imagery composites presented in Table 3, and classified into Built-
up, Bare Land, Water Bodies, Matured Vegetation, Tampered Vegetation, Swamp and
Cultivated land, using similar maximum likelihood supervised classification approach
employed by Butt et al., (2015).

Table 3 Landsat 8 Imagery properties

Scene Name Path Row Date Acquired
LC81880562015353LGNOO 188 56 2015-12-19
LC81880572015353LGNOO 188 57 2015-12-19
LC81890562015360LGNO0 189 56 2015-12-26
LC81890572015360LGNOO 189 57 2015-12-26

2.2.4. Synthetic Aperture Radar (SAR) Imagery Data: RADARSAT-2 and
CosmoSkyMed
RADARSAT-2 and CosmoSkyMed SAR images were applied in this study acquired by

Shell Petroleum Development Company operating within the study are for operational
purpose (i.e. oil spill detection). The RADARSAT-2 images were captured in FineWide
(FOW1) and Wide (W1 and W2) beam modes with swath widths of 170 km and 150 km
respectively, corresponding to incident degrees of 20° to 45° (Canadian Space Agency,

2015). Properties of Radarsat 2 images are presented in Table 4.

Table 4 RADARSAT-2 Imagery properties

Satellite Beam Mode Polarization Date of Acquisition Res (m)
Radarsat-2 w2 HH 2012-10-09 12.5
Radarsat-2 FOW1 HH 2012-10-16 12.5

The CosmoSkyMed data sets were acquired as Detailed Ground Multi-look (DGM)
Geocoded level 1 products (e-GEOS, 2009). The incidence angle of both products

varies from 20° to 60°, while the swath widths were100 km and 200 km respectively,
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acquired in Wide Region instrument mode. CosmoSkyMed image properties are

presented in Table 5.

Table 5 CosmoSkyMed Imagery properties

Satellite Product Instrument Polarization Date of Res (m)
standard Mode Acquisition

CosmoSkyMed DGM Wide Region HH 2012-10-11 25

CosmoSkyMed DGM Wide Region HH 2012-10-15 25

Both SAR Images were preprocessed using European Space Agency (ESA) Sentinel
Application Platform (SNAP) tool, i.e. Calibration, Geometric correction and Speckle
filtering (Jong-Sen, 1983), and reprojected to UTM Zone 32N. Flood extents were
derived using the density slice histogram thresholding approach (Long et al., 2014) in

Erdas Imagine.

2.3. Flood Delineation using Decision Tree (DT) Analysis

Decision Tree (DT) provides a powerful statistical approach that is widely applied in
predictive and cluster/classification analysis (Song and Lu, 2015). DT generally follows
a hierarchical structure that categorizes flood conditioning factors (Section 2.2.2.) in
relation to a pre-determined set of classes (i.e. flooded and non-flood). The aim of DT is
to establish a relationship between dependent and independent variables in a robust way
using training data sets (Corcoran et al., 2012, Hogg and Todd, 2007). Some DT
algorithms widely applied in flood mapping and vulnerability assessment studies
include (i) Chi-squared Automatic Interaction Detection (CHAID) (Tehrany et al., 2013,
Althuwaynee et al., 2014), (ii) Quick, Unbiased and Efficient Statistic Tree (QUEST),
(111) CRUISE (Classification Rule with Unbiased Interaction Selection and Estimation)
(Panuju and Trisasongko, 2008), (iv) Classification and Regression Trees (CART)
(Malinowski et al., 2015), (v) Exhaustive CHAID, (vi) C4.5 (J4.8) (Peter et al., 2013,
Veljanovski et al., 2011b), (vii) Random Tree, and (vii) Random Forest (Quanlong et
al., 2015). Various DT algorithms are known to result in varying accuracies, depending
on the data composition, spatial distribution and algorithm complexity (Donglian Sun et

al., 2011, Malinowski et al., 2015, Veljanovski et al., 2011b). Therefore, selecting an
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optimal DT is a difficult task (Grabczewski, 2014). In several instances, studies
compare different DTs and choose to apply the one that provides the most accuracy
(Song and Lu, 2015).

In this study, the C4.5 algorithm (Quinlan, 1986) is adopted to develop a decision tree
and execute the flood mapping process using the Waikato Environment for Knowledge
Analysis (WEKA) open-access Machine learning and Environment for Visualising
Images (ENV1) software respectively.

The C4.5 algorithm is implemented using the concept of information entropy/gain
(Shannon, 1948), starting from the DT root node which is the variable with the most
influence on the dependent variable, and classifying (splitting) downward while
including subsequent variables according to their levels of importance. The model is
iterated and pruned to remove redundant variables and overfitting in the decision-
making process to improve predictive accuracy (Hssina et al., 2014, Singh and Gupta,
2014, Pooja et al., 2011, Patel and Upadhyay, 2012). The C4.5 algorithm provides the
unique advantages of (i) accommodating continuous and categorical such as the
conditioning factors, (ii) is capable of handling missing data and (iii) iterates through
the tree to remove unwanted branches (Singh and Gupta, 2014).

Images of six priority conditioning factors are presented in Figure 2 and the hierarchical
structure of the DT generated in WEKA is presented in Figure 3, showing the most
important conditioning variables in descending order of significance automatically

generated from WEKA using the trainng datasets and pruned to eliminate redundance.
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Figure 2 Six priority condition factors determined by decision tree presented in Figure 3.
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3. Results and Discussion

3.1. Decision Tree evaluation

DT (C4.5) algorithm outcome showed that of the 12 conditioning factors tested,
distance from the river, DEM, distance from SAR flood extent, land use, SPI and slope
had the most influence in flood classification (See Appendix 7 for more details). These
were consistent with factors such as the cause of flood, hydraulic connectivity,
historically flooded locations, land use roughness characteristics and flow direction
(Tehrany et al., 2013, Tehrany et al., 2014, Peter et al., 2013). The accuracy of the DT
algorithm is presented in Table 6, disclosing the F-measure, Receiver Operating
Characteristic (ROC) area, the percentage of correctly classified independent variables
and Kappa Statistic, suggesting that the DT algorithm is within reasonable limits of
acceptability.

Table 6 Decision Tree Accuracy Assessment

Class F-measure = ROC Area  Correctly classified Kappa Statistic
(o)

Flooded 0.973 0.917

Non-Flooded 0.814 0.917

Weighted 0.951 0.917 95.27 0.7872

average

1 and 100% = perfect accuracy for decimal and percentage-based measures

respectively.

3.2. Flood map accuracy assessment

The accuracy of the inundation map derived using a C4.5 algorithm, and that previously
derived using histogram thresholding were assessed using five crowd-sourced data
points that fell within the AOI (Ekeu-wei and Blackburn, 2016) — Chapter 5 and
overflight data applied in the training process. The percentage of correctly classified
data points are presented in Table 7, and evidence of improvement is seen in DT when

compared to HT flood extracts. Visually, the highest flood spread is seen in the DT
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model outcome (Figure 4A) in comparison to HT (Figure 4B). DT flood extent showed
increased hydraulic connectivity along the river over banks and continued within the
floodplain. However, some disconnectivity exists within the floodplain, suggesting the
capture flood susceptibility regions (Trigg et al., 2013), given that DT technique takes
into account locations that would likely be flooded, but may not necessarily be flooded

during the 2012 flood season (Tehrany et al., 2013).

Table 7 Flood Map accuracy assessment: Histogram Thresholding (HT) and Decision
Tree (DT)

Data Type Correctly estimated HT SAR  Correctly estimated DT SAR
(%) (%)

Crowd-sourcing 40 80

Overflight 30 68

3.3. CAESAR-LISFLOOD evaluation in the Niger Delta

Inundation extent extracted from satellite, especially SAR provides the baseline for
evaluation flood model accuracy in data-sparse regions (Di Baldassarre et al., 2011, Van
Wesemael et al., 2016). A previous study at the same study area using HT flood extent
(Chapter 6), revealed the limited accuracy of SAR image in delineating flood in the
mangrove dominated Delta, due to C-band radar inability to penetrate vegetation and
bounce of rooftops in urban regions. Results of the CAESAR-LISFLOOD model
evaluation presented in Table 8 shows that the decision tree approach improved the F-
Statistic by 51% and reduced the overall BIAS from 3.432 to 0.669. However, the
overall percentage flood capture reduced by 25% due to increased inundation by the DT
approach which captured susceptible but not likely flooded areas. The DT and HT flood
maps both revealed modelled flood extent over-estimation over the delta region (Figure
4), owing to the uncertainties arising from coarse data inability to represent the complex
terrain (Abam, 2001b, Syvitski et al., 2012), as well as landscape characteristics such as
wetlands that are usually waterlogged over the dry and wet season (Powell, 1997), and
activities such as dredging and sand-mining (Ohimain et al., 2004, Tamuno et al., 2009)

which contributes to the complexity of the region’s geomorphology.
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Table 8 CAESAR-LISFLOOD evaluation based on Histogram Thresholding and

Decision Tree

Performance Histogram Threshold Decision Tree
F-Statistic 0.19 0.37
BIAS 3.43 0.70
% Flood Capture 69.95 4541

Legend
0 10 20 40 Km Overflight - Modelled and Observed wet
——t—tt—+—+—+— Non-Flooded  [JJl] over Estimation
Flooded [ ] under Estimation
A Crowd_Sourcing
-River

Figure 4 Decision Tree, Histogram Thresholding and CAESAR-LISFLOOD model
visualisation

4. Conclusion

This study was focused on improving Synthetic Aperture Radar flood delineation in the
mangrove dominated Niger Delta region of Nigeria to enhance hydrodynamic model
validation. Multiple open-access data sets were combined and trained using the C4.5
decision tree algorithm to capture flooded and non-flood locations identified from
overflight geotagged photos. The decision tree algorithm was initialized using 12 flood

conditioning parameters including DEM and its derivatives (Slope, Curvature, Stream
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Power Index, Topographic Wetness Index and Topographic Position Index), Soil type,
geology, rivers, land use/cover and historical flood extent. The Decision Tree (DT)
prioritised distance from the river, DEM, historical flood extent, land use/cover, slope
and SPI as the most influential components for flood delineation in the decision-making
process.

The accuracy of the DT flood extent was assessed using overflight and crowd-sourcing
data and was found to be higher than derived by histogram thresholding. The DT flood
extends also resulted in the improved assessment of the 2-dimensional CAESAR-
LISFLOOD hydrodynamic model and reduced overall bias. However, the results of this
study show the DT approach overestimates flood extent owing to the fact that locations
susceptible to flooding were captured as flooded even though they were not necessarily
flooded during the 2012 flood season.

Going forward, improved data collection is suggested in the region, especially river
bathymetry, up-to-date high-resolution terrain and land use/cover dataset that captures
the true complexities of the Niger Delta landscape, as well as training datasets with
adequate spatial spreaf, for the improvement of the hydrodynamic model and flood
mapping outcomes, to recude residual uncertainties that resulted in overestimation of
flood exteent by both approaches. Also, we recommend the re-established of
discontinued hydrological gauging stations along the Niger river discharging into the
Niger Delta region (Abam, 2001b, Olayinka, 2012), to provide reliable hydrological

data to improve for modelling with reduced uncertainty.
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CHAPTER 8: CONCLUSION, CONTRIBUTIONS, LIMITATIONS AND
RECOMMENDATIONS

Flood occurrences are often unexpected or with little warning, thereby making it
difficult to manage. However, past flood experiences provide a baseline for planning
and decision making for managing subsequent/expected flood events. In developing
regions, such historical data is seldom available due to administrative, logistical,

financial and technical drawbacks.

This study was aimed at overcoming data and resources limitations in flood modelling
and mapping, thereby reducing the associated uncertainties. I applied open-access
remote sensing and 3™ party data collected by individual (crowd-sourced) and
organisations living/operating in the area of interest to fill the data void. Also, I used
freely available tools complemented by student licensed and generally available
commercial software to ensure study replicability in developing regions where invests
in sophisticated systems are limited due to lack of funds (Appendix 2). This will thereby
enable the establishment of an integrated flood management system that involves
planning, response and recovery for several developing countries. The main findings of

this study are summarised as follows:

1. Logistical, administrative, financial and technical factors are identified as the core
causes of data sparsity at local and transboundary river basins in developing
countries.

2. Alternative open-access remote sensing and third-party data acquired by individuals
and organisations residing and operating in remote locations can be leveraged for
flood modelling and mapping activities including flood frequency estimation,
hydrodynamic modelling and risk mapping in data sparse regions.

3. Other than open-access geospatial data, organisations operating in developing
regions and satellite consortiums such as the Disaster Charter occasionally collate
high-resolution satellite and bathymetry data that can be requested and applied in
flood modelling and mapping processes as demonstrated in this study.

4. Gaps in historic hydrological time series, sparsely distributed gauging stations and
short records at newly established gauging stations are some of the challenges that
hinder optimal flood frequency estimation in developing regions required to inform

flood management decisions. This study curbs these challenges by (i) applying
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radar altimetry and multiple imputations to reconstruct missing data, and (ii)
regional flood frequency analysis to tackle gauging station paucity and hydrological
record shortage.
In-filling missing data in hydrological times series using radar altimetry and
multiple imputation is dependent on the consistency of the gaps within the dataset.
Radar altimetry approach is recommended for widely gapped datasets greater than
3 years, while multiple imputation can be applied for gaps of not more than 3 years,
to reduce the uncertainties associated with estimates derived from incomplete data
sets.
Flood estimates based on the assumption of homogeneity is no longer valid,
considering the growing influence of climate change and variability on the
hydrological cycle. Using an open-access ICI-RAFT tool, the influence of Madden-
Julian Oscillation multi-decadal climate variability indices on regional flood
estimates in sparsely gauged Ogun-Osun basin was demonstrated, reiterating the
need for the revision of flood management measures based on the assumption of
stationarity.
Monitoring flooding as it occurs requires real or near-real-time data and processing
that is seldom available, and in other instances, floods inundated roads, thereby
causing logistical and accessibility challenges that hamper in situ data collection in
remote areas. The results from this study suggest that crowd-sourcing and remote
sensing when combined can capture micro and macro scale flooding in near-real-
time, useful for evacuation planning and specific need assessment during flooding.
Also, the discrepancy between government and citizen perception of flood risk is
revealed, thus raising a question about the uncertainties in the GeoSFM and SWAT
models, and the need for citizen knowledge integration into flood management and
decision-making.
Open-access CAESAR-LISFLOOD hydrodynamic and remote sensing data were
sufficient in modelling flooding in the Niger-South catchment area of Nigeria.
However, the accuracy of the model outcome depended largely on the morphology
of the area modelled and data availability. The location with constrained river
channels and up-to-date river bathymetry data (Lokoja), resulted in more accurate
flood extent and water level estimates to accuracies greater than 80% and RMSE of

0.564 respectively, despite using SRTM DEM as the topographical dataset.
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Therefore, improved bathymetric survey is suggested, especially in the low-lying
Niger Delta region for enhanced flood modelling and mapping.

9. At Lokoja sub-domain where improved model accuracy was achieved, the 2012
flood event inundation extent that resulted in damage to infrastructure, disruption of
socio-economic activities and loss of lives, was simulated to an 85% accuracy, with
impacts on population, settlements, built-up areas and road infrastructure estimated
at similar accuracies. Also, the 2012 flood was within the 90% confidence level
bounds of 1-in50 and1-in-100-year flood return period events.

10. The deficiency of Synthetic Aperture Radar (SAR) in delineating flood extent in
the vegetation dominated region of the Niger Delta was revealed in this study,
using overflight geotagged photos that captured the true state of flooding in the
region, especially within mangrove canopies where SAR images were deficient.
This overflight data for model validation resulted in better model to reality match,
especially in low-density building, vegetation and bare earth locations.

11. SAR flood delineation capacity was improved in the mangrove-dominated delta
region using a multi-criteria decision tree approach that combines various open-
access geospatial data sets. This approach improved SAR inundation capture
capacity by 100% from the previously applied histogram thresholding method
when compared to crowd-sourced flood information. However, flood extent was
over-estimated at locations that were not necessarily flooded, but susceptible to
flooding.

12. Causes of flood modelling uncertainty identified in this study were (i1) poorly
defined river bathymetry in the low-lying Niger Delta of Nigeria and (ii)
unavailability of hydrological gauging station within the regions river segment, thus
causing propagation of upstream uncertainties. Other factors that contribute to the
complexity of modelling the region. These include the wetland nature of the delta,

natural/artificial ponds, ongoing dredging and sand mining.

7.1. Contribution to Literature/Method

Open-access remote sensing has been widely applied in developing regions where data
unavailability is pronounced. However, the application has been fragmented, focused on
individual challenges that hamper flood modelling and mapping processes at specific

points in time (Sanyal et al., 2013, Yan et al., 2015b, Degrossi et al., 2014, Corcoran et
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al., 2012, Tehrany et al., 2013). Chapter 2 of this Thesis presents a review of data
sparsity challenges at a local, regional (transboundary) and global scales, also revealing
the broad range of open-access data available to overcome data limitation at various

scales.

This study presents an integrated approach that systematically solves the problem of
data insufficiency at every stage of flood modelling and mapping from preparedness,
response to recovery, using limited resources as often the case in developing regions.
First, hydrological data with varying gap patterns (i.e. consecutive (1-3 years) and
inconsecutive (> 3 years) were filled using radar altimetry and multiple imputation
approaches in Chapter 3, and short duration hydrological time series data are
agglomerated within regions of hydrologic similarity while accounting for climate
variability effect using freely available ICI-RAFT tool in Chapter 4, thereby enhancing
flood quantile estimation in sparsely gauged river basins. Annual Exceedance
Probabilities (AEP) derived from both methods are essential to flood defence and

hydraulic structures designs, and planning required for effective flood management.

Flood hazard mapping is critical to understanding the exposure of citizens and
infrastructures to risk, to ensure efficient flood management plans are initiated and
measures implemented to manage flood upon occurrence (Surendran et al., 2008,
Ramirez et al., 2016, NIHSA AFO, 2014). Chapter 5 detailed an integrated RS and
crowd-sourcing approach that can improve flood risk management if integrated into
national flood management frameworks, given the discrepancy between government
and citizen risk perception attributed to data and model uncertainties inherent in the
flood model government decisions are currently based on. This model is incapable of
capturing micro scale flooding caused by local factors such as poor urban drainage and
waste management practices, and the model’s bias in favour of fluvial flooding. Also,
this study identifies a peculiar challenge of reluctant to divulge socio-economic data, an
active crowdsourcing deficiency never disclosed in any previous literature - due to

widespread internet fraud rampant in some developing regions.

Hydrodynamic models are strongly reliant on hydrographic, terrain and calibration data
sets (Aerts et al., 2009, Els, 2013), and the accuracy of the flood model depends on the
input data accuracy (Jung and Merwade, 2015, Sanyal et al., 2013, Domeneghetti et al.,
2013). CAESAR-LISFLOOD model was applied in retrospect to recreate the 2012
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flood event within the Niger-South basin, Nigeria (Chapter 6). Multiple open-access RS
and data collected by organisations operating within the area of interest were applied.
River channel bathymetry was super-imposed on Bare-earth SRTM, and ICE Sat
altimetry applied in the elevation data accuracy assessment. Model calibrated/validated
were executed using a combination of optical, radar satellite images, overflight
geotagged photos and hydrologic data sets. This approach reveals how multiple data
sets can be employed to reduced modelling uncertainties, and by sectioning the whole
study area into sub-domains, the effect of data variability and river section
geomorphology was captured, revealing how data combination can improve model
performance and differ from when the entire domain was assessed as a single unit.
Deficiencies in SAR imagery flood delineation within the vegetation dominated delta
region was revealed using overflight geotagged photo that has the ability to capture

underlying flooding with mangrove canopies where radar pulse cannot penetrate.

In a previous study in the Niger-South region of Nigeria, Olayinka (2012)
recommended an approach that incorporates environmental, climatic and sociological
factors for further research, envisioning that such approach will ensure effective flood
risk planning and monitoring. Evidence from this research confirms this hypothesis,
revealing improved flood monitoring and management using multiple open-access data,

and, the need for citizen inclusion in flood management decision making.

7.2. Contribution to policy and practices in Nigeria

Flood management policies exist in Nigeria, with clearly defined objectives and plan of
action detailed in the (i) Action Plan for Erosion and Flood Control (FME, 2005b), (i1)
Technical Guidelines on Soil Erosion, Flood and Coastal Zone Management (FME,
2005ba) and (iii) Water Resources Master Plan (FMWR, 2013). Nevertheless, these
policies have become obsolete, less the latter, and lacks clear definition responsibilities
and effective implementation, judging by the recurring floods and increasing impacts in
recent years. Also, the effect of climate change and climate variability on hydrological
regime and data limitation challenges though mentioned in FMWR, (2013), are seldom
accounted for during implementation, or a simple bias regression interpolation approach
is applied to fill missing data (Dike and Nwachukwu, 2003), which results in

predictable biases and corrected data variables (van der Heijden et al., 2006).

217



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

The Nigeria Erosion and Watershed Management Project (NEWMAP) initiated in 2012
through a collaborative effort of the Nigerian government and the World Bank is aimed
at improving watershed management through effective monitoring and climate change
effect inclusivity (The World Bank, 2012, Hogan, 2016), however, its implementation is
still in progress, with advanced hydrological monitoring equipment yet to be distributed
to river basin authorities (Hogan, 2016). This study disclosed contemporary issues
surrounding flood management globally and locally (Nigeria), with results revealing
missing and limited data effect on flood frequency and magnitude estimates, and how
alternative altimetry data, statistical techniques and data amalgamation can be applied to
improve long-term flood management at newly established gauge station locations. The
results of this thesis, if taken into account, can help inform gauging station distribution
to optimize flood management in Nigeria, reduce uncertainties associated with missing
data in flood modelling processes, and also reconstruct historical data sets at locations

where gauging stations are newly established.

The flood experience of 2012 in Nigeria was an eye opener, triggering the need to re-
evaluate the Nigerian flood management strategy and improve the understating of the
contributing factors (ACMAD, 2012, Agada and Nirupama, 2015, Ojigi et al., 2013,
Ojinnaka et al., 2015). The retrospective approach undertaken in this study recreated the
flood scenario in the Niger-South basin to an 85% accuracy where optimal data was
available, suggesting that the flood would have been managed considerably if plans
were in place for a 1-in-100-year. Also, this study disclosed that majority of the 2012
flood emanated from the Benue river, suggesting that Kiri and Lagdo Dam in Nigeria
and Cameroon respectively were the likely causes of the flooding as indicated in
previous literature (Tami and Moses, 2015, Ojigi et al., 2013). Furthermore, improved
hydrological and bathymetric data collection is required especially in the Niger Delta
region, to achieve improved modelling accuracies. Results from (Chapter 6) also
suggests that flood management maps need to be developed for the eight hydrological
areas in Nigeria using improved data, identifying flooded locations and safe points for
relocation during flooding. Such flood maps can also help inform infrastructure and
housing development planning, especially in locations where flood-prone lands are sold

during the dry season to the uninformed populace (Ajibola et al., 2012).
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The data sparsity challenges tackled in two hydrological areas V and VI in this study are
common in the other six hydrological areas and the larger Niger Basin (Garba et al.,
2013a, Adeogun et al., 2014), and the methods proposed here can be adapted to curtail
similar data deficiencies. Stakeholder inclusion using crowd-sourcing approach
(Chapter 5) disclosed discrepancy between government flood risk perception based on
SWAT and Geospatial Stream Flow Model (GeoSFM) models and people’s perception,
owing to the uncertainty within the data and model. Recent studies (Liu et al., 2016),
revealed how SWAT can be incorporated with LISFLOOD-FP for high-resolution
large-scale modelling and can be applied by the Nigerian Hydrological Service Agency
(NIHSA) to enhance the flood modelling predictions in Nigeria. This study also
presented an integrated remote sensing and crowd-sourcing approach for flood
monitoring that enable small and large-scale flood detection. This methodology if
coordinated by a disaster management agency such as the National Emergency
Management Agency (NEMA) for Nigeria, working in collaboration with the National
Space Research and Development Agency (NASRDA) and the Federal Ministry of
Information and Culture and leverage on such an approach to improve flood monitoring,
communication, response and recovery. Although the head of NEMA Geographic
Information System department argued in an interview (Uwazuruonye, 2016) about the
possibility of citizens providing erroneous information data just to get relief as often the
case from his disaster recovery experience, it is expected that time-stamped images
captured as part of the crowd-sourcing data collection process, combined with remote

sensing flood extracts will curb such discrepancies.

7.3. Contribution to data archive for Nigeria

This study revealed that other than genuine data scarcity caused by organisational,
logistical, financial and technical drawbacks, artificial data scarcity also exists, caused
by (i) the fragmented and unstructured nature of data collection and management, and
(i1) inaccessibility to data due to bureaucratic bottlenecks and the absence of open
database infrastructure. Ngene, (2009, 2015) also lamented the effect of poor data
management practices on water resource management caused by factors including
erroneous data imputation when transferring from paper-based to digital systems. Nwilo
and Osanwuta, (2004) also suggested same and recommended a National Spatial Data

Infrastructure (NSDI) to improve inter-organization data and knowledge sharing to
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improve access to data and reduce duplication of data scouring efforts. Although this
study did not develop a national database, analogue (paper-based) hydrological data
collected from Ogun-Oshun River Basin Development Authority, Benin-Owena River
Basin Development Authority, National Inland Water Ways Authority, Niger Delta
River Basin Authority and Nigerian Hydrological Service Agency were digitized, and
are now readily available for use. Going forward, these datasets can be integrated into

the NSDI.

Data format inconsistency has also been argued to be one of the challenges facing water
resource management in the Niger Basin (Olomoda, 2002, Olomoda, 2012). In this
research, topographic, bathymetric, and digital elevation data are converted to a single
GeoTIFF format, and the vertical datum and Coordinate reference system corrected to
Mean Sea Level (MSL) and UTM Zone 32N to ease manipulation, integration and
application. The terrain, altimetry and river bathymetry datasets were originally
available in a range of formats including paper-based topographic maps, AutoCAD
(.DWG), ASCIIL, CSV, XLS, DSS and TIFF. The vertical datum of the raw datasets
included EGM96, EGM2008, Lagos 1955 and MSL, while the spatial geographic
coordinates systems varied from WGS 1984, UTM Zone 32N, Nigeria West Belt to
Clarke 1880. Both reference systems if not correctly adjusted would result in
topological errors that flaw model outcomes, consequentially resulting poor flood
management decisions (Youngman et al., 2011, Aman Hj Sulaiman et al., 2012, Pe’eri
and Armstrong, 2014). Hence, a standardized referencing system is recommended in
Nigeria for flood management designs and analysis. This can be facilitated by the
Federal Ministry of Water Resources and the National Space Research and

Development Agency (NASRDA)

Furthermore, this study identified locations of past, present and future radar altimetry
virtual stations in relation to in situ gauging stations (Chapter 2), that can be leveraged
on to reconstruct the hydrological time-series of discontinued and/or newly established

gauging stations for long-term flood management in data sparse regions of the country.
7.4. Limitations

The types of flooding predominant in the Niger South river basin include river, coastal,
surface water and urban flooding. Coastal flooding emanates from sea level rise caused
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by climate change (Musa et al., 2016). Surface water flooding is triggered by non-river
components such as pounds overtopping, wetland saturation or anthropogenic activities
such as dredging that alter local hydrology (Okonkwo, 2012, Abam, 1999a). Urban
flooding, on the other hand, is caused by increased impervious surfaces and aggravated
runoff, as well as, and poor drainage and waste management (Ogundele and Jegede,

2011, Atedhor et al., 2011).

