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ABSTRACT 

 

Floods are one of the most devastating disasters known to man, caused by both natural 

and anthropogenic factors. The trend of flood events is continuously rising, increasing 

the exposure of the vulnerable populace in both developed and especially developing 

regions. Floods occur unexpectedly in some circumstances with little or no warning, 

and in other cases, aggravate rapidly, thereby leaving little time to plan, respond and 

recover. As such, hydrological data is needed before, during and after the flooding to 

ensure effective and integrated flood management. Though hydrological data collection 

in developed countries has been somewhat well established over long periods, the 

situation is different in the developing world. Developing regions are plagued with 

challenges that include inadequate ground monitoring networks attributed to 

deteriorating infrastructure, organizational deficiencies, lack of technical capacity, 

location inaccessibility and the huge financial implication of data collection at local and 

transboundary scales. These limitations, therefore, result in flawed flood management 

decisions and aggravate exposure of the most vulnerable people.  

Nigeria, the case study for this thesis, experienced unprecedented flooding in 

2012 that led to the displacement of 3,871,53 persons, destruction of infrastructure, 

disruption of socio-economic activities valued at 16.9 billion US Dollars (1.4% GDP) 

and sadly the loss of 363 lives. This flood event revealed the weakness in the nationôs 

flood management system, which has been linked to poor data availability. This flood 

event motivated this study, which aims to assess these data gaps and explore alternative 

data sources and approaches, with the hope of improving flood management and 

decision making upon recurrence. This study adopts an integrated approach that applies 

open-access geospatial technology to curb data and financial limitations that hinder 

effective flood management in developing regions, to enhance disaster preparedness, 

response and recovery where resources are limited.  

To estimate flood magnitudes and return periods needed for planning purposes, 

the gaps in hydrological data that contribute to poor estimates and consequently 

ineffective flood management decisions for the Niger-South River Basin of Nigeria 

were filled using Radar Altimetry (RA) and Multiple Imputation (MI)  approaches. This 

reduced uncertainty associated with missing data, especially at locations where virtual 

altimetry stations exist. This study revealed that the size and consistency of the gap 
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within hydrological time series significantly influences the imputation approach to be 

adopted. Flood estimates derived from data filled using both RA and MI approaches 

were similar for consecutive gaps (1-3 years) in the time series, while wide 

(inconsecutive) gaps (> 3 years) caused by gauging station discontinuity and damage 

benefited the most from the RA infilling approach. The 2012 flood event was also 

quantified as a 1-in-100year flood, suggesting that if flood management measures had 

been implemented based on this information, the impact of that event would have been 

considerably mitigated. 

Other than gaps within hydrological time series, in other cases hydrological data 

could be totally unavailable or limited in duration to enable satisfactory estimation of 

flood magnitudes and return periods, due to finance and logistical limitations in several 

developing and remote regions. In such cases, Regional Flood Frequency Analysis 

(RFFA) is recommended, to collate and leverage data from gauging stations in 

proximity to the area of interest.  In this study, RFFA was implemented using the open-

access International Centre for Integrated Water Resources ManagementïRegional 

Analysis of Frequency Tool (ICI-RAFT), which enables the inclusion of climate 

variability effect into flood frequency estimation at locations where the assumption of 

hydrological stationarity is not viable. The Madden-Julian Oscillation was identified as 

the dominant flood influencing climate mechanism, with its effect increasing with 

return period. Similar to other studies, climate variability inclusive regional flood 

estimates were less than those derived from direct techniques at various locations, and 

higher in others. Also, the maximum historical flood experienced in the region was less 

than the 1-in-100-year flood event recommended for flood management. 

The 2012 flood in the Niger-South river basin of Nigeria was recreated in the 

CAESAR-LISFLOOD hydrodynamic model, combining open-access and third-party 

Digital Elevation Model (DEM), altimetry, bathymetry, aerial photo and hydrological 

data. The model was calibrated/validated in three sub-domains against in situ water 

level, overflight photos, Synthetic Aperture Radar (SAR) (TerraSAR-X, Radarsat2, 

CosmoSkyMed) and optical (MODIS) satellite images where available, to access model 

performance for a range of geomorphological and data variability. Improved data 

availability within constricted river channel areas resulted in better inundation extent 

and water level reconstruction, with the F-statistic reducing from 0.808 to 0.187 

downstream into the vegetation dominating delta where data unavailability is 
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pronounced. Overflight photos helped improve the model to reality capture ratio in the 

vegetation dominated delta and highlighted the deficiencies in SAR data for delineating 

flooding in the delta. Furthermore, the 2012 flood was within the confine of a 1-in-100-

year flood for the sub-domain with maximum data availability, suggesting that in 

retrospect the 2012 flood event could have been managed effectively if flood 

management plans were implemented based on a 1-in-100-year flood.  

During flooding, fast-paced response is required. However, logistical challenges 

can hinder access to remote areas to collect the necessary data needed to inform real-

time decisions. Thus, this adopts an integrated approach that combines crowd-sourcing 

and MODIS flood maps for near-real-time monitoring during the peak flood season of 

2015. The results highlighted the merits and demerits of both approaches, and 

demonstrate the need for an integrated approach that leverages the strength of both 

methods to enhance flood capture at macro and micro scales.  Crowd-sourcing also 

provided an option for demographic and risk perception data collection, which was 

evaluated against a government risk perception map and revealed the weaknesses in the 

government flood models caused by sparse/coarse data application and model 

uncertainty. 

The C4.5 decision tree algorithm was applied to integrate multiple open-access 

geospatial data to improve SAR image flood detection efficiency and the outputs were 

further applied in flood model validation. This approach resulted in F-Statistic 

improvement from 0.187 to 0.365 and reduced the CAESAR-LISFLOOD model overall 

bias from 3.432 to 0.699. Coarse data resolution, vegetation density, obsolete/non-

existent river bathymetry, wetlands, ponds, uncontrolled dredging and illegal sand 

mining, were identified as the factors that contribute to flood model and map 

uncertainties in the delta region, hence the low accuracy depicted, despite the 

improvements that were achieved. 

Managing floods requires the coordination of efforts before, during and after 

flooding to ensure optimal mitigation in the event of an occurrence. In this study, and 

integrated flood modelling and mapping approach is undertaken, combining multiple 

open-access data using freely available tools to curb the effects of data and resources 

deficiency on hydrological, hydrodynamic and inundation mapping processes and 

outcomes in developing countries. This approach if  adopted and implemented on a 
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large-scale would improve flood preparedness, response and recovery in data sparse 

regions and ensure floods are managed sustainably with limited resources. 
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CHAPTER 1: INTRODUCTION TO RESEARCH, AIM AND OBJECTIVES 

DEFINITION  

1. Background 

1.1. Flood Hazard and Impact 

Floods are arguably one of the most devastating disasters known to man, accounting for 

approximately one-third of global natural disasters, and impacting more people than any 

other natural or man-made phenomenon (Smith, 1998). Over the past decades, the 

impact of floods has been on the rise (Di Baldassarre et al., 2010, Aerts et al., 2014), 

resulting in the death of approximately 100,000 persons and affecting over 1.4 billion of 

the global populace in the last decade of the 20th century (Jonkman, 2005). Flood events 

are strongly linked to climate-change triggered weather variations, resulting in more 

severe and frequent storms (Yukiko et al., 2013). As the global population continue to 

increase, pushing people to settle in flood-prone regions (Burby et al., 2001), the 

exposure to flooding and its impact is expected to rise accordingly. The Global map of 

flood occurrences between 1985 to 2016 is presented in Figure 1, showing the spread of 

flooding across developed and developing regions. 

 

Figure 1 Global Distribution of flood occurrences 1985 ï 2016 (Source: Dartmouth 

Flood Observatory) 
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Usually, floods transit political boundaries, affecting both developed and developing 

countries alike (Biancamaria et al., 2011, Nkwunonwo et al., 2016). However, 

vulnerability varies widely from high to low-income regions, as the ability to cope with 

and mitigate flood impact varies with economic capacity (Brouwer et al., 2007, 

Adelekan, 2011). Godschalk (1999) argued that the low-income populace is naturally 

inclined to reside in high-risk regions due to the low cost of settling within such regions, 

thereby limiting their capacity to cope with and recover from disastrous events. Nigeria 

has experienced increased flooding in recent years (Brakenridge, 2016), with impact 

aggravated due to the high number of the vulnerable populace living within floodplains 

(Nkeki et al., 2013, Agada and Nirupama, 2015, Daura and Mayomi, 2015). Locations 

of flood occurrences in Nigeria are presented in Figure 2, while global and local 

(Nigerian) flood impacts are presented in Table 1 (Brakenridge, 2016), and provides 

details of impact for occurrences greater than or equal to 1-in-100-year flood. 

 

Figure 2 Distribution of flood occurrences in Nigeria 1985 ï 2016 (Source: Dartmouth 

Flood Observatory) 
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Table 1 Estimated global and local (Nigeria) flood impacts from 1985 ï 2016 (Source: 

Dartmouth Flood Observatory) 

Location Occurrence Deaths Displaced 

Damage 

(óUSD) 

Affected 

populace 

Ó 100 year 

floods 

Global 4387 661295 638196277 8.01*1011 4.62*108 725 

Nigeria 58 1444 1881957 1.01*108 4.64*106 6 

 

Recent reviews on flood risk assessment in Nigeria categorised the causes of flooding in 

terms of initiation and exacerbation factors (Nkwunonwo et al., 2016, Ugonna, 2016, 

Egbinola et al., 2015). Figure 3 shows a flowchart of the causes of flooding in Nigeria, 

including climate change, poor urban planning, urbanisation and anthropogenic 

activities. Climate change affects ocean-atmospheric patterns, thus initiating heavy 

storms that consequently cause pluvial (rainfall), fluvial (river) and coastal (ocean) 

floods (Nkwunonwo et al., 2015). Poor developmental blueprints, policies and 

implementation result in the violation of building regulations and settlement of persons 

within high-risk floodplains, thereby increasing impervious land surface, run-off and 

exposure to flooding. Also, anthropogenic activities such as poor waste management, 

upstream dam water releases, poorly designed hydraulic structures, blockage of 

waterways and drainages exacerbate flooding (Adeaga et al., 2008, Olukanni and 

Alatise, 2008, Etuonovbe, 2011, Raheem 2011, Agbola et al., 2012, Komolafe, 2015, 

Nkwunonwo et al., 2016). Although most floods occur independently, in some instances 

flood causes criss-cross, resulting in complex flood scenarios and associated risk. 

Nevertheless, this study is focused solely on fluvial (river) flooding. 

Managing flood disasters sustainably requires the coordination of efforts before 

(preparedness), during (response) and after (recovery) flooding (APFM, 2011), to 

enable integrated flood management at variable paces to minimize flood effects. 

Courteille, (2015) highlighted components of the disaster risk management cycle:  

1. Pre-disaster (Preparedness): involves expected risk assessment, mitigation, 

prevention, recovery planning and preparedness.  
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2. During disaster (Response): includes warning/evacuation, saving people, providing 

immediate assistance, and assessing damages to critical infrastructures.  

3. Post-disaster (Recovery): encompasses reconstruction (resettlement and relocation), 

economic and social recovery, and risk assessment (lessons for recurrence 

mitigation and prevention). 

Implementing these flood management strategies requires some form of data. Pre-and 

Post-flood management measures are usually deliberately paced, adapting existing 

methods that require available data. For instance, pre-flood measures can be 

accomplished by identifying locations susceptible to flooding based on knowledge of 

past flood trends from which annual flood exceedance probabilities are estimated (Reed, 

1999). Flood estimates are then propagated through hydrodynamic models to route 

flood spread and quantify hazards (i.e. flood depth, velocity, and inundated area) 

(Sarhadi et al., 2012). Post-flood measures, on the other hand, entails identifying 

impacted locations, people and critical infrastructure within inundated areas to quantify 

damage and impact for reconstruction and rehabilitation purposes (Eyers et al., 2013, 

Thorne, 2014). Responding to floods in the heat of the event is particularly challenging, 

as real-time data processing and information are needed for a prompt response (Muller 

et al., 2015, Temimi et al., 2004, García-Pintado et al., 2013).  