This study focused solely on river (fluvial) flooding owing to the recent flood events
triggered by upstream dam water releases as a result of intense rainfall (Ojigi et al.,
2013, Olojo et al., 2013). However, flood scenarios are more complicated in reality,
and an inclusion of other flood causation factors is likely to improve the model
outcomes as reported in other studies (Breinl et al., 2015, Chen et al., 2010, Ashton et
al., 2012). Although executing complex models requires additional data such as
precipitation, tidal water level, evapotranspiration and geomorphology which are sparse
in this area of study, remote sensing technology provides alternative that fills such
voids, i.e. Tropical Rainfall Measurement Mission (TRMM) (Adeyewa and Nakamura,
2003, Abiola et al., 2013), evaporation, soil moisture (Miralles et al., 2011, Martens et
al., 2016) and tidal water levels (Din et al., 2015, Davis et al., 2010). A Recent review
on “The Future of earth observation in hydrology” by McCabe et al., (2017) also
detailed hydrological modelling data needs and alternative sources for improved

outcomes in the future.

Other than climate variability effect on hydrological regimes, land cover/use changes
(Zhang et al., 2016, Dwarakish and Ganasri, 2015) and hydraulic factors such as dams
impoundments and releases (Olayinka, 2012, Abam, 1999b, Abam, 2001b) also
influence hydrological regimes. Although post-dam creation hydrological data was used
for this study to lessen the effects of Kanji, Jebba, Kiri and Lagdo dam constructions on
the Niger and Benue rivers hydrological regime (Toro, 1997, Ojigi et al., 2013).
Approximately 69 dams exist within the Niger Basin (Lehner et al., 2011), with
majority hydraulically linked to the Niger-south river basin through Niger and Benue
rivers tributaries. Therefore, the influence of hydraulic structures needs to be accounted
for going forward. Typically, Reservoir Index (RI) is implemented to account for

reservoir effect (Machado et al., 2015, Lopez and Francés, 2013). Nevertheless, the
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number of dams within the Niger Basin complicates this process and was beyond the

scope of this study.

Though this study presented an integrated approach on how open-access remote
sensing, crowd-sourcing and third party acquired data sets can be combined to improve
flood modelling and mapping in data-sparse regions, data deficiency was evident at the
Onitsha and Niger Delta regions, where river bathymetry data was obsolete and non-
existent respectively (Chapter 6). Also, dredging, illegal sand mining and wetlands
ponds (Trigg et al., 2016, Abam, 2001a, Tamuno et al., 2009) were identified as factors
that contributed to the complexity of modelling the Niger-South basin. High-resolution
up-to-date terrain and river bathymetry data are required for improved modelling of

these regions.

In recent years, crowdsourcing has been a useful tool/approach in disaster management
studies and practices, especially for monitoring as evident in this study, and
rehabilitation/reconstruction activities such as (i) identification of impacted populace,
(i1) needs assessment and (iii) critical infrastructure damage (Schnebele et al., 2014,
Schnebele and Cervone, 2013, Goodchild and Glennon, 2010, Degrossi et al., 2014).
Internet scam has been rampant in recent years in some developing economies (Jegede,
2014, Wang and Huang, 2011), resulted in the reluctance of respondents to divulge
socio-economic data, thereby limiting the number of responses received and

consequently the results in Chapter 5 (Choi and Pak, 2004).

Decision tree classification provides the unique advantage of discriminating/classifying
flooded and non-flooded landscape based on a combination of categorical or continuous
data sets (Malinowski et al., 2015, Friedl and Brodley, 1997). The training data spatial
distribution, quantity, ratio of class division and spatial resolution of satellite images
from which conditions factors are extracted impacts on the accuracy of final
classification outcome (Kavzoglu and Colkesen, 2012, Peter et al., 2013, Lamovec et
al., 2013, Malinowski et al., 2015). Typically, high-resolution data, increased and
optimally distributed training data would reduce such bias in the classification outcome.
Applying third-party acquired and open-access data limited our control over the afore
listed factors, thereby affecting the accuracy of the inundated area estimates as

previously presented.
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7.5. Hydrology, Hydrodynamics and Flood Mapping Uncertainties

The value of open-access remote sensing and third-party data collected in developing
regions was clearly demonstrated in this study, despite the difficulty associated with
acquiring data for flood modelling and mapping in these regions. The outcome of this
thesis suggests that data is always available, though fragmented, and in other cases
incomplete and not frequently available. The level of accuracy derived from the
integrated application of such datasets, however, depends on their accuracy and inherent

uncertainties, which are epistemic and aleatory in nature (Merz and Thieken, 2005).

The approaches presented in this thesis is useful in (i) curtailing gaps in hydrological
data caused by distorted data collection; (ii) transfer of data from gauged to ungauged
regions; and (iii) simulation of flooding in flood-prone areas that suffer from
hydrological data insufficiency. Nevertheless, it is important to note that the
hydrological, topography, as well as calibration and validation datasets applied in this
study, contain inherent uncertainties that propagated the flood modelling and mapping

process, thus making difficult to ascertain the levels of uncertainty in the final outcome.

These uncertainties were not addressed in this study, due to the high computational cost
of combined hydrological and hydrodynamic simulations. However, the calibration
process is undertaken in this study to reduce the uncertainty in the model prediction,
through the variation of static manning’s roughness parameters of the hydrodynamic
model, while comparing the model outcome to observed data. Furthermore, details of

specific uncertainties are elaborated below.

7.5.1. Uncertainty in Frequency Analysis:

Input flow data uncertainty: River discharge data is one of the most fundamental
input (initial and boundary condition) required for flood modelling. River water levels
within the study area are typically measured using staff gauge, then converted to
discharge using established rating curves that relate water levels and discharge
(Herschy, 2008, Di Baldassarre et al., 2012). This results in measurement and
extrapolation uncertainties (Baldassarre and Montanari, 2009, Haque et al., 2014).
Although this study attempts to understand the degree of rating curve extrapolation
influence on the annual maximum time series using ratings ratio (Haddad et al., 2010),

the approach applied here is not exhaustive, given that the actual uncertainty associated
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with observation and discharge estimation using rating curves are not quantified and

accounted for in the flow estimation process.

Limited duration of flow records: Flood frequency analysis (FFA) is essential to
estimating the likelihood of a flood event of specific magnitude occurring or be
exceeded. Other than the apparent possibility of measurement and rating curve
extrapolation uncertainties propagating unto the outcomes of the flood frequency
estimates as previously discussed, the length of available historical hydrological records
further contributes to flood estimation uncertainty (Reed, 1999). More data usually
imply increased confidence in the flood estimate, especially for the standard 1-in-
100year (1% chance of flood) flood estimate that can be significantly affected by the
length of historical records (Feaster, 2010). This study adheres to the 5T rule stipulated
in the Flood Estimation Handbook (Reed, 1999), which recommends that the available
historical data should be applied to estimate a target return period that is at least five
times its length (i.e. 20 years of data is required for a 100-year flood estimate). The gaps
within the hydrological datasets used in this study make the original dataset less than
5T, revealing the typical degree of missing data evident in many developing regions.
Nonetheless, the missing data infilling approaches proposed and applied in this study
provides the unique advantage of filling these gaps, and can be applied to reconstruct

historical data from when hydrological stations were yet to be established.

Probability Distribution Selection and Parameter Uncertainty: Other than the
length of availability data, model selection is one of the relevant sources of epistemic
uncertainty. In hydrological flood frequency estimation models, the choice of
probability distribution and parameter estimation technique applied can affect the
desired outcome significantly (Botto et al., 2014). As such, varying probability
distribution functions including Generalized Extreme Value (GEV), Generalized
Logistic (GLO), Extreme Value (type 1 — 3), Generalized Pareto (GPA), and Log-
Pearson type 3 (LP3), can result in significantly different flood estimates for the same
historical dataset, especially for large return periods, given the subjectivity associated
with probability distribution selection (Di Baldassarre et al., 2012, Laio et al., 2009).
Also, underlying parameter estimator bias and variance can contribute to flood estimate
uncertainty (Tung and Yen, 2005). Typically a suitability analysis is undertaken to
access the best probability distribution (Peel et al., 2001), as undertaken in chapter 4,
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but GEV is adopted in chapter 3 to estimate flood frequency and magnitude, due to its
robustness, flexibility (Komi et al., 2016, Hailegeorgis and Alfredsen, 2017, Papalexiou
and Koutsoyiannis, 2013) and wide applicability in the area of interest, for consistency
(Izinyon and Ehiorobo, 2014, Garba et al., 2013b, Fasinmirin and Olufayo, 2006). The
GEV probability distribution estimates are however affected by tropical cyclones and
extratropical weather systems that results in extremely large shape parameters (Smith et
al.,, 2011, Villarini and Smith, 2010), but these events do not manifest in Nigeria.
Furthermore, the GEV like other probability distributions is affected by short
hydrological time series and could result in uncertain flood estimates (Ragulina and

Reitan, 2017, Botto et al., 2014).

7.5.2 Uncertainty in hydrodynamic Modelling:

Hydrodynamic model uncertainty: Hydrodynamic models are typically applied is
predicting the route of water flow longitudinally along the river channel and laterally
across floodplains with varying degrees of complexity, depending on the question of
interest, and are usually governed by continuity and momentum equations (Casas et al.,
2006). CAESAR-LISFLOOD applied in this study provides as a simplistic
approximated approach that models longitudinal and transverse across river channels
and floodplains respectively (Coulthard et al., 2013, Coulthard et al., 2007).
Nevertheless, the simulation in this study assumes Ilimited erosion and
geomorphological changes, as well as infiltration, despite evidence of geomorphological
dynamics within the catchment area (Musa et al., 2014b), due to the absence of field
data, thus I adapted sedimentation and infiltration rate parameters from a previous study
in the same catchment area (Olayinka, 2012). Also, the model is run at 270 m resolution
for computational efficiency, and this further reduces the hydraulic complexity of the
Niger-South river basin, and could potentially contribute uncertainty to the

hydrodynamic model outcomes.

Digital Elevation Model (DEM) uncertainty in flood modelling: Digital elevation
models are essential input parameters required for hydrodynamic modelling. DEMs are
usually acquired through various approaches and at varying spatial scales, thus the
accuracies of DEMs can varying considerably, depending on the method of acquisition
and spatial resolution (Md Ali et al., 2015). When applied as input in flood modelling,

DEM accuracy can affect model performance, thus resulting in uncertain outcomes.
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Furthermore, GIS Processing procedures such as resampling often undertaken to
improve model computation cost can further deteriorate DEM accuracies by averaging
elevation pixels values in the resampled DEM (Casas et al., 2006). Low resolution and
coarse DEM such as SRTM used in this study are known to result in less accurate flood
modelling outcomes. This however varies with the scale of model (from small to large),
given that open-access DEMs such as SRTM and ASTER DEMs have been recognised
to be particularly useful and considered effective for large-scale modelling (Yan et al.,
2015b, Patro et al., 2009, Komi et al., 2017). Also, elevation bias (forest canopy and
urban areas sensor reflectance) corrected DEMs, as well as the integration of high-
resolution DEM (such as dGPS survey and LiDAR) and bathymetry survey data with
coarse DEM, have been found to improve hydrodynamic model outcomes (Ireneusz et
al., 2017, Yamazaki et al., 2012, Baugh et al., 2013). DEM modification and integration
are applied in this study, depending on data available within the specified sub-domains
in chapter 6. The effect these variable DEM compositions were revealed in the varied
calibration parameter values and final model outcomes for individual sub-domains,
thereby demonstrating the impact of DEM and up-to-date bathymetry on flood estimates

under different geomorphological conditions.

Flood delineation uncertainty: The performance of flood inundation models is often
assessed using satellite (SAR and optical) observed data on water level or flood extent,
especially where in-situ observations are unavailable. However, these data have
inherent uncertainty that can impair its usage. The value of SAR in delineating accurate
flood extent has been widely demonstrated, owing to the low radar backscatter from the
surface of the water, which differs from the higher returns from the relatively rough
landscapes (Smith, 1998). Nevertheless, this delineation is complicated by landscape
properties such as vegetation and buildings which can cause multiple reflections, and
meteorological conditions such as wind or rain that roughen water surfaces, resulting in
increased backscatter and consequently misdelineation of flooded areas as no-flooded
(Mason et al., 2016). Optical images are also useful in flood delineation, derived mostly
from the discriminating between the spectral signatures of water surface and
surrounding landscape in multi-temporal images, using image classification or spectral
indices (Zhang et al., 2014, Stephen et al., 2015). Similarly, optical images are affected
by atmospheric conditions such as cloud cover, and landscape properties such as

vegetation and rugged terrain. These process uncertainties that are likely to reduce the
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usability of satellite information for the evaluation of model performance can be
improved by better image processing techniques that reduce errors associated with flood
extent delineation processes (Long et al., 2014, Veljanovski et al., 2011b, Zhang et al.,
2014).

Limited number of crowdsourced data and responses: This study presents the first
effort to adopt crowd-sourcing for flood management in Nigeria, and revealed the
prospects, challenges and opportunity for improvement. The results presented reveal the
prospect and potential benefits of integrated crowd-sourcing and remote sensing for
flood detection and reporting in data spare regions; especially to capture micro-climatic
conditions in urban areas, where both radar and optical imaging systems could be
deficient (Musa et al., 2015). Nevertheless, the responses obtained in this study are
limited to 50 respondents, and as such did not capture the general population’s
perspective on flooding, and therefore the results presented in chapter 4 cannot be
interpreted definitively. Also, quality assessment of crowd-sourced and volunteer GIS
has been a major debate in such studies (Wang et al., 2017, Foody et al., 2014,
Goodchild and Glennon, 2010), and although cross-validation using media and remote
sensing is adopted in this study, the validation datasets also contain inherent
uncertainties, given that remote sensing can under-estimate flood extents and media

outlets cannot reach all flood areas to report disaster incidents.

7.6. Recommendations and future research direction

1. The scarcity of gauging station networks and the need for the establishment of new
ones have been largely established in the various literature, including this research.
Efforts are currently ongoing, through a collaborative initiative between the World
Bank and the Nigerian government through the Nigeria Erosion and Watershed
Management Project (NEWMAP). The NEWMAP is working closely with various
river basin authorities to establish hydro-met stations where needed and improve
data collection, management and dissemination to improve flood management. It is
expected that newly established gauging station data will be short, hence this study
advises that radar altimetry tracks and virtual station locations be considered when
establishing new gauging stations to enable reconstruction of historic hydrologic

time-series for long-term flood management purposes.
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2. The causes of data sparsity at local and transboundary scales are well documented

in this thesis, with clear evidence of the prospect of remote sensing in managing
such challenges. Though local data deficiencies can be managed considerably by (1)
enhance inter-government agencies cooperation, and restructuring; (ii) capacity
building; and (iii) infrastructure financing, the challenges of transboundary flood
management agencies are more complex, as jurisdiction and independent
government policies hinder effective cooperation. Open-access optical (Landsat,
MODIS and Sentinel 2), radar (Sentinel-1) and altimetry satellite data provides
huge prospect to improve integrated transboundary flood monitoring and
management in riparian countries.
The Database for Hydrological Time Series of Inland Waters (DAHITI) and Global
Reservoirs/Lakes (G-REALM) database, for instance, provides water levels
measurements at Lagdo, Kanji and Shiroro reservoirs/dams, that were identified as
the water release points that resulted in the 2012 and 2105 floods in Nigeria (Agada
and Nirupama, 2015, Ojigi et al., 2013). Likewise, the Geodesy, Oceanography et
Hydrologie from Space and The Theia land data services (HY DROWEB) databases
provide water level measurements along the Niger and Benue rivers. Such data sets
can be applied in monitoring the impact of reservoir hydrological variations on
downstream flooding while accounting for land cover/use change influences using
multi-temporal satellite imageries.

3. Given the promising prospect of crowdsourcing and remote sensing application for
near-real-time flood monitoring revealed in this study, a full-on implementation of
a web-based disaster and response Requisition platform is recommended to the
National Emergency Management Agency (NEMA). Existing platforms such as
Flood Crowd or Ushahidi can be adopted, or a new system developed to improved
disaster recovery and rehabilitation. The growing mobile internet subscription
Nigeria (CIA, 2016) and household population tend (Demography and Health
Survey, 2003) suggest the likelihood of increased flood exposure, and also an
opportunity to leverage such trends to enhance mitigation and recovery using
information provided by flood-impacted persons with access to mobile
telecommunication technology.

4. With climate variability driving weather patterns and resulting in more frequent and

intense floods, the assumption of stationarity of hydrological regimes is no longer
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valid. In this study, it was proven that multi-decadal Maiden Julian Oscillation
(MJO) influences flooding in Nigeria as previously established (ACMAD, 2012,
Mohino et al., 2012, Mouhamed et al., 2013, New et al., 2006). Hence, there is need
to review flood management policies and plans based on the obsolete assumption of
stationarity.

The population of Nigeria like most developing countries is on a continuous rise
and is expected to become the 3™ most populous country by 2050, according to the
United Nations. Such population surge will result in an increased likelihood of
exposure due to the vulnerable populace settling within high-risk regions of
floodplains (Shabu and Tyonum, 2013, Tamuno et al., 2003). Going forward, it is
essential that various upstream dam water release scenario’s and downstream flood
impact is simulated (Ramirez et al., 2016), applying reservoir hydrography,
bathymetry, radar altimetry, optical and SAR imagery data, to improve floodplain
planning and management.

. Future radar satellite missions such as the L band NASA-ISRO Synthetic Aperture
Radar (NISAR) and S-band Surface Water Ocean Topography (SWOT) proposed
for launch by 2020 are expected to improve SAR water penetration and
measurement parameters. These missions will provide unprecedented open-access
remote sensing data sets to improve hydrological, hydrodynamic modelling and

flood mapping, particularly in urban and vegetated regions of developing countries.

229



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

REFERENCES

ABAM, T. 1999a. Dynamics and quality of water resources in the Niger Delta. [4HS
PUBLICATION, 429-435.

ABAM, T. 2001a. Regional hydrological research perspectives in the Niger Delta. Hydrological
Sciences Journal-Journal Des Sciences Hydrologiques, 46, 13-25.

ABAM, T. K. S. 1999b. Impact of dams on the hydrology of the Niger Delta. Bull Eng Geol
Env, 57,239-251.

ABAM, T. K. S. 2001b. Modification of Niger Delta physical ecology: the role of dams and
reservoirs. Hydro-Ecology: Linking Hydrology and Aquatic Ecology, 19-29.

ABIOLA, S. F., MOHD-MOKHTAR, R., ISMAIL, W. & MOHAMAD, N. 2013. Categorical
statistical approach to satellite retrieved rainfall data analysis in Nigeria. Scientific
Research and Essays, 8,2123-2137.

ACMAD 2012. Flood report over West Africa - September 2012. African Centre of
Meteorological Applications for Development (ACMAD).

ADEAGA, 0. 2006. Multi-decadal variability of rainfall and water resources in Nigeria. I[AHS
publication, 308, 294.

ADEAGA, O., OYEBANDE, , L. & BALOGUN, I. 2008. PUB and Water Resources
Management Practises in Nigeria. Water and Energy Abstracts, 18, 58-58.

ADEAGA, O., OYEBANDE, L. & DEPRAETERE, C. 2006. Surface runoff simulation for part
of Yewa basin. Predictions in Ungauged Basins: Promise and Progress, 382.

ADEJUWON, G. A. & AINA, W. J. 2014. Emergency Preparedness and Response to Ibadan
Flood Disaster 2011: Implications for Wellbeing. Mediterranean Journal of Social
Sciences, 5, 500.

ADELEKAN, I. 2011. Vulnerability assessment of an urban flood in Nigeria: Abeokuta flood
2007. Nat Hazards, 56,215-231.

ADELEKAN, 1. O. & ASIYANBI, A. P. 2016. Flood risk perception in flood-affected
communities in Lagos, Nigeria. Natural Hazards, 80, 445-469.

ADELEKE, O. O., MAKINDE, V., ERUOLA, A. O., DADA, O. F., 0JO, A. O. & ALUKO, T.
J. 2015. Estimation of Groundwater Recharges Using Empirical Formulae in Odeda
Local Government Area, Ogun State, Nigeria. Challenges, 6,271-281.

ADEOGUN, A., SULE, B., SALAMI, A. & OKEOLA, O. 2014. GIS-Based Hydrological
Modelling using SWAT: Case study of upstream watershed of Jebba reservoir in
Nigeria. Nigerian Journal of Technology, 33, 351-358.

ADETUNIJI, M. & OYELEYE, O. 2013. Evaluation of the Causes and Effects of Flood in
Apete, Ido Local Government Area, Oyo State, Nigeria. Evaluation, 3.

230



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

ADEWALE, P. O., SANGODOYIN, A. Y., ADEWALE, J. & ADAMOWSK]I, J. 2010. Flood
routing in the Ogunpa River in nigeria using HEC- RAS. Journal of Environmental
Hydrology, 18.

ADEYEWA, Z. D. & NAKAMURA, K. 2003. Validation of TRMM Radar Rainfall Data over
Major Climatic Regions in Aftrica. J. Appl. Meteor., 42,331-347.

AERTS, J. C. J. H., ALPHEN, J. V. & MOEL, H. D. 2009. Flood maps in Europe-methods,
availability and use. Natural Hazards and Earth System Sciences, 9, 289-301.

AERTS, J. C. J. H.,, BOTZEN, W. J. W., EMANUEL, K., LIN, N., DE MOEL, H. & MICHEL-
KERJAN, E. O. 2014. Climate adaptation. Evaluating flood resilience strategies for
coastal megacities. Science (New York, N.Y.), 344, 473.

AFRICAN ASSOCIATION OF REMOTE SENSING OF THE ENVIRONMENT &
EUROPEAN ASSOCIATION OF REMOTE SENSING COMPANIES 2016. A Survey
into the AfricanPrivate Sector in EarthObservation andGeospatial Fields.

AGADA, S. & NIRUPAMA, N. 2015. A serious flooding event in Nigeria in 2012 with specific
focus on Benue State: a brief review. Nat Hazards, 77, 1405-1414.

AGBAIJE, G. I. 2010. Nigeria in Space—an Impetus for Rapid Mapping of the Country for
Sustainable Development Planning.

AGBOLA, B., AJAYI, O., TAIWO, O. & WAHAB, B. 2012. The August 2011 flood in Ibadan,
Nigeria: Anthropogenic causes and consequences. Int J Disaster Risk Sci, 3,207-217.

AGUNWAMBA, J., ONUOHA, K. & OKOYE, A. 2012. Potential effects on the marine
environment of dredging of the Bonny channel in the Niger Delta. Environ Monit
Assess, 184, 6613-6625.

AHN, J., CHO, W., KIM, T., SHIN, H. & HEO, J.-H. 2014. Flood frequency analysis for the
annual peak flows simulated by an event-based rainfall-runoff model in an urban
drainage basin. Water, 6, 3841-3863.

AICH, V., KONE, B., HATTERMANN, F. F. & MULLER, E. N. 2014a. Floods in the Niger
basin &amp;ndash; analysis and attribution. Natural Hazards and Earth System
Sciences Discussions, 2, 5171-5212.

AICH, V., KONE, B., HATTERMANN, F. F. & MULLER, E. N. 2014b. Floods in the Niger
basin &ndash; analysis and attribution. Natural Hazards and Earth System Sciences
Discussions, 2,5171-5212.

AJIBOLA, M., IZUNWANNE, E. & OGUNGBEMI, A. 2012. Assessing the effects of flooding
on residential property values In Lekki Phase I, Lagos, Nigeria. International Journal of

Asian Social Science, 2,271-282.

231



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

AKINBOBOLA, A., OKOGBUE, E. C. & OLAIJIIRE, O. 2015. A GIS based flood risk
mapping along the Niger-Benue river basin in Nigeria using watershed approach.
Ethiop. J. Env Stud &amp,; Manag, 8, 616.

AKINTOYE, O. A., EYONG, A. K., EFFIONG, D. O., AGADA, P. O. & DIGHA, O. N. 2016.
Socio-Economic Implications of Recurrent Flooding on Women Development in
Southern Ijaw Local Government Area, Bayelsa State, Niger Delta Area of Nigeria.
Journal of Geoscience and Environment Protection, 4, 33.

AKINYEDE, J. O. & ADEPOJU, K. Prospects and Challenges of building capacity for Space
Science and Technology development in Africa. ISPRS commission VI Mid-Term
Symposium, 2010. Citeseer.

ALAMY. 2012. Stock Photo - epa03432197 [Online]. Available: http:/www.alamy.com/stock-

photo-epa03432197-children-play-in-flood-waters-in-ughelli-north-local-government-
46860223 .html [Accessed 30 May, 2016].

ALEXAKIS, D. D., GRYLLAKIS, M. G., KOUTROULIS, A. G., AGAPIOU, A.,
THEMISTOCLEOUS, K., TSANIS, I. K., MICHAELIDES, S., PASHIARDIS, S.,
DEMETRIOU, C., ARISTEIDOU, K., RETALIS, A., TYMVIOS, F. &
HADIJIMITSIS, D. G. 2013. GIS and remote sensing techniques for the assessment of

land use changes impact on flood hydrology: the case study of Yialias Basin in Cyprus.
Natural Hazards and Earth System Sciences Discussions, 1, 4833-4869.

ALMEIDA, G. A. M., BATES, P., FREER, J. E. & SOUVIGNET, M. 2012. Improving the
stability of a simple formulation of the shallow water equations for 2- D flood
modeling. Water Resources Research, 48, n/a-n/a.

ALSDOREF, D. E., RODRIGUEZ, E. & LETTENMAIER, D. P. 2007. Measuring surface water
from space. Reviews of Geophysics, 45, n/a-n/a.

ALTHUWAYNEE, O., PRADHAN, B., PARK, H.-J. & LEE, J. 2014. A novel ensemble
decision tree- based CHi- squared Automatic Interaction Detection ( CHAID) and
multivariate logistic regression models in landslide susceptibility mapping. Landslides,
11, 1063-1078.

AMAN HJ SULAIMAN, S., HJ TALIB, K., MD WAZIR, M. A., YUSOF, O. M. & ZALIL, S.
A. 2012. Height discrepancies based on various vertical datum.

AMANS, O. C., BEIPING, W. & ZIGGAH, Y. Y. 2013. Assessing Vertical Accuracy of SRTM
Ver. 4.1 and ASTER GDEM Ver. 2 using Differential GPS Measurements—case study
in Ondo State, Nigeria. International Journal of Scientific and Engineering Research, 4,
523-531.

AMARNATH, G., UMER, Y. M., ALAHACOON, N. & INADA, Y. 2015. Modelling the
flood-risk extent using LISFLOOD-FP in a complex watershed: case study of Mundeni

232


http://www.alamy.com/stock-photo-epa03432197-children-play-in-flood-waters-in-ughelli-north-local-government-46860223.html
http://www.alamy.com/stock-photo-epa03432197-children-play-in-flood-waters-in-ughelli-north-local-government-46860223.html
http://www.alamy.com/stock-photo-epa03432197-children-play-in-flood-waters-in-ughelli-north-local-government-46860223.html

Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

Aru River Basin, Sri Lanka. Changes in Flood Risk and Perception in Catchments and
Cities, 370, 131-138.

AMPADU, B., CHAPPELL, N. A. & KASEI, R. A. 2013a. RAINFALL-RIVERFLOW
MODELLING APPROACHES: MAKING A CHOICE OF DATA-BASED
MECHANISTIC MODELLING APPROACH FOR DATA LIMITED
CATCHMENTS: A REVIEW. Canadian Journal of Pure and Applied Sciences, 2571.

AMPADU, B., CHAPPELL, N. A. & KASEIL, R. A. 2013b. RAINFALL-RIVERFLOW
MODELLING APPROACHES: MAKING A CHOICE OF DATA-BASED
MECHANISTIC MODELLING APPROACH FOR DATA LIMITED
CATCHMENTS: A REVIEW. Canadian Journal of Pure and Applied Sciences, 7,
2571-2580.

ANDERSEN, I. & GOLITZEN, K. G. 2005. The Niger river basin: A vision for sustainable
management, World Bank Publications.

ANDREADIS, K. M., SCHUMANN, G. J. P. & PAVELSKY, T. 2013. A simple global river
bankfull width and depth database. Water Resources Research, 49, 7164-7168.

ANDREFOUET, S., OUILLON, S., BRINKMAN, R., FALTER, J., DOUILLET, P., WOLK,
F., SMITH, R., GAREN, P., MARTINEZ, E., LAURENT, V., LO, C,
REMOISSENET, G., SCOURZIC, B., GILBERT, A., DELEERSNIJDER, E.,
STEINBERG, C., CHOUKROUN, S. & BUESTEL, D. 2006. Review of solutions for
3D hydrodynamic modeling applied to aquaculture in South Pacific atoll lagoons.
Marine Pollution Bulletin, 52, 1138-1155.

ANGELIDIS, P., KOTSIKAS, M. & KOTSOVINOS, N. 2010. Management of Upstream Dams
and Flood Protection of the Transboundary River Evros/ Maritza. Water Resour
Manage, 24, 2467-2484.

APFM 2011. Associated Programme on Flood Management (APFM), Flood Emergency Series.
In: 11 (ed.) Integrated Flood management Series.

ARCEMENT, G. J. & SCHNEIDER, V. R. 1989. Guide for selecting Manning's roughness
coefficients for natural channels and flood plains. US Government Printing Office
Washington, DC, USA.

ARNOLD, N., BRANSON, M., KUANG, Z., RANDALL, D. & TZIPERMAN, E. 2015. MJO
Intensification with Warming in the Superparameterized CESM. Journal of Climate, 28,
2706-2724.

ARUN, P. V. 2013. A comparative analysis of different DEM interpolation methods. Geodesy
and Cartography, 39, 171-177.

233



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

ASADZADEH JARIHANI, A., CALLOW, J. N., JOHANSEN, K. & GOUWELEEUW, B.
2013. Evaluation of multiple satellite altimetry data for studying inland water bodies
and river floods. Journal of Hydrology, 505, 78-90.

ASHTON, A. D., HUTTON, E. W. H., KETTNER, A. J., XING, F., KALLUMADIKAL, J.,
NIENHUIS, J. & GIOSAN, L. 2012. Progress in coupling models of coastline and
fluvial dynamics. Computers and Geosciences.

ASIAN, S., YOZGATLIGIL, C., IYIGAUN, C., BATMAZ, 1., THRKES, M. & TATLI, H.
2014. Comparison of missing value imputation methods for Turkish monthly total
precipitation data.

ASNER, G. P. 2001. Cloud cover in Landsat observations of the Brazilian Amazon.
International Journal of Remote Sensing, 22, 3855-3862.

ATEDHOR, G. 0., ODJUGO, P. A. & URIRI, A. E. 2011. Changing rainfall and
anthropogenic-induced flooding: Impacts and adaptation strategies in Benin City,
Nigeria. Journal of Geography and Regional Planning, 4, 42.

AVISIO. 2016. Avisio Satellite Altimetry Data [Online]. Available:
http://www.aviso.altimetry.fr/en/home.html [Accessed 1 January 2016].

AWELEWA, E. A. 2016. Wetlands and Livelihood Sustainability: Qualitative Evaluation of the

Impact of Oil Exploitation in Ogbia Local Government, Bayelsa State, Nigeria. Journal
of Geography, Environment and Earth Science International, 5, 1-12.

AWOKOLA, O. & MARTINS, O. 2001. Regional Flood Frequency Analysis of Osun Drainage
Basin, South-Western Nigeria. Nigerian Journal of Science, 35, 37-44.

BACKHAUS, R., CZARAN, L., EPLER, N., LEITGAB, M., LYU, Y. S., RAVAN, S.,
STEVENS, D., STUMPF, P., SZARZYNSKI, J. & DE LEON, J.-C. V. 2010. Support
from space: The United Nations platform for space-based information for disaster
management and emergency response (UN-SPIDER). Geoinformation for Disaster and
Risk Management: Examples and Best Practices. Copenhagen, Denmark: Joint Board
of Geospatial Information Societies.

BAKKER, M. H. N. 2009. Transboundary River Floods and Institutional Capacity. J4WRA
Journal of the American Water Resources Association, 45, 553-566.

BALBUS, J. M., BOXALL, A. B. A., FENSKE, R. A.,, MCKONE, T. E. & ZEISE, L. 2013.
Implications of global climate change for the assessment and management of human
health risks of chemicals in the natural environment. Environmental Toxicology and
Chemistry, 32, 62-78.

BALDASSARRE, G. D. & MONTANARI, A. 2009. Uncertainty in river discharge
observations: a quantitative analysis. Hydrology and Earth System Sciences, 13, 913-

921.

234


http://www.aviso.altimetry.fr/en/home.html

Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

BARALDI, A. N. & ENDERS, C. K. 2010. An Introduction to Modern Missing Data Analyses.
Journal of School Psychology, 48, 5-37.

BARUCH, A., MAY, A. & YU, D. 2016. The motivations, enablers and barriers for voluntary
participation in an online crowdsourcing platform. Computers in Human Behavior, 64,
923-931.

BAS VAN DE, S., CLAARTIJE, H. & JOOST, L. 2012. Sensitivity of Coastal Flood Risk
Assessments to Digital Elevation Models. Water, 4, 568-579.

BATES, P., NEAL, J., ALSDORF, D. & SCHUMANN, G. 2014. Observing Global Surface
Water Flood Dynamics. Surv Geophys, 35, 839-852.

BATES, P. D. & DE ROO, A. P. J. 2000. A simple raster-based model for flood inundation
simulation. Journal of Hydrology, 236, 54-77.

BATES, P. D., HORRITT, M. S. & FEWTRELL, T. J. 2010. A simple inertial formulation of
the shallow water equations for efficient two-dimensional flood inundation modelling.
Journal of Hydrology, 387, 33-45.

BATES, P. D., WILSON, M. D., HORRITT, M. S., MASON, D. C., HOLDEN, N. & CURRIE,
A. 2006. Reach scale floodplain inundation dynamics observed using airborne synthetic
aperture radar imagery: Data analysis and modelling. Journal of Hydrology, 328, 306-
318.

BAUGH, C. A., BATES, P. D., SCHUMANN, G. & TRIGG, M. A. 2013. SRTM vegetation
removal and hydrodynamic modeling accuracy. Water Resources Research, 49, 5276-
5289.

BEAULIEU, A. & CLAVET, D. 2009. Accuracy assessment of Canadian digital elevation data
using ICESat. Photogrammetric Engineering & Remote Sensing, 75, 81-86.

BELAUD, G., CASSAN, L., BADER, J., BERCHER, N. & FERET, T. Calibration of a
propagation model in large river using satellite altimetry. 6th International Symposium
on Environmental Hydraulics, 2010. 23-25.

BESSIS, J. L., BEQUIGNON, J. & MAHMOOD, A. 2004. The International Charter “ Space
and Major Disasters” initiative. Acta Astronautica, 54, 183-190.

BETBEDER, J., RAPINEL, S., CORGNE, S., POTTIER, E. & HUBERT-MOY, L. 2015.
TerraSAR- X dual-pol time-series for mapping of wetland vegetation. ISPRS Journal of
Photogrammetry and Remote Sensing.

BEVEN, K. & HALL, J. 2014. Applied uncertainty analysis for flood risk management, World
Scientific.

BEVEN, K. & KIRKBY, M. J. 1979. A physically based, variable contributing area model of
basin hydrology/Un mode¢le a base physique de zone d'appel variable de 1'hydrologie du

bassin versant. Hydrological Sciences Journal, 24, 43-69.

235



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

BHATTI, S. S. & TRIPATHI, N. K. 2014. Built- up area extraction using Landsat 8 OLI
imagery. GlScience &amp, Remote Sensing, 51, 445-467.

BIANCAMARIA, S., BATES, P. D., BOONE, A. & MOGNARD, N. M. 2009a. Large-scale
coupled hydrologic and hydraulic modelling of the Ob river in Siberia. Journal of
Hydrology, 379, 136-150.

BIANCAMARIA, S., HOSSAIN, F. & LETTENMAIER, D. P. 2011. Forecasting
transboundary river water elevations from space. Geophysical Research Letters, 38, n/a-
n/a.

BIANCAMARIA, S., MOGNARD, N. M., BATES, P. D. & BOONE, A. 2009b. Large- scale
coupled hydrologic and hydraulic modelling of the Ob river in Siberia. Journal of
Hydrology, 379, 136-150.

BIRKETT, C. M. 1995. The contribution of TOPEX/ POSEIDON to the global monitoring of
climatically sensitive lakes. Journal of Geophysical Research: Oceans, 100, 25179-
25204.

BIRKETT, C. M., MERTES, L. A. K., DUNNE, T., COSTA, M. H. & JASINSKI, M. J. 2002.
Surface water dynamics in the Amazon Basin: Application of satellite radar altimetry.
Journal of Geophysical Research: Atmospheres, 107, LBA 26-1-LBA 26-21.

BIRKINSHAW, S., MOORE, P., KILSBY, C., ODONNELL, G., HARDY, A. J. & BERRY, P.
2014a. Daily discharge estimation at ungauged river sites using remote sensing.
Hydrological Processes, 28, 1043-1054.

BIRKINSHAW, S. J., DONNELL, G. M., MOORE, P., KILSBY, C. G.,, FOWLER, H. J. &
BERRY, P. A. M. 2010. Using satellite altimetry data to augment flow estimation
techniques on the Mekong River. Hydrological Processes, 24, 3811-3825.

BIRKINSHAW, S. J., MOORE, P., KILSBY, C. G., DONNELL, G. M., HARDY, A. J. &
BERRY, P. A. M. 2014b. Daily discharge estimation at ungauged river sites using
remote sensing. Hydrological Processes, 28, 1043-1054.

BJERKLIE, D. M., MOLLER, D., SMITH, L. C. & DINGMAN, S. L. 2005. Estimating
discharge in rivers using remotely sensed hydraulic information. Journal of Hydrology,
309, 191-209.

BOAMAH, S., ARMAH, F., KUUIRE, V., AJIBADE, 1., LUGINAAH, I. & MCBEAN, G.
2015. Does Previous Experience of Floods Stimulate the Adoption of Coping
Strategies? Evidence from Cross Sectional Surveys in Nigeria and Tanzania.
Environments, 2, 565-585.

BORDOGNA, G., CARRARA, P., CRISCUOLO, L., PEPE, M. & RAMPINI, A. 2016. On
predicting and improving the quality of Volunteer Geographic Information projects.

Taylor &amp; Francis.

236



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

BORUIJENI, S. C. & SULAIMAN, W. N. A. 2009. Development of L-moment based models
for extreme flood events. Malaysian Journal of Mathematical Sciences, 3, 281-296.

BOSSARD, L. 2009. West African Studies Regional Atlas on West Africa, OECD Publishing.

BOTTO, A., GANORA, D., LAIO, F. & CLAPS, P. 2014. Uncertainty compliant design flood
estimation. Water Resources Research, 50, 4242-4253.

BOX, P., THOMALLA, F. & HONERT, R. V. D. 2013. Flood risk in Australia: Whose
responsibility is it, Anyway? Water (Switzerland), 5, 1580-1597.

BRADFORD, R. A., J. J, O., SULLIVAN, CRAATS, I. M. V. D., KRYWKOW, J., ROTKO,
P., AALTONEN, J., BONAIUTO, M., DOMINICIS, S. D., WAYLEN, K. &
SCHELFAUT, K. 2012. Risk perception — issues for flood management in Europe.
Natural Hazards and Earth System Sciences, 12,2299-23009.

BRAKENRIDGE, G. 2016. Global Active Archive of Large Flood Events, Dartmouth Flood
Observatory, University of Colorado.

BRAUN, A. & FOTOPOULOS, G. 2007. Assessment of SRTM, ICESat, and survey control
monument elevations in Canada. Photogrammetric Engineering & Remote Sensing, 73,
1333-1342.

BREINL, K., STRASSER, U., BATES, P. & KIENBERGER, S. 2015. A joint modelling
framework for daily extremes of river discharge and precipitation in urban areas.
Journal of Flood Risk Management.

BRILLY, M. & POLIC, M. 2005. Public perception of flood risks, flood forecasting and
mitigation. Natural Hazards and Earth System Sciences, 5, 345-355.

BROUWER, R., AKTER, S., BRANDER, L. & HAQUE, E. 2007. Socioeconomic vulnerability
and adaptation to environmental risk: a case study of climate change and flooding in
Bangladesh. Risk Analysis, 27, 313-326.

BROWN, C. G., SARABANDI, K. & PIERCE, L. E. 2010. Model- Based Estimation of Forest
Canopy Height in Red and Austrian Pine Stands Using Shuttle Radar Topography
Mission and Ancillary Data: A Proof-of-Concept Study. Geoscience and Remote
Sensing, IEEE Transactions on, 48, 1105-1118.

BROXTON, P. D., ZENG, X., SULLA-MENASHE, D. & TROCH, P. A. 2014. A global land
cover climatology using MODIS data. Journal of Applied Meteorology and
Climatology, 53, 1593-1605.

BRUCE, C., KYLE, M., MASANOBU, S., AKE, R., RONNY, S. & LAURA, H. 2015.
Mapping Regional Inundation with Spaceborne L- Band SAR. Remote Sensing, 7,
5440-5470.

BSHIR, D. & GARBA, M. 2003. Hydrological monitoring and information system for

sustainable basin management. First Annual conference of the Nigerian Association of

237



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

Hydrological Sciences (2 - 4 December, 2003). Federal University of Technology,
Yola, Adamawa, Nigeria.

BUCKLAND, J. & RAHMAN, M. 1999. Community- based disaster management during the
1997 Red River Flood in Canada. Disasters, 23, 174.

BURBY, R., NELSON, A., PARKER, D. & HANDMER, J. 2001. Urban Containment Policy
and Exposure to Natural Hazards: Is There a Connection? Journal of Environmental
Planning and Management, 44, 475-490.

BUTT, A., SHABBIR, R., AHMAD, S. S. & AZIZ, N. 2015. Land use change mapping and
analysis using Remote Sensing and GIS: A case study of Simly watershed, Islamabad,
Pakistan. The Egyptian Journal of Remote Sensing and Space Science, 18,215 - 259.

BUCHELE, B., KREIBICH, H., KRON, A., THIEKEN, A., IHRINGER, J., OBERLE, P.,
MERZ, B. & NESTMANN, F. 2006. Flood- risk mapping: contributions towards an
enhanced assessment of extreme events and associated risks. Natural Hazards and
Earth System Sciences, 6,485-503.

CABALLERO, R. & HUBER, M. 2010. Spontaneous transition to superrotation in warm
climates simulated by CAM3. Geophysical Research Letters, 37, n/a-n/a.

CAMPOZANO, L., SANCHEZ, E., AVILES, A. & SAMANIEGO, E. 2014. Evaluation of
infilling methods for time series of daily precipitation and temperature: The case of the
Ecuadorian Andes.

CANADIAN SPACE AGENCY. 2015. Radarsat-2 [Online]. Available: http://www.asc-
csa.gc.ca/eng/satellites/radarsat2/ [Accessed 22 October, 2015].

CAO, C, XU, P., WANG, Y., CHEN, J. P., ZHENG, L. & NIU, C. 2016. Flash Flood Hazard

Susceptibility Mapping Using Frequency Ratio and Statistical Index Methods in
Coalmine Subsidence Areas. Sustainability, 8.

CARABAJAL, C. C. & HARDING, D. J. 2005. ICESat validation of SRTM C-band digital
elevation models. Geophysical research letters, 32.

CASAS, A., BENITO, G.,, THORNDYCRAFT, V. R. & RICO, M. 2006. The topographic data
source of digital terrain models as a key element in the accuracy of hydraulic flood
modelling. Earth Surface Processes and Landforms, 31, 444-456.

CEDEAO-CLUBSAHEL/OCDE/CILSS 2008. Climate and Climate Change. The Atlas of
Regional Integration in West Africa. Environment Series, 13.

CELIK, H., COSKUN, G., CIGIZOGLU, H., AGIRALIOGLU, N., AYDIN, A. & ESIN, A.
2012. The analysis of 2004 flood on Kozdere Stream in Istanbul. Nat Hazards, 63, 461-
477.

CHELTON, D. B, RIES, J. C., HAINES, B. J., FU, L.-L. & CALLAHAN, P. S. 2001. Satellite
altimetry. International Geophysics, 69, 1-ii.

238


http://www.asc-csa.gc.ca/eng/satellites/radarsat2/
http://www.asc-csa.gc.ca/eng/satellites/radarsat2/

Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

CHEN, A. S., DJORDJEVIC, S., LEANDRO, J. & SAVIC, D. 2010. An analysis of the
combined consequences of pluvial and fluvial flooding. Water Science and Technology,
62, 1491-1498.

CHEN, J. M., CHEN, X., JU, W. & GENG, X. 2005. Distributed hydrological model for
mapping evapotranspiration using remote sensing inputs. Journal of Hydrology, 305,
15-39.

CHIKOZHO, C. 2012. Towards best-practice in transboundary water governance in Africa:
exploring the policy and institutional dimensions of conflict and cooperation over
water. Rethinking Development Challenges for Public Policy. Springer.

CHIKOZHO, C. 2014. Pathways for building capacity and ensuring effective transboundary
water resources management in Africa: Revisiting the key issues, opportunities and
challenges. Physics and Chemistry of the Earth, 76-78, 72-82.

CHISA, O. S., 0JO, V. K., IKENI, N. O. & GAMBO, A. A. L. 2015. Public-Private Partnership
(Ppp) As Catalyst for Sustainable Infrastructural Development (Effort of Rivers, Cross
Rivers, Oyo and Lagos State Government). International Journal of Engineering
Science Invention, 53-69.

CHOI, B. C. K. & PAK, A. W. P. 2004. A Catalog of Biases in Questionnaires. Preventing
chronic disease [electronic resource]. 2.

CHOW, V. 1959. Open Channel Hydraulics, New York McGraw-Hill.

CHAVARRI, E., CRAVE, A., BONNET, M.-P., MEJIA, A., SANTOS DA SILVA, J. &
GUYOT, J. L. 2012. Hydrodynamic modelling of the Amazon River: Factors of
uncertainty. Journal of South American Earth Sciences.

CIA, U. 2016. Department of Economic ITU, World Bank Group and Social A airs. Internet
live stats.

CLARK, E. A., SYLVAINHOSSAIN, F. & JEAN-FRANCOISLETTENMAIER, D. P. 2014.
Altimetry  Applications to Transboundary River Basin Management. [n:
BENVENISTE, J., VIGNUDELLI, S. & KOSTIANOY, A. (eds.) Inland Water
Altimetry. Washington: Springer.

CLEMENT, A. R. 2012. Causes of seasonal flooding in flood plains: a case of Makurdi,
Northern Nigeria. International journal of environmental studies, 69, 904-912.

COOK, A. & MERWADE, V. 2009. Effect of topographic data, geometric configuration and
modeling approach on flood inundation mapping. Journal of Hydrology, 377, 131-142.

COOLEY, H. & GLEICK, P. 2011. Climate- proofing transboundary water agreements.
Hydrological Sciences Journal, 56, 711-718.

COPERNICUS 2016. The Emergency Management Service - Mapping.

239



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

CORCORAN, J., KNIGHT, J., BRISCO, B., KAYA, S., CULL, A. & MURNAGHAN, K.
2012. The integration of optical, topographic, and radar data for wetland mapping in
northern Minnesota. Canadian Journal of Remote Sensing, 37, 564-582.

COULTHARD, T. J., HICKS, D. M. & VAN DE WIEL, M. J. 2007. Cellular modelling of river
catchments and reaches: Advantages, limitations and prospects. Geomorphology, 90,
192-207.

COULTHARD, T. J., NEAL, J. C., BATES, P. D, RAMIREZ, J., DE ALMEIDA, G. A. M. &
HANCOCK, G. R. 2013. Integrating the LISFLOOD-FP 2D hydrodynamic model with
the CAESAR model: implications for modelling landscape evolution. Earth Surface
Processes and Landforms, 38, 1897-1906.

COURTEILLE, J.-C. 2015. Space-based information in support of relief efforts after major
disasters. Scientific and Technical Subcommittee: United Nations Office for Out of
Space Affairs. Vienna, Austria.

CRAIG, H., ROBERT, J. N. & MATTHEW, P. W. 2012. Coastal Flooding in the Solent: An
Integrated Analysis of Defences and Inundation. Water, 4, 430-459.

CRETAUX, J.-F., BERGE-NGUYEN, M., LEBLANC, M., ABARCA DEL RIO, R,
DELCLAUX, F., MOGNARD, N., LION, C., PANDEY, R. K., TWEED, S. &
CALMANT, S. 2011. Flood mapping inferred from remote sensing data. Int. Water
Technol. J, 1, 48-62.

CRETAUX, J.-F., JELINSKI, W., CALMANT, S., KOURAEV, A., VUGLINSKI, V., BERGE-
NGUYEN, M., GENNERO, M.-C., NINO, F., DEL RIO, R. A. & CAZENAVE, A.
2011. SOLS: A lake database to monitor in the Near Real Time water level and storage
variations from remote sensing data. Advances in space research, 47, 1497-1507.

CUNDERLIK, J. M., JOURDAIN, V., QUARDA, T. B. M. J. & BOBEE, B. 2007. Local Non-
Stationary Flood- Duration- Frequency Modelling. Canadian Water Resources Journal,
32, 43-58.

DA SILVA, J. S., CALMANT, S., SEYLER, F., ROTUNNO FILHO, O. C., COCHONNEAU,
G. & MANSUR, W. J. 2010. Water levels in the Amazon basin derived from the ERS 2
and ENVISAT radar altimetry missions. Remote Sensing of Environment, 114, 2160-
2181.

DAGGUPATI, P., YEN, H., WHITE, M. J., SRINIVASAN, R., ARNOLD, J. G., KEITZER, C.
S. & SOWA, S. P. 2015. Impact of model development, calibration and validation
decisions on hydrological simulations in West Lake FErie Basin. Hydrological
Processes, 29, 5307-5320.

DALRYMPLE, T. 1960. Flood-frequency analyses, manual of hydrology: Part 3. USGPO.

240



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

DANIELSON, J. J. & GESCH, D. B. 2011. Global multi-resolution terrain elevation data 2010
(GMTED2010). US Geological Survey.

DANO UMAR, L., ABDUL-NASIR, M., AHMAD MUSTAFA, H., IMTIAZ AHMED, C.,
SOHEIL, S., ABDUL-LATEEF, B. & HARUNA AHMED, A. 2011. Geographic
Information System and Remote Sensing Applications in Flood Hazards Management:
A Review. Research Journal of Applied Sciences, Engineering and Technology, 3, 933-
947.

DANO UMAR, L., ABDUL-NASIR, M., KHAMARUZAMAN WAN, Y., AHMAD
MUSTAFA, H., MANSIR, A., SOHEIL, S., ABDUL-LATEEF, B. & IMTIAZ
AHMED, C. 2014. Flood Susceptibility Modeling: A Geo-spatial Technology Multi-
criteria Decision Analysis Approach. Research Journal of Applied Sciences,
Engineering and Technology, 7, 4638-4644.

DASHTI, S., PALEN, L., HERIS, M. P., ANDERSON, K. M. & ANDERSON, S. Supporting
disaster reconnaissance with social media data: a design-oriented case study of the 2013
Colorado floods. Proceedings of the 11th International ISCRAM Conference, 2014. 18-
21.

DAURA, M. & MAYOM]I, L. 2015. Geo-Spatial Assessments of Flood Disaster Vulnerability of
Benue and Taraba States. Academic Research International, 1, 166-183.

DAVIS, D., SUTHERLAND, M. & JAGGAN, S. Augmenting tide gauge data with satellite
altimetry in the observation of sea level rise in the Caribbean. Proceedings of the FIG
Congress 2010, Facing the Challenges—Building the Capacity, 2010.

DE BRITO MOREIRA, R., DEGROSSI, L. C. & DE ALBUQUERQUIE, J. P. An experimental
evaluation of a crowdsourcing-based approach for flood risk management. Paper
presented at the Conference: 12th Workshop on Experimental Software Engineering
(ESELAW), at Lima, Peru, 2015.

DE PAOLA, F., GIUGNI, M., GARCIA, A. & BUCCHIGNANI, E. Stationary vs. non-
stationary of extreme rainfall in Dar es Salaam (Tanzania). IAHR Congress Tsinghua
University Press, Beijing, 2013.

DEGROSSI, L. C., DE ALBUQUERQUE, J. P., FAVA, M. C. & MENDIONDO, E. M. Flood
Citizen Observatory: a crowdsourcing-based approach for flood risk management in
Brazil. SEKE, 2014. 570-575.

DEMIRKESEN, A. 2016. Flood hazard vulnerability for settlements of Turkey’s province of
Edirne, using ASTER DEM data and Landsat-7 ETM+ image data. Arab J Geosci, 9, 1-
15.

DEMOGRAPHY AND HEALTH SURVEY. 2003. Household popolation and housing

characteristics [Online]. Available:

241



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

http://dhsprogram.com/pubs/pdf/FR148/02Chapter02.pdf [Accessed 19 December,
2016].
DI BALDASSARRE, G. 2012. Floods in a changing climate [electronic resource] : inundation

modelling, Cambridge : Cambridge University Press.

DI BALDASSARRE, G. & CLAPS, P. 2011. A hydraulic study on the applicability of flood
rating curves. Hydrology Research, 42, 10-19.

DI BALDASSARRE, G., LAIO, F. & MONTANARI, A. 2012. Effect of observation errors on
the uncertainty of design floods. Physics and Chemistry of the Earth, 42-44, 85-90.

DI BALDASSARRE, G., SCHUMANN, G., BATES, P., FREER, J. & BEVEN, K. 2010.
Flood- plain mapping: a critical discussion of deterministic and probabilistic
approaches. Hydrological Sciences Journal, 55, 364-376.

DI BALDASSARRE, G., SCHUMANN, G., BRANDIMARTE, L. & BATES, P. 2011. Timely
low resolution SAR imagery to support floodplain modelling: a case study review.
Surveys in geophysics, 32,255-269.

DIATTA, S. & FINK, A. H. 2014. Statistical relationship between remote climate indices and
West African monsoon variability. International Journal of Climatology, 34, 3348-
3367.

DICK-SAGOE, C. & TSRA, G. 2016. Uncontrolled Sand Mining and its Socio-Environmental
Implications on Rural Communities in Ghana: A Focus on Gomoa Mpota in the Central
Region. International Journal of Research in Engineering, IT and Social Sciences, 6,
31-37.

DIKE, B. & NWACHUKWU, B. 2003. Analysis of Nigerian Hydrometeorological Data.
Nigerian Journal of Technology, 22, 29-38.

DIMICELI, C., CARROLL, M., SOHLBERG, R., HUANG, C., HANSEN, M. &
TOWNSHEND, J. 2011. Annual global automated MODIS vegetation continuous fields
(MOD44B) at 250 m spatial resolution for data years beginning day 65, 2000-2010,
collection 5 percent tree cover. University of Maryland, College Park, MD, USA.

DIN, A. H. M., REBA, M. N. M., OMAR, K. M., PA'SUYA, M. F. & SES, S. 2015. SEA
LEVEL RISE QUANTIFICATION USING MULTI-MISSION SATELLITE
ALTIMETER OVER MALAYSIAN SEAS. The 36th Asian Conference on Remote
Sensing (ACRS 2015). Metro Manila, Philippines.

DOGHUDIE, K. 2016. MULTI SIM SMARTPHONES IN HIGH DEMAND IN NIGERIA.

DOMENEGHETTIL A. 2016. On the use of SRTM and altimetry data for flood modeling in
data- sparse regions. Water Resources Research, 52,2901-2918.

DOMENEGHETTI, A., TARPANELLI A., BROCCA, L., BARBETTA, S., MORAMARCO,
T., CASTELLARIN, A. & BRATH, A. 2014. The use of remote sensing- derived water

242


http://dhsprogram.com/pubs/pdf/FR148/02Chapter02.pdf

Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

surface data for hydraulic model calibration. Remote Sensing of Environment, 149, 130-
141.

DOMENEGHETTIL A., VOROGUSHYN, S., CASTELLARIN, A., MERZ, B. & BRATH, A.
2013. Probabilistic flood hazard mapping: effects of uncertain boundary conditions.
Hydrology and Earth System Sciences, 17,3127-3140.