Although several structural and non-structural steps have been taken by various 

stakeholders to combat flooding in Nigeria, the results have been poor, judging from 

recent flood impacts (Ugonna, 2016, Tami and Moses, 2015, Ojigi et al., 2013). This 

failure is attributed to the ad-hoc nature, ineffective and poorly coordinated nature of 

flood management efforts (Obeta, 2014a); shortage of quality data, poor stakeholders 

flood risk perception and poor citizen inclusiveness; lack of funding, technological 

know-how and political will by the government (Maxwell, 2013, Ugonna, 2016). 
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Figure 3 Classification of common causes of flooding in Nigeria 
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1.2. Aim 

The aim of this study is to overcome data and resources limitations in developing 

regions to adequately model and map flooding, using alternative open-access geospatial 

technology within an integrated flood management framework that enhances 

preparedness, response and recovery. 

1.3. Objectives 

1) Identify the causes of data limitations in flood management and alternative 

open-access data sources available to fill the data gap. 

 

2) Investigate varying hydrological data filling approaches to curtail missing data 

effect on flood frequency estimates.  

 

3) Explore methods by which identified open-access, 3rd party and citizen acquired 

data can be integratively applied to improve hydrodynamic modelling and flood 

mapping in data sparse regions.  

 

4) Assess the limitations of alternative open data application and apply known 

concepts to improved flood delineation. 
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1.4. THESIS STRUCTURE 

This thesis is structured following the alternative format, composed of eight chapters, 

with Six (6) chapters (2-7) drafted to focus on specific research objectives. 

 

Chapter 1: INTRODUCTION TO RESEARCH , AIM AND OBJECTIVES 

DEFINITION  

 

Introduces the research problem of flood risk and the need for flood management, 

highlighting the key issues and rationale at global and local scales. The research aim 

and objectives of the research are also outlined. 

 

Chapter 2: APPLICATIONS OF OPEN -ACCESS REMOTELY SENSED DATA 

IN FLOOD MAPPING FOR DATA SPARSE REGIONS: A REVIEW AND CASE 

STUDY OF NIGERIA  

This chapter presents a review section that focuses on the data challenges and 

uncertainties associated with sparse data application in hydrological modelling, 

hydrodynamic modelling and flood mapping at global, transboundary and local 

(Nigerian) scales. The core causes of data limitations in developing regions are 

disclosed, and available alternative open-access remote sensing and third-party data sets 

that compensate for ground data deficiency in flood mapping are highlighted. Flood 

mapping processes including flood frequency estimation, hydrodynamic modelling, and 

inundation mapping are discussed, and ways radar altimetry, digital elevation model, 

bathymetry, optical, radar images, and satellite consortium data can be applied to curb 

data sparsity for each of these processes. Transboundary flood management challenges 

are also emphasised with the prospect of effective flood management through current 

and future open - access remote sensing data application. 

 

Chapter 3: INFILLING MISSING DATA IN HYDROLOGY: SOLUTIONS 

USING SATELLITE RADAR ALTIMETRY AND MULTIPLE IMPUTATION 

FOR DATASPARSE REGIONS 

 

One of the causes of data deficiency disclosed in Chapter 2 is gaps within hydrological 

time series, which results in uncertain flood estimates. Chapter 3 explores the use of 
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radar altimetry and multiple imputation techniques to fill  missing data in hydrological 

time series, consequently reducing flood estimates uncertainties. These approaches were 

aimed at reconstructing missing annual peak river discharges distorted due to 

destructive floods, discontinued gauging stations or inaccessibility to remote locations 

during flooding. The magnitudes of the 2012 and 2015 flood events at gauging stations 

along Niger and Benue rivers in Nigeria were also evaluated from distinctly filled time-

series, and the application of these techniques in practice discussed. 

 

Chapter 4:  ACCOUNTING FOR CLIMATE VARIABILITY IN REGIONAL 

FLOOD FREQUENCY ESTIMATES FOR WESTERN NIGERIA  

 

Logistical and financial challenges make it difficult to establish gauge stations at all 

required locations, hence the hydrological monitoring networks are often sparse, and 

several locations left ungauged (Chapter 2). Also, the increasing influence of climate 

change on floods as discussed in Chapter 1 and Chapter 2 annuls the assumption of 

stationarity in flood frequency estimation. Chapter 4 presents findings that assess the 

effect of climate variability on regional flood frequency estimates in the sparsely 

gauged Ogun-Osun River basin in Nigeria. Freely available International Centre for 

Integrated Water Resources ManagementïRegional Analysis of Frequency Tool (ICI-

RAFT) that aids the integration of the National Oceanic and Atmospheric 

Administration (NOAA) climate indices into flood frequency estimation was applied, 

thereby supporting flood management in regions with limited resources. 

 

Chapter 5: INTEGRATING CROWD -SOURCING AND OPEN-ACCESS 

REMOTE SENSING FOR FLOOD MONITORING IN DEVELOPING 

COUNTRIES 

 

Monitoring flooding at the peak of occurrence is required to identify flooded locations 

to deploy resources to mitigate flood impact. Integrated Near-Real-Time remote sensing 

MODIS flood maps and crowdsourcing (Volunteered Geographic Information System) 

were applied for flood monitoring during the peak flood season of 2015 (Chapter 5), 

and data on the past flood event of 2012 was collected in retrospect. The VGIS 

crowdsourcing approach was based on a revised disaster communication model by the 
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UN Office for Disaster Risk Reduction (UNISDR), focused on impacted persons 

communicating disaster reality to management agencies. Citizen and government 

perception of flood risk is evaluated, and citizen risk perception in relation to flood risk 

indicators such as Awareness, Worry and Preparedness is also assessed from 

supplementary data collected. 

 

Chapter 6: HYDRODYNAMIC MODELLING OF EXTREME FLOODS IN 

DEVELOPING REGIONS USING MULTIPLE OPEN -ACCESS REMOTE 

SENSING DATA SOURCES 

 

Chapter 6 portrays an integrated flood modelling and mapping approach applied in the 

Niger-South river basin of Nigeria (i.e. from Niger river at Baro and Benue river at 

Umaisha to the Niger Delta through Nun and Forcados tributaries). The hydrodynamic 

model incorporates open-access remote sensing, airborne (overflight), hydrographic and 

bathymetric data from multiple sources and third-parties. 2-D CAESAR-LISLFOOD 

model is applied using 2012 hydrograph and modified SRTM to recreate the 

unprecedented flood event hydraulically. The model was calibrated using a combination 

of satellite images (i.e. TerraSAR-X image, MODIS Near-Real-Time flood map, 

RadarSat-2, CosmoSkyMed), overflight geotagged photos and water levels available for 

three sub-domains. 1-in-100-year flood frequency estimates were modelled and 

compared in retrospect to the 2012 flood event to improve planning and management of 

subsequent events. 

 

Chapter 7: IMPROVING RADAR IMAGERY FLOOD DETECTION 

CAPACITY USING MULTI -CRITERIA DECISION TREE ANALYSIS 

TECHNIQUE BUILT ON OPEN -ACCESS DATA  

Chapter 6 revealed the deficiency of Synthetic Aperture Radar (SAR) image in 

delineating flooding in the vegetation covered Niger Delta using overflight geotagged 

photos, due to SAR inability to penetrate vegetation covers and discrepancies in built-up 

areas. Chapter 7 combines multiple open-access data sets using a C4.5 algorithm driven 

decision-tree to delineate flood extent within the Niger Delta for improved 

hydrodynamic flood evaluation. 
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Chapter 8: CONCLUSION, CONTRIBUTIONS, LIMITATIONS AND 

RECOMMENDATIONS  

 

Concludes the thesis, summarising the main findings and discussing the implications in 

regard to flood management. It also Synthesises previous chapters, aligning them within 

the integrated flood management framework of preparedness (pre-flood), response 

(during the flood) and recovery (post-flood). The contributions of this thesis in filling 

the data sparsity gap in developing regions with limited resources are highlighted. The 

limitations and recommendations for improvement and future research direction is also 

presented. 
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CHAPTER 2: APPLICATIONS OF OPEN -ACCESS REMOTELY SENSED 

DATA IN FLOOD MAPPING FOR DATA SPARSE REGIONS: A REVIEW 

AND CASE STUDY OF NIGERIA  

 

Abstract 

Flood mapping generally entails flood frequency estimation, hydrodynamic modelling 

and inundation mapping, which requires specific data sets that are sometimes 

unavailable especially in developing regions due to financial, logistical, technical and 

organisational challenges. This chapter reviews flood modelling and mapping processes, 

outlining the data requirements and how open-access remote sensing can supplement for 

ground and high-resolution space-borne commercial data. The merits, demerits and 

application cases of data sets such as radar altimetry, DEM, optical and radar images are 

also discoursed for global, transboundary and local flood risk management. Also, the 

role of collaborative satellite information sharing and service delivery in flood disaster 

monitoring and management is disclosed. 

Keywords: Open-access remote sensing, flood management, Altimetry, Synthetic 

Aperture Radar, Optical Satellite, Digital Elevation Model (DEM), Transboundary 

floods. 

1. Introduction  

1.1. Flood modelling and mapping 

Managing flood effectively requires a good understanding of historical flood trends, 

future expectations, and identification of locations likely to be impacted by flooding. 

Flood mapping provides the baseline for acquiring such information, to ensure 

prevention, protection and management are efficiently undertaken (Plate, 2002). Flood 

mapping is a process that defines the expected extent of water inundation into dryland 

as a result of intense precipitation or river water level rise driven by natural or 

anthropogenic factors (Merwade et al., 2008). Flood mapping process differs 

considerably from project to project, or country to country, depending on specific 

project requirements and country-specific guidelines. Also, the scale of flood risk 

assessment, available data, resources, technical knowledge and delivery timeline 

influences the approach deployed (Moel et al., 2015, Klijn et al., 2008, Büchele et al., 

2006, Ologunorisa, 2004). Nevertheless, the sequence of activities that lead to risk map 

outcome is fundamentally the same, and  involves flood frequency estimation 
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(probability of occurrence of a flood of specific magnitude over a certain period); 

hydrodynamic modelling (routing of river discharge or catchment runoff over landscape 

to determine water depth and inundation extent); and risk assessment (determining 

landscape properties impacted within flooded regions) (ISDR, 2004, Els, 2013, FME, 

2005b, Aerts et al., 2009, Martini and Loat, 2007).  

Table 1 highlights Flood mapping processes, basic data requirements, expected 

outcomes and some case studies. These processes aid flood management by providing 

the necessary information needed for planning, flood defence structure design, disaster 

response and recovery to mitigate flood effect. 

Going forward, this review highlights the scarcity of data needed for mapping processes 

(Table 1), detailing how advancements in open-access remote sensing can compensate 

for ground monitoring deficiencies in local and transboundary river basins. Remote 

sensing data sets such as altimetry, digital elevation models, radar and optical images 

application in each flood mapping process are discoursed. To further demonstrate the 

usefulness of open-access remote sensing in developing regions, a case study of Nigeria 

is presented, emphasising on local and transboundary flood management developments, 

data limitations, current role and future prospect of remote sensing.  

Table 1 Flood mapping process and fundamental data requirement 

Process Data Outcomes Cases 

Flood frequency 

estimation 

Á Historical data: River discharge, 

water levels and rating 

curves/equations. 

Á Flood magnitude at 

specific return periods 

(Direct and regional). 