DONATO, A., GERARDO DI, M., ANTONIO, I., FRANCESCO, M., MARIA NICOLINA, P.,
DANIELE, R. & GIUSEPPE, R. 2014. Sentinel- 1 for Monitoring Reservoirs: A
Performance Analysis. Remote Sensing, 6, 10676-10693.

DONDERS, A. R. T., VAN DER HEIJDEN, G. J. M. G., STIINEN, T. & MOONS, K. G. M.
2006. Review: A gentle introduction to imputation of missing values. Journal of
Clinical Epidemiology, 59, 1087-1091.

DONGLIAN SUN, M. D., YUNYUE YU, M. D. & GOLDBERG, M. D. 2011. Deriving Water
Fraction and Flood Maps From MODIS Images Using a Decision Tree Approach.
Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of,
4, 814-825.

DU, X., GUO, H., FAN, X., ZHU, J., YAN, Z. & ZHAN, Q. 2016. Vertical accuracy
assessment of freely available digital elevation models over low-lying coastal plains.
International Journal of Digital Earth, 9,252-271.

DUBEY, A. K., GUPTA, P., DUTTA, S. & SINGH, R. P. 2015. Water Level Retrieval Using
SARAL/AltiKa Observations in the Braided Brahmaputra River, Eastern India. Marine
Geodesy, 38, 549-567.

DUNG, N. V., MERZ, B., BARDOSSY, A., THANG, T. D. & APEL, H. 2011. Multi- objective
automatic calibration of hydrodynamic models utilizing inundation maps and gauge
data. Hydrology and Earth System Sciences, 15, 1339-1354.

DURAND, M., ANDREADIS, K. M., ALSDORF, D. E., LETTENMAIER, D. P., MOLLER,
D. & WILSON, M. 2008. Estimation of bathymetric depth and slope from data
assimilation of swath altimetry into a hydrodynamic model. Geophysical Research
Letters, 35.

DWARAKISH, G. S. & GANASRI, B. P. 2015. Impact of land use change on hydrological
systems: A review of current modeling approaches. Cogent.

E-GEOS 2009. COSMO-SkyMed SAR Products Handbook.

EARLE, A., CASCAO, A. E., HANSSON, S., JAGERSKOG, A., SWAIN, A. & OJENDAL, J.
2015. Transboundary water management and the climate change debate, Routledge.

ECOWAS-SWAC/OECD 2008. Transboundary River Basins. /n: AFRICA, A. O. R. L. I. W.
(ed.).

243



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

EFOBI, K. & ANIEROBI, C. 2013. Urban Flooding and Vulnerability of Nigerian Cities: A
Case Study of Awka and Onitsha in Anambra State, Nigeria. Journal of Law, Policy
and Globalization, 19, 58-64.

EFRON, B. 1979a. Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics,
7, 1-26.

EFRON, B. 1979b. Computers and the Theory of Statistics: Thinking the Unthinkable. SIAM
Review, 21, 460-480.

EGBINOLA, C., OLANIRAN, H. & AMANAMBU, A. 2015. Flood management in cities of
developing countries: the example of Ibadan, Nigeria. Journal of Flood Risk
Management.

EGUAROIJE, O., ALAGA, T., OGBOLE, J., OMOLERE, S., ALWADOOD, J., KOLAWOLE,
I., MUIBI, K., NNAEMEKA, D., POPOOLA, D. & SAMSON, S. 2015. Flood
Vulnerability Assessment of Ibadan City, Oyo State, Nigeria. World Environment, 5,
149-159.

EKEU-WEIL L. T. & BLACKBURN, G. A. 2016. Evaluation of crowd-sourcing (Volunteered
GIS) and NRT-MODIS flood map in monitoring flood in Nigeria. 7¢th International
Conference of the Nigerian association of Hydrological Sciences (NAHS). Abuja,
Nigeria.

EL-JABIL N., CAISSIE, D. & TURKKAN, N. 2015. Flood analysis and flood projections under
climate change in New Brunswick. Canadian Water Resources Journal / Revue
canadienne des ressources hydriques, 1-12.

ELS, Z. 2013. Data availability and requirements for flood hazard mapping. PositionIT. Master
of Natural Sciences at Stellenbosch University.

ELVIDGE, C. D., TUTTLE, B. T., BAUGH, K. E., HOWARD, A. T., SUTTON, P. S,
MILESI, C., BHADURI, B. L. & NEMANI, R. 2007. Global distribution and density of
constructed impervious surfaces. Sensors, 7, 1962-1979.

EREKPOKEME, L. N. 2015. Flood Disasters in Nigeria: Farmers and Governments’
Mitigation Efforts. Journal of Biology, Agriculture and Healthcare, 5, 150-154.
ERTUNA, C. 1995. Water Resources Development and Management in Asia and the Pacific.
Environmental Soil and water Management: Past Experience and Future Directions,

pp1-36.

ESCLOUPIER, E., BECKER, M., MARIE-JOSEPH, 1., LINGUET, L., TIMMERMANN, P.,
CALMANT, S. & SEYLER, F. Reconstruction of Hydrological Archives in French
Guiana by Radar Altimetry, Hydrodynamic Modeling and Nonlinear Analysis of Time
Series. 20 Years of Progress in Radar Altimetry Symposium 2012 Venice, Italy.

ETUONOVBE, A. K. The devastating effect of flooding in Nigeria. FIG working week, 2011.

244



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

EUROPEAN SPACE AGENCY. 2016. Altimetry Instrument Payload [Online]. Available:
https://sentinel.esa.int/web/sentinel/missions/sentinel-3/instrument-payload/altimetry
[Accessed].

EUROPEAN SPACE AGENCY (ESA). 2016. Third Sentinel launch for Copernicus [Online].
Available:

http://www.esa.int/Our_Activities/Observing_the Earth/Copernicus/Sentinel-

3/Third_Sentinel satellite launched for Copernicus [Accessed 20 February, 2016].
EWEMOIE, T. A. & EWEMOOIJE, O. 2011. Best distribution and plotting positions of daily

maximum flood estimation at Ona River in Ogun-Oshun river basin, Nigeria.
Agricultural Engineering International: CIGR Journal, 13.

EYERS, R., OBOWU, C. & LASISI, B. Niger Delta Flooding: Monitoring, Forecasting &
Emergency Response Support from SPDC. FIG Working Week, 2013: Environment
and Sustainability, 2013 Abuja, Nigeria.

FACEBOOK 2016. FB Nigeria Inforgraphic V04.

FAGBAMI, A. A., UDO, E. J. & ODU, C. T. L. 1988. Vegetation damage in an oil field in the
Niger Delta of Nigeria. Journal of Tropical Ecology, 4, 61-75.

FARR, T. G. & KOBRICK, M. 2000. Shuttle radar topography mission produces a wealth of
data. Fos, Transactions American Geophysical Union, 81, 583-585.

FARR, T. G., ROSEN, P. A, CARO, E., CRIPPEN, R., DUREN, R., HENSLEY, S.,
KOBRICK, M., PALLER, M., RODRIGUEZ, E., ROTH, L., SEAL, D., SHAFFER, S.,
SHIMADA, J., UMLAND, J.,, WERNER, M., OSKIN, M., BURBANK, D. &
ALSDOREF, D. 2007. The Shuttle Radar Topography Mission. Reviews of Geophysics,
45, n/a-n/a.

FASINMIRIN, J. T. & OLUFAYO, A. A. 2006. Comparison of Flood Prediction Models for
River Lokoja, Nigeria. Geophysical Research Abstracts, 8.

FEASTER, T. D. 2010. Importance of Record Length with Respect to Estimating the 1-Percent
Chance Flood.

FEDERAL MINISTRY OF ENVIRONMENT 2005a. Action Plan for Erosion and Flood
Control.

FEDERAL MINISTRY OF ENVIRONMENT 2005b. Technical Guidelines on Soil Erosion,
Flood and Coastal Zone management.

FEDERAL MINISTRY OF WATER RESOURCES 2013. The Project for Review and Update
of Nigeria National Water Resources Master Plan.

FEDERAL MINSTRY OF WATER RESOURCES, F. B. P. 2016. Appropriation Bill,.

FOODY, G. M., SEE, L., FRITZ, S., VAN DER VELDE, M., PERGER, C., SCHILL, C. &
BOYD, D. S. 2013. Assessing the Accuracy of Volunteered Geographic Information

245


https://sentinel.esa.int/web/sentinel/missions/sentinel-3/instrument-payload/altimetry
http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-3/Third_Sentinel_satellite_launched_for_Copernicus
http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-3/Third_Sentinel_satellite_launched_for_Copernicus

Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

arising from Multiple Contributors to an Internet Based Collaborative Project.
Transactions in GIS, 17, 847-860.

FOODY, G. M., SEE, L., FRITZ, S., VAN DER VELDE, M., PERGER, C., SCHILL, C.,,
BOYD, D. S. & COMBER, A. 2014. Accurate Attribute Mapping from Volunteered
Geographic Information: Issues of Volunteer Quantity and Quality. Cartogr. J.,
1743277413Y.000.

FORKUO, E. K. 2011. Flood hazard mapping using Aster image data with GIS. International
journal of Geomatics and Geosciences, 1,932-950.

FRANCI, F., MANDANICI, E. & BITELLI, G. 2015. Remote sensing analysis for flood risk
management in urban sprawl contexts. Geomatics, Natural Hazards and Risk, 6, 583-
599.

FRANKS, P. & EVANS, L. Social Media and Trust in North American Local Government law
Enforcement. Proceedings of the 2nd European Conference on Social Media 2015:
ECSM 2015, 2015. Academic Conferences Limited, 157.

FRAPPART, F., CALMANT, S., CAUHOPE, M., SEYLER, F. & CAZENAVE, A. 2006.
Preliminary results of ENVISAT RA- 2- derived water levels validation over the
Amazon basin. Remote Sensing of Environment, 100, 252-264.

FRICKER, H. A., BORSA, A., MINSTER, B., CARABAJAL, C., QUINN, K. & BILLS, B.
2005. Assessment of ICESat performance at the salar de Uyuni, Bolivia. Geophysical
Research Letters, 32, n/a-n/a.

FRIEDL, M. A. & BRODLEY, C. E. 1997. Decision tree classification of land cover from
remotely sensed data. Remote Sensing of Environment, 61, 399-409.

FU, L.-L., ALSDORF, D., RODRIGUEZ, E., MORROW, R., MOGNARD, N., LAMBIN, J.,
VAZE, P. & LAFON, T. 2009. The SWOT (Surface Water and Ocean Topography)
mission: spaceborne radar interferometry for oceanographic and hydrological
applications. Proceedings of OCEANOBS, 9, 21-25.

GALA, T. & MELESSE, A. 2012. Monitoring prairie wet area with an integrated LANDSAT
ETM+, RADARSAT-1 SAR and ancillary data from LIDAR. Catena, 95, 12-23.

GALLANT, J. 2011. Adaptive smoothing for noisy DEMs. Geomorphometry 2011, 7-9.

GARBA, H., ISMAIL, A., BATAGARAWA, R. L., AHMED, S., IBRAHIM, A. & BAYANG,
F. 2013a. Climate Change Impact on Sub-Surface Hydrology of Kaduna River
Catchment.

GARBA, H., ISMAIL, A. & TSOHO, U. 2013b. Fitting Probability Distribution Functions To
Discharge Variability Of Kaduna River. International Journal of Modern Engineering
Research, 3, 2848-2852.

246



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

GARCIA-PINTADO, J., NEAL, J. C., MASON, D. C., DANCE, S. L. & BATES, P. D. 2013.
Scheduling satellite- based SAR acquisition for sequential assimilation of water level
observations into flood modelling. Journal of Hydrology, 495, 252-266.

GARETH, L., MICHELE, V. & GEORGE, P. P. 2015. Examining the Capability of Supervised
Machine Learning Classifiers in Extracting Flooded Areas from Landsat TM Imagery:
A Case Study from a Mediterranean Flood. Remote Sensing, 7, 3372-3399.

GASTON, L. 2013. Integrated future needs and climate change on the River Niger water
availability. Journal of Water Resource and Protection, 2013.

GAUTIER, C. 2002. Survey River Niger,. Royal Haskoning.

GCOS-AOPC/PPOC. 2016. Download Climate Time series [Online]. Available:
http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/ [Accessed 23 March, 2016].

GETIRANA, A. C. V. & PETERS-LIDARD, C. 2013. Estimating water discharge from large

radar altimetry datasets. Hydrology and Earth System Sciences, 17, 923-933.

GICHAMO, T. Z., POPESCU, I., JONOSKI, A. & SOLOMATINE, D. 2011. River cross-
section extraction from the ASTER global DEM for flood modeling. Environmental
Modelling and Software.

GILL, M. K., ASEFA, T., KAHEIL, Y. & MCKEE, M. 2007. Effect of missing data on
performance of learning algorithms for hydrologic predictions: Implications to an
imputation technique. Water resources research, 43.

GIOVANNETTONE, J. & WRIGHT, M. The ICI-WARM Non-Proprietary Regional
Frequency Analysis Tool Using the Method Of L-Moments. AGU Fall Meeting
Abstracts, 2011. 1016.

GIOVANNETTONE, J. P. 2015. Correlating MJO Activity with Argentina Rainfall and
Atlantic Hurricanes Using ICI-RAFT. Journal of Hydrologic Engineering, ES015004.

GIUSTARINI, L., CHINI, M., HOSTACHE, R., PAPPENBERGER, F. & MATGEN, P. 2015.
Flood Hazard Mapping Combining Hydrodynamic Modeling and Multi Annual Remote
Sensing data. Remote Sensing, 7, 14200-14226.

GIUSTARINI, L., HOSTACHE, R., MATGEN, P., SCHUMANN, G. J. P., BATES, P. D. &
MASON, D. C. 2013. A Change Detection Approach to Flood Mapping in Urban Areas
Using TerraSAR- X. Geoscience and Remote Sensing, IEEE Transactions on, 51, 2417-
2430.

GLEASON, C. J. & SMITH, L. C. 2014. Toward global mapping of river discharge using
satellite images and at-many-stations hydraulic geometry. Proceedings of the National
Academy of Sciences, 111, 4788-4791.

GLOBAL WATER PARTNERSHIP 2016. WEST AFRICA - IWRM IN THE NIGER RIVER
BASIN CASE #46.

247


http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/

Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

GODSCHALK, D. 1999. Natural hazard mitigation: Recasting disaster policy and planning,
Island Press.

GOKCEOGLU, C., SONMEZ, H., NEFESLIOGLU, H. A., DUMAN, T. Y. & CAN, T. 2005.
The 17 March 2005 Kuzulu landslide ( Sivas, Turkey) and landslide- susceptibility map
of its near vicinity. Engineering Geology, 81, 65-83.

GOOD, P. L. 2000. Permutation tests : a practical guide to resampling methods for testing
hypotheses, New York : Springer.

GOODCHILD, M. 2007. Citizens as sensors: the world of volunteered geography. GeoJournal,
69, 211-221.

GOODCHILD, M. & GLENNON, J. A. 2010. Crowdsourcing geographic information for
disaster response: a research frontier. International Journal of Digital Earth, 3, 231-
241.

GRAHAM, J., OLCHOWSKI, A. & GILREATH, T. 2007. How Many Imputations are Really
Needed? Some Practical Clarifications of Multiple Imputation Theory. Prev Sci, 8, 206-
213.

GRAHAM, J. W. & HOFER, S. M. 2000. Multiple imputation in multivariate research.

GRANDONI, D. 2013. Advantages and limitations of using satellite images for flood mapping.
Workshop on the Use of the Copernicus Emergency Service for Floods. Brussels,
Belgium.

GRIMALDI, S., PETROSELLI, A. & SERINALDI, F. 2012. A continuous simulation model
for design-hydrograph estimation in small and ungauged watersheds. Hydrological
Sciences Journal, 57, 1035-1051.

GROHMAN, G., KROENUNG, G. & STREBECK, J. 2006. Filling SRTM voids: The delta
surface fill method. Photogrammetric Engineering and Remote Sensing, 72, 213-216.

GROSSMANN, M. 2006. Cooperation on Africa's international waterbodies: information needs
and the role of information-sharing. Editors, 173.

GRUBBS, F. E. & BECK, G. 1972. Extension of sample sizes and percentage points for
significance tests of outlying observations. Technometrics, 14, 847-854.

GRABCZEWSKI, K. 2014. Meta-learning in decision tree induction, Springer.

GUHA-SAPIR, D., BELOW, R. & HOYOIS, P. 2014. EM-DAT: International disaster
database. Univ. Cathol. Louvain, Brussels: Belgium. www. em-dat. net. Accessed, 20.

GUPTA, H. V., WAGENER, T. & LIU, Y. 2008. Reconciling theory with observations:
elements of a diagnostic approach to model evaluation. Hydrological Processes, 22,

3802-3813.

248


http://www.​

Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

GUTIERREZ, F. & DRACUP, J. A. 2001. An analysis of the feasibility of long- range
streamflow forecasting for Colombia using El Nifio— Southern Oscillation indicators.
Journal of Hydrology, 246, 181-196.

HADDAD, K., RAHMAN, A. & LING, F. 2014. Regional flood frequency analysis method for
Tasmania, Australia: A case study on the comparison of fixed region and region-of-
influence approaches. Hydrological Sciences Journal.

HADDAD, K., RAHMAN, A., WEINMANN, P., KUCZERA, G. & BALL, J. 2010.
Streamflow data preparation for regional flood frequency analysis: lessons from
southeast Australia. Australian Journal of Water Resources, 14, 17.

HAGEMEIER-KLOSE, M. & WAGNER, K. 2009. Evaluation of flood hazard maps in print
and web mapping services as information tools in flood risk communication. Natural
Hazards And Earth System Sciences, 9, 563-574.

HAILEGEORGIS, T. T. & ALFREDSEN, K. 2017. Regional flood frequency analysis and
prediction in ungauged basins including estimation of major uncertainties for mid-
Norway. Journal of Hydrology: Regional Studies, 9, 104-126.

HALL, J., ARHEIMER, B., BORGA, M., BRAZDIL, R., CLAPS, P., KISS, A., KIELDSEN,
T. R, KRIAUCUNIENE, J., KUNDZEWICZ, Z. W., LANG, M., LLASAT, M. C.,
MACDONALD, N., MCINTYRE, N., MEDIERO, L., MERZ, B., MERZ, R,
MOLNAR, P., MONTANARI, A., NEUHOLD, C., PARAJKA, J., PERDIGAO, R. A.
P., PLAVCOVA, L., ROGGER, M., SALINAS, J. L., SAUQUET, E., SCHAR, C.,
SZOLGAY, J., VIGLIONE, A. & BLOSCHL, G. 2014. Understanding flood regime
changes in Europe: A state-of-the- art assessment. Hydrology and Earth System
Sciences, 18,2735-2772.

HALLEGATTE, S. 2014. Natural Disasters and Climate Change. Cham. Springer International
Publishing.

HAQUE, M. M., RAHMAN, A. & HADDAD, K. 2014. Rating Curve Uncertainty in Flood
Frequency Analysis: A Quantitative Assessment. Journal of Hydrology and
Environment Research, 2, 50-58.

HARVATT, J., PETTS, J. & CHILVERS, J. 2011. Understanding householder responses to
natural hazards: flooding and sea-level rise comparisons. Journal of Risk Research, 14,
63-83.

HASAN, M. M. & CROKE, B. 2013. Filling gaps in daily rainfall data: a statistical approach.
MODSIM2013, 20th International Congress on Modelling and Simulation. Australia:
Modelling and Simulation Society of Australia and New Zealand Inc.

HAUB, C., GRIBBLE, J. & JACOBSEN, L. 2011. World Population Data Sheet 2011.

Population Reference Bureau, Washington.

249



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

HE, Y., BARDOSSY, A. & BROMMUNDT, J. Non-stationary flood frequency analysis in
southern Germany. The 7th International Conference on HydroScience and
Engineering, Philadelphia, 2006.

HEITZ, C., SPAETER, S., AUZET, A.-V. & GLATRON, S. 2009. Local stakeholders’
perception of muddy flood risk and implications for management approaches: A case
study in Alsace (France). Land Use Policy, 26, 443-451.

HENDERSON, F. M. & LEWIS, A. J. 1998. Principles and applications of imaging radar.
Manual of remote sensing, volume 2, John Wiley and sons.

HENGL, T., DE JESUS, J. M., MACMILLAN, R. A., BATJES, N. H.,, HEUVELINK, G. B.
M., RIBEIRO, E., SAMUEL-ROSA, A., KEMPEN, B., LEENAARS, J. G. B,,
WALSH, M. G. & GONZALEZ, M. R. 2014. SoilGridslkm-- global soil information
based on automated mapping. PloS one, 9, €105992.

HENRY, J. B.,, CHASTANET, P., FELLAH, K. & DESNOS, Y. L. 2006. Envisat multi-
polarized ASAR data for flood mapping. International Journal of Remote Sensing, 27,
1921-1929.

HERSCHY, R. W. 2008. Streamflow measurement, New York : Taylor &amp; Francis.

HERVE, Y., FRANCESCO, S., NADINE, T., ANTONIOS, M., STEPHEN, C., CLAIRE, H.,
MATHIAS, S. & DE PAUL, F. 2013. Addressing Emergency Flood Mapping And
Monitoring Of Inland Water Bodies With Sentinel 1-2. Expectative And Perspectives.

HEYDER, U. 2005. Vertical forest structure from ICESat/GLAS Lidar data. Mastors thesis
Geography, 155, 12-50.

HIJMANS, R. J., GUARINO, L., BUSSINK, C., MATHUR, P., CRUZ, M., BARRANTES, L
& ROJAS, E. 2004. DIVA-GIS: Country level data.

HIPEL, K. 1995. Stochastic and statistical methods in hydrology and environmental
engineering. Stochastic Hydrology and Hydraulics, 9, 1-11.

HOGAN, 1. 2016. Hydrological data collection in the Cross River Basin Development
Authority. In: EKEU-WEI, 1. T. (ed.).

HOGG, A. R. & TODD, K. W. 2007. Automated discrimination of upland and wetland using
terrain derivatives. Canadian Journal of Remote Sensing, 33, 68-83.

HONG, S., JANG, H., KIM, N. & SOHN, H.-G. 2015. Water area extraction using
RADARSAT SAR imagery combined with Landsat imagery and terrain information.
Sensors (Basel, Switzerland), 15, 6652.

HOOPER, B. P. & LLOYD, G. J. 2011. Report on IWRM in transboundary basins. Horsholm:
UNEP-DHI Centre for Water and Environment.

HORRITT, M. S. 2006. A methodology for the validation of uncertain flood inundation models.
Journal of Hydrology, 326, 153-165.

250



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

HORRITT, M. S., MASON, D. C. & LUCKMAN, A. J. 2001. Flood boundary delineation from
Synthetic Aperture Radar imagery using a statistical active contour model. International
Journal of Remote Sensing, 22, 2489-2507.

HOSKING, J. R. M. & WALLIS, J. R. 1997. Regional frequency analysis : an approach based
on L-moments, Cambridge ; New York : Cambridge University Press.

HOSSAIN, F., SIDDIQUE-E-AKBOR, A. H., MAZUMDER, L. C., SHAHNEWAZ, S. M.,
BIANCAMARIA, S., LEE, H. & SHUM, C. K. 2014. Proof of Concept of an
Altimeter- Based River Forecasting System for Transboundary Flow Inside Bangladesh.
Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of,
7, 587-601.

HOUNKPE, J., AFOUDA, A. A. & DIEKKRUGER, B. 2015a. USE OF CLIMATE INDEXES
AS COVARIATES IN MODELLING HIGH DISCHARGES UNDER NON
STATIONARY CONDITION IN OUEME RIVER.

HOUNKPE, J., DIEKKRUGER, B., BADOU, D. F. & AFOUDA, A. A. 2015b. Non-Stationary
Flood Frequency Analysis in the Ouémé River Basin, Benin Republic. Hydrology, 2,
210-229.

HRACHOWITZ, M., SAVENIJE, H., BLOSCHL, G., MCDONNELL, J., SIVAPALAN, M.,
POMEROQY, J., ARHEIMER, B., BLUME, T., CLARK, M. & EHRET, U. 2013. A
decade of Predictions in Ungauged Basins (PUB)—a review. Hydrological sciences
journal, 58, 1198-1255.

HSSINA, B., MERBOUHA, A., EZZIKOURI, H. & ERRITALI, M. 2014. A comparative study
of decision tree ID3 and C4. 5. Int. J. Adv. Comput. Sci. Appl, 4.

HU, Y.-M., LIANG, Z.-M., LI, B.-Q. & YU, Z.-B. 2013. Uncertainty Assessment of
Hydrological Frequency Analysis Using Bootstrap Method. 2013.

HUGHES, D. A., JEWITT, G., MAHE, G., MAZVIMAVI, D. & STISEN, S. 2015. A review of
aspects of hydrological sciences research in Africa over the last decade. Hydrological
Sciences Journal.

HUII GAO, G., BARBIER, R. & GOOLSBY, R. 2011. Harnessing the Crowdsourcing Power
of Social Media for Disaster Relief. Intelligent Systems, IEEE, 26, 10-14.

HUNTER, N. M., BATES, P. D., HORRITT, M. S. & WILSON, M. D. 2007. Simple spatially-
distributed models for predicting flood inundation: A review. Geomorphology, 90, 208-
225.

HUNTER, N. M., BATES, P. D., NEELZ, S., PENDER, G., VILLANUEVA, 1., WRIGHT, N.
G., LIANG, D., FALCONER, R. A., LIN, B., WALLER, S., CROSSLEY, A. J. &
MASON, D. C. 2008. Benchmarking 2D hydraulic models for urban flooding.
Proceedings of the ICE - Water Management, 161, 13-30.

251



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

ICSMD 2015. The International Charter: Space and Major Disasters.

IM, J., JENSEN, J. R. & TULLIS, J. A. 2008. Object- based change detection using correlation
image analysis and image segmentation. Infernational Journal of Remote Sensing, 29,
399-423.

INTERNATIONAL CHARTER SPACE AND MAJOR DISASTERS 2016. Charter
Geographic Tool.

INTERNATIONAL WATER MANGEMENT INSTITUTE. 2016. Emergency response
products for water disasters [Online]. Available:
http://www.iwmi.cgiar.org/resources/emergency-response-products-for-water-disasters/
[Accessed 17 August, 2016].

INTERNATIONAL WATERS GOVERNANCE. 2016. Niger Basin [Online]. Available:

http://www.internationalwatersgovernance.com/niger-basin.html [Accessed 11 August,
2016].
IRENEUSZ, L., MARIUSZ, S., ZBIGNIEW, W. & RAFAL, W. 2017. Possibilities of Using

Low Quality Digital Elevation Models of Floodplains in Hydraulic Numerical Models.
Water, 9, 283.

ISIKWUE, M. O., ONOIJA, S. B., LAUDAN, K. J. & BAUCHI, F. 2012. Establishment of an
empirical model that correlates rainfall-intensity-duration-frequency for Makurdi Area,
Nigeria. Int. J. Adv. Eng. Technol, 5, 40-46.

ISIOYE, A. & JOBIN, P. 2012. An Assessment of Digital Elevation Models (DEMs) From
Different Spatial Data Sources. Asian Journal of Engineering, Sciences & Technology,
2.

ISIOYE, O. A. & YANG, 1. C. 2013. Comparison and validation of ASTER-GDEM and SRTM
elevation models over parts of Kaduna State, Nigeria. SASGI Proceedings.

IZINYON, O. & AJUMKA, H. 2013. REGIONAL FLOOD FREQUENCY ANALYSIS OF
CATCHMENTS IN UPPER BENUERIVER BASIN USING INDEX FLOOD
PROCEDURE. Nigerian Journal of Technology, 32, 159-169.

IZINYON, O. & EHIOROBO, J. 2014. L-moments approach for flood frequency analysis of
river Okhuwan in Benin-Owena River basin in Nigeria. Nigerian Journal of
Technology, 33, 10-18.

JACOBS, L. & WORTHLEY, R. 1999. A Comparative Study of Risk Appraisal: A New Look
at Risk Assessment in Different Countries. Environ Monit Assess, 59, 225-247.

JALBERT, J., MATHEVET, T. & FAVRE, A.-C. 2011. Temporal uncertainty estimation of
discharges from rating curves using a variographic analysis. Journal of Hydrology, 397,

83-92.

252


http://www.iwmi.cgiar.org/resources/emergency-response-products-for-water-disasters/
http://www.internationalwatersgovernance.com/niger-basin.html

Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

JAMES, G., SHABA, H., ZUBAIR, O. & TESLIM, A. G. 2013. Space-Based Disaster
Management in Nigeria: The Role of the International Charter “Space and Major
Disasters” FIG Working Week, Environment for Sustainability. Abuja, Nigeria.

JANICOT, S., MOUNIER, F., HALL, N. M. J., LEROUX, S., SULTAN, B. & KILADIS, G. N.
2009. Dynamics of the West African monsoon. Part IV: Analysis of 25- 90- day
variability of convection and the role of the Indian monsoon. Journal of Climate, 22,
1541-1565.

JARIHANI, A. A., CALLOW, J. N., MCVICAR, T. R., VAN NIEL, T. G. & LARSEN, J. R.
2015a. Satellite- derived Digital Elevation Model ( DEM) selection, preparation and
correction for hydrodynamic modelling in large, low- gradient and data- sparse
catchments. Journal of Hydrology, 524, 489-506.

JARIHANI, A. A., LARSEN, J. R.,, CALLOW, J. N., MCVICAR, T. R. & JOHANSEN, K.
2015b. Where does all the water go? Partitioning water transmission losses in a data-
sparse, multi- channel and low- gradient dryland river system using modelling and
remote sensing. Journal of Hydrology, 529, 1511-1529.

JEAN STEPHANE, B., HANI, A, NICOLAS, L. & NICOLAS, B. 2011. The Relevance of
GLAS/ ICESat Elevation Data for the Monitoring of River Networks. Remote Sensing,
3, 708-720.

JEB, D. N. & AGGARWAL, S. 2008. Flood inundation hazard modelling of the river Kaduna
using remote sensing and geographic information systems. Journal of applied sciences
research, 4, 1822-1833.

JEBUR, M. N., PRADHAN, B. & TEHRANY, M. S. 2014. Optimization of landslide
conditioning factors using very high- resolution airborne laser scanning ( LIDAR) data
at catchment scale. Remote Sensing of Environment, 152, 150-165.

JEGEDE, A. 2014. CYBER FRAUD, GLOBAL TRADE AND YOUTH CRIME BURDEN:
NIGERIAN EXPERIENCE. Afiro Asian Journal of Social Sciences, 5.

JENKINSON, A. F. 1955. The frequency distribution of the annual maximum (or minimum)
values of meteorological elements. Quarterly Journal of the Royal Meteorological
Society, 81, 158-171.

JILANI, R., MUNIR, S. & SIDDIQUI, P. Application of ALOS data in flood monitoring in
Pakistan. proceedings of 1st PI Symposium of ALOS Data Nodes, JAXA, Kyoto,
Japan, 2007.

JINADU, A. M. 2014. Rural Hazards and Vulnerability Assessment in the Downstream Sector
of Shiroro Dam, Nigeria. Planet@ Risk, 2.

JINADU, A. M. 2015. The Challenges of Flood Disaster Management in Nigeria. 2nd World
Congree on DIsaster Management. Visakhapatman, Andhra Pradesh, India.

253



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

JOLLIFFE, 1. T. 2002. Principal component analysis [electronic resource], New York :
Springer.

JONG-SEN, L. 1983. A simple speckle smoothing algorithm for synthetic aperture radar
images. Systems, Man and Cybernetics, IEEE Transactions on, SMC-13, 85-89.
JONGMAN, B., WARD, P. J. & AERTS, J. C. J. H. 2012. Global exposure to river and coastal

flooding: Long term trends and changes. Global Environmental Change, 22, 823-835.

JONKMAN, S. 2005. Global Perspectives on Loss of Human Life Caused by Floods. Nat
Hazards, 34, 151-175.

JOTISH, N., PARTHASARATHI, C., NAZRIN, U., VICTOR, S. K. & SILCHAR, A. 2010. A
Geomorphological based rainfall-runoff model for ungauged watersheds.

JUNG, H. C., JASINSKI, M., KIM, J. W., SHUM, C. K., BATES, P., NEAL, J., LEE, H. &
ALSDORF, D. 2012. Calibration of two- dimensional floodplain modeling in the
central Atchafalaya Basin Floodway System using SAR interferometry. Water
Resources Research, 48, n/a-n/a.

JUNG, Y. & MERWADE, V. 2015. Estimation of uncertainty propagation in flood inundation
mapping using a 1- D hydraulic model. Hydrological Processes, 29, 624-640.

KALYANAPU, A. J,, BURIAN, S. J. & MCPHERSON, T. N. 2010. Effect of land use-based
surface roughness on hydrologic model output. Journal of Spatial Hydrology, 9.

KANG, H. M. & YUSOF, F. 2012. Homogeneity Tests on Daily Rainfall Series in Peninsular
Malaysia. Int. J. Contemp. Math. Sciences, 7,9-22.

KARIMI, N., BAGHERI, M. H., HOOSHYARIPOR, F. FAROKHNIA, A. &
SHESHANGOSHT, S. 2016. Deriving and Evaluating Bathymetry Maps and Stage
Curves for Shallow Lakes Using Remote Sensing Data. Water Resources Management,
1-18.

KAVZOGLU, T. & COLKESEN, 1. The effects of training set size for performance of support
vector machines and decision trees. Proceeding of the 10th International Symposium
on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences,
2012 Florianopolis-SC, Brazil, July 10-13, 2012.

KAZAKIS, N., KOUGIAS, 1. & PATSIALIS, T. 2015. Assessment of flood hazard areas at a
regional scale using an index- based approach and Analytical Hierarchy Process:
Application in Rhodope— Evros region, Greece. Science of the Total Environment, 538,
555-563.

KELLENS, W., ZAALBERG, R., NEUTENS, T., VANNEUVILLE, W. & DE MAEYER, P.
2011. An analysis of the public perception of flood risk on the Belgian coast. Risk
analysis : an official publication of the Society for Risk Analysis, 31, 1055.

KEMP, S. 2015. Digital, social & mobile worldwide in 2015. We are social.

254



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

KENDALL, M. 1975. Rank Correlation Methods,(4th edn) Charles Griffin: London.

KENDALL, M. & STUART, A. 1969. The Advanced Theory of Statistics (Volume 1) Griffin.

KHADRI, S. F. R. & CHAITANYA, B. P. 2014. REMOTE SENSING AND GIS
APPLICATIONS OF GEOMORPHOLOGICAL MAPPING OF MAHESH RIVER
BASIN, AKOLA & BULDHANA DISTRICTS, MAHARASHTRA, INDIAUSING
MULTISPECTRAL SATELLITE DATA. Indian Streams Research Journal, 4, 1-7.

KHALIFELOO, M. H., MOHAMMAD, M. & HEYDARI, M. 2015. MULTIPLE
IMPUTATION FOR HYDROLOGICAL MISSING DATA BY USING A
REGRESSION METHOD (KLANG RIVER BASIN). [International Journal of
Research in Engineering and Technology, 4, 519-524,

KHAN, S. I., YANG HONG, J., WANG, K. K., YILMAZ, J. J., GOURLEY, R. F., ADLER, G.
R., BRAKENRIDGE, F., POLICELLI, S., HABIB, D. & IRWIN, D. 2011. Satellite
Remote Sensing and Hydrologic Modeling for Flood Inundation Mapping in Lake
Victoria Basin: Implications for Hydrologic Prediction in Ungauged Basins. Geoscience
and Remote Sensing, IEEE Transactions on, 49, 85-95.

KING, D. 2000. You're on your own: Community vulnerability and the need for awareness and
education for predictable natural disasters. Journal of Contingencies and Crisis
Management, 8, 223-228.

KING, G., HONAKER, J., JOSEPH, A. & SCHEVE, K. List-wise deletion is evil: what to do
about missing data in political science. Annual Meeting of the American Political
Science Association, Boston, 1998.

KITE, G. & PIETRONIRO, A. 1996. Remote sensing applications in hydrological modelling.
Hydrological Sciences Journal, 41, 563-591.

KJELDSEN, T. R., SMITHERS, J. C. & SCHULZE, R. E. 2002. Regional flood frequency
analysis in the KwaZulu- Natal province, South Africa, using the index- flood method.
Journal of Hydrology, 255, 194-211.

KLEMAS, V. 2015. Remote Sensing of Floods and Flood-Prone Areas: An Overview. Journal
of Coastal Research, 31, 1005.

KLIJN, F., SAMUELS, P. & VAN OS, A. 2008. Towards flood risk management in the EU:
State of affairs with examples from various European countries. International Journal
of River Basin Management, 6, 307-321.

KOBLINSKY, C., CLARKE, R., BRENNER, A. & FREY, H. 1993. Measurement of river
level variations with satellite altimetry. Water Resources Research, 29, 1839-1848.

KOCHANEK, K., STRUPCZEWSKI, W. G., BOGDANOWICZ, E., FELUCH, W. &
MARKIEWICZ, 1. 2013. Application of a hybrid approach in nonstationary flood

255



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

frequency analysis — a Polish perspective. Natural Hazards and Earth System Sciences
Discussions, 1, 6001-6024.

KOLMOGOROV, A. N. 1991. Selected works of A.N. Kolmogorov, Dordrecht ; Boston :
Kluwer Academic Publishers.

KOMI, K., AMISIGO, B. A., DIEKKRUGER, B. & HOUNTONDII, F. C. 2016. Regional
Flood Frequency Analysis in the Volta River Basin, West Africa. Hydrology, 3, 5.

KOMI, K., NEAL, J., TRIGG, M. A. & DIEKKRUGER, B. 2017. Modelling of flood hazard
extent in data sparse areas: a case study of the Oti River basin, West Africa. Journal of
Hydrology: Regional Studies, 10, 122-132.

KOMOLAFE, A. A. B. S. A.-A. B. F. O. 2015. A Review of Flood Risk Analysis in Nigeria.
American journal of environmental sciences., 11, 157.

KON JOON BHANG, F. W., SCHWARTZ, A. & BRAUN, A. 2007. Verification of the
Vertical Error in C- Band SRTM DEM Using ICESat and Landsat- 7, Otter Tail
County, MN. Geoscience and Remote Sensing, IEEE Transactions on, 45, 36-44.

KOPECKY, M. & CIZKOVA, $.2010. Using topographic wetness index in vegetation ecology:
does the algorithm matter? Applied Vegetation Science, 13, 450-459.

KORIAKE, S. 2015. River Flooding [Online]. Available:
https://korisamuel.wordpress.com/2015/10/3 1/river-flooding/ [ Accessed 30 May, 2016].

KRON, W. 2005. Flood risk= hazarde valuese vulnerability. Water International, 30, 58-68.

KUCZERA, G. 1983. Effect of sampling uncertainty and spatial correlation on an empirical
Bayes procedure for combining site and regional information. Journal of Hydrology,
65, 373-398.

KUCZERA, G. 1999. Comprehensive at- site flood frequency analysis using Monte Carlo
Bayesian inference. Water Resources Research, 35, 1551-1557.

KUMAR, R., GOEL, N. K., CHATTERJEE, C. & NAYAK, P. C. 2015. Regional Flood
Frequency Analysis using Soft Computing Techniques. Water Resources Management,
29, 1965-1978.

KUNKEL, K. 2003. North American Trends in Extreme Precipitation. Natural Hazards, 29,
291-305.

KUSSUL, N., SHELESTOV, A. & SKAKUN, S. 2011. Flood Monitoring from SAR Data. In:
KOGAN, F., POWELL, A. & FEDOROV, O. (eds.) Use of Satellite and In-Situ Data to
Improve Sustainability. Dordrecht: Springer Netherlands.

KWON, H. H., BROWN, C. & LALL, U. 2008. Climate informed flood frequency analysis and
prediction in Montana using hierarchical Bayesian modeling. Geophysical Research

Letters, 35, n/a-n/a.

256


https://korisamuel.wordpress.com/2015/10/31/river-flooding/

Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

KYRIOU, A. & NIKOLAKOPOULOS, K. Flood mapping from Sentinel-1 and Landsat-8 data:
a case study from river Evros, Greece. SPIE Remote Sensing, 2015. International
Society for Optics and Photonics, 964405-964405-11.

LAERD STATISTICS. 2016a. Chi-Square Test for Association using SPSS Statistics [Online].

Available: https://statistics.laerd.com/spss-tutorials/chi-square-test-for-association-

using-spss-statistics.php [Accessed].

LAERD STATISTICS. 2016b. Mann-Whitney U Test using SPSS Statistics [Online]. Available:

https://statistics.laerd.com/spss-tutorials/mann-whitney-u-test-using-spss-statistics.php
[Accessed].
LAIO, F., DI BALDASSARRE, G. & MONTANARI, A. 2009. Model selection techniques for

the frequency analysis of hydrological extremes. Water Resources Research, 45, n/a-
n/a.

LAMONTAGNE, J. R., STEDINGER, J. R., COHN, T. A. & BARTH, N. A. Robust national
flood frequency guidelines: What is an outlier? Proc. World Environmental and Water
Resources Congress, ASCE, 2013.

LAMOVEC, P., VELJANOVSKI, T., MIKOS, M. & OSTIR, K. 2013. Detecting flooded areas
with machine learning techniques: case study of the Selska Sora river flash flood in
September 2007. Journal of Applied Remote Sensing, 7, 073564-073564.

LANG, M., POBANZ, K., RENARD, B., RENOUF, E. & SAUQUET, E. 2010. Extrapolation
of rating curves by hydraulic modelling, with application to flood frequency analysis.
Hydrological Sciences Journal, 55, 883-898.

LAVENDER, S. L. & MATTHEWS, A. J. 2009. Response of the West African monsoon to the
Madden- Julian oscillation. Journal of Climate, 22, 4097-4116.

LECLERC, M. & OUARDA, T. B. M. J. 2007. Non- stationary regional flood frequency
analysis at ungauged sites. Journal of Hydrology, 343, 254-265.

LEE, H. & KANG, K. 2015. Interpolation of Missing Precipitation Data Using Kernel
Estimations for Hydrologic Modeling. Advances in Meteorology, 2015.

LEE, K. J. & CARLIN, J. B. 2010. Multiple imputation for missing data: fully conditional
specification versus multivariate normal imputation. American journal of epidemiology,
171, 624.

LEFSKY, M. A. 2010. A global forest canopy height map from the Moderate Resolution
Imaging Spectroradiometer and the Geoscience Laser Altimeter System. Geophysical
Research Letters, 37, n/a-n/a.

LEHNER, B., LIERMANN, C. R., REVENGA, C., VOROSMARTY, C., FEKETE, B.,
CROUZET, P., DOLL, P., ENDEJAN, M., FRENKEN, K. & MAGOME, J. 2011.

Global reservoir and dam (grand) database. Technical Documentation, Version, 1.

257


https://statistics.laerd.com/spss-tutorials/chi-square-test-for-association-using-spss-statistics.php
https://statistics.laerd.com/spss-tutorials/chi-square-test-for-association-using-spss-statistics.php
https://statistics.laerd.com/spss-tutorials/mann-whitney-u-test-using-spss-statistics.php

Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

LEWIS, M., BATES, P., HORSBURGH, K., NEAL, J. & SCHUMANN, G. 2013. A storm
surge inundation model of the northern Bay of Bengal using publicly available data.
Quarterly Journal of the Royal Meteorological Society, 139, 358-369.

LL J. & TAN, S. 2015. Nonstationary Flood Frequency Analysis for Annual Flood Peak Series,
Adopting Climate Indices and Check Dam Index as Covariates. Water Resour Manage,
29, 5533-5550.

LL J., YESOU, H., HUANG, S., LI, J., LI, X., XIN, J.,, WANG, X., ANDREOLIL R. &
LACOSTE, H. 2006. ENVISAT ASAR medium and high resolution images for near
real time flood monitoring in China during the 2005 flood season. Dragon Programme
Mid-Term Results, Proceedings, 611, 213-225.

LI P., STUART, E. & ALLISON, D. 2015. Multiple Imputation A Flexible Tool for Handling
Missing Data. Jama-Journal Of The American Medical Association, 314, 1966-1967.

LITTLE, R. J. A. 2002. Statistical analysis with missing data, Hoboken, N.J. : Wiley.

LIU, D., GUO, S., LIAN, Y., XIONG, L. & CHEN, X. 2015. Climate- informed low- flow
frequency analysis using nonstationary modelling. Hydrological Processes, 29, 2112-
2124.

LIU, Z., RAJIB, A. & MERWADE, V. 2016. Enabling Large Scale Fine Resolution Flood
Modeling Using SWAT and LISFLOOD-FP. American Geophysical Union, Fall
General Assembly 2016. San Francisco, California.

LO PRESTI, R., BARCA, E. & PASSARELLA, G. 2010. A methodology for treating missing
data applied to daily rainfall data in the Candelaro River Basin ( Italy). Environ Monit
Assess, 160, 1-22.

LO, S.-W., WU, J.-H., LIN, F.-P. & HSU, C.-H. 2015. Cyber surveillance for flood disasters.
Sensors (Basel, Switzerland), 15, 2369.

LONG, S., FATOYINBO, T. E. & POLICELLI, F. 2014. Flood extent mapping for namibia
using change detection and thresholding with sar. Flood extent mapping for Namibia
using change detection and thresholding with SAR, 9, 035002.

LUBKE, R. A., REAVELL, P. E. & DYE, P. J. 1984. The effects of dredging on the
macrophytic vegetation of the Boro river, Okavango delta, Botswana. Biological
Conservation, 30, 211-236.

LUKE, A., KAPLAN, B., NEAL, J., LANT, J., SANDERS, B., BATES, P. & ALSDORF, D.
2015. Hydraulic modeling of the 2011 New Madrid Floodway activation: a case study
on floodway activation controls. Nat Hazards, 77, 1863-1887.

LOPEZ, J. & FRANCES, F. 2013. Non- stationary flood frequency analysis in continental
Spanish rivers, using climate and reservoir indices as external covariates. Hydrology

and Earth System Sciences, 17,3189-3203.

258



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

MACHADO, M. J., BOTERO, B. A., LOPEZ, J., FRANCES, F., DIEZ-HERRERO, A. &
BENITO, G. 2015. Flood frequency analysis of historical flood data under stationary
and non- stationary modelling. Hydrology and Earth System Sciences Discussions, 12,
525-568.

MADDEN, R. A. & JULIAN, P. R. 1971. Detection of a 40— 50 Day Oscillation in the Zonal
Wind in the Tropical Pacific. Journal of the Atmospheric Sciences, 28, 702-708.
MAGNUSSON, M. Information Seeking and Sharing During a Flood-a Content Analysis of a
Local Government’s Facebook Page. ECSM2014-Proceedings of the European
Conference on Social Media: ECSM 2014, 2014. Academic Conferences Limited, 305.

MAHMOUD, M. I, DUKER, A., CONRAD, C., THIEL, M. & AHMAD, H. S. 2016. Analysis
of settlement expansion and urban growth modelling using geoinformation for assessing
potential impacts of urbanization on climate in Abuja City, Nigeria. Remote Sensing, 8,
&lt;xocs:firstpage xmlns:xocs=&#034;&#034;/&gt;.

MALINOWSKI R., GROOM, G., SCHWANGHART, W. & HECKRATH, G. 2015. Detection
and Delineation of Localized Flooding from WorldView- 2 Multispectral Data. Remote
Sensing, 7, 14853-14875.

MALLINIS, G., GITAS, L. Z., GIANNAKOPOULOS, V., MARIS, F. & TSAKIRI-STRATI,
M. 2013. An object-based approach for flood area delineation in a transboundary area
using ENVISAT ASAR and LANDSAT TM data. International Journal of Digital
Earth, 6, 124-136.

MANN, H. B. 1945. Nonparametric tests against trend. Econometrica: Journal of the
Econometric Society, 245-259.

MARTENS, B., MIRALLES, D. G., LIEVENS, H., VAN DER SCHALIE, R., DE JEU, R. A.
M., FERNANDEZ-PRIETO, D., BECK, H. E., DORIGO, W. A. & VERHOEST, N. E.
C. 2016. GLEAM v3: satellite- based land evaporation and root- zone soil moisture.
Geosci. Model Dev. Discuss., 1-36.

MARTINI F. & LOAT, R. 2007. Handbook on good practices for flood mapping in Europe.

MASON, D. C., SCHUMANN, G. & BATES, P. 2011. Data utilization in flood inundation
modelling.

MASON, D. C., TRIGG, M., GARCIA-PINTADO, J., CLOKE, H. L., NEAL, J. C. & BATES,
P. D. 2016. Improving the TanDEM- X Digital Elevation Model for flood modelling
using flood extents from Synthetic Aperture Radar images. Remote Sensing of
Environment, 173, 15-28.

MASWOOD, M. & HOSSAIN, F. 2016. Advancing river modelling in ungauged basins using
satellite remote sensing: the case of the Ganges— Brahmaputra— Meghna basin.

International Journal of River Basin Management, 14, 103-117.

259



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

MATI, B. M., MUTIE, S., GADAIN, H., HOME, P. & MTALO, F. 2008. Impacts of land-
use/cover changes on the hydrology of the transboundary Mara River, Kenya/Tanzania.
Lakes & Reservoirs: Research & Management, 13, 169-177.

MAXWELL, O. 2013. Hydrological Data Banking for Sustainable Development in Nigeria: An
Overview. Aceh International Journal of Science and Technology, 2.

MAYOMI, 1., DAMI, A. & MARYAH, U. 2013. GIS based assessment of flood risk and
vulnerability of communities in the Benue floodplains, Adamawa State, Nigeria.
Journal of geography and geology, 5, 148.

MCCABE, M. F., RODELL, M., ALSDORF, D. E., MIRALLES, D. G., UJLENHOET, R.,
WAGNER, W., LUCIEER, A., HOUBORG, R., VERHOEST, N. E. C., FRANZ, T. E.,
SHIL, J., GAO, H. & WOOD, E. F. 2017. The Future of Earth Observation in Hydrology.
Hydrol. Earth Syst. Sci. Discuss., 1-55.

MCGRANAHAN, G., BALK, D. & ANDERSON, B. 2007. The rising tide: assessing the risks
of climate change and human settlements in low elevation coastal zones. Environment
and urbanization, 19, 17-38.

MD ALIL A., SOLOMATINE, D. P., MD ALI, G., SOLOMATINE, G. & DI BALDASSARRE,
G. 2015. Assessing the impact of different sources of topographic data on 1- D
hydraulic modelling of floods. Hydrology and Earth System Sciences, 19, 631-643.

MEDEIROS, S. C., HAGEN, S. C. & WEISHAMPEL, J. F. 2012. Comparison of floodplain
surface roughness parameters derived from land cover data and field measurements.
Journal of Hydrology, 452-453, 139-149.

MEEK, S., JACKSON, M. J. & LEIBOVICI, D. G. 2014. A flexible framework for assessing
the quality of crowdsourced data.

MENEGBO, E. & DOOSU, P. 2015. Vertical accuracy assessment of SRTM3 V2. 1 and aster
GDEM V2 using GPS control points for surveying & geo-informatics applications-Case
study of Rivers State, Nigeria. International Journal of Geomatics and Geosciences, 6,
81-89.

MERWADE, V., OLIVERA, F., ARABI, M. & EDLEMAN, S. 2008. Uncertainty in flood
inundation mapping: current issues and future directions. Journal of Hydrologic
Engineering, 13, 608-620.

MERZ, B., THIEKEN, A. & GOCHT, M. 2007. Flood risk mapping at the local scale: concepts
and challenges. Flood risk management in Europe. Springer.

MERZ, B. & THIEKEN, A. H. 2005. Separating natural and epistemic uncertainty in flood
frequency analysis. Journal of Hydrology, 309, 114-132.

MERZ, R. & BLOSCHL, G. 2005. Flood frequency regionalisation— spatial proximity vs.
catchment attributes. Journal of Hydrology, 302, 283-306.

260



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

MICELI, R., SOTGIU, I. & SETTANNI, M. 2008. Disaster preparedness and perception of
flood risk: A study in an alpine valley in Italy. Journal of Environmental Psychology,
28, 164-173.

MICHAILOVSKY, C. I, MCENNIS, S., BAUER-GOTTWEIN, P. A. M., BERRY, R. &
SMITH, P. 2012. River monitoring from satellite radar altimetry in the Zambezi River
basin. Hydrology and Earth System Sciences, 16,2181-2192,

MILLER, J. D., KIM, H., KIELDSEN, T., PACKMAN, J., GREBBY, S. & DEARDEN, R.
2014. Assessing the impact of urbanization on storm runoff in a pen- urban catchment
using historical change in impervious cover. Journal Of Hydrology, 515, 59-70.

MILZOW, C., BAUER-GOTTWEIN, P. E. & KROGH, P. 2011. Combining satellite radar
altimetry, SAR surface soil moisture and GRACE total storage changes for hydrological
model calibration in a large poorly gauged catchment. Hydrology and Earth System
Sciences, 15, 1729-1743.

MIORANDI, D., CARRERAS, 1., GREGORI, E., GRAHAM, 1. & STEWART, J. Measuring
net neutrality in mobile Internet: Towards a crowdsensing-based citizen observatory.
Communications Workshops (ICC), 2013 IEEE International Conference on, 2013.
IEEE, 199-203.

MIRALLES, D. G., HOLMES, T. R. H., JEU, R. A. M. D., GASH, J. H.,, MEESTERS, A. G. C.
A. & DOLMAN, A. J. 2011. Global land- surface evaporation estimated from satellite-
based observations. Hydrology and Earth System Sciences, 15, 453-469.

MIRZAEE, S., MOTAGH, M. & AREFI, H. 2015. Assessment of Reference Height Models on
Quality of Tandem-X dem. The International Archives of Photogrammetry, Remote
Sensing and Spatial Information Sciences, 40, 463.

MISHRA, B., TAKARA, K., YAMASHIKI, Y. & TACHIKAWA, Y. 2009. Hydrologic
simulation-aided regional flood frequency analysis of Nepalese river basins. Journal of
Flood Risk Management, 2, 243-253.

MOEL, H., JONGMAN, B., KREIBICH, H., MERZ, B., PENNING-ROWSELL, E. & WARD,
P. 2015. Flood risk assessments at different spatial scales. Mitig Adapt Strateg Glob
Change, 20, 865-890.

MOHINO, E., JANICOT, S., DOUVILLE, H. & LI, L. 2012. Impact of the Indian part of the
summer MJO on West Africa using nudged climate simulations. Clim Dyn, 38, 2319-
2334.

MOMODU, N., DIMUNA, K. & DIMUNA, J. 2011. Mitigating the impact of solid wastes in
urban centres in Nigeria. Journal of human ecology, 34, 125-133.

MORAND, P. & MIKOLASEK, O. 2005. Review of the present state of knowledge of

environment, fish stocks and fisheries of the River Niger (West Africa).

261



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

MOUHAMED, L., TRAORE, S. B., ALHASSANE, A. & SARR, B. 2013. Evolution of some
observed climate extremes in the West African Sahel. Weather and Climate Extremes,
1, 19-25.

MULLER, C. L., CHAPMAN, L., JOHNSTON, S., KIDD, C., ILLINGWORTH, S., FOODY,
G., OVEREEM, A. & LEIGH, R. R. 2015. Crowdsourcing for climate and atmospheric
sciences: current status and future potential.

MULLER, C. L., CHAPMAN, L., YOUNG, D. T., CAIL X.-M. & GRIMMOND, X.-M. 2013.
Toward a standardized metadata protocol for urban meteorological networks. Bulletin of
the American Meteorological Society, 94, 1161-1185.

MUNCASTER, S., WARWICK, B. & MCCOWAB, A. 2006. Design flood estimation in small
catchments using two dimensional hydraulic modelling-A case study. 30th, Hydrology
and water Resource Symposium. Launceston, TAS.