(Awokola and Martins, 

2001, Kjeldsen et al., 

2002, Leclerc and Ouarda, 

2007, Ahn et al., 2014) 

Hydrodynamic 

model 

Á Flood frequency outcome 

Á River discharge 

Á Digital elevation model 

Á Land use and cover map 

Historical flood extent, and 

marks 

Á Inundation Extent 

Á Water depth 

Á Flood velocity and travel 

time 

(Sarhadi et al., 2012, Di 

Baldassarre et al., 2010, 

Muncaster et al., 2006, 

Neal et al., 2011a) 

Flood risk 

assessment 

Á Hydrodynamic model outcomes, 

demographic, socio-economic 

and infrastructure data. 

Á Exposure maps 

Á Vulnerability maps 

Á Evacuation plan 

(Taubenböck et al., 2011, 

Eyers et al., 2013, Neal et 

al., 2011a) 
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2. Data limitations, Prediction of Ungauged Basins (PUB) and Remote sensing 

advancement  

In recent decades, floods have been perceived to be increasingly frequent, widespread 

and more devastating. As such, the spatial network of existing hydrological gauging 

stations has become inadequate for optimal data collection (NIHSA AFO, 2014).  In 

other cases, obsolete equipment, financial and technical challenges hamper sufficient 

data collection for flood mapping and management (Olayinka et al., 2013, Maxwell, 

2013). Due to increasing global data deficiency and uncertainty associated with sparse 

data application for hydrological and hydrodynamic modelling, the International 

Association of Hydrological Sciences (IAHS) launched the Prediction of Ungauged 

Basins (PUB) initiative to explore alternative data and techniques for improved 

Ungauged basin modelling (Sivapalan, 2003). One of the core objectives of the PUB is 

to ñAdvance the technological capability around the world to make predictions in 

ungauged basins firmly based on local knowledge of the climatic and landscape that 

controls hydrological processes, along with access to the latest data sources, and 

through these means constrain the uncertainty in hydrological predictions.ò (Sivapalan 

et al., 2003). This objective aligns seamlessly with remote sensing, considering that it 

provides an alternative data source to improve our understanding of local hydrology and 

associated uncertainties in flood mapping for data-sparse regions (Hrachowitz et al., 

2013). 

Remote Sensing (RS) has advanced to the stage whereby, in many places, data is now 

freely available at a global scale, enabling developing countries to explore its potential 

at little to no data acquisition cost (Yan et al., 2015a). This review focuses solely on 

open-access (freely available) satellite data integration into flood mapping processes to 

compensate for data sparsely faced in developing regions, then emphasises on a 

Nigerian cases study, assessing the possibility of leveraging global geospatial 

technology for local flood management. Inferences are drawn from previous reviews on 

low-cost Geographic Information System (GIS) and remote sensing application in 

hydrology, hydrodynamic modelling and flood mapping (Yan et al., 2015a, Schumann 

et al., 2009a, Mason et al., 2011, Dano Umar et al., 2011). However, a wider range of 

freely available datasets and sources needed for every step listed in Table 1 are explored 

in this review, with case studies of application for flood management improvement 

discoursed. 



Application of Open-access and 3rd Party Geospatial Technology for Integrated Flood Risk Management in Data 

Sparse Regions of Developing Countries 

14 
 

3. Alternative open-access remote sensing data for flood modelling and 

management 

3.1. Radar Altimetry Water Level  and Elevation 

River water levels are an essential data input for hydrology and hydrodynamic 

modelling, and advancement in remote sensing has improved the way changes in water 

surface elevation and slope can be measured since the early 90ôs (Alsdorf et al., 2007). 

Several radar altimetry missions routinely measure freshwater surface despite being 

originally designated to measure ocean water surfaces (Koblinsky et al., 1993, da Silva 

et al., 2010). Radar altimetry data is acquired via a process that measures the distance 

between the orbiting satellite and water surface in relation to a reference datum, using 

satellite sensor echo pulse return intervals from when emitted to when reflection by 

water surface and return to satellite (Sulistioadi et al., 2015, Belaud et al., 2010), Figure 

1 (A). Altimetry water levels are measured at virtual stations located intermittently 

where altimetry satellite tracks cross path with rivers (Birkinshaw et al., 2014b, Musa et 

al., 2015); when altimetry tracks pass over dry land, the elevation of the surface 

intersected is measured. Figure 1 (B) and (C) shows a sample virtual station and 

extracted altimetry time series (Crétaux et al., 2011) along the Niger River in Nigeria. 

The water level at a river of interest with reference to a predefined datum (such as Earth 

Gravitational Model (EGM 2008)), is expressed as: 

                                   Ὤ Ὄ Ὑ                                  (1) 

                         Ὑ Ὑ  ὧ
Ў

 ВÃÏÒ                                                  (2) 

Where, h = water surface elevation in relation to the reference ellipsoid, H = altitude of 

satellite (from satellite orbit to reference ellipsoid), R = range (distance between satellite 

and open surface water body), Rcor = corrected range, c = speed of light, 
Ў

 = the dual 



Application of Open-access and 3rd Party Geospatial Technology for Integrated Flood Risk Management in Data 

Sparse Regions of Developing Countries 

15 
 

direction travel time of radar signal, and ВÃÏÒ = the sum of ionospheric, tidal, wet and 

dry tropospheric corrections. 

 

Figure 1 (A) Graphic illustration of satellite altimetry height measurement principle 

(adapted from (Musa et al., 2015) 

 

    

Figure 1 (B) Illustration of a virtual station, where altimetry satellite tracks intersect 

river Niger 
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Figure 1 (C) Typical water level time-series, derived from an altimetry virtual station 

The vertical accuracy of altimetry water levels directly affects the results derived from 

its application (O'Loughlin et al., 2016a). In comparison to ground (in situ) 

measurements, altimetry water level vertical accuracy ranges from approximately 0.01 

to 0.05 metres, and Root Mean Squared Error (RMSE) from 0.003 to 0.004 metres for 

watershed areas up to 100 km2 (Birkett, 1995, Birkett et al., 2002, da Silva et al., 2010, 

Frappart et al., 2006). In some cases, the difference between altimetry and in situ water 

levels can be as high as 2 metres (Birkinshaw et al., 2010). Variations of altimetry water 

level accuracies are presented in Table 2 and are attributed to varying sensor types, the 

distance between in situ and virtual station, and location of altimetry track intersection 

with the river (Yan et al., 2015a). Other factors that affect altimetry accuracy include 

ionosphere, troposphere, instrument noise, geoid, tidal and water surface variations 

(Ponte et al., 2007, Chelton et al., 2001, Belaud et al., 2010). River width and tributaries 

discharging into main rivers upstream of the virtual station have also been identified as 

the external factors that contributed to altimetry water level discordancy from in situ 

measurements (Sulistioadi et al., 2015, Pandey and Amarnath, 2015). 

The application of radar altimetry has been largely documented, especially in 

hydrodynamic modelling in data sparse regions. Four (4) aspects of altimetry 

application in data sparse regions are discussed below (Sections 3.1.1 to 3.1.4) include 

Altimetry discharge estimation, Altimetry Digital Elevation Model (DEM) accuracy 

assessment, Altimetry Bathymetry definition, and Altimetry hydrodynamic model 
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calibration and validation. Table 2 Altimetry characteristics Adapted and modified from 

(O'Loughlin et al., 2016a) 

S/N Mission Ground 

footprint  (m) 

Revisit 

time (days) 

Operation 

timeline 

Accuracy (m) References  

1 TOPEX/Poseidon ~600 9.9 1993-2003 0.35 (Frappart et al., 2006) 

2 ERS-1 ~5000 35 1991-2000 N/A (da Silva et al., 2010) 

3 ERS-2 ~400 35 1995-2003 0.55 (Frappart et al., 2006) 

4 ENVISAT ~400 35 2002-2012 0.28 (Frappart et al., 2006) 

5 Jason-1 ~300 10 2002-2009 1.07 (Jarihani et al., 2015a) 

6 ICE Sat/GLAS ~70 - 2003-2009 0.10 (Urban et al., 2008) 

7 Cyrosat-2 ~300 369 2010* < SRTM (Schneider et al., 

2016) 

8 Jason-2 ~300 10 2008* 0.28 (Jarihani et al., 2015a) 

9 SARAL/Alti ka ~173 35 2013* 0.11 (Schwatke et al., 

2015c) 

10 Sentinel 3 SRAL ~300 27 2016* 0.03 (ESA, 2016) 

11 Jason-3 ~300 10 2016* 0.03 (NASA, 2016) 

12 SWOT ~10 -70 21 2020+ 0.10 (Fu et al., 2009) 

 Current = *, Future = + 

 

3.1.1. Altimetry discharge estimation 

River discharge and stage are typical initial/boundary conditions needed in 

hydrodynamic modelling and are usually seldom unavailable at remote locations of 

most developing regions due to factors previously highlighted in Section 2 (Birkinshaw 

et al., 2014b, Olayinka et al., 2013). Radar altimetry has been explored in several 

studies to curb data limitation challenges and reduce the uncertainty associated with 

modelling ungauged rivers, and are discussed in detail below.  
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Papa et al., (2010) utili sed TOPEX/Poseidon, ERS-2, ENVISAT and Jason 2 altimetry 

water levels in combination with in situ rating curve to estimate discharge along Ganga 

and Brahmaputra river from 1993-2011to accuracy levels of 0.17 (mean error) and 0.28 

(standard error) in comparison to in situ discharge at gauging stations. River discharge 

along Godavari river from 2001 to 2014 was derived by combining ENVISAT (2002-

2010), Jason-2 (2008-2014) and SARAL/Altika (2013-2014) radar altimeter water 

levels with in situ rating curves at nearby gauging stations, and validated against 

hydrodynamic model to a correlation coefficient (R2) value of 0.9 and standard error 

varying from 0.15 to 0.40 metres (Sridevi et al., 2016). In an Amazon River basin study, 

Getirana and Peters-Lidard, (2013) explored the potential of estimating discharge at 135 

gauging stations using altimetry data from  475 ENVISAT virtual stations (2002 ï 

2005). Using the relationship between in situ water level and discharge, Getirana and 

Peters-Lidard, (2013) successfully estimated discharge at 90 virtual stations with mean 

relative errors varying from 15 to 84% for large and small river basins respectively. 

Discharge was estimated at transboundary rivers including Danube (Austria, Romania, 

Bulgaria, Slovakia, Hungary, Ukraine, Croatia, Germany, Serbia, and Moldova), 

Mekong (Thailand, Cambodia, Laos, China, Myanmar (Burma and Vietnam), Amazon 

(Ecuador, Colombia, Peru, and Brazil), Brahmaputra (India), Amur (China and Russia), 

Ob (Russia), Vistula (Poland) and Niger (Nigeria, Mali, Niger, Benin, and Guinea), 

using quantile function algorithm approach that exploits ENVISAT altimetry data 

(Tourian et al., 2013). This approach resulted in discharge outcomes similar to those 

derived from conventional Forecast Rating Curve (FRC) approach.  

Typically, estimating river discharge from altimetry water level depends on rating curve 

or river geometry availability (Michailovsky et al., 2012). However, several studies 

have been able to demonstrate direct river discharge estimation from altimetry water 

levels in the absence of in-situ measurements, using supplemental remote sensing data 

or models. ENVISAT altimetry data from six virtual stations along Brahmaputra River 

from 2008 to 2010 were assimilated into a Muskingum routing model driven by outputs 

of a calibrated Budyko type rainfall-runoff model derived from Tropical Rainfall 

Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42RT 

real-time products. This integrated approach improved the modelôs discharge derivation 

accuracy (Nash-Sutcliffe efficiency) from 0.78 to 0.84. Also, using a different 

hydrodynamic modelling approach, Tarpanelli et al., (2016) combined Moderate-
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resolution Imaging Spectroradiometer (MODIS) Terra and Aqua satellite images with 

ENVISAT altimetry using a pixel to water level detection approach to estimate 

discharge with a correlation coefficient of 0.96 and Nash-Sutcliffe efficiency of 0.91 

when compared to in situ discharge along the Niger and Benue rivers. Sichangi et al., 

(2016) similarly integrated MODIS satellite derived river width and altimetry water 

levels into Manningôs equation to estimate discharge at a Continental scale. The derived 

discharge Nash-Sutcliffe efficiency varied 0.60 to 0.97. 