MUSA, Z., POPESCU, I. & MYNETT, A. 2015. A review of applications of satellite SAR,
optical, altimetry and DEM data for surface water modelling, mapping and parameter
estimation. Hydrology and Earth System Sciences Discussions, 12, 4857-4878.

MUSA, Z. N., POPESCU, I. & MYNETT, A. 2014a. The Niger Delta&#039;s vulnerability to
river floods due to sea level rise. Natural Hazards and Earth System Sciences, 14,3317.

MUSA, Z. N., POPESCU, 1. & MYNETT, A. 2014b. The Niger Delta's vulnerability to river
floods due to sea level rise. Natural Hazards and Earth System Sciences, 14, 3317.

MUSA, Z. N., POPESCU, I. & MYNETT, A. 2016. Assessing the sustainability of local
resilience practices against sea level rise impacts on the lower Niger delta. Ocean and
Coastal Management, 130, 221-228.

MUSA, Z. N., POPESCU, I. I. & MYNETT, A. 2015. SENSITIVITY ANALYSIS OF THE 2D
SOBEK HYDRODYNAMIC MODEL OF THE NIGER RIVER.

MUSAEV, A., WANG, D. & PU, C. LITMUS: Landslide detection by integrating multiple
sources. 11th International Conference Information Systems for Crisis Response and
Management (ISCRAM), 2014.

NASA. 2016. Ocean Surface Topography From Space [Online]. Available:
http://sealevel.jpl.nasa.gov/missions/jason3/ [Accessed 26 April, 2016].

NBS 2016. Nigerian Bureau of Statistics, Telecommunications Sector, Q1 2016 (Summary
Report): State Disaggregated Data.

NDABULA, C., JIDAUNA, G., OYATAYO, K., AVERIK, P. & IGUISI, E. 2012. Analysis of
urban floodplain encroachment: Strategic approach to flood and floodplain management

in Kaduna metropolis, Nigeria. Journal of Geography and Geology, 4, 170.

262


http://sealevel.jpl.nasa.gov/missions/jason3/

Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

NEAL, J., SCHUMANN, G. & BATES, P. 2012. A subgrid channel model for simulating river
hydraulics and floodplain inundation over large and data sparse areas. Water Resources
Research, 48.

NEAL, J., SCHUMANN, G., FEWTRELL, T., BUDIMIR, M., BATES, P. & MASON, D.
2011a. Evaluating a new LISFLOOD-FP formulation with data from the summer 2007
floods in Tewkesbury, UK. Journal of Flood Risk Management, 4, 88-95.

NEAL, J.,, SCHUMANN, G., FEWTRELL, T., BUDIMIR, M., BATES, P. & MASON, D.
2011b. Evaluating a new LISFLOOD-FP formulation with data from the summer 2007
floods in Tewkesbury, UK. Journal of Flood Risk Management, 4, 88-95.

NEAL, J. C., ODONI, N. A., TRIGG, M. A., FREER, J. E., GARCIA-PINTADO, J., MASON,
D. C., WOOD, M. & BATES, P. D. 2015. Efficient incorporation of channel cross-
section geometry uncertainty into regional and global scale flood inundation models.
Journal of Hydrology, 529, 169-183.

NEMA 2012. National Emergency Management Agency, Nigeria EPR and DRR Capacity
Assessment 2012.

NESDIS. 2016. Jason 3 has reached its operational orbit [Online]. Available:

http://www.nesdis.noaa.gov/news_archives/jason3_lift off is just the beginning.html
[Accessed 20 February, 2016].

NEW, M., HEWITSON, B., STEPHENSON, D. B., TSIGA, A., KRUGER, A., MANHIQUE,
A., GOMEZ, B., COELHO, C. A. S., MASISI, D. N.,, KULULANGA, E.,
MBAMBALALA, E., ADESINA, F., SALEH, H., KANYANGA, J.,, ADOS], J.,
BULANE, L., FORTUNATA, L., MDOKA, M. L. & LAJOIE, R. 2006. Evidence of
trends in daily climate extremes over southern and west Africa. Journal of Geophysical
Research: Atmospheres, 111, n/a-n/a.

NGENE, B. U. 2009. Optimization of rain gauge stations in Nigeria. PhD, Federal University
of Technology, Owerri.

NGENE, B. U., AGUNWAMBA, J. C., NWACHUKWU, B. A. & OKORO, B. C. 2015. The
Challenges to Nigerian Raingauge Network Improvement. RJEES, 7, 68-74.

NIE, N. H., BENT, D. H. & HULL, C. H. 1975. SPSS: Statistical package for the social
sciences, McGraw-Hill New York.

NIGRO, J., SLAYBACK, D., POLICELLI, F. & BRAKENRIDGE, G. 2014. NASA/DFO
MODIS Near Real-Time (NRT) Global Flood Mapping Product Evaluation of Flood
and Permanent Water Detection.

NIHSA 2016. Nigerian Hydrological Service Agency (NIHSA), Hydrologic Time series.

NIHSA AFO 2013. Nigerian Hydrological Service Agency, 2013 Annual Flood Outlook
(AFO).

263


http://www.nesdis.noaa.gov/news_archives/jason3_lift_off_is_just_the_beginning.html

Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

NIHSA AFO 2014. Nigerian Hydrological Service Agency, 2014 Annual Flood Outlook
(AFO).

NIHSA AFO 2015. Nigerian Hydrological Service Agency, 2015 Annual Flood Outlook
(AFO).

NKEKI, F., HENAH, P. & OJEH, V. 2013. Geospatial Techniques for the Assessment and
Analysis of Flood Risk along the Niger- Benue Basin in Nigeria. Journal of Geographic
Information System, 5, 123-135.

NKWUNONWO, U., MALCOLM, W. & BRIAN, B. 2015. Flooding and Flood Risk Reduction
in Nigeria: Cardinal Gaps. Journal of Geography & Natural Disasters, 2015.

NKWUNONWO, U. C., WHITWORTH, M. & BAILY, B. 2016. Review article: A review and
critical analysis of the efforts towards urban flood risk management in the Lagos region
of Nigeria. Nat. Hazards Earth Syst. Sci., 16, 349-369.

NWILO, P. & OSANWUTA, D. 2004. National Spatial Data Infrastructure for Nigeria-Issues to
Be Considered. FIG Working Week", Anthen, Greece, Mai.

NWILO, P. C., OLAYINKA, D. N. & ADZANDEH, A. E. 2012. Flood Modelling and
Vulnerability Assessment of Settlements in the Adamawa State Floodplain using
Remote Sensing and Cellular Framework Approach. Global Journal of Human-Social
Science Research, 12.

O'LOUGHLIN, F., PAIVA, R., DURAND, M., ALSDORF, D. & BATES, P. Development of
a'bare-earth'SRTM DEM product. EGU General Assembly Conference Abstracts,
2015.9651.

O'LOUGHLIN, F. E., NEAL, J.,, YAMAZAKI, D. & BATES, P. D. 2016a. ICESat-derived
inland water surface spot heights. Water Resources Research.

O'LOUGHLIN, F. E., PAIVA, R. C. D.,, DURAND, M., ALSDORF, D. E. & BATES, P. D.
2016b. A multi- sensor approach towards a global vegetation corrected SRTM DEM
product. Remote Sensing of Environment, 182, 49-59.

OBETA, M. 2009. Extreme river flood events in Nigeria: A geographical perspective of
Nigerian. Journal of Geography and the Environment, 1, 170-179.

OBETA, M. 2014a. Institutional Approach to Flood Disaster Management in Nigeria: Need for
a Preparedness Plan. BJAST, 4, 4575-4590.

OBETA, M. C. 2014b. Institutional approach to flood disaster management in Nigeria: need for
a preparedness plan. British Journal of Applied Science & Technology, 4, 4575.

OCHA. 2015. Office for the Coordination of Humanitarian Affairs, Nigeria: Northeast Crisis
[Online]. Available:
https://www.humanitarianresponse.info/system/files/documents/files/fOCHA %20Nigeri
a%20SitRep January%202015.pdf [Accessed 01 June, 2016].

264


https://www.humanitarianresponse.info/system/files/documents/files/OCHA%20Nigeria%20SitRep_January%202015.pdf
https://www.humanitarianresponse.info/system/files/documents/files/OCHA%20Nigeria%20SitRep_January%202015.pdf

Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

ODUNUGA, S., ADEGUN, O., RAJL, S. & UDOFIA, S. 2015. Changes in flood risk in Lower
Niger-Benue catchments. Proceedings of the International Association of Hydrological
Sciences, 370, 97.

OGUNDELE, J. & JEGEDE, A. O. 2011. Environmental Influences of Flooding on Urban
Growth and Development of Ado-Ekiti, Nigeria. Studies in Sociology of Science, 2, 89.

OGUNGBENRO, S. B. & MORAKINYO, T. E. 2014. Rainfall distribution and change
detection across climatic zones in Nigeria. Weather and Climate Extremes, 5-6, 1-6.

OGUNTUNDE, P. G., ABIODUN, B. J. & LISCHEID, G. 2011. Rainfall trends in Nigeria,
1901-2000. Journal of Hydrology, 411, 207-218.

OHIMAIN, E. 2004. Environmental impacts of dredging in the Niger Delta. Terra et Aqua, 97,
9-19.

OHIMAIN, E. I., ANDRIESSE, W. & VAN MENSVOORT, M. E. F. 2004. Environmental
impacts of abandoned dredged soils and sediments. Journal of soils and sediments :, 4,
59-65.

OHIMAIN, E. 1, IZAH, S. C. & OTOBOTEKERE, D. 2014. Selective impacts of the 2012
water floods on the vegetation and wildlife of Wilberforce Island, Nigeria. International
Journal of Environmental Monitoring and Analysis, 2, 73-85.

OJIGI, M., ABDULKADIR, F. & ADEROJU, M. Geospatial mapping and analysis of the 2012
flood disaster in central parts of Nigeria. 8th National GIS Symposium. Dammam,
2013. Citeseer, 1-14.

OJINNAKA, O., BAYWOOD, C. & GIFT, U. 2015. Flood Hazard Analysis and Damage
Assessment of 2012 Flood in Anambra State Using GIS and Remote Sensing Approach.
American Journal of Geographic Information System, 4, 38-51.

OKONKWO, A. 2012. The Lower Niger River dredging and indigenous wetland livelihoods in
Nigeria: the Anam communities in Ugbolu, Delta State, as a case study. Environ Dev
Sustain, 14, 667-689.

OKOYE, C. B. & OJEH, V. N. 2015. Mapping of Flood Prone Areas in Surulere, Lagos,
Nigeria: A GIS Approach. JGIS, 07, 158-176.

OLAYINKA, D. N. 2012. Modelling Flooding in The Niger Delta. PhD, Lancaster University.

OLAYINKA, D. N., NWILO, P. C. & EMMANUEL, A. 2013. From Catchment to Reach:
Predictive Modelling of Floods in Nigeria.

OLOGUNORISA, T. & ABAWUA, M. 2005. Flood risk assessment: a review. J. Appl. Sci.
Environ. Mgt, 9, 57-63.

OLOGUNORISA, T. E. 2004. An assessment of flood vulnerability zones in the Niger Delta,

Nigeria. International Journal of Environmental Studies, 61, 31-38.

265



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

OLOGUNORISA, T. E. & TERSOO, T. 2006. The changing rainfall pattern and its implication
for flood frequency in Makurdi, Northern Nigeria. Journal of Applied Sciences and
Environmental Management, 10, 97-102.

OLOJO, O. 0., ASMA, T. L, ISAH, A. A, OYEWUMI, A. S. & ADEPERO, O. The Role of
Earth Observation Satellite during the International Collaboration on the 2012 Nigeria
Flood Disaster. 64th International Astronautical Congress 2013, 2013 Abuja, Nigeria.

OLOMODA, 1. 2002. Integrated Water Resources Management: Niger Authority's Experience.
From Conflict to Co-operation in International Water Resources Management:
Challenges and Opportunities, 13.

OLOMODA, 1. 2012. Challenges of Continued River Niger Low Flow into Nigeria. Special
Publication of the Nigerian Association of Hydrological Sciences, 145-155.

OLUKANNI, D. & ALATISE, M. 2008. Rainfall-Runoff Relationships and flow forecasting,
Ogun river Nigeria. Journal of Environmental Hydrology, 16.

ONONIWU, N. 1994. Appraisal of the role of satellite systems in acquisition of data for
monitoring and evaluating global climatic changes with respect to reservoir energy
generation. GLOBAL CLIMATE CHANGE-IMPACT ON  ENERGY
DEVELOPMENT.[np]. 1994.

OPOLOT, E. 2013. Application of remote sensing and geographical information systems in
flood management: a review. Research Journal of Applied Sciences Engineering and
Technology, 6, 1884-1894.

OWE, M. & NEALE, C. 2007. Remote sensing for environmental monitoring and change
detection, International Assn of Hydrological Sciences.

OYEGOKE, S. & OYEBANDE, L. 2008. A new technique for analysis of extreme rainfall for
Nigeria. Environmental Research Journal, 2, 7-14.

OYINLOYE, M. A., OLAMIJU, O. I. & OYETAYO, B. S. 2013. Combating flood crisis using
GIS: Empirical evidences from ala river floodplain, Isikan Area, Akure, Ondo State,
Nigeria. Communications in Information Science and Management Engineering, 3, 439.

OZAH, A. P. & KUFONIYI, O. ACCURACY ASSESSMENT OF CONTOUR
INTERPOLATION FROM 1: 50,000 TOPOGRAPHICAL MAPS AND SRTM DATA
FOR 1: 25,000 TOPOGRAPHICAL MAPPING. International Society for
Photogrammetry and Remote Sensing, 2008 Beijing.

O’BRIEN, N. L. & BURN, D. H. 2014. A nonstationary index- flood technique for estimating
extreme quantiles for annual maximum streamflow. Journal of Hydrology, 519, 2040-

2048.

266



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

PADI, P. T., BALDASSARRE, G. D. & CASTELLARIN, A. 2011. Floodplain management in
Africa: Large scale analysis of flood data. Physics and Chemistry of the Earth, 36, 292-
298.

PAIVA, R. C. D., COLLISCHONN, W. & BUARQUE, D. C. 2013. Validation of a full
hydrodynamic model for large-scale hydrologic modelling in the Amazon.
Hydrological Processes, 27, 333-346.

PAKOKSUNG, K. & TAKAGI, M. 2016. Digital elevation models on accuracy validation and
bias correction in vertical. Model. Earth Syst. Environ., 2, 1-13.

PAN, F. & NICHOLS, J. 2013. Remote sensing of river stage using the cross-sectional
inundation area- river stage relationship (IARSR) constructed from digital elevation
model data. Hydrological Processes, 27, 3596-3606.

PANDEY, R. & AMARNATH, G. 2015. The potential of satellite radar altimetry in flood
forecasting: concept and implementation for the Niger-Benue river basin. Proc. IAHS,
370, 223-227.

PANUIJU, D. R. & TRISASONGKO, B. H. 2008. The use of statistical tree methods on rice
field mapping. Jurnal llmiah Geomatika, 14, 75-84.

PAPA, F., DURAND, F., ROSSOW, W. B., RAHMAN, A. & BALA, S. K. 2010. Satellite
altimeter- derived monthly discharge of the Ganga- Brahmaputra River and its seasonal
to interannual variations from 1993 to 2008. Journal of Geophysical Research: Oceans,
115, n/a-n/a.

PAPALEXIOU, S. M. & KOUTSOYIANNIS, D. 2013. Battle of extreme value distributions: A
global survey on extreme daily rainfall. Water Resources Research, 49, 187-201.
PARDO-IGUZQUIZA, E. & DOWD, P. A. 2003. CONNEC3D: a computer program for
connectivity analysis of 3D random set models. Computers and Geosciences, 29, 775-

785.

PARKINSON, J. 2003. Drainage and stormwater management strategies for low- income urban
communities. Environment and Urbanization, 15, 115-126.

PASQUALE, N., PERONA, P., WOMBACHER, A. & BURLANDO, P. 2014. Hydrodynamic
model calibration from pattern recognition of non- orthorectified terrestrial
photographs. Computers and Geosciences, 62, 160-167.

PATEL, A., KATIYAR, S. & PRASAD, V. 2016. Performances evaluation of different open
source DEM using Differential Global Positioning System (DGPS). The Egyptian
Journal of Remote Sensing and Space Science.

PATEL, N. & UPADHYAY, S. 2012. Study of various decision tree pruning methods with their

empirical comparison in weka. International journal of computer applications, 60.

267



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

PATRO, S., CHATTERIEE, C., SINGH, R. & RAGHUWANSHI, N. 2009. Hydrodynamic
modelling of a large flood-prone river system in India with limited data. Hydrological
Processes, 23,2774-2791.

PEDRUCO, P., NIELSEN, C., KUCZERA, G. & RAHMAN, A. 2014. Combining regional
flood frequency estimates with an at site flood frequency analysis using a Bayesian
framework:  Practical considerations.  Hydrology —and  Water  Resources
Symposium Barton, ACT: Engineers Australia

PEEL, M., WANG, Q. J., VOGEL, R. & MCMAHON, T. 2001. The utility of L- moment ratio
diagrams for selecting a regional probability distribution. Hydrological Sciences
Journal, 46, 147-155.

PEEL, M. C., FINLAYSON, B. L. & MCMAHON, T. A. 2007. Updated world map of the
Koppen- Geiger climate classification. Hydrology and Earth System Sciences, 11, 1633-
1644.

PENNING-ROWSELL, E. 2014. Flood and coastal erosion risk management [electronic
resource] : a manual for economic appraisal.

PEREIRA CARDENAL, S. J., RIEGELS, N., BERRY, P., SMITH, R., YAKOVLEYV, A.,
SIEGFRIED, T. & BAUER-GOTTWEIN, P. 2010. Real-time remote sensing driven
river basin modelling using radar altimetry. Hydrology and Earth System Sciences
Discussions, 7, 8347-8385.

PETER, L., MATJAZ, M. & KRISTOF, O. 2013. Detection of Flooded Areas using Machine
Learning Techniques: Case Study of the Ljubljana Moor Floods in 2010. DISASTER
ADVANCES, 6, 4-11.

PETERSEN-OVERLEIR, A. & REITAN, T. 2009. Accounting for rating curve imprecision in
flood frequency analysis using likelihood- based methods. Journal of Hydrology, 366,
89-100.

PETTITT, A. 1979. A non-parametric approach to the change-point problem. Applied statistics,
126-135.

PEUGH, J. L. & ENDERS, C. K. 2004. Missing Data in Educational Research: A Review of
Reporting Practices and Suggestions for Improvement. Review of Educational
Research, 74, 525-556.

PE’ERI, S. & ARMSTRONG, A. 2014. Characterisation of the Nigerian Shoreline. Hydro
INTERNATIONAL, 23.

PHUONG, D. D. & YUEI-AN, L. 2015. Object- Based Flood Mapping and Affected Rice Field
Estimation with Landsat 8 OLI and MODIS Data. Remote Sensing, 7, 5077-5097.

PILON, P. J. & ASEFA, M. K. 2011. Comprehensive Review of the World Hydrological Cycle
Observing System.

268



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

PLATE, E. 2002. Flood risk and flood management. Journal of Hydrology, 267, 2-11.

POBLET, M., GARCIA-CUESTA, E. & CASANOVAS, P. 2014. Crowdsourcing tools for
disaster management: a review of platforms and methods. Al Approaches to the
Complexity of Legal Systems. Springer.

PONTE, R. M., WUNSCH, C. & STAMMER, D. 2007. Spatial mapping of time-variable errors
in Jason-1 and TOPEX/Poseidon sea surface height measurements. Journal of
Atmospheric and Oceanic Technology, 24, 1078-1085.

POOIJA, A., JAYANTH, J. & KOLIWAD, S. 2011. Classification of RS data using Decision
Tree Approach. International Journal of Computer Applications, 23, 7-11.

PORTER, J. & DEMERITT, D. 2012. Flood- Risk Management, Mapping, and Planning: The
Institutional Politics of Decision Support in England. 44, 2359-2378.

POWELL, C. 1997. Discoveries and priorities for mammals in the freshwater forests of the
Niger Delta. BLACKWELL SCIENCE LTD PO BOX 88, OSNEY MEAD, OXFORD,
OXON, ENGLAND OX2 ONE.

PRADHAN, B. 2009. Flood susceptible mapping and risk area delineation using logistic
regression, GIS and remote sensing. Journal of Spatial Hydrology, 9, 1-18.

PRICE, R. 2017. Digital Globe Open Data Program [Online]. Available:

http://blog.digitalglobe.com/news/launching-our-open-data-program-for-disaster-

response/ [Accessed 20 January, 2017].

QASIM, A.-A. M. S. M. 2011. Assessment of high resolution SAR imagery for mapping
floodplain water bodies: a comparison between Radarsat-2 and TerraSAR-X. PhD,
Durham University.

QL S., BROWN, D., TIAN, Q., JIANG, L., ZHAO, T. & BERGEN, K. 2009. Inundation Extent
and Flood Frequency Mapping Using LANDSAT Imagery and Digital Elevation
Models. Giscience & Remote Sensing, 46, 101-127.

QIN, C.-Z., ZHU, A. X., PEL, T, LI, B.-L., SCHOLTEN, T., BEHRENS, T. & ZHOU, C.-H.
2011. An approach to computing topographic wetness index based on maximum
downslope gradient. Precision Agric, 12, 32-43.

QIU, F., BERGLUND, J., JENSEN, J., THAKKAR, P. & REN, D. 2004. Speckle Noise
Reduction in SAR Imagery Using a Local Adaptive Median Filter. GIScience &amp,
Remote Sensing, 41, 244-266.

QUANLONG, F., JIANTAO, L. & JIANHUA, G. 2015. Urban Flood Mapping Based on
Unmanned Aerial Vehicle Remote Sensing and Random Forest Classifier—A Case of
Yuyao, China. Water, 7, 1437-1455.

QUINLAN, J. R. 1986. Induction of decision trees. Machine Learning, 1, 81-106.

269


http://blog.digitalglobe.com/news/launching-our-open-data-program-for-disaster-response/
http://blog.digitalglobe.com/news/launching-our-open-data-program-for-disaster-response/

Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

QUINN, P., HEWETT, C., MUSTE, M. & POPESCU, 1. Towards new types of water-centric
collaboration. Proceedings of the Institution of Civil Engineers-Water Management,
2010. Thomas Telford Ltd, 39-51.

RAAIJMAKERS, R., KRYWKOW, J. & VEEN, A. 2008. Flood risk perceptions and spatial
multi-criteria analysis: an exploratory research for hazard mitigation. Nat Hazards, 46,
307-322.

RAGULINA, G. & REITAN, T. 2017. Generalized extreme value shape parameter and its
nature for extreme precipitation using long time series and the Bayesian approach.
Hydrological Sciences Journal, 62, 863-879.

RAHEEM , U. A. 2011. Urban and rural dimensions in post- disaster adjustment challenges in
selected communities in Kwara State, Nigeria. Jambd : Journal of Disaster Risk
Studies, 3,401-416.

RAHMAN, A. S., HADDAD, K. & RAHMAN, A. 2014. Identification of Outliers in Flood
Frequency Analysis:Comparison of Original and Multiple Grubbs-Beck Test 8, 732-
740.

RAHMATI, O., POURGHASEMI, H. R. & ZEINIVAND, H. 2016. Flood susceptibility
mapping using frequency ratio and weights-of- evidence models in the Golastan
Province, Iran. Geocarto International, 31, 42-70.

RAMIREZ, J. A., RAJASEKAR, U., PATEL, D. P., COULTHARD, T. J. & KEILER, M. 2016.
Flood modeling can make a difference: Disaster risk-reduction and resilience-building
in urban areas. Hydrology and Earth System Sciences Discussions, 1-25.

RASTOGI, G., AGRAWAL, R. & AJAIL R. 2015. Bias corrections of CartoDEM using ICESat-
GLAS data in hilly regions. GIScience & Remote Sensing, 52, 571-585.

REDUCTION, 1. S. F. D. 2004. Living with risk: a global review of disaster reduction
initiatives, United Nations Publications.

REED, D. 1999. Procedures for flood freequency estimation, Volume 3: Statistical procedures
for flood freequency estimation, Institute of Hydrology.

REIJERS, T. J. A. 2011. Stratigraphy and sedimentology of the niger delta. Geologos, 17, 133-
162.

RENSCHLER, C. S. & WANG, Z. 2017. Multi- source data fusion and modeling to assess and
communicate complex flood dynamics to support decision- making for downstream
areas of dams: The 2011 hurricane irene and schoharie creek floods, NY. International
Journal of Applied Earth Observations and Geoinformation, 62, 157-173.

REVILLA-ROMERO, B., BECK, H. E., BUREK, P., SALAMON, P., DE ROO, A. &
THIELEN, J. 2015a. Filling the gaps: Calibrating a rainfall- runoff model using

satellite- derived surface water extent. Remote Sensing of Environment, 171, 118-131.

270



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

REVILLA-ROMERO, B., HIRPA, F. A., THIELEN-DEL POZO, J., SALAMON, P.,
BRAKENRIDGE, R., PAPPENBERGER, F. & DE GROEVE, T. 2015b. On the Use of
Global Flood Forecasts and Satellite- Derived Inundation Maps for Flood Monitoring in
Data- Sparse Regions. Remote Sensing, 7, 15702-15728.

REYNOLDS, S., JOHNSON, J., MORIN, P. & CARTER, C. 2013. Exploring Geology, 2013
(softcover textbook), McGraw-Hill.

RIGGS, M. A., RAO, C. Y., BROWN, C. M., VAN SICKLE, D., CUMMINGS, K. J., DUNN,
K. H., DEDDENS, J. A., FERDINANDS, J., CALLAHAN, D. & MOOLENAAR, R. L.
2008. Resident cleanup activities, characteristics of flood-damaged homes and airborne
microbial concentrations in New Orleans, Louisiana, October 2005. Environmental
research, 106, 401-409.

RIGON, R., BANCHERI, M., FORMETTA, G. & DE LAVENNE, A. 2015. The
geomorphological unit hydrograph from a historical-critical perspective. Earth Surface
Processes and Landforms.

RITCHIE, J. & RANGO, A. 1996. Remote sensing applications to hydrology: introduction.
Hydrological Sciences Journal, 41,429-431.

ROBINSON, N., REGETZ, J. & GURALNICK, R. P. 2014. EarthEnv-DEM90: A nearly-
global, void-free, multi-scale smoothed, 90m digital elevation model from fused
ASTER and SRTM data. ISPRS Journal of Photogrammetry and Remote Sensing, 87,
57-67.

ROCHTUS, Y. 2014. Filling gaps in time series. Universiteiti Gent.

RODERICK, J. A. L. 2011. Regression with Missing X's: A Review.

RODRIGUEZ, E., MORRIS, C. S. & BELZ, J. E. 2006. A global assessment of the SRTM
performance. Photogrammetric Engineering & Remote Sensing, 72, 249-260.

ROGGER, M., KOHL, B., PIRKL, H., VIGLIONE, A., KOMMA, J., KIRNBAUER, R.,
MERZ, R. & BLOSCHL, G. 2012. Runoff models and flood frequency statistics for
design flood estimation in Austria — Do they tell a consistent story? Journal of
Hydrology, 456-457, 30-43.

ROHATGI, A. 2014. Web Plot Digitizer [Online]. [Accessed June 2, 2014].

RONALD, R. R., MINJA, K. C., NORIKO, O. T., LARRY, L. B. & EMI, T. 2015. Do low
survey response rates bias results? Evidence from Japan. Demographic Research, 32,
26.

ROWE, G. & WRIGHT, G. 2001. Differences in Expert and Lay Judgments of Risk: Myth or
Reality? Risk Analysis, 21, 341-356.

ROXANNE, M. & ANDRE]J, V. 2014. Hashtag Standards for Emergencies. OCHA Policy and

Studies Series.

271



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

RUBIN, D. B. 1987. Multiple imputation for nonresponse in surveys, New York ; Wiley.

SAF, B. 2009a. Regional Flood Frequency Analysis Using L Moments for the Buyuk and
Kucuk Menderes River Basins of Turkey. J. Hydrol. Eng., 14, 783-794.