Other than a few studies including Getirana and Peters-Lidard, (2013), Tarpanelli et al., 

(2016) and Sichangi et al., (2016) that have demonstrated direct river discharge 

estimation in the absence of in-situ data, river discharge estimation from altimetry is 

usually based on the establishment of an empirical relationship with in situ gauging 

stations available at proximity to virtual stations. Although discharge estimates derived 

from altimetry are usually with acceptable  levels of uncertainty, factors such as the 

distance between virtual and ground stations, contributing tributaries and the width of 

the river affect the efficacy of such estimates (Pandey and Amarnath, 2015). The 

discussed discharge estimation approaches also reveal that the availability of multiple 

supplementary remote sensing data at an ungauged river basin integrated into empirical 

formulas and hydrodynamic models can improve discharge estimates. 

3.1.2. Altimetry Digital Elevation Model (DEM) accuracy assessment 

Once discharge and/or flood magnitude is estimated, it is propagated longitudinally 

along river channels and laterally across floodplains in hydrodynamic models governed 

by continuity and momentum equations (Casas et al., 2006). The accuracy of DEM that 

defines the river channel and floodplain terrain upon which flow is propagated 

influences model outcome accuracy (Cook and Merwade, 2009). Therefore, in several 

flood modelling studies the accuracy of the primary DEM is assessed prior to usage 

against a higher accuracy DEM such a Light Detection and Ranging (LiDAR) or 

Differential Global Positioning System (GPS) elevation points (Patro et al., 2009, Wang 

et al., 2012, Sanyal et al., 2013, Ullah et al., 2016). Acquiring such data sets for 

accuracy assessment is cost intensive and in other instances impossible due to terrain 

complexity and weather conditions that hinder logistics for effective data collection 

(Amans et al., 2013, Isioye and Yang, 2013). ICE Sat/GLAS altimetry data acquired by 

the National Aeronautics and Space Administration (NASA) between 12 January, 2003 
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and 11 October, 2009 using  geoscience laser altimeter system (GLAS) onboard the Ice 

Cloud and Land Elevation Satellite (ICE Sat) provides a worthy alternative to ground 

elevation due to its high accuracy in comparison to Kinematic GPS measurements 

(Zwally et al., 2002). The absolute accuracy of ICE Sat is recorded to be as low as 0.002 

and 0.005 meters in Bolivia (Fricker et al., 2005) and French Lake (Jean Stéphane et al., 

2011) respectively, and depend on the slope of the terrain under scrutiny (Satgé et al., 

2015). Over the years ICE Sat/GLAS has been applied in assessing various DEM 

accuracies including SRTM (Carabajal and Harding, 2005, Kon Joon Bhang et al., 

2007, Du et al., 2016), ASTER GDEM (Zhao et al., 2010, Satgé et al., 2015), GPS 

elevation (Braun and Fotopoulos, 2007), Carto DEM (Rastogi et al., 2015), Canadian 

DEM  (Beaulieu and Clavet, 2009), InSAR DEM (Yamanokuchi et al., 2006), 

TANDEM (Mirzaee et al., 2015) and modified/corrected  DEMs (Jarihani et al., 2015a, 

Sampson et al., 2015, O'Loughlin et al., 2015).  

The 70-metre ground footprint of ICE Sat (Zwally et al., 2002) coupled with its ability 

to penetrate gaps in vegetation canopy to capture underlying bare earth elevation 

(Heyder, 2005) makes it a more accurate and useful alternative to ground survey for 

DEM accuracy assessment.  

3.1.3. Altimetry Bathymetry definition  

Accurate digital elevation models combined with detailed river bathymetry delineation 

provides the best terrain data for flood routing (Trigg et al., 2009, Casas et al., 2006). 

Nevertheless, acquiring such data for remote locations is usually difficult as earlier 

discussed. Hence, flood modellers have resorted to exploring alternative options to 

compensate for such deficiency. In the Amazon and Napo Rivers in Peru, Chávarri et 

al., (2012) examined the applicability of altimetry (ENVISAT) in constraining river 

cross-section of a one-dimensional hydraulic model. The results showed reduced model 

uncertainty, mostly for rivers with widths less than or equal to 2.5 km. The proposed 

Surface Water and Ocean Topography (SWOT) scheduled for launch in 2020 is 

expected to provide one of the best altimetry data for water resource monitoring and 

management at a global scale (Fu et al., 2009, Bates et al., 2014). Few studies have 

experimented on SWOT derived bathymetry for hydrodynamic modelling to improve 

outcome accuracy. For example, Durand et al., (2008) experimented on the SWOT 

mission, applying data assimilation technique to estimate bathymetric depth and slope at 
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five points along a 240 km reach along the Amazon river to within 0.50 m and 0.30 cm 

km-1 of accuracies respectively. Both derivatives were then integrated into LISFLOOD-

FP hydrodynamic model (Bates and De Roo, 2000) to improve inundation extent and 

downstream water surface elevation (WSE). The relationship between river width and 

depths established using ENVISAT altimetry was combined with SRTM, Landsat, 

MODIS and satellite rainfall data to derive updated river network and adjusted bed 

profile was applied in the development of Ganges, Brahmaputra, and Meghna (GBM) 

model suitable for large ungauged watersheds (Maswood and Hossain, 2016). The 

GBM model data integration resulted in a reduced RMSE from 3.0 to 1.0 metres. In 

another study by Yoon et al., (2012), SWOT WSE was assimilated into LISFLOOD-FP 

hydrodynamic model using a local ensemble batch smoother (LEnBS) method, resulted 

in the generation of bathymetry, depth and discharge estimates. Bathymetry extracted 

from SWOT had a RMSE of 0.56 metres, improving with the inclusion of more SWOT 

observations in the modelling process. 

The proposed SWOT and recently launched Sentinel-3 provides a huge dataset prospect 

for future of hydrodynamic studies, and integration into hydrodynamic models can 

improve flood extent, discharge and water levels outcomes, particularly when multiple 

altimetry data are available along a modelled reach as Yoon et al., (2012) suggested. 

3.1.4. Altimetry hydrodynamic model calibration and validation 

Hydrodynamic model validation helps reveal how well a model represents what is 

expected in reality (Stephens et al., 2014), and is directly linked to the confidence in the 

flood management measures implemented as a result of the model outcome. Calibration 

is usually undertaken by adjusting various model parameters such as floodplain 

roughness, channel roughness, river channel depth, and river width while comparing 

flood model outcomes (water level, discharge and/or inundation extent) to what is 

expected in reality, derived from in situ or remote sensing measurements (Belaud et al., 

2010, Sun et al., 2012, Van Wesemael et al., 2016, Neal et al., 2015). Commercial high-

resolution optical and radar satellites images, aerial images and hydrological data have 

been largely established as the optimal data sources for hydrodynamic model calibration 

and validation (Jung et al., 2012, Dung et al., 2011, Pasquale et al., 2014, Wood et al., 

2014). However, the high cost of acquiring such data hinders their application in 

developing countries (Andréfouët et al., 2006). Hence, radar altimetry over the past 
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decade has been explored globally as an alternate source of data for model calibration 

and validation (Domeneghetti, 2016). 

Typically, in developing regions river measurements are manually collected using staff 

gauges and later converted to discharge using an established rating curve. At the peak of 

floods, measurement equipment are usually damaged and access roads inundated, thus 

impeding the observation process (Olayinka et al., 2013, Dano Umar et al., 2011). 

Therefore, remote sensing radar altimetry provides an alternative river measurement 

option that supports hydrodynamic model calibration and validation in the absence of 

observed records (Domeneghetti, 2016).  

Water level data from three ENVISAT altimetry virtual stations along a 150km reach of 

Danube river were applied in the calibration a 2-D LISFLOOD-FP model to reconstruct 

the 2006 transboundary flood occurrence (Yan et al., 2015b). Yan et al., (2015b) 

realised a Mean Average Error (MAE) of 1.53 m and 1.37 m  for altimetry and in situ 

model calibration approaches respectively, suggesting that both data sets can be used 

interchangeably to improve flood modelling in sparsely gauged river basins. 

Domeneghetti et al., (2014) performed hydrodynamic model calibration for a 140 km 

reach along the Po river using ERS-2 and ENVISAT altimetry data, resulting in RMSE 

of 0.85 m and 0.73 m respectively, and improved NashïSutcliffe efficiency (NS) when 

altimetry is combined with in situ data for model calibration. Soil and Water 

Assessment Tool (SWAT) rainfall run-off model for the sparsely gauged Okavango 

transboundary river of Angola, Namibia and Botswana were calibrated using total water 

storage derived from Gravity Recovery and Climate Experiment (GRACE) altimetry 

satellite and in situ data (Milzow et al., 2011). Also, Sun et al., (2012) assessed the 

uncertainty associated with  HYdrological MODel (HYMOD) along the Mississippi 

River, calibrated against in situ and altimetry data. NS efficiencies of 79.05 and 64.50 

were reported for in situ stream flow and radar altimetry (TOPEX/Poseidon) 

respectively, showing reduced uncertainty bounds for stream flows calibration in 

comparison to altimetry calibration.  

From these instances highlighted above, it is evident that radar altimetry can serve as an 

alternative to ground observation, especially in data sparse regions. While 

hydrodynamic models driven by SRTM DEM have been seen to result in comparable 

outcomes when calibrated with altimetry water levels, models driven by LiDAR and 
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river survey cross-section embedded terrain result in hugely discordant accuracies when 

calibrated with similar datasets (Domeneghetti et al., 2014). This thereby raises the 

question of altimetry uncertainty in model calibration and accuracy assessment. Belaud 

et al., (2010) applied TOPEX/Poseidon (T/P) and ENVISAT altimetry satellites data in 

calibrating a propagation model and disclosed that inherent altimetry uncertainty effect 

on the model outcome.  

Residual altimetry uncertainties are expected to affect flood model accuracy as 

Tommaso et al., (2013) further demonstrated and further emphasised by Domeneghetti 

et al., (2014), where ENVISAT proved to provide better accuracy than ERS-2 (See 

Table 2 for altimetry accuracy differences).  

Despite these deficiencies, the importance of altimetry data in model calibration and 

validation in ungauged basins cannot be dismissed. However, it is advised that altimetry 

is applied in combination with in situ data when available (Domeneghetti et al., 2014), 

or in situ, data should it takes priority over altimetry as suggested by  Sun et al., (2015) 

and Sun et al., (2012). 

3.2. Open-access Digital Elevation Model (DEM), Modifications and applications 

in flood modelling 

Topographical data is an essential requirement in hydrological and hydrodynamic 

modelling (Yan et al., 2015a), and accounts for a substantial portion of the uncertainty 

that propagates through to model outcomes (Cook and Merwade, 2009, Jung and 

Merwade, 2015). The effect of terrain accuracy on hydrodynamic models and the need 

for accuracy assessment have been discussed briefly in sections 3.1.2., and 3.1.3, 

showing how improved river channel definition using altimetry improved flood model 

outcomes (Chávarri et al., 2012, Yoon et al., 2012, Durand et al., 2008). High-resolution 

topographical data such as LiDAR, TanDEM, bathymetry and differential GPS survey 

provides the best terrain characterization with reduced uncertainty and error (Neal et al., 

2011a, Mason et al., 2016, Trigg et al., 2009, Bates et al., 2006). However, the cost of 

acquiring such data is enormous (Sanyal et al., 2013) and in other cases, remote 

locations are inaccessible for in situ data collection (Jarihani et al., 2015a).  
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Freely available digital elevation model provides a suitable alternative to commercial 

data in data sparse developing regions where resources are limited (Patro et al., 2009, 

Lewis et al., 2013).  