SAF, B. 2009b. Regional Flood Frequency Analysis Using L-Moments for the West
Mediterranean Region of Turkey. Water Resources Management, 23, 531-551.

SALAMI, Y. D. & NNADI, F. N. 2012. Seasonal and interannual validation of satellite-
measured reservoir levels at the Kainji dam. International Journal of Water Resources
and Environmental Engineering, 4, 105-113.

SALAU, O. R, FASUBA, A., ADULOJU, K. A., ADESAKIN, G. E. & FATIGUN, A. T. 2016.
Effects of Changes in ENSO on Seasonal Mean Temperature and Rainfall in Nigeria.
Climate, 4, 5.

SAMPSON, C. C., SMITH, A. M., BATES, P. D., NEAL, J. C., ALFIERI, L. & FREER, J. E.
2015. A high- resolution global flood hazard model. Water Resources Research, 51,
7358-738]1.

SANTILLANA, J., MAKINANO-SANTILLANA, M., AMPAYON, B. C. & DEL NORTE, A.
2016. Vertical Accuracy Assessment of 30-M Resolution Alos, Aster, and Srtm Global
Dems Over Northeastern Mindanao, Philippines. ISPRS-International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, 149-156.

SANYAL, J. 2013. Flood Prediction and Mitigation in Data-Sparse Environments. Durham
University.

SANYAL, J., CARBONNEAU, P. & DENSMORE, A. 2013. Hydraulic routing of extreme
floods in a large ungauged river and the estimation of associated uncertainties: a case
study of the Damodar River, India. Nat Hazards, 66, 1153-1177.

SANYAL, J., DENSMORE, A. L. & CARBONNEAU, P. 2014. Analysing the effect of land-
use/cover changes at sub-catchment levels on downstream flood peaks: A semi-
distributed modelling approach with sparse data. Catena, 118, 28-40.

SARHADI, A., SOLTANI, S. & MODARRES, R. 2012. Probabilistic flood inundation
mapping of ungauged rivers: Linking GIS techniques and frequency analysis. Journal
of Hydrology, 458-459, 68-86.

SATGE, F., BONNET, M. P., TIMOUK, F., CALMANT, S., PILLCO, R., MOLINA, I,
LAVADO-CASIMIRO, W., ARSEN, A., CRETAUX, J. F. & GARNIER, J. 2015.
Accuracy assessment of SRTM v4 and ASTER GDEM v2 over the Altiplano watershed
using ICESat/ GLAS data. International Journal of Remote Sensing, 36, 465-488.

SAXTON, G. D., OH, O. & KISHORE, R. 2013. Rules of Crowdsourcing: Models, Issues, and
Systems of Control. Information Systems Management, 30, 2-20.

272



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

SAYERS, P., GALLOWAY, G., PENNING-ROWSELL, E., YUANYUAN, L., FUXIN, S.,
YIWEL C., KANG, W., LE QUESNE, T., WANG, L. & GUAN, Y. 2015. Strategic
flood management: ten ‘ golden rules’ to guide a sound approach. International Journal
of River Basin Management, 13, 137-151.

SCHAFER, J. L. 1997. Analysis of incomplete multivariate data, Boca Raton, Fla. : Chapman
&amp; Hall/CRC.

SCHNEBELE, E. & CERVONE, G. 2013. Improving remote sensing flood assessment using
volunteered geographical data. Natural Hazards and Earth System Sciences, 13, 669-
6717.

SCHNEBELE, E., CERVONE, G. & WATERS, N. 2014. Road assessment after flood events
using non- authoritative data. Natural Hazards and Earth System Sciences, 14, 1007-
1015.

SCHNEIDER, R., GODIKSEN, P. N., VILLADSEN, H., MADSEN, H. & BAUER-
GOTTWEIN, P. 2016. Application of CryoSat- 2 altimetry data for river analysis and
modelling. Hydrol. Earth Syst. Sci. Discuss., 1-23.

SCHNEIDER, T. 2001. Analysis of Incomplete Climate Data: Estimation of Mean Values and
Covariance Matrices and Imputation of Missing Values. Journal of climate, 14, 853-
871.

SCHRECK, C.J., SHI, L., KOSSIN, J. P. & BATES, J. J. 2013. Identifying the MJO, equatorial
waves, and their impacts using 32 years of HIRS upper- tropospheric water vapor.
Journal of Climate, 26, 1418-1431.

SCHUMANN, G., BATES, P. D., HORRITT, M. S., MATGEN, P. & PAPPENBERGER, F.
2009a. Progress in integration of remote sensing— derived flood extent and stage data
and hydraulic models.

SCHUMANN, G., DI BALDASSARRE, G. & BATES, P. D. 2009b. The Utility of Spaceborne
Radar to Render Flood Inundation Maps Based on Multialgorithm Ensembles.
Geoscience and Remote Sensing, IEEE Transactions on, 47, 2801-2807.

SCHUMANN, G., MATGEN, P., HOFFMANN, L., HOSTACHE, R., PAPPENBERGER, F. &
PFISTER, L. 2007. Deriving distributed roughness values from satellite radar data for
flood inundation modelling. Journal Of Hydrology, 344, 96-111.

SCHUMANN, G. P., NEAL, J. C., VOISIN, N., ANDREADIS, K. M., PAPPENBERGER, F.,
PHANTHUWONGPAKDEE, N., HALL, A. C. & BATES, P. D. 2013. A first large-
scale flood inundation forecasting model. Water Resources Research, 49, 6248-6257.

SCHWATKE, C., DETTMERING, D., BOSCH, W. & SEITZ, F. 2015a. DAHITI - An

innovative approach for estimating water level time series over inland waters using

273



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

multi- mission satellite altimetry. Hydrology and Earth System Sciences, 19, 4345-
4364.

SCHWATKE, C., DETTMERING, D., BOSCH, W. & SEITZ, F. 2015b. Kalman filter
approach for estimating water level time series over inland water using multi- mission
satellite altimetry. Hydrology and Earth System Sciences Discussions, 12, 4813-4855.

SCHWATKE, C., DETTMERING, D., BORGENS, E. & BOSCH, W. 2015c. Potential of
SARAL/ AltiKa for Inland Water Applications. Marine Geodesy, 38, 626-643.

SEENATH, A. 2015. Modelling coastal flood vulnerability: Does spatially-distributed friction
improve the prediction of flood extent? Applied Geography, 64,97-107.

SEOANE, M., RODERIGUEZ, J. F., SACO, P. M. & ROJAS, S. S. 2015. A Geomorphological
Modelling Approach For Landscape Evolution Analysis of the Macquarie Marshes,
Australia. 36th IAHR World Congress. The Hague, the Netherlands.

SERBIS, D., PAPATHANASIOU, C. & MAMASSIS, N. Flood mitigation at the downstream
areas of a transboundary river. Proc. 8th International Conference of EWRA" Water
Resources Management in an Interdisciplinary and Changing Context", 26th-29th June
2013, Porto, Portugal, 2013.

SEUNG OH, L., YONGCHUL, S., KYUDONG, Y., YOUNGHUN, J. & VENKATESH, M.
2013. An Approach Using a 1D Hydraulic Model, Landsat Imaging and Generalized
Likelihood Uncertainty Estimation for an Approximation of Flood Discharge. Water, 5,
1598-1621.

SEYLER, F., CALMANT, S., DA SILVA, J., FILIZOLA, N., ROUX, E., COCHONNEAU, G.,
VAUCHEL, P. & BONNET, M.-P. Monitoring water level in large trans-boundary
ungauged basins with altimetry: the example of ENVISAT over the Amazon basin.
Asia-Pacific Remote Sensing, 2008. International Society for Optics and Photonics,
715017-715017-17.

SHABU, T. & TYONUM, T. E. 2013. Residents Coping Measures in Flood Prone Areas of
Makurdi Town, Benue State. Applied Ecology and Environmental Sciences, 1, 120-125.

SHANNON, C. E. 1948. A Mathematical Theory of Communication. Bell System Technical
Journal, 27, 379-423.

SHENG, Y. & XIA, Z.-G. A comprehensive evaluation of filters for radar speckle suppression.
Geoscience and Remote Sensing Symposium, 1996. IGARSS'96.'/Remote Sensing for a
Sustainable Future.', International, 1996. IEEE, 1559-1561.

SHI, P.-J., YUAN, Y., ZHENG, J., WANG, J.-A., GE, Y. & QIU, G.-Y. 2007. The effect of
land use/ cover change on surface runoff in Shenzhen region, China. Catena, 69, 31-35.

SIBSON, R. 1981. A brief description of natural neighbour interpolation. Interpreting
multivariate data, 21, 21-36.

274



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

SICHANGI, A. W., WANG, L., YANG, K., CHEN, D., WANG, Z., LI, X., ZHOU, J., LIU, W.
& KURIA, D. 2016. Estimating continental river basin discharges using multiple
remote sensing data sets. Remote Sensing of Environment, 179, 36-53.

SIDDAYAO, G. P, VALDEZ, S. E. & FERNANDEZ, P. L. 2014. Analytic Hierarchy Process (
AHP) in Spatial Modeling for Floodplain Risk Assessment. I/JMLC, 4, 450-457.
SIEGRIST, M. & GUTSCHER, H. 2006. Flooding risks: A comparison of lay people's
perceptions and expert's assessments in Switzerland. Risk Analysis, 26, 971-979.
SILVA, J., CALMANT, S., SEYLER, F., MOREIRA, D., OLIVEIRA, D. & MONTEIRO, A.
2014. Radar Altimetry Aids Managing Gauge Networks. Water Resour Manage, 28,

587-603.

SIMARD, M., PINTO, N., FISHER, J. B. & BACCINI, A. 2011. Mapping forest canopy height
globally with spaceborne lidar. Journal of Geophysical Research: Biogeosciences, 116,
n/a-n/a.

SIMON, T., GOLDBERG, A. & ADINI, B. 2015. Socializing in emergencies - A review of the
use of social media in emergency situations. International Journal of Information
Management, 35, 609.

SINGH, S. & GUPTA, P. 2014. Comparative study id3, cart and c4. 5 decision tree algorithm:
A survey. International Journal of Advanced Information Science and Technology
(IJAIST), 27, 97-103.

SIVAPALAN, M. 2003. Prediction in ungauged basins: a grand challenge for theoretical
hydrology. Hydrological Processes, 17,3163-3170.

SIVAPALAN, M., TAKEUCHI, K., FRANKS, S. W., GUPTA, V. K., KARAMBIRI, H.,
LAKSHMI, V., LIANG, X., MCDONNELL, J. J., MENDIONDO, E. M., CONNELL,
P.E., OKI, T., POMEROY, J. W., SCHERTZER, D., UHLENBROOK, S. & ZEHE, E.
2003. IAHS Decade on Predictions in Ungauged Basins (PUB), 2003—2012: Shaping an
exciting future for the hydrological sciences. Hydrological Sciences Journal, 48, 857-
880.

SKAKUN, S., KUSSUL, N., SHELESTOV, A. & KUSSUL, O. 2014. Flood Hazard and Flood
Risk Assessment Using a Time Series of Satellite Images: A Case Study in Namibia.
Risk Analysis, 34, 1521-1537.

SKINNER, C. J., COULTHARD, T. J., PARSONS, D. R., RAMIREZ, J. A.,, MULLEN, L. &
MANSON, S. 2015. Simulating tidal and storm surge hydraulics with a simple 2D
inertia based model, in the Humber Estuary, U.K. Estuarine, Coastal and Shelf Science,
155, 126-136.

SMITH, A., SAMPSON, C. & BATES, P. 2015. Regional flood frequency analysis at the global
scale. Water Resources Research, 51, 539-553.

275



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

SMITH, J. A., VILLARINI, G. & BAECK, M. L. 2011. Mixture distributions and the
hydroclimatology of extreme rainfall and flooding in the Eastern United States. Journal
of Hydrometeorology, 12, 294-309.

SMITH, K. 1998. Floods : physical processes and human impacts, Wiley.

SMITH, L. C. 1997. Satellite remote sensing of river inundation area, stage, and discharge: a
review.

SOLECKI, W. & ROSENZWEIG, C. 2014. Climate change, extreme events, and Hurricane
Sandy: From non-stationary climate to non-stationary policy. Journal of Extreme
Events, 1, 1450008.

SONG, Y.-Y. & LU, Y. 2015. Decision tree methods: applications for classification and
prediction. Shanghai archives of psychiatry, 27, 130.

SPARAVIGNA, A. C. 2014. Recurrence plots from altimetry data of some lakes in Africa.
arXiv preprint arXiv:1410.0850.

SRIDEVI, T., SHARMA, R., MEHRA, P. & PRASAD, K. V. S. R. 2016. Estimating discharge
from the Godavari River using ENVISAT, Jason- 2, and SARAL/ AltiKa radar
altimeters. Remote Sensing Letters, 7, 348-357.

STARRETT, S. K., HEIER, T., SU, Y., BANDURRAGA, M., TUAN, D. & STARRETT, S.
An Example of the Impact that Filled-In Peakflow Data Can Have on Flood Frequency
Analysis. World Environmental and Water Resources Congress 2010@ sChallenges of
Change, 2010. ASCE, 2451-2455.

STEDINGER, J. R. 1983. Estimating a regional flood frequency distribution. Water Resources
Research, 19, 503-510.

STEDINGER, J. R. & GRIFFIS, V. W. 2008. Flood frequency analysis in the United States:
Time to update. Journal of Hydrologic Engineering, 13, 199-204.

STEPHEN, M. C., RYAN, S. A., PAUL, H. E., MELINDA, J. L. & DAVID, M. M. 2015.
Multi-Temporal Independent Component Analysis and Landsat 8 for Delineating
Maximum Extent of the 2013 Colorado Front Range Flood. Remote Sensing, 7, 9822-
9843.

STEPHENS, E., SCHUMANN, G. & BATES, P. 2014. Problems with binary pattern measures
for flood model evaluation. Hydrological Processes, 28, 4928-4937.

STEVEN, K. S., SHELLI, K. S. T. H., TRAVIS, H., YUNSHENG, S., DENNY, T. & MARK,
B. 2010. Filling in missing peakflow data using artificial neural networks. Journal of
Engineering and Applied Sciences, 5, 49-55.

SULISTIOADI Y. B., TSENG, K. H., SHUM, C. K., HIDAYAT, H., SUMARYONO, M.,
SUHARDIMAN, A., SETIAWAN, F. & SUNARSO, S. 2015. Satellite radar altimetry

276



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

for monitoring small rivers and lakes in Indonesia. Hydrology and Earth System
Sciences, 19, 341-359.

SUN, W., ISHIDAIRA, H. & BASTOLA, S. 2012. Calibration of hydrological models in
ungauged basins based on satellite radar altimetry observations of river water level.
Hydrological Processes, 26, 3524-3537.

SUN, W., SONG, H., CHENG, T. & YU, J. 2015. Calibration of hydrological models using
TOPEX/Poseidon radar altimetry observations. Proceedings of the International
Association of Hydrological Sciences, 368, 3-8.

SURENDRAN, S., GIBBS, G., WADE, S. & UDALE-CLARKE, H. 2008. Supplementary note
on flood hazard ratings and thresholds for development and planning control purpose—
Clarification of Table 13.1 of FD2320/TR2 and Figure 3.2 of FD2321. Environment
Agency and HR Wallingford.

SYVITSK]I, J. P. M., OVEREEM, 1., BRAKENRIDGE, G. R. & HANNON, M. 2012. Floods,
floodplains, delta plains — A satellite imaging approach. Sedimentary Geology, 267-
268, 1-14.

TACHIKAWA, T., KAKU, M., IWASAKI, A., GESCH, D. B., OIMOEN, M. J., ZHANG, Z.,
DANIELSON, J. J., KRIEGER, T., CURTIS, B. & HAASE, J. 2011. ASTER global
digital elevation model version 2-summary of validation results. NASA.

TADONO, T., ISHIDA, H., ODA, F., NAITO, S., MINAKAWA, K. & IWAMOTO, H. 2014.
Precise Global DEM Generation by ALOS PRISM. ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, 11-4, 71-76.

TAMI, A. G. & MOSES, O. 2015. Flood Vulnerability Assessment of Niger Delta States
Relative to 2012 Flood Disaster in Nigeria. American Journal of Environmental
Protection, 3, 76-83.

TAMUNO, P., INCE, M. & HOWARD, G. Understanding vulnerability in the Niger floodplain.
Towards the Millennium Development Goals-Actions for Water and Environmental
Sanitation: Proceedings of the 29th WEDC [Water, Engineering and Development
Centre] Conference, Abuja, Nigeria, 2003. 358-361.

TAMUNO, P., SMITH, M. D. & HOWARD, G. 2009. “Good dredging practices”: the place of
traditional eco-livelihood knowledge. Water resources management, 23, 1367-1385.

TAN, M. L., FICKLIN, D. L., DIXON, B., YUSOP, Z. & CHAPLOT, V. 2015. Impacts of
DEM resolution, source, and resampling technique on SWAT-simulated streamflow.
Applied Geography, 63, 357-368.

TAPSELL, S., BURTON, R., PARKER, D. & OAKES, S. 2004. The social performance of
flood warning communications technologies. Environment Agency, Technical Report

W5C-016, ISBN, 1, 434.

277



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

TAREKEGN, T. H., HAILE, A. T., RIENTIJES, T., REGGIANIL, P. & ALKEMA, D. 2010.
Assessment of an ASTER- generated DEM for 2D hydrodynamic flood modeling.
International Journal of Applied Earth Observation and Geoinformation, 12, 457-465.

TARPANELLI, A., AMARNATH, G., BROCCA, L. & MORAMARCO, T. Discharge
forecasting using MODIS and radar altimetry: potential application for transboundary
flood risk management in Niger-Benue River basin. EGU General Assembly
Conference Abstracts, 2016. 14073.

TARPANELLI, A., BROCCA, L., LACAVA, T., MELONE, F., MORAMARCO, T.,
FARUOLO, M., PERGOLA, N. & TRAMUTOLLI, V. 2013. Toward the estimation of
river discharge variations using MODIS data in ungauged basins. Remote Sensing of
Environment, 136, 47-55.

TAUBENBOCK, H., WURM, M., NETZBAND, M., ZWENZNER, H., ROTH, A., RAHMAN,
A. & DECH, S. 2011. Flood risks in urbanized areas — multi- sensoral approaches using
remotely sensed data for risk assessment. Natural Hazards and Earth System Sciences,
11,431-444.

TEHRANY, M. S., PRADHAN, B. & JEBUR, M. N. 2013. Spatial prediction of flood
susceptible areas using rule based decision tree ( DT) and a novel ensemble bivariate
and multivariate statistical models in GIS. Journal of Hydrology, 504, 69-79.

TEHRANY, M. S., PRADHAN, B. & JEBUR, M. N. 2014. Flood susceptibility mapping using
a novel ensemble weights-of-evidence and support vector machine models in GIS.
Journal of Hydrology, 512, 332-343.

TEMIMI, M., LECONTE, R., BRISSETTE, F. & CHAOUCH, N. 2004. Near real time flood
monitoring over the Mackenzie River Basin using passive microwave data.

THE FEDERAL GOVERNMENT OF NIGERIA 2013. Post-Disaster Needs Assessment 2012
Floods.

THE GREAT RIVERS PARTNERSHIP. 2016. Niger River Basin [Online]. Available:
http://www.greatriverspartnership.org/en-us/africa/niger/pages/default.aspx [Accessed
11 August, 2016].

THE WORLD BANK. 2012. Nigeria Erosion and Watershed Management Project (NEWMAP)

[Online]. Available: http:/projects.worldbank.org/P124905/nigeria-erosion-watershed-

management-project?lang=en&tab=overview [Accessed 19 December, 2016].
THORNE, C. 2014. Geographies of UK flooding in 2013/4. Geographical Journal, 180, 297-
309.
TILLEARD, S. & FORD, J. 2016. Adaptation readiness and adaptive capacity of transboundary

river basins. Climatic Change, 1-17.

278


http://www.greatriverspartnership.org/en-us/africa/niger/pages/default.aspx
http://projects.worldbank.org/P124905/nigeria-erosion-watershed-management-project?lang=en&tab=overview
http://projects.worldbank.org/P124905/nigeria-erosion-watershed-management-project?lang=en&tab=overview

Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

TOMMASO, M., ANGELICA, T., LUCA, B. & SILVIA, B. 2013. River Discharge Estimation
by Using Altimetry Data and Simplified Flood Routing Modeling. Remote Sensing, 5,
4145-4162.

TORO, S. 1997. Post-Construction Effects of the Cameroonian Lagdo Dam on the River Benue.
Water and Environment Journal, 11, 109-113.

TOURIAN, M., SNEEUW, N. & BARDOSSY, A. 2013. A quantile function approach to
discharge estimation from satellite altimetry (ENVISAT). Water Resources Research,
49, 4174-4186.

TOWNSEND, P. A. & WALSH, S. J. 1998. Modeling floodplain inundation using an integrated
GIS with radar and optical remote sensing. Geomorphology, 21,295-312.

TRANSBOUNDARY WATER ASSESSMENT PROGRAMME. 2016. The Global
Transboundary River Basins [Online]. Available: http://twap-rivers.org/#global-basins
[Accessed 10 August, 2016].

TRIGG, M., BIRCH, C., NEAL, J., BATES, P., SMITH, A., SAMPSON, C., YAMAZAK], D.,
HIRABAYASHI, Y., PAPPENBERGER, F. & DUTRA, E. 2016. The credibility
challenge for global fluvial flood risk analysis. Environmental Research Letters, 11,
094014.

TRIGG, M. A., BATES, P. D.,, WILSON, M. D., HORRITT, M. S., ALSDORF, D. E.,,
FORSBERG, B. R. & VEGA, M. C. 2009. Amazon flood wave hydraulics. Journal of
Hydrology, 374, 92-105.

TRIGG, M. A., MICHAELIDES, K., NEAL, J. C. & BATES, P. D. 2013. Surface water

connectivity dynamics of a large scale extreme flood. Journal of Hydrology, 505, 138-
149.

TRIGLAV-CEKADA, M. & RADOVAN, D. 2013. Using volunteered geographical
information to map the November 2012 floods in Slovenia. Natural Hazards and Earth
System Sciences, 13,2753-2762.

TUNG, Y.-K. & YEN, B.-C. Hydrosystems engineering uncertainty analysis. 2005. Asce.

TYLER, C. M., SUE ELLEN, H. & GEORGE, S. Y. 2011. The Effects of Imputing Missing
Data on Ensemble Temperature Forecasts. Journal of Computers, 6, 162-171.

UCHEGBULAM, O. & AYOLABI, E. 2013. Satellite image analysis using remote sensing data
in parts of Western Niger Delta, Nigeria. J. Emerg. Trends Eng. Appl. Sci, 4, 612-617.

UGONNA, C. 2016. A Review of Flooding and Flood Risk Reduction in Nigeria. Global
Journal of Human-Social Science Research, 16.

ULLAH, S., FAROOQ, M., SARWAR, T., TAREEN, M. & WAHID, M. 2016. Flood modeling
and simulations using hydrodynamic model and ASTER DEM—A case study of
Kalpani River. Arab J Geosci, 9, 1-11.

279


http://twap-rivers.org/#global-basins

Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

UNOOSA 2013. International Charter 'Space and Major Disasters', Towards Universl Access.

URBAN, T. J.,, SCHUTZ, B. E. & NEUENSCHWANDER, A. L. 2008. A survey of ICESat
coastal altimetry applications: Continental Coast, Open Ocean Island, and Inland River.

UWAZURUONYE, J. 2016. The Role of NEMA in flood emergency management. /n: EKEU-
WEL L T. (ed.).

VAN BUUREN, S. 2007. Multiple imputation of discrete and continuous data by fully
conditional specification. Statistical methods in medical research, 16,219,

VAN DE WIEL, M. J., COULTHARD, T. J., MACKLIN, M. G. & LEWIN, J. 2007.
Embedding reach-scale fluvial dynamics within the CAESAR cellular automaton
landscape evolution model. Geomorphology, 90, 283-301.

VAN DER BURG, T. 2010. Dredging for development on the lower river Niger between Baro
and Warri, Nigeria.

VAN DER HEIJIDEN, G. J. M. G., T. DONDERS, A. R., STIJNEN, T. & MOONS, K. G. M.
2006. Imputation of missing values is superior to complete case analysis and the
missing- indicator method in multivariable diagnostic research: A clinical example.
Journal of Clinical Epidemiology, 59, 1102-1109.

VAN MEERVELD, I., VIS, M. & SEIBERT, J. 2017. Information content of stream level class
data for hydrological model calibration. Hydrol. Earth Syst. Sci.

VAN WESEMAEL, A., GOBEYN, S., NEAL, J., LIEVENS, H., VAN EERDENBRUGH, K.,
DE VLEESCHOUWER, N., SCHUMANN, G., VERNIEUWE, H., DI
BALDASSARRE, G. & DE BAETS, B. Calibration of a flood inundation model using
a SAR image: influence of acquisition time. EGU General Assembly Conference
Abstracts, 2016. 8704.

VANGUARD. 2015. Flood: As Nigeria awaits release of water from Lagdo Dam [Online].
Available:  http://www.vanguardngr.com/2015/09/flood-as-nigeria-awaits-release-of-
water-from-lagdo-dam/ [Accessed 31 May, 2016].

VARGA, M. & BASIC, T. 2015. Accuracy validation and comparison of global digital

elevation models over Croatia. International Journal of Remote Sensing, 36, 170-189.

VEEN, A. & LOGTMEIJER, C. 2005. Economic Hotspots: Visualizing Vulnerability to
Flooding. Nat Hazards, 36, 65-80.

VELJANOVSKI, T., KANJIR, U. & OSTIR, K. 201 1a. Object-based image analysis of remote
sensing data. Geodetski vestnik, 55, 678-688.

VELJANOVSKI, T., LAMOVEC, P., OSTIR, K. & PEHANI, P. Comparison of three
techniques for detection of flooded areas on Envisat and Radarsat-2 satellite images.
The GEOSS Era: Towards Operational Environmental Monitoring, 10-15, aprit 2011 2011b
Sydney, Australia.

280


http://www.vanguardngr.com/2015/09/flood-as-nigeria-awaits-release-of-water-from-lagdo-dam/
http://www.vanguardngr.com/2015/09/flood-as-nigeria-awaits-release-of-water-from-lagdo-dam/

Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

VENTRICE, M. J., THORNCROFT, C. D. & ROUNDY, P. E. 2011. The Madden- Julian
oscillation's influence on African easterly waves and downstream tropical cyclogenesis.
Monthly Weather Review, 139, 2704-2722.

VERGER, P., ROTILY, M., HUNAULT, C., BRENOT, J., BARUFFOL, E. & BARD, D. 2003.
Assessment of exposure to a flood disaster in a mental-health study. Journal of
Exposure Science and Environmental Epidemiology, 13, 436-442.

VILLARINI, G. & SMITH, J. A. 2010. Flood peak distributions for the eastern United States.
Water Resources Research, 46, n/a-n/a.

VOICE OF AMERICA. 2012. Nigeria Braces for Flood Season [Online]. Available:
http://www.voanews.com/content/nigeria-braces-for-flood-season/1682794.html
[Accessed 31 May, 2016].

WACHINGER, G., RENN, O., BEGG, C. & KUHLICKE, C. 2013. The Risk Perception

Paradox— Implications for Governance and Communication of Natural Hazards. Risk
Analysis, 33, 1049-1065.

WAGENER, T. 2007. Can we model the hydrological impacts of environmental change?
Hydrological Processes, 21, 3233-3236.

WANG, S.-Y. K. & HUANG, W. 2011. The evolutional view of the types of identity thefts and
online frauds in the era of the Internet. Internet Journal of Criminology, 12.

WANG, W., YANG, X. & YAO, T. 2012. Evaluation of ASTER GDEM and SRTM and their
suitability in hydraulic modelling of a glacial lake outburst flood in southeast Tibet.
Hydrological Processes, 26, 213-225.

WANG, Y., HESS, L., FILOSO, S. & MELACK, J. 1995. Understanding the radar
backscattering from flooded and nonflooded Amazonian forests: Results from canopy
backscatter modeling. Remote Sensing Of Environment, 54, 324-332.,

WANG, Y., JIA, X, JIN, Q. & MA, J. 2017. Mobile crowdsourcing: framework, challenges,
and solutions. Concurrency and Computation: Practice and Experience, 29, n/a-n/a.

WERRITTY, A., HOUSTON, D., BALL, T., TAVENDALE, A. & BLACK, A. 2007.
Exploring the social impacts of flood risk and flooding in Scotland, Scottish Executive
Edinburgh.

WESTERBERG, 1. & MCMILLAN, H. 2015. Uncertainty in hydrological signatures.
Hydrology and Earth System Sciences Discussions, 12,4233-4270.

WHITE, 1., CONNELLY, A., GARVIN, S., LAWSON, N. & OHARE, P. 2016. Flood
resilience technology in Europe: identifying barriers and co-producing best practice.
Journal of Flood Risk Management.

WOLF, A. T. 2002. Atlas of international freshwater agreements, UNEP/Earthprint.

281


http://www.voanews.com/content/nigeria-braces-for-flood-season/1682794.html

Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

WOOD, M., HOSTACHE, R., NEAL, J., WAGENER, T., GIUSTARINI, L., CHINI, M.,
CORATO, G., MATGEN, P. & BATES, P. 2016. Calibration of channel depth and
friction parameters in the LISFLOOD- FP hydraulic model using medium resolution
SAR data. Hydrol. Earth Syst. Sci. Discuss., 1-24.

WOOD, M., NEAL, J., HOSTACHE, R., CORATO, G., BATES, P., GIUSTARINI, L., CHINI,
M. & MATGEN, P. Using time series of satellite SAR images to calibrate channel
depth and friction parameters in the LISFLOOD-FP hydraulic model. EGU General
Assembly Conference Abstracts, 2014. 5136.

YAHAYA, S., AHMAD, N. & ABDALLA, R. F. 2010. Multicriteria analysis for flood
vulnerable areas in Hadejia-Jama’are river basin, Nigeria. European Journal of
Scientific Research, 42, 71-83.

YAMANOKUCHI, T., DOI, K. & SHIBUYA, K. 2006. Comparison of Antarctic Ice Sheet
Elevation Between ICESat GLAS and InSAR DEM.

YAMAZAKI, D., BAUGH, C., BATES, P. D., KANAE, S., ALSDORF, D. & OKI, T. 2012.
Adjustment of a spaceborne DEM for use in floodplain hydrodynamic modeling.
Journal Of Hydrology, 436, 81-91.

YAN, K., DI BALDASSARRE, G., SOLOMATINE, D. P. & SCHUMANN, G. J. P. 2015a. A
review of low-cost space-borne data for flood modelling: topography, flood extent and
water level. Hydrological Processes.

YAN, K., TARPANELLI, A., BALINT, G., MORAMARCO, T. & BALDASSARRE, G. D.
2015b. Exploring the Potential of SRTM Topography and Radar Altimetry to Support
Flood Propagation Modeling: Danube Case Study. J. Hydrol. Eng., 20, 04014048.

YANG, J., REICHERT, P., ABBASPOUR, K., XIA, J. & YANG, H. 2008. Comparing
uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China.
Journal Of Hydrology, 358, 1-23.

YOON, Y., DURAND, M., MERRY, C. J., CLARK, E. A., ANDREADIS, K. M. &
ALSDOREF, D. E. 2012. Estimating river bathymetry from data assimilation of synthetic
SWOT measurements. Journal of Hydrology, 464-465, 363-375.

YOSHIMOTO, S. & AMARNATH, G. 2017. Applications of Satellite-Based Rainfall
Estimates in Flood Inundation Modeling-A Case Study in Mundeni Aru River Basin,
Sri Lanka. Remote Sens., 9.

YOUNGMAN, M., SMITH, D., LOKKEN, S. & LANGAN, T. 2011. National Geodetic
Survey: The Effect of Modernizing the National Datums on Floodplain Mapping.

YOZGATLIGIL, C., ASLAN, S., IYIGUN, C. & BATMAZ, 1. 2013. Comparison of missing
value imputation methods in time series: the case of Turkish meteorological data. Theor

App! Climatol, 112, 143-167.

282



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

YU, D, YIN, J. & LIU, M. 2016. Validating city- scale surface water flood modelling using
crowd- sourced data. Validating city-scale surface water flood modelling using crowd-
sourced data, 11, 124011.

YUE, S. & WANG, C. 2002. The influence of serial correlation on the Mann— Whitney test for
detecting a shift in median. Advances in Water Resources, 25, 325-333.

YUKIKO, H., ROOBAVANNAN, M., SUJAN, K., LISAKO, K., DAI, Y., SATOSHI, W.,
HYUNGIJUN, K. & SHINJIRO, K. 2013. Global flood risk under climate change.
Nature Climate Change, 3, 816.

ZEITOUN, M., GOULDEN, M. & TICKNER, D. 2013. Current and future challenges facing
transboundary river basin management. 4.

ZHANG, F., ZHU, X. & LIU, D. 2014. Blending MODIS and Landsat images for urban flood
mapping. International Journal of Remote Sensing, 35,3237-3253.

ZHANG, L., NAN, Z., XU, Y. & LI, S. 2016. Hydrological Impacts of Land Use Change and
Climate Variability in the Headwater Region of the Heihe River Basin, Northwest
China. PloS one, 11, e0158394.

ZHAO, G., XUE, H. & LING, F. Assessment of ASTER GDEM performance by comparing
with SRTM and ICESat/GLAS data in Central China. Geoinformatics, 2010 18th
International Conference on, 2010. IEEE, 1-5.

ZHOU, Z., QU, L. & ZOU, T. 2015. Quantitative analysis of urban pluvial llood alleviation by
open surface water systems in New Towns: Comparing almere and Tianjin Eco- City.
Sustainability (Switzerland), 7, 13378-13398.

ZWALLY, H. J., SCHUTZ, B., ABDALATI, W., ABSHIRE, J., BENTLEY, C., BRENNER,
A., BUFTON, J., DEZIO, J., HANCOCK, D., HARDING, D., HERRING, T.,
MINSTER, B., QUINN, K., PALM, S., SPINHIRNE, J. & THOMAS, R. 2002.
ICESat's laser measurements of polar ice, atmosphere, ocean, and land. Journal of

Geodynamics, 34, 405-445.

283



Application of Open-access and 3 Party Geospatial Technology for Integrated Flood Risk Management in Data

Sparse Regions of Developing Countries

APPENDICES

Appendix 1: Current Work: Informing Policy and Practice with Research in
Nigeria, West Africa

I am currently consulting for the World Bank as an Environment and Natural Resources
Consultant, working on projects that directly align with the objectives and outcomes of
my research, thus allowing me to apply the skills and knowledge I developed over the
period of this research to inform environmental management practices and policies in

the real-world. These projects include:

1. West African Coastal Area (WACA) Management Program: The Project
Development Objective (PDO) of WACA is to “strengthen the capacity of a select
number of West African countries (including Nigeria) to reduce the vulnerability of
their coastal areas and promote climate resilient integrated coastal management.”.

2. Nigerian Erosion and Watershed Management Program (NEWMAP): The
Project development objective of NEWMAP is to “reduce vulnerability to soil
erosion in targeted sub-watersheds”.

3. Ibadan Urban Flood Management Project (IUFMP): The Project development
objective of the IUFMP is to “Improve the capacity of Oyo state to effectively
manage flood risk in the city of Ibadan”.

4. Multi-Pollutant Management and Environmental Health (PMEH): is focused
on Improving air quality monitoring in the city of Lagos and strengthen the
capacity of Lagos State Government with regards to environmental quality
management. The Research component this project will include air pollution
monitoring optimization using remote sensing in developing countries, where

ground observatory is limited.
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Appendix 2: Data types, tools, sources and use

S/N  Type Source Usage
1 Landsat OLI USGS Land use and land cover mapping
5 Shuttle Radar Topography Mission USGS, University of Bristol, Hydrodynamic modelling and flood mapping

(SRTM) and Bare-Earth Components http://www.earthenv.org/DEM®
3 Radarsat-2 Shell Petroleum Development Company

4 CosmoSkyMed Shell Petroleum Development Company

NISHA, NIWA, OORBDA, BORBDA,
5 Hydrography

GRDC
6 Aerial Photography Shell Petroleum Development Company
7 Climate Indices NOAA
8 Bathymetry HaskoningDHV, Digital Horizon Nig. Ltd.

® http://www.earthenv.org/DEM
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Flood extent mapping

Flood extent mapping

Flood frequency analysis

Flood delineation in mangrove areas

Develop climate indices for climate variable

flood frequency estimation

Hydrodynamic modelling



10

11

12

13

14

15

16

17

18
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Sentinel-1/2

Geological

MODIS NRT Flood Map

Socio-Economic

Spatial Data

Global Active Archive of Large Flood

Events

Radar Altimetry (Topex/Poseidon,

Envisat, Jasonl and 2).

TerraSAR-x

Soil Grids

Dams data sets

European Space Agency

NGSA

NASA

Socioeconomic Data and Applications

Centre (SEDAC)

DIVA-GIS

Dartmouth Flood Observatory, University of

Colorado

Centre for Topological studies of the Ocean

and Hydrosphere (CTOH)

Disaster Charter

International Soil Reference and Information

Centre (ISRIC)

Global reservoir and dam (grand) database
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Flood extent mapping

Criteria for decision tree flood mapping

Large scale flood extent mapping

Assessment of social-economic impact of

flooding

Derive administration maps

Quantify historical floods in Nigeria and

Globally

Extract radar altimetry water levels

Flood extent mapping

Criteria for decision tree flood mapping

Identify dam locations upstream of area of

interest
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Delineate river locations and river width for

19 River Basin and networks Hydro SHEDS ] ]
flood modelling and mapping
Name Source Usage
GIS, Geospatial analysis, Hydrological analysis
1 ArcMap ESRI ] )
and Hydrodynamic model data preparation
‘ ‘ Optical Satellite Image classification and Radar
2 ERDAS Imagine Hexagon Geospatial ) ) )
flood extent mapping (Histogram thresholding).
3 ENVI Harris Geospatial Radar flood extent mapping (Decision Tree)
CAESAR-LISFLOOD, Raster edit and Two-dimensional grid based hydrodynamic
4 ‘ http://coulthard.org.uk/’ .
DEM edit tools modelling
_ Direct and Regional Flood Frequency
5 ICI-RAFT USACE Institute for Water Resources o
Estimation
6 FLIKE BMT WBM Direct Flood Frequency Estimation
7 Weka University of Waikato, New Zealand Decision Tree Parameter characterization

7 http://coulthard.org.uk/
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SPSS

GeoForm

Web Plot digitizer

XLSTAT

Sentinel-1 Toolbox

SNAP

Broadview Radar Altimetry Toolbox
(BRAT)

& www.r-project.org

IBM

ESRI

www.r-project.org®

http://arohatgi.info

AddinSoft

European Space Agency

European Space Agency

European Space Agency
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Quantitative Analysis and assessment of

infilling approach statistical difference

Crowd-sourcing flood data collection

Statistical Analysis: Preliminary test, and

quantitative assessment

Secondary data extraction from published

journals.

Preliminary analysis for flood frequency

analysis

Sentinel 1 Image processing

Sentinel 1 and 2 Image processing

Radar Altimetry Water level extraction
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17

18

19

20

21
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ET Geo Wizard

Online Geoid Calculator

HEC-DSS

Landsat 8 Bulk Processing (Arc
toolbox)

Topography Tools 10 2 1

Polygon to Centreline Tool

http://www.ian-ko.com/’

http://geographiclib.sourceforge.net/

Hydrologic Engineering Centre USACE

Burnes, A. (2013) Landsat 8 Bulk
Processing, NRCS Arizona.

Dilts, T.E. (2015) Topography Toolbox for
ArcGIS 10.1 and Earlier, University of

Nevada Reno.

Dilts, T.E. (2015) Polygon to Centreline
Tool for ArcGIS, University of Nevada

Reno

Geospatial data analysis and pre-processing

Vertical Datum conversion

River Bathymetry data extraction and

conversion to ascii

Batch pre-processing for multiple Landsat

Imageries

Extraction of elevation data from DEM for

hydrodynamic modelling

Geospatial data preparation for hydrodynamic

modelling

® http://www.ian-ko.com/
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Appendix 3: Ratings Curve and Equation
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Appendix 4: GeoForm, crowdsourcing for flood monitoring in Nigeria

Lancaster
University ¢ ©

Crowd Sourcing Flood data collection, Nigeria
The Purpose of this Geo-Form is to collect first-hand information on flood events by

individuals residing within flood hazards locations for monitoring and Management.

1. Enter Information

State

Local Government Area
Village

Area

Employment Status

Employed, Unemployed or Student

Age

15 - 20, 20 - 30, 30 - 55, 55 Above

Number of persons in Residence

1,2 -4, 5 and above

Flood Map Awareness

Yes, or No

Cause of flood in Nigeria

Rainfall, Dam water release, Poor waste and drainage management

Level of flood risk exposure
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Low, Medium, high

Previous flood experience

Yes, No

River close to surrounding

Yes, or No

Aware of Displacement camp

Yes, or No
Flood Management Responsibility
Local Govt., State Govt., federal Govt.

Flood Photo
Select File

2. Select Location

Specify the location for this entry by clicking/tapping the map or by using one of the
following options.

+ ~
‘[_\Iiame-,' ——
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oul 38 : i
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Submit Entry

3. Complete Form
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Appendix 5: Sample Agreements/Correspondence for data usage from 3rd party
data collection companies

CONFIDENTIALITY AGREEMENT
This Agreement is made this ...day of .......20xx ("Effective Date") between:

The Shell Petroleum Development Company of Nigeria Limited, a company
incorporated under the laws of the Federal Republic of Nigeria and having its registered
office at Shell Industrial Area, Rumuobiakani, Port Harcourt, Rivers State, Nigeria, in its
capacity as a partner in and operator of the SPDC JV (*Disclosing Party”)

And
ErEw-WC\ |GQuMiwrty TREMAL o | Department of GESTEAPMUniversity of

............................................ ¥

JkNCrATER 1 and whose permanent address is . (“Receiving _Party”)
LxNCrsTE A, Erdy Ik on MENTEL, CENTLE CRECY), WnvE e311 of LamimT £,
Lpn CRSAER | LA 4 W, UNITE O KINGBD™M.

WHEREAS

a. The Disclosing Party is the operator of the SPDC JV, by virtue of which it
operates the concessions and contract area of the SPDC JV, while the
Receiving Party is a [Student of the University of .....................].

b. The Receiving Party has approached the Disclosing Party for certain
information to enable him complete his project work
titled........qooeeereenerene at the University of . kA CEAEA, UK.

i N : . e
T R{ELL T o OF QEotad WemaTies Fot Plown Nt GEM ER porens Ul fho

VN L oR CTH ) NEGE Lin™
¢. The Disclosing party is willing to avail the Receiving party with the required
information and/or grant access to such information

d. In consideration of the disclosure of such information by the Disclosing Party to
the Receiving Party, the Receiving Party undertakes to keep the disclosed
information strictly confidential in accordance with the terms set out in this
Agreement.

IT IS HEREBY AGREED AS FOLLOWS;
1 DEFINITIONS, INTERPRETATION

1.1 Definitions - As used in this Agreement, these words or expressions
have the following meanings:

“Affiliate" means a company which, directly or indirectly through one or

more intermediaries, controls or is controlled by, or is under common
control with either of the Parties. For this purpose, control means the
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(a) Disclosing Party
Shell Industrial Area, Rumuobiakani,
Port Harcourt, Rivers State, Nigeria

Facsimile No:
Attention:

(b) Receiving Party
Evtu-wEf A
Centig, LINWELSH] 0F LANTATER.

| G Andia 2 THET™™IrS | bWt a Enjiecyme R

Facsimile No: A1 ANMW, L povirt il ) unnTen  Kewluibom™ .

Aftention: RESEma ctn Dt ® REGUELT

I.. ‘;1-""‘:.\-5 Gansd &"twr R-HJLV-?"(,;
ot ﬂ.(\imgd‘l Sr\jllh.k._

,{1..‘?,7 { Qi
ASSIGNMENT

The Receiving Party shall not assign this Agreement. The Disclosing party
may assign this Agreement to any of its Affiliates at any time and Notice of
such assignment shall be provided to the Receiving Party. Without prejudice
to the foregoing, this Agreement shall bind and inure to the benefit of the
Parties and their respective successors and permitted assigns

12.GENERAL PROVISIONS

Waiver

No waiver by any Party of any one or more breaches of this Agreement by the
other Parties shall operate or be construed as a waiver of any future default
or defaults by the same Party. Mo Party shall be deemed to have waived,
released, or modified any of its rights under this Agreement unless such Party
has expressly stated, in writing, that it does waive, release or modify such
rights.

dification
No amendments, changes or modifications to this Agreement shall be valid

except if the same are in writng and signed by a duly authorized
representative of each of the Parties.
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Signed for and on behalf of

C f Nigeria Limited

Signature:

Name:

Designation:

In the presence of

Signature:

Name:

Designation:

Signed, sealed and delivered by the within
named Receiving Party

=

Signature:
Name:‘E’F’—-’Etk w16 ks TR

= Tia Erp/it
Designation: m‘-"ﬁ Lrgamechl SsTupewt ol

CHE), LN ey vt OF Frow LivsAs R 5 UK -
Date  H{ odxs14

gt CRamAd

In the presence of

Signature: Alﬂc}ﬂ HMJ‘

Name: Aﬂa'v. ll {G'fﬁlut
Designation: ‘bf(;— R (o-ocdwehn (LEC)
owe 7(2|1¢
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Appendix 6: Model Built for CAESAR-LISFLOOD Output post-processing

Batch Projection

Batch Clip
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Appendix 7: Weka Decision Tree

J48 tree

Distance from river <= 17897.6

DEM <=13.507

Distance from river <= 3760.66: Flooded (317.0/8.0)

| Distance from SAR flood > 3760.66

| | Distance from SAR flood <=4130.21: Non-Flooded (3.0)
| | Distance from SAR flood >4130.21: Flooded (22.0/2.0)

DEM > 13.507

Distance from river <= 1350: Non-Flooded (8.0/1.0)
Distance from river > 1350: Flooded (11.0/1.0)

Distance from river > 17897.6

DEM <= 11.665

Land Use/cover = Built-up: Non-Flooded (4.0/1.0)
Land Use/cover = Tampered Vegetation

SPI <= 0.009

TWI<=219.091

| TWI<=0

| | SPI<=-0.072: Non-Flooded (2.0)

| | SPI>-0.072: Flooded (6.0/1.0)

| TWI > 0: Flooded (2.0)
TWI>219.091: Non-Flooded (3.0)

SPI > 0.009: Flooded (9.0)

Land Use/cover = Swamp: Flooded (5.0/1.0)

Land Use/cover = Matured Vegetation

| DEM <= 10.018: Non-Flooded (8.0/2.0)

| DEM >10.018: Flooded (3.0)

Land Use/cover = Bare land

| Slope <= 0.588: Flooded (8.0/1.0)

| Slope > 0.588: Non-Flooded (2.0)

Land Use/cover = Waterbodies: Flooded (7.0)
Land Use/cover = Cultivated land: Flooded (1.0)

DEM > 11.665: Non-Flooded (23.0/3.0)

Number of Leaves: 19

Size of the tree: 32
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Appendix 8 CAESAR LISFLOOD parameters. Adapted from Olayinka (2012) and

sediment input.

Parameter Value Unit
Lateral erosion rate 0
Number of passes for edge smoothing filter 100
Number of cells to shift lateral erosion downstream 5
Max difference allowed in cross channel smoothing 0.0001
Max erode limit 0.03
Water depth above which erosion can happen 0.02
Min discharge for depth calculation 2.7
Static Manning’s n 0.035
Erosion equation Wilcock and Crowe
Slope failure threshold 45 degree
Input output difference allowed 4485 m’
Slope for edge cells 0.01
Evaporation rate 0.03 m/day
Courant number 0.7
Froude limit 0.6
Sediment input grain sizes and distribution (Olayinka, 2012)
Grain Size (m) Proportion (%)
0.000053 0.144
0.000074 0.022
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0.00021 0.019
0.00042 0.029
0.000841 0.068
0.00168 0.146
0.00336 0.220
0.00635 0.231
0.0127 0.121
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Appendix 9 Sample Flike Flood Frequency outcome (Umaisha, Radar Altimetry)
and plot code in R

FLIKE program version 5.0.251.0
FLIKE file version 3.10

Data file: C:\Users\iguni\Desktop\FlikeZ017\UmaishaRAa.fld
Title: UmaishaRA

Flood model: GEV

Summary of Posterior Moments from Importance Sampling

Parameter Name Mean 5td dev Correlation
1 Location u 11719.68731 402.28284 1.000
2 loge (Scale a) 7.54851 0.15658 0.235 1.000
3 Shape k 0.04z206 0.12775 0.282 0.213 1.000

Note: Posterior expected parameters are the most accurate in the mean-sguared-error sense.
They should be used in preference to the most probable parameters

Upper bound = 56847.1
BEP 1 in Y ExXp parameter Monte Carlo 90% quantile Mean (loglO(aq)) Stdev(loglO (a))
quantile probability limits
1.010 8721.75 7435.693 G488.8 3.9358 0.0356
1.100 10028.88 9230.03 10636.8 3.9%95%¢6 0.0154
1.250 10807.40 10125.24 11407.3 4.0329 0.0159
1.500 11540.84 10885.56 12182.1 4.0619 0.0149
1.750 12033.08 11367.50 12720.3 4.0803 0.0150
2.000 12409.97 11723.89 13140.8 4.05938 0.0152
3.000 13400.8¢6 12635.59 14306.2 4.1275 0.01ee
5.000 14478.52 13573.65 15642.9 4.1¢ele 0.0183
10.000 157594 .82 14654.11 1758%.3 4.2003 0.0253
20.000 17019.00 15580.51 1975€.0 4.2340 0.0338
50.000 18549.53 166l15.67 23108.¢ 4.2737 0.0482
100.000 1%657.77 17265.59 25951.1 4.3010 0.0607
200.000 20730.07 176835.64 29330.9 4.3266 0.0745
500.000 22097.61 18446.03 34289.5 4.3582 0.0941
1000.000 23096.70 18816.55 38845.4 4.3807 0.1058
2000.000 24066.72 15144.57 43543.¢6 4.4022 0.1281
5000.000 25306.13 15450.54 51331.7 4.4252 0.1484
10000.000 26212.39 15711.386 58081.0 44487 0.1e57
20000.000 27092.58 196863.24 65227.4 4_4e76 0.1834
50000.000 28217.42 20106.67 77158.7 4.4591¢6 0.2071
100000.000 29039.98 20240.94 87384.7 4.5081 0.2254
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Flood Expected L AEP——————————— >
magnitude probability 1l in ¥ 90% limits
8721.75 0.01559 1.0z 1.00 1.1
10028.88 0.0%697 1.11 1.04 1.z
10807.40 0.20525 1.26 1.13 1.5
11540.54 0.33698 1.51 1.28 1.5
12033.08 0.43065 1.76 1.44 2.3
12409.97 0.50077 2.00 1.60 2.7
13400.86 0.66450 2.58 2.18 4.5
14476.52 0.7%628% 4.91 3.20 B.5
157%4 .82 0.89592 9.6l 5.27 24,
17019.00 0.94580 18.45 .25 76.
18545.53 0.9754% 40.80 13.77 0.5%9E+03
19657.77 0.98544 68.67 19.42 0.B84E+04
20730.07 0.99070 107.54 26.4Z2 0.84E+07
22097.61 0.99%436 177.36 3B8.95 0.10E+11
2309%6.70 0.99592 244,93 45,82 0.10E+11
24066.72 0.99693 325.59 63.55 0.10E+11
25306.13 0.99779 452 .51 86.53 0.10E+11
2e212.39 0.99823 563.7Z2 106.08 0.10E+11
27092.58 0.99855 687.66 127.12 0.10E+11
2B217.42 0.%99885 870.26 159.71 0.10E+11
29039.98 0.99902 1021.84 1868.11 0.10E+11
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# Plotting Flike output
# see https://tonyladson.wordpress. com/2015/10,/20/better-frequency-plots-from-web-based-flike/

Tibrary(stringr)
Tibrary(r.utils)

plot. new()
frame()

setwd ("C:/Users/iquni/Desktop/F1ikez2017")

my.path =- c{'C:/Users/iguni/Desktop/F1ike2017")

# my.path <- c( As required’)

# see example file at https://goo.gl/mDeHIp

my.file <- c{ 'UmaishamIresult.csv’')

fname <- str_c(my.path, my.file, sep = /')

# find the 1ine numbers of those 1ines that contain the word 'Number’
TineNum. number <- grep( Number’, readLines(fname)) # line numbers of heading
TineNum. eof =- as.vector (countLines(fname) ) # end of file

# Read in the gauged data and deviates

flike.data <- read.csv(fname, header = TRUE, nrows = TlineNum.number[2] - 2 )
# # It looks Tike flike sets any zero flow values to 0.001

# # we can delete those if necessary.

=
# flike.data =- flike.data[-which(flike.datajcauged_value == -3), ]
my.ari <- c(1.5, 2, 5, 10, 20, 50, 100, 200)
my.aep <- 1/my.ari
my.z =- gnorm(l - my.aep)
par (oma = ¢(5,3,0,0))
plot(Gauged_value — Deviate,
data = flike.data,

Xaxt = 'n’,
yaxt = 'n’,
Tog = "y',
ylab = "7,
xlab = ",
pch = 21,
bg = "grey’
)
axis(side = 1, at = my.z, my.ari)
mtext (text = 'ARI (years)’, side =1, line = 2)

my.label = str_c(round(100*my.aep), '%')
axis(side = 1, at = my.z, my.label, outer = TRUE)
mtext (text = "AEP", side = 1, line = 7)
my. labels <- prettyNum(axTicks(2),
scientific = FaLsE,
big.mark = ", ")
axis(side=2, at=axTicks(2),
Tabels=my. labels,
las = 2)

mrext(side = 2, Tine = 4.5, text =" Discharge (cumecs)’)
abline(h = seq(0.1,1,0.1), Tty = 3, col = "grey’ )

ablineth = seq(1,10,1), 1ty = 3, col = “grey’ )

ablinech = seq(10,100,10), Tty = 3, col = 'grey’ )

abline(h = seq(100,1000,10), Tty = 3, col = "grey’ )
ablineth = seq(1000,10000,1000), 1ty = 3, col = “grey’ )
ablinech = seq(10000,100000,10000), 1ty = 3, col = ‘grey’ )
abline(v =my.z, 1ty = 3, col = "grey’ )

# Read in the confidence limites and expected parameter quantile

# plot on graph

flike.cl <- read.csv(fname, header = TRUE, skip = lineNum.number[2] - 1, nrows = lineNum.number[3] - TineNum.number[2]
Tines(Expected par_guantile ~ Deviate, data = flike.cl) # Expected parameter quantile

Tines(Lower_90. _probabilty_Tlimit ~ Deviate, data = flike.cl, Tty = 2) #

Tines(Upper_90. _probability_limit - Deviate, data = flike.cl, Tty = 2) #

# Readin and plot the expected probability quantile

flike. exp.prob <- read.csv(fname, header = TRUE, skip = TineNum.number[3] - 1, nrows = TlineNum.eof - TineNum.number[3])
f1ike. exp.prob

# remove all rows where the Expected probably quantile value is zero

flike. exp.prob <- flike.exp.prob[flike.exp.probiexpected_probability_quantitle = 0, ]

lines(Expected_probability_guantitle - Deviate, data = flike.exp.prob, col = 'red’) # Expected parameter guantile
legend( "bottomright”,
legend = c('90% cL', 'Gauged', 'Expected param’, "Expected prob'),

Tty = c(2, -1, 1, 1),
pch = ¢(-1, 21, -1, -1),
pt.bg = 'grey’,

bty = 'n",
col = c(1,
inset =
cex=0.9)
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