Shuttle Radar Topography Mission (SRTM) DEM is arguably one of the most widely 

used topographical data in developing regions, applied mostly in improving flood 

modelling in data-sparse regions (Sanyal et al., 2013, Domeneghetti, 2016, Jarihani et 

al., 2015a, Neal et al., 2012). The 30 and 90 metres resolution SRTM was collected 

during an 11-day mission in February 2000, through a collaborative effort among the 

National Aeronautics and Space Administration (NASA), the National Geospatial-

Intelligence Agency (NGA) and the German Aerospace Centre (DLR), and provides 

near-global scale (80%) DEM (Farr et al., 2007, Farr and Kobrick, 2000). The 15 metre 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global 

Digital Elevation Model (GDEM) acquired by a joint mission of the U.S. National 

Aeronautics and Space Administration and Japanôs Ministry of Economy, Trade, and 

Industry is also widely used in flood modelling and mapping (Gichamo et al., 2011, 

Demirkesen, 2016, Ullah et al., 2016). However, ASTER GDEM is argued to be less 

accurate than SRTM due to inherent elevation pixel voids (Wang et al., 2012, Bates et 

al., 2014). 

Other open-access topographic data sets such as Altimeter Corrected Elevations 2 

(ACE2) GDEM, Global 30 Arc-Second Elevation (GTOPO30) and Global Multi-

resolution Terrain Elevation Data 2010 (GMTED2010) are generally coarse in 

resolution and are therefore employed in large-scale models only (Neal et al., 2012, 

Schumann et al., 2013). Recently released Advanced Land Observing Satellite (ALOS) 

DEM (Tadono et al., 2014) has been evaluated and confirmed to provide more accurate 

elevation in comparison to SRTM and ASTER (Santillana et al., 2016), but its 

application in hydrodynamic modelling is yet to be seen. Various open-access DEMs, 

properties and case studies are presented in Table 3. 
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Table 3 Some open source digital elevation models 

DEM Spatial 

resolution (m) 

Vertical error 

(m) 

Case study Reference 

SRTM 30, 90 ± 16 Damoda River, 

India. 

(Rodriguez et al., 2006, 

Sanyal et al., 2013) 

ASTER GDEM 30 ± 25 Lake Tana, 

Ethiopia. 

(Tarekegn et al., 2010, 

Tachikawa et al., 2011) 

ACE  2 GDEM 1000 >10 Balkan Peninsula, 

Croatia. 

(Varga and Baġiĺ, 2015) 

GTOPO30 1000 9-30 Balkan Peninsula, 

Croatia. 

(Varga and Baġiĺ, 2015) 

Bear-Earth SRTM 

(Veg/Urban) 

90 6.05- 12.64 Belize, Honduras. (Sampson et al., 2015) 

Bare-Earth SRTM 

(Veg) 

90 4.85- 8.667 Global (O'Loughlin et al., 2015) 

EarthEnv-DEM90 90 4.13-10.55 Johor River Basin, 

Malaysia. 

(Tan et al., 2015, Robinson 

et al., 2014) 

ALOS 30 ± 5 Sindh and 

Balochistan, 

Pakistan. 

(Tadono et al., 2014, Jilani 

et al., 2007) 

GMTED2010 250 26-30 Shikoku, Japan. (Danielson and Gesch, 

2011, Pakoksung and 

Takagi, 2016) 

 

The discrepancies between open-access DEM and ground surveyed elevation data that 

results in diverse vertical accuracies (Table 3) is attributed to inherent systemic and 

external factors (Farr et al., 2007). SRTM system noise coupled with the C and L-band 

sensors reflection off forest canopies, water bodies and rooftops in urban areas are the 

causes of noisy and poorly estimated terrain properties (Yamazaki et al., 2012, Baugh et 

al., 2013, Cook and Merwade, 2009, Kon Joon Bhang et al., 2007). 
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Over the years, various methods have been adopted to curb these deficiencies and 

reduce the uncertainty associated with open-access SRTM DEM application. Baugh et 

al., (2013) reduced STRM uncertainty by combing vegetation canopy heights (Simard et 

al., 2011, Lefsky, 2010) and MODIS image to reduce vegetation height effect. Betbeder 

et al., (2015) reduced SRTM bias by 64 percent by adopting a systematic approach that 

combines vegetation height (Simard et al., 2011), Landsat land cover map and radar 

altimetry to produce hydrologically corrected DEM. SRTM derived river cross-sections 

were adjusted using limited bathymetric surveys and applied in the one-dimensional 

MIKE11 model (Patro et al., 2009) and LISFLOOD-FP two-dimensional model (Sanyal 

et al., 2013) to reduce model uncertainty. Neal et al., (2012) adopted an approach that 

reduced SRTM uncertainty by characterising hydrodynamic model parameters (i.e. 

channel width and depth) as calibratable parameters in a sub-grid LISFLOOD-FP 

model, thereby improving simulated water levels, wave propagation and flood extent. 

Biancamaria et al., (2009a) experimented by varying river channel depth by 5, 10 and 

15 metres when modelling Obi river, and identified 10 meters as the optimal average 

river channel depth for the best outcome. In a recent study in Australia, Jarihani et al., 

(2015a) adopted Hydrological Correction (HC) and Vegetation Smoothening (VS) 

(Gallant, 2011) approaches to reduce SRTM and ASTER DEM error and deduced that 

HC DEM outperformed VS DEM for flood modelling. Though the above described 

DEM modification techniques resulted in reduced DEM and flood model uncertainty, 

they require specific skill sets, computational power and supplementary data that are not 

always readily available. Hence, there is a need to explore globally available off-the-

shelf modified DEM that can be readily applied in developing regions where such 

resources are seldom available. At a global scale, errors emanating from satellite system 

noise, and sensor beam reflection off vegetation canopy, water surfaces and urban 

rooftops have been treated with different techniques, resulting in the development of 

freely available new data sets. O'Loughlin et al., (2016b) reduced average vertical bias 

from 14.1 m to 5.9 m by systematically combining ICESat Geoscience Laser Altimeter 

System (GLAS) ground elevation (Zwally et al., 2002), vegetation height (Simard et al., 

2011), MODIS-derived forest canopy density and climate regionalization maps (Peel et 

al., 2007, Broxton et al., 2014). Sampson et al., (2015) reduced SRTM sensor noise 

irregularities, urban landscape and vegetation canopy elevation overestimations using a 

moving window filtering technique (Gallant, 2011). Their approach reduced RMSE 
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from 10.96 m to 6.05 m when compared to LiDAR, and overall flood model bias from 

15.08 m to -0.1 m. EarthEnv-DEM90 was developed by Integrating ASTER GDEM2, 

CGIAR-CSI SRTM V4.1 and Global Land Survey Digital Elevation Model (GLSDEM) 

using a combined Delta surface filling (Grohman et al., 2006) and adaptive DEM noise 

smoothing (Gallant, 2011) methodology, resulting in minimised error in comparison to 

raw SRTM and ASTER GDEM2 (Robinson et al., 2014).  

Since no study currently presents a comparison of all available modified SRTM DEM 

for a specific region, this is undertaken for the Niger-South river basin of Nigeria and 

presented in Table 4, revealing EarthEnv90 to be the most improved modified open-

access DEM when evaluated against ICE Sat altimetry SPOT heights. The results 

presented in Table 4 will later inform the choice of DEM selected for hydrodynamic 

modelling in Chapter 6. 

Table 4 SRTM and Modifications comparison with ICE Sat SPOT elevation 

Elevation Min  Max Mean Std. dev. R2 RMSE 

Bare-Earth SRTM (Urban and Veg) 36.00 68.00 47.28 9.09 0.95 2.94 

Bare-Earth SRTM (Veg) 34.45 69.44 47.21 9.22 0.95 2.94 

EarthEnv90 36.00 65.00 47.40 8.91 0.95 2.85 

Raw-SRTM 36.00 63.00 47.34 8.95 0.94 3.08 

ICE Sat 35.62 64.33 47.74 8.01 - - 

Std. dev = standard deviation, R2 = Correlation coefficient 

 

3.3. Open-access Optical and Radar Satellite Images application in Flood 

Modelling and Mapping 

Optical and Radar images also play a crucial role in flood modelling and mapping, used 

for a range of applications including (i) manningôs roughness derivation (Medeiros et 

al., 2012), (ii)  river width estimation (Andreadis et al., 2013), (iii) geomorphological 

properties extraction (Khadri and Chaitanya, 2014), (iv) inundation extent mapping 

(Bates et al., 2006), (v) river discharge estimation (Tarpanelli et al., 2013, Gleason and 

Smith, 2014), (vi) land use/cover derivation (Sanyal et al., 2014), (vii) bathymetry 
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estimation (Karimi et al., 2016)  and (viii ) hydrodynamic model calibration and 

validation (Wood et al., 2016). Remote Sensing (RS) application in flood management 

has been well established, with open-access images including Landsat, MODIS, and 

ASTER widely used in developing regions (Dano Umar et al., 2011). Until the launch 

of the C-Band Sentinel-1 SAR mission by the European Space Agency (ESA) in 2014, 

radar imagery application has been limited in developing regions due to the high cost of 

acquisition (Townsend and Walsh, 1998, Qasim, 2011). 

Optical and Radar Remote sensing data provides unique merits and demerits, and are 

characterised based on the source of energy employed during data collection. Optical 

(passive) remote sensing relies on solar energy, while radar (active) remote sensing uses 

inbuilt energy source onboard the satellite (Dano Umar et al., 2011). Passive RS data 

can only be captured in the day-time and depends on cloud-free skies (Asner, 2001). 

However, its multispectral characteristics make it a suitable for land use/cover 

classification, inundation delineation, drainage mapping, and flood impact assessment 

(Musa et al., 2015, Stephen et al., 2015, Alexakis et al., 2013). Active RS beam ability 

to penetrate clouds cover and water discrimination potential makes it the optimal data 

type for flood mapping when available (Schnebele and Cervone, 2013, Townsend and 

Walsh, 1998).  

Despite SAR advantages, sensor noise, vegetation and built-up radar backscatter have 

been identified as factors that hamper SAR effective flood discrimination (Long et al., 

2014, Lamovec et al., 2013, Giustarini et al., 2013). SAR imagery flood maps are 

usually extracted by pixel discrimination, given that flooded pixels tend to have lower 

values of back-scatter, due to the weak return signal associated with waters smooth 

surface (Henderson and Lewis, 1998); the discrimination method applied can also 

grossly impact on the accuracy of the derived flood extent (Veljanovski et al., 2011b).  

Some SAR flood extent mapping techniques include statistical active contouring, 

radiometric thresholding, histogram thresholding, pixel-based segmentation, fractal 

dimensioning of multi-temporal images, neural networks in  a grid system, Image 

segmentation and decision tree analysis (Long et al., 2014, Im et al., 2008).  

Optical image flood extent, on the other hand, are derived mostly from the 

discriminating between the spectral signatures of water surface and the surrounding 
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landscape in single or multi-temporal images, using classification or spectral indices 

approaches (Zhang et al., 2014, Stephen et al., 2015). The properties of some open-

access optical and radar RS images applied in flood modelling and mapping are 

presented in Table 5. 
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Table 5 Optical and Radar Satellite imageries case studies 

Sat. 

Imagery 

Res. 

(m) 

 
Case study  References 

Landsat  30  Floodplain inundation delineation 

for 2 and 1 ï dimensional model 

calibration and validation, Inner 

Niger and  

(Neal et al., 2012, Seung Oh et al., 

2013) 

MODIS 200  Hydrodynamic model calibration 

and validation. 

(Sanyal, 2013, Lewis et al., 2013) 

Terra 

ASTER 

15  Urban sprawl and flood 

management Dhaka, Bangladesh. 

(Franci et al., 2015) 

Sentinel - 1 10  Sentinel-1 and Landsat-8 

combination in mapping flooding 

at river Evros, Greece. 

(Kyriou and Nikolakopoulos, 

2015) 

Sentinel - 2 10  Water bodies delineation  (Herve et al., 2013) 

Sat. = Satellite, Res = Spatial resolution 

 

4. Open-access remote sensing application for flood monitoring and management 

in Nigeria 

Previous sections highlighted flood modelling and mapping processes, data 

requirements, and detailing available open-access remote sensing data sets and 

application prospects in several locations. Nigeria is located downstream of the Niger 

Basin (Figure 2) that collects run-off from a 2156000 km2 area through the Niger and 

Benue rivers (Aich et al., 2014b). Thus, Nigeria is prone to fluvial flood, exposing 

floodplain dweller to diverse negative consequences (Nkeki et al., 2013, Akinbobola et 

al., 2015, Agada and Nirupama, 2015, Tami and Moses, 2015). Nigeria recently 

experienced unprecedented levels of flooding attributed to poor dam water release 

management and risk communication attributed to data unavailability (Ojigi et al., 

2013).  

This section focuses on identifying the causes of data deficiencies in Nigeria and 

reviewed the literature on applications of open-access applications in Nigeria to identify 
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gaps and opportunities for research improvement based on global trends discussed in 

the preceding sections. This review section builds of previous reviews on flood risk 

management in Nigeria (Komolafe, 2015, Ugonna, 2016, Opolot, 2013, Adeaga et al., 

2008, Ologunorisa and Abawua, 2005), then incorporate data challenges, solutions and 

prospect for regional and national flood management using open-access remote sensing. 

 

Figure 2 Map showing Nigeria, Niger Basin, Africa and the main inflow rivers (Niger 

and Benue) 

4.1. Data limitations  for hydro -meteorological studies in Nigeria 

Like in many developing countries, the lack of hydro-meteorological data in Nigeria has 

been widely documented, consequently resulting in poor flood management decisions 

(Ngene et al., 2015). Currently, existing hydrological and meteorological gauge 

distribution are below World Meteorological Organization (FMWR, 2013) and Ngene, 

(2009) recommendations, i.e. (237 out of 384) and (291 out of 970) respectively. Also, 

several of the established stations have been reported to be inactive, decommissioned or 

discontinued (Figure 3), contributing to the data sparsity in the country (Ngene et al., 

2015, FMWR, 2013).  
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Figure 3 Status of some hydrological gauging stations in Nigeria (F= Functional, NF = 

Non-Functional, Unknown) 

Lack of financial support, technical deficiency, poor organisational structure and 

obsolete equipment/infrastructure have been identified as the factors responsible for 

data shortage in Nigeria (Olomoda, 2012, Izinyon and Ehiorobo, 2014, Olayinka et al., 

2013, Ertuna, 1995). Also,  Maxwell,  (2013) and Ononiwu, (1994) attributed data 

inconsistency to poor hydrological data management systems and lack of standards, 

resulting in unreliable, fabricated and data format inconsistency. Furthermore, Maxwell  

(2013) and Olayinka (2012) argued that even when data is available, custodians store 

data in paper formats, thus reducing transferability, applicability and long-

term/sustainable data availability.  

Hydro-meteorological data are essentially applied in estimating expected flood 

magnitudes based on past trends, and the length of available historical data contributes 

to the uncertainty in the derived flood estimates (Merz and Blöschl, 2005, Reed, 1999). 

Extended historical data result in more accurate estimates and vice versa (Kjeldsen et 

al., 2002).  

Meta-analysis of river and rainfall estimation studies (Figure 4) shows that rainfall data 

sets are generally longer in duration than those of streamflow data. In 2016, a search 

was conducted within the peer-reviewed literature on the google scholar 
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(https://scholar.google.com/1) database spanning the years 2000 to 2016. A combination 

of the search terms and keywords including ñhydrologyò, ñflood modellingò, 

ñhydrodynamic modellingò, ñflood frequency analysisò, ñvulnerability assessmentò, 

ñrainfall frequency analysisò, ñflood mappingò, and ñGIS and Remote sensing of 

floodingò, were used, with the results further refined with keywords such as ñNigeriaò, 

representing the country of interest. 

Majority of hydrological modelling studies are based on historical data of lengths 

ranging from 10 to 20 years, hence there is a need for adaptation of an approach that 

leverages on data from multiple gauging stations to reduce flood estimate uncertainty 

and improve flood management decision making (FME, 2005a).  

 

Figure 4 Rainfall and streamflow data length variation from previous studies in Nigeria 

4.2. Remote sensing application for flood management in Nigeria 

Remote sensing (RS) in past three decades has played a crucial role in flood 

management globally, regionally and Nigeria in particular (Adeaga et al., 2008, Hughes 

et al., 2015, Hrachowitz et al., 2013). Remote sensing allows for the collection of data 

without being in direct contact with the object under investigation (Smith, 1997, Kite 

                                                           
1 https://scholar.google.com/ 

0

2

4

6

8

10

12

14

16

(1 - 10) (10 - 20) (20 - 30) (30 - 40) (40 - 50) (50 - 100)

N
u
m

b
e

r 
o

f 
s
tu

d
ie

s

Data Length variations

River data (m3/s)

Rianfall (mm)



Application of Open-access and 3rd Party Geospatial Technology for Integrated Flood Risk Management in Data 

Sparse Regions of Developing Countries 

34 
 

and Pietroniro, 1996), thereby providing an alternative to ground data collection 

hindered by factors previously discoursed (Nwilo et al., 2012, Musa et al., 2015). The 

spatiotemporal capacity of remote sensing, ease of manipulation of digital data and the 

advantage of radar sensors images has enhanced inundation mapping tremendously 

(Musa et al., 2015, Ritchie and Rango, 1996). Despite these advantages, RS is not 

without limitations, as the time lapse between satellite image captures, high cost 

associated with acquisition of high-resolution images, cloud cover, vegetation canopy 

and terrain roughness have been reported in several instances to hamper RS application 

(Chen et al., 2005, Lewis et al., 2013, Sanyal et al., 2013).  

Integrated flood mapping mainly involves flood magnitude estimation, hazard 

modelling and impact assessment (Aerts et al., 2009). Seven sub-categories of RS flood 

application areas have been identified in Nigeria, including Vulnerability assessment, 

Flood frequency analysis, Flood risk mapping, Rainfall frequency (intensity) analysis, 

Hydrodynamic modelling, Water resource management and Floodplain encroachment 

analysis. Vulnerability analysis entails integrating socio-economic and biophysical 

factors to ascertain a regionsô coping capacity in relation to flood exposure (Musa et al., 

2014a, Adelekan, 2011, Tamuno et al., 2003). Flood frequency analysis involves 

estimating expected flood magnitudes by fitting historic flood time series to a suitable 

probability distribution to or combining hydrological data from regions of 

physiographic similarity (Izinyon and Ehiorobo, 2014, Izinyon and Ajumka, 2013, 

Fasinmirin and Olufayo, 2006). The rainfall frequency (intensity) analysis applies 

rainfall data to estimate expected rainfall intensity and expected runoff (Isikwue et al., 

2012, Ologunorisa and Tersoo, 2006). Once flood estimates are determined, the 

outcomes are routed in 1/2 dimensional models in combination with terrain data to 

derive flood hazard information such as inundation extent, depths and /or velocity 

(Olayinka et al., 2013, Adewale et al., 2010). Other than hydraulically modelling flood 

hazard, flood depths and inundation extent for a particular point in time can be directly 

determined using satellite images and digital elevations models (Eyers et al., 2013, 

Akinbobola et al., 2015). The increasing development of industries and settlements 

within the floodplain is directed related to exposure and vulnerability (Padi et al., 2011, 

Tamuno et al., 2003). Remote sensing and GIS approaches are usually used to identify 

floodplain encroachment, to ensure adherence to, and enforcement of flood 

management policies (Oyinloye et al., 2013, Ndabula et al., 2012). Figure 5 illustrates 
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flood management application areas mostly focused on in Nigeria, showing high levels 

vulnerability mapping, flood frequency assessment and risk assessment.  

 

Figure 5 Flood studies in Nigeria showing specific application areas 

4.3. Open-access remote sensing application in flood management Nigeria 

Meta-analysis of  100 flood research journal articles focused on Nigeria shows the range 

of data applied in flood management studies (Figure 6), revealing high reliance on 

Landsat and SRTM. Various data sets provide contrasting levels of accuracy and 

uncertainty (Jung and Merwade, 2015), therefore high spatial resolution data such as 

LiDAR and SAR are mostly recommended for flood modelling processes due to the 

advantages of terrain complexity detailing and effective water surface discrimination 

capacity (Qasim, 2011, Hunter et al., 2008). Figure 7 further shows the variation 

between TerraSAR-X (radar) digitized from the flood map derived using histogram 

thresholding approach by the Disaster Charter consortium and MODIS (optical) flood 

extents automatically generated as Modis Water Product through a collaborative effort 

between NASA and Dartmouth Flood Observatory, University of Colorado, USA, using 

algorithm that uses a ratio of MODIS 250-m Bands 1 and 2, and a threshold on Band 7 

to provisionally identify pixels as water (Nigro et al., 2014).  
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Nevertheless, such highly detailed satellite data are costly and therefore seldom applied 

in developing countries like Nigeria. However, the constellation of global satellites for 

disaster management through the International Charter ñSpace and Major Disastersò 

initiative (Bessis et al., 2004) and other emergency services makes high-resolution data 

available for disaster response if activated during flooding. Also, multinationals 

companies with large financial capacities such as Shell Petroleum Development (SPDC) 

and others operating in the Niger Delta region of Nigeria acquire high-resolution images 

for operational purposes, and sometimes use such data for disaster management (Eyers 

et al., 2013). Nigerian Satellite images are also seldom available as bureaucratic 

bottlenecks and poor data management infrastructure hinder data availability for flood 

management and other applications (Agbaje, 2010, Akinyede and Adepoju, 2010). 

Other data types and techniques widely applied in Nigerian flood management studies 

are presented in Figure 8. 

 

Figure 6 Remote sensing data application in flood studies in Nigeria 
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Figure 7 Radar (TerraSAR-X) and Optical (MODIS) flood extents comparison at 

Lokoja, Nigeria 

 

Figure 8 Flood studies in Nigeria showing other non-Remote sensing methods 

5. Open-access remote sensing in transboundary flood management 

Managing flood occurrences in a sovereign nation is challenging enough; the 

complexity is increased when flood transcends borders. Floods sometimes originate 

from one country, and if hydraulically connected to another country within a single 
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catchment area, travels downstream (Bakker, 2009), hence transboundary flooding. 

Poor management of excess water releases from dams triggered by climate change and 

other anthropogenic factors have been identified as some of the leading causes of 

transboundary flooding (Angelidis et al., 2010, Clement, 2012, Zeitoun et al., 2013, 

Cooley and Gleick, 2011). In such situations, efforts need to be coordinated between 

flood origination and destination countries to ensure effective flood management. 

Approximately 2286 transboundary river basins exist globally (Figure 9), encircling 

42% of the worldôs population within a 62 million km2 area, and is responsible for 

approximately 50% of global river discharge (Wolf, 2002, TWAP, 2016). 

 

Figure 9 Global Transboundary River Basins (source: Transboundary Freshwater 

Dispute Database) 

Coordinating the activities of individual countries within a transboundary water 

resource management organisation is particularly challenging due to the diverse 

interests, policies and activities of riparian  (ECOWAS-SWAC/OECD, 2008, Hooper 

and Lloyd, 2011, Chikozho, 2014), thus prompting the need for a shift to remote 

sensing approaches that aid independent data collection by riparian countries without 

administrative protocols violation (Klemas, 2015). 
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Several remote sensing studies have been undertaken in this regard, using radar 

altimetry, optical/radar imageries, and hydrodynamic models to solve the data limitation 

challenges associated with poorly coordinated transboundary flood management efforts. 

Mallinis et al., (2013) delineated transboundary Evros river (Bulgarian/Turkey) flood 

extent and damage caused by upstream dam water release using ENVISAT ASAR and 

post-flood multi-temporal LANDSAT TM images. The effect of varying flood 

magnitudes released from upstream Ivaylovgrad dam (Bulgaria) on the connecting 

Ardas River (Greece) was modelled using HEC-HMS, using in situ gauge 

measurements and digital terrain data (Serbis et al., 2013), thereby enabling effective 

downstream flood planning and management. Mati et al., (2008) investigated changing 

land use/cover impact on the Mara transboundary river (Kenya/Tanzania) hydrological 

regime, using remote sensing (Landsat MSS, TM/ETM, and SRTM), ground-collected 

land use/cover data, meteorological and streamflow data integrated within the 

Geospatial Streamflow Model (GeoSFM). Biancamaria et al., (2011) established an 

empirical relation between downstream altimetry (TOPEX/Poseidon) water levels 

(India) and upstream in situ measurements (Bangladesh) for forecasting purpose along 

the Ganges and Brahmaputra transboundary river. Hossain et al., (2014) in the same 

study area applied a forecasting rating curve approach combined with HEC-RAS 

hydraulic model to forecast downstream water levels using upstream JASON-2 

altimetry, in situ water levels and rating curve. Seyler et al., (2008) further demonstrated 

the value of remote sensing altimetry and SAR satellite missions in transboundary water 

resource management, as remote locations along the Beni-Madeira river in the Amazon 

was monitored using ENVISAT altimetry and JERS-1 radar images. 

The case studies discussed above illustrates the wide range of open-access remote 

sensing application in transboundary flood management, with radar altimetry, DEM, 

SAR and optical images identified as alternatives to ground survey distorted by 

bureaucratic challenges. Remote sensing makes it possible to forecast expected floods, 

estimate flood exceedance probabilities and monitor riparian country changes to land 

use/cover effect on downstream hydrology.  

5.1. Transboundary flood management Nigeria (Niger Basin) 

The unprecedented flood event of 2012 in Nigeria was attributed to (i) excess water 

release from dams within and outside Nigeria due to intense precipitation; (ii) 
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inadequate risk communication; and poor stakeholder collaboration  (Ojigi et al., 2013, 

Olojo et al., 2013). The lack of transboundary stakeholder collaboration is evident for 

instance in Nigeriaôs inability to uphold part of the 1980 agreement by Nigeria and 

Cameroon to establish Dasin Hausa dam to buffer the effect of Lagdo dam built by 

Cameroon along the Benue River (Erekpokeme, 2015, Daura and Mayomi, 2015). 

The Niger transboundary river basin (Figure 10) encompasses 12 countries including 

Senegal, Guinea, Côte D'Ivoire Mauritania, Mali, Burkina Faso, Algeria, Niger, Benin, 

Nigeria, Cameroon and Chad. The basin encircling 93,617,850 persons within a 

2156000 km2 area(TWAP, 2016, Aich et al., 2014b).  

 

Figure 10 Map of Transboundary Niger River Basin, showing constituting countries and 

Dams 

Figure 10 also highlights the transboundary nature Niger River Basin, constituent 

countries and characteristics. The Niger basin is largely regulated by dams, housing 

approximately 69 Dams (Lehner et al., 2011) conceived mostly as national and local 

projects, but have transboundary impacts (GRP, 2016). To effectively manage 

transboundary water resource and impact on riparian countries, the Niger River 

Commission (NRC) was established in 1963, now the Niger Basin Authority (NBA) as 

reconstituted in 1980  to promote co-operation between member states and ensure 
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sustainable Integrated Water Resource Management (GWP, 2016). The Niger basin is 

presently controlled by several post-colonial agreements presented in Table 6. 

Table 6 Niger River Basin Agreement, Nigeria. Adapted from (Bossard, 2009, 

International Waters Governance, 2016, Wolf, 2002) 

S/N Treaty Function Location Year  

1 Act regarding navigation and economic co-operation 

between the states of the Niger Basin.  

Navigation and Joint 

management 

Niamey, 

Niger. 

1963 

2 Agreement concerning the River Niger Commission 

and the navigation and transport on the River Niger. 

Navigation, Joint 

management, information 

exchange 

Niamey, 

Niger. 

1964 

3 Agreement Revising the Agreement Concerning the 

Niger River Commission and the Navigation and 

Transport on the River Niger. 

Navigation, Joint 

management, information 

exchange 

Niamey, Niger 1973 

4 Convention Creating the Niger Basin Authority (NBA) Water resource mgt. 

coordination 

Faranah, 

Guinea 

1980 

5 Protocol relating to the Development Fund of the Niger 

Basin 

Planning funds for NBA Faranah, 

Guinea 

1982 

6 Agreement between Nigeria and Mali Co-operation on water 

resource use in the Niger 
- 

1988 

7 Agreement Nigeria and the Republic of Niger 

concerning the equitable sharing in the development, 

conservation and use of their common water resources 

Environmental conservation 

and water resource 

management 

Maiduguri 1990 

8 Nigeria-Cameroon Protocol Agreement Coordinate dam water 

release. 

- 2000 

9 Niger Basin Water Charter. NBA review and update. Niamey, 

Niger. 

2008 

10 African Risk Capacity Weather financial risk 

management 

Pretoria, South 

Africa. 

2012 

 

Despite these various cooperative frameworks, several factors including (i) Poor and 

fragmented data collection, (ii ) Lack of co-ordination between riparian countries and 
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organizations, (iii ) Poor communication and knowledge of legal and institutional 

frameworks, (iv) Funding deficiency, (v) Lack of clear objectives, (vi) Lingual 

differences, and (vii ) Technical limitations (Morand and Mikolasek, 2005, Olomoda, 

2002, IWG, 2016), have been identified as the core issues hindering effective water 

resource management in the Niger Basin. Grossmann, (2006) also lamented the 

deplorable state of the 65 gauging stations set-up by NBA through the ñHydro Niger 

Projectò initiative. Although the emergence of the Niger-HYCOS (Hydrological Cycle 

Observing System) program is expected to restore river monitoring networks to optimal 

capacity (Olomoda, 2012, Pilon and Asefa, 2011), the process is currently in progress. 

Nigeria, however, further faces specific challenges such as poor engagement, varied risk 

perception, lack of interest, poor communication and commitment within the Nigeria 

Basin Authority, which hinders effective coordination and integrated water resource 

framework implementation (Olomoda, 2012). 

5.2. Open-access remote sensing application in Transboundary flood management, 

Nigeria 

As transboundary floods become more prevalent and intense due to increased storms 

triggered by climate change and anthropogenic factors (Earle et al., 2015), sufficient 

hydrological data is required for planning, to mitigate flood impact. Also, considering 

that transboundary flood management institutions are facing recurring challenges that 

limit  its functionality and sufficient data acquisition, open-access remote sensing 

provides a low-cost and viable alternative that allows transboundary flood monitoring 

and management without disrupting any sovereign nationôs autonomy.  

Open-access satellite imageries such as Landsat and MODIS have been proven to 

provide an easy to visualize the extent of flood transiting from a country of origin to 

another downstream, enabling impact quantification needed for prompt response, risk 

assessment and evaluation (Mallinis et al., 2013, Skakun et al., 2014). Radar altimetry, 

on the other hand, can be applied independently or with satellite images to support 

planning, forecasting and flood management in riparian countries.  

Tarpanelli et al., (2016) explored the potential of integrating MODIS image and 

ENVISAT radar altimetry to predict and forecast discharge along the Niger-Benue 

river. The discharge was derived from daily and 8-day 250m resolution MODIS AQUA 

(BAND 2-NIR) by establishing an empirical relationship between water-free land pixels 
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during peak flood, permanent water pixels within the river and known discharge values. 

Pandey and Amarnath, (2015) applied a combined forecasting rating curve  approach 

(Hossain et al., 2014) and hydraulic (HEC-RAS) model techniques to estimate 

discharge from ENVISAT, Jason-2 and AltiKa altimetry virtual station water levels 

along the Niger and Benue rivers, resulting in NS and R2 of 0.7 and 0.97 respectively. 

In other closely related studies in the region, Salami and Nnadi, (2012) monitored 

Kainji Lake using TOPEX/Poseidon and ENVISAT altimetry, revealing stronger 

correlation between altimetry and in situ measurements in the wet season (R2 = 0.93) 

than the dry season (R2 = 0.77), and RMSE varying from 0.50 m to 0.83 m for 

TOPEX/Poseidon and ENVISAT respectively. Sparavigna, (2014) studied the 

variability of Nasser, Tana, Chad and Kainji lakes using TOPEX/POSEIDON and 

Jason-1 altimetry, and Cretaux et al., (2011) combined TOPEX / Poseidon (T/P) and 

ENVISAT altimetry with 8-day MODIS Near Infrared band images to monitor water 

level variations and inundation along the Niger inner delta, Lake Tchad and Ganaga 

river delta. 

The high accuracy of water level estimation from radar altimetry during the wet season 

along the Niger river (Salami and Nnadi, 2012), suggests that altimetry can potentially 

be used in flood monitoring and management in Nigeria and the Niger Basin, and the 

varying accuracies of different altimetry missions imply that altimetry data must be 

applied cautiously, due to residual uncertainty.  With current radar altimetry tracks, such 

as Jason-2 (Figure 11), Sentinel 3A/B (Figure 12) and future SWOT (Figure 13) passing 

across the Niger basin, the potential for long-term data collection from spaceborne 

altimetry for flood management is huge. 
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Figure 11 Jason-1/2/3/TP Altimetry Tracks within the Niger River Basin 

 

Figure 12 Sentinel 3A/B Altimetry Tracks within the Niger River Basin 
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Figure 13 SWOT Altimetry Tracks within the Niger River Basin 

6. Consortium of satellites for flood emergency management 

Other than open-access remote sensing data, in some instances, commercial, regional 

and national satellite organisations collaborative deliver high-resolution images and 

services to support flood response and mitigation efforts. This section discusses some of 

the available satellite consortiums, disaster support services and cases of application in 

Nigeria and hydraulically connected rivers in the Niger Basin.  

6.1. International charter ñspace and major disastersò (ICSMD) 

The international charter ñspace and major disastersò (ICSMD) was established by the 

European Space Agency (ESA) and the Centre National dôEtudes Spatiales (CNES) 

following the UNISPACE III conference held in Vienna in 1999, and was co-signed by 

the Canadian Space Agency (CSA) in 2001 (Bessis et al., 2004). The objective of the 

Charter is to provide data to enable critical decision making during environmental or 

technological disasters such as flooding, oil spills, fires, earthquake, volcanoes, 

hurricanes, landslides and ice hazards, thereby ensuring minimized the impact on people 

and infrastructures is minimized (ICSMD, 2015). Between 2001 and 2012, several 

satellite agencies including Japan Aerospace Exploration Agency (JAXA), Indian Space 

Research Organisation (ISRO), United States Geological Survey (USGS), National 
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Oceanic and Atmospheric Administration (NOAA), Argentinean National Commission 

on Space Activities (CONAE), Exploration of Meteorological Satellite (EUMETSAT), 

German Space Agency (DLR), National Institute for Space Research (INPE) of Brazil, 

China National Space Administration, Disaster Monitoring Constellation International 

Imaging (DMCii) and Korean Aerospace Research Institute (KARI) joined the 

Consortium, thus enhancing the Charterôs prompt high resolution optical and SAR 

images acquisition and availability (UNOOSA, 2013).  

Between 2000 and 2015 the ICSMD charter has been activated 447 times by more than 

110 countries for various disasters (ICSMD, 2015, UNOOSA, 2013). As at 1 August 

2016, 500 disaster Charter activations have been recorded (ICSMD, 2016). Up to date 

overview of disaster Charter activations for flood monitoring and management is 

presented in (Figure 13), with South America, Africa and Asia showing the highest 

activations. 

 

Figure 13 Map showing International Disaster Charter Flood Activations (2000 ï 2016) 

(Source: Disaster Charter) 

6.2. Disaster Charter activations in Nigeria 

In Nigeria, the charter is usually activated by the National Emergency Management 

Agency (NEMA) designated project manager. The activation follows the following  five 

steps: (1) requisition by authorised person, (2) requestor identification and request 
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verification by a 24/7 operator, (3) request analysis and satellite tasking for data capture, 

(4) data acquisition and delivery, and (5) support in data processing throughout the 

emergency (James et al., 2013). In Nigeria, activation of the disaster charter is relatively 

new, and only 6 activations have been made between 2010 and 2012 to monitor 

flooding events at Sokoto in 2010 (calls: 324 and 326), Ibadan in 2011 (call: 370), and 

in 2012 at Adamawa, Kogi and Bayelsa, (calls: 407, 415 and 416) respectively (James 

et al., 2013). Some of the images collected over the course of the activations in Nigeria 

include RADARSAT-2, SPOT-5, TerraSAR-X/TanDEM-X, Landsat ETM, 

KOMPSAT, ENVISAT, UK-DMC, and NIGERIASAT (ICSMD, 2016, Olojo et al., 

2013). One of the lingering challenges of the Disaster Charter images is the strict 

license and copyright policies that prohibit re-use and distribution of the data (James et 

al., 2013), thus limiting the prospect of further data application in research. 

Nevertheless, finished products are available via the Charter Activations web page as 

high-resolution maps and can be used for flood mapping processes. 

6.3. International Water Management Institute (IWMI) Emergency response 

products for water disasters 

This is a space-based information and rapid mapping platform for emergency response 

aimed at providing support for disaster management in Africa and Asia. The platform 

was developed from a collaboration amongst the International Water Management 

Institute (IWMI), Asia-Pacific Regional Space Agency Forum (APRSAF), European 

Space Agency (ESA), the United Nations Office for Outer Space Affairs (UNOOSA) 

and the United Nations Platform for Space-based Information for Disaster Management 

and Emergency Response (UN-SPIDER). This platform channels an impacted countryôs 

data request to the Disaster Charter, and also directly processes and applies open-access 

remote sensing images (i.e. Landsat, Sentinel 1, MODIS and Global Precipitation 

Measurement)  to deliver products needed for decision making during a disaster 

(Backhaus et al., 2010). So far, the platform has supported five countries including Sri 

Lanka, Myanmar, India, Bangladesh, and Nigeria (IWMI, 2016). Also, a total of 37 

flood support information has been deployed from open-access satellites, as well as  

TerraSAR-X, Radarsat-2, RISAT-1, ALOS-2 PALSAR-2, and JAXA-2 ALOS-2 

(IWMI, 2016). 

https://www.disasterscharter.org/web/guest/activations/charter-activations
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6.4. IWMI Emergency response application, Nigeria 

This Space-based information and rapid mapping for emergency response platform 

between 27th September ï 4th October 2015 has delivered 10 Sentinel-1 flood maps to 

support flood management efforts along Niger and Benue rivers in Nigeria. This 

emanated from a collaborative effort amongst IWMI, European Space Agency (ESA), 

Federal Ministry of Agriculture and Rural Development (FMARD) and Consortium of 

International Agricultural Research (CGIAR). 

6.5. Copernicus Emergency Management Service 

The European Union Copernicus Emergency Management (EMS) provides rapid (i.e. 

hours or days) free satellite-based maps to inform decision-making before, during and 

after natural and man-made disasters (Copernicus, 2016). Although European nations 

are considered a priority for support provision, other countries through an authorised 

user can activate the Copernicus EMS. So far, between 1st April  2012 and 19th August 

2016, the Copernicus EMS has been activated 175 times (Table 7), with flooding 

identified as the highest cause of activation (40%), resulting in 68% of delineation maps 

generated. 

Table 7 Summary of the Copernicus EMS - Mapping Activations 

Type of Disaster 
Number of 

Activations 

Number of 

Reference Maps 

Number of 

Delineation Maps 

Number of 

Grading Maps 

Earthquake 9 83 31 67 

Flood 71 358 692 61 

Forest fire, 

wildfire 21 47 98 79 

Industrial accident 5 12 3 1 

Other 55 218 143 127 

Wind storm 14 80 45 53 

Total 175 798 1012 388 
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6.6. Copernicus Emergency Management Service (EMS) application, Nigeria 

region 

The Copernicus Emergency Management Service (EMS) has not been activated for 

Nigeria yet, but have been activated twice (EMSR018 and EMSR019) for Niger 

(Niamey) and Cameroon (Lake Maga, Garoua-Benue River) respectively in 2012, and 

could prove useful for transboundary flood monitoring in Nigeria. Authorised users 

France|Centre Operationnel de Gestion Interministeriel de Crises (C.O.G.I.C) and EC 

Services|DG JRC activated the Copernicus EMS for the respective countries, providing 

Radarsat-2, Rapid Eye, COSMO-SkyMed, and SPOT-5 satellite images flood extent 

maps.  

6.7. Digital Globe Open Data Program 

More recently, Digital Globe, a commercial satellite company launched the ñOpen Data 

Program (ODP)ò initiative aimed at providing high-resolution satellite imagery to 

support recovery from large-scale natural disasters such as flooding (Price, 2017). ODP 

provides pre and post-disaster images, including support via the Tomnod and 

Humanitarian OpenStreetMap Team (HOT) crowdsourcing platforms for damage 

assessment. (Baruch et al., 2016) So far, the ODP has been activated six times by Haiti, 

Nepal, Mexico, Ecuador, Caribbean/United States, and Madagascar, to manage disasters 

including earthquakes, hurricanes, and cyclones. The prospect of this initiative is 

enormous, as high-resolution imagery will largely improve risk and damage assessment 

in remote locations that are usually unobserved in coarse images. Though the ODP is 

yet to be deployed in Nigeria, it was deployed for post-disaster assessment of the 2017 

Sierra Leone Mudslide disaster. This is its first application case in the African continent. 

7. Conclusion 

Flood disasters are becoming more frequent, intense and destructive, owing to climate 

change and anthropogenic factors. Managing floods requires effective decision making 

based on up-to-date and reliable hydrological information (Els, 2013).  Typically, data 

needed for flood management includes river discharge, water levels, precipitation, 

terrain, and land use/cover characteristics collected through the establishment of ground 

monitoring stations and field observations/surveys (Kite and Pietroniro, 1996). In 

situations where flood transcends administrative boundaries due to natural catchment 

https://www.digitalglobe.com/opendata
https://www.digitalglobe.com/opendata
http://www.tomnod.com/
https://hotosm.org/
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delineations or river network connectivity, transboundary corporations are set up to 

enable collaborative data collection, co-operation, risk communication, information 

sharing and planning to effectively manage flood impact in riparian countries (Bakker, 

2009, Chikozho, 2014). Nevertheless, both independent and transboundary data 

collection systems for flood management are usually flawed by organisational, 

technical, Institutional, infrastructural and financial challenges that limit  inter and intra 

organisational co-operation (Olomoda, 2012, Bakker, 2009, Chikozho, 2012, Zeitoun et 

al., 2013, Tilleard and Ford, 2016). 

The role of remote sensing in supporting transboundary flood monitoring, planning and 

management is enormous, as it allows data collection at upstream flood origination 

countries by downstream impacted country without the need for bureaucratic 

authorization (Angelidis et al., 2010, Sridevi et al., 2016). In independent countries, 

remote sensing mostly enables data collection in remote, inaccessible and data sparse 

locations to improve flood management practices (Musa et al., 2015).    

Advancement in remote sensing has immensely improved flood management, 

particularly by making data available free geospatial data to improve flood practices in 

data sparse regions of developing countries where ground monitoring network is limited 

and the cost of obtaining commercial satellite data is particularly high (Biancamaria et 

al., 2011, Yan et al., 2015a). Open-access remote sensing improves flood modelling and 

mapping when data sets such as radar altimetry, digital elevation model, optical and 

radar satellite imagery are applied independently, in combination with in situ 

measurements or integrated into hydrodynamic models as initial or boundary 

conditions, thereby reducing flood estimation uncertainty in ungauged river basins 

(Birkinshaw et al., 2014b, Sanyal et al., 2013, Jung et al., 2012, Trigg et al., 2009). 

 It is worth noting that various freely available RS data sets provide varying accuracy 

levels, depending on multiple factors. Altimetry Mission accuracies depend on the 

satellite ground footprint, virtual station location, river width, tributaries discharging 

into the main river and satellite sensor properties (Yan et al., 2015a). Digital elevation 

model spatial resolution results in elevation approximation, due to C and X-band radar 

inability to penetrate vegetation canopies, and reflection off rooftops and water surfaces, 

resulting in elevation over-estimation (Cook and Merwade, 2009, Musa et al., 2015). 

Optical imagery applications are hampered by atmospheric conditions and spatial 

resolution (Asner, 2001), while one of the core deficiencies of radar images is the 
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inconsistency in delineating floods in urban and forested areas (Veljanovski et al., 

2011a). 

Despite these deficiencies, the role of individual and collective RS sensor images 

application in flood management is huge, especially in developing regions, as it allows 

for the estimation and quantification of hydrological parameters at previously 

undetected locations once a concept has been proven at a location where in situ data is 

available (Tarpanelli et al., 2016). 

With remote sensing technology continuously advancing and becoming more freely 

available, the reliance on ground observation data is expected to decline, especially 

where ground data is unreliable and scanty as evident in Nigeria. Also, with commercial 

satellites companies such as Digital globe and other satellite consortiums making 

available high-resolution images for disaster management (ICSMD, 2015, Price, 2017), 

flood mapping processes will benefit hugely. Despite this obvious advantage of remote 

sensing, the role of ground-collected data cannot be disregarded and must take priority 

or applied in combination with remote sensing data for enhanced flood mapping 

(Domeneghetti et al., 2014, Sun et al., 2012).  

7.1. Future research direction for improved flood modelling and mapping in 

Nigeria 

1. Planning for flood management usually requires flood magnitude estimates at 

varying return periods based on historical flood data. In developing regions, such 

data are typically short if the gauging station is newly established or discontinued, 

and contain gaps (missing data points) caused by equipment malfunction or poor 

data collation practices (Maxwell, 2013, Olayinka, 2012). Altimetry can aid 

historical river data reconstruction where newly established and old discontinued 

gauging stations exist at proximity to virtual stations (Escloupier et al., 2012). 

Nevertheless, the low revisit time of altimetry satellites (O'Loughlin et al., 2016a) 

can result in the non-capture of peak floods needed for flood magnitude estimation 

(Domeneghetti et al., 2014, Yan et al., 2015b) and in other instances, altimetry data 

is unavailable at certain locations (Papa et al., 2010). Therefore, it is essential that 

the effect of altimetry application is evaluated against another that statistically 

infills missing hydrological data to ascertain the influence of both approaches on 
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flood frequency estimates, and to understand when these individual approaches can 

be used. 

2. The potential of individual satellite data such as altimetry, DEM, optical and radar 

images has been demonstrated in this review, with the unique merit, demerit and 

application prospect clearly highlighted. In very remote locations of developing 

regions, data sparsity is so widespread that uniform data is seldom available for a 

whole catchment area. Therefore, a combination of all available open-access RS 

data in such unique data-sparse location is recommended, leveraging on merits of 

individual data sets to improve all phases of flood mapping processes, i.e. 

hydrological modelling, hydrodynamic modelling and inundation mapping. 

3. Satellite consortium images have been proven to be useful in flood risk assessment 

when a flood occurs, as pre and post-flood images are provided for comparative 

analysis (Olojo et al., 2013). However, strict license and copyright policies prohibit 

re-use and distribution of the data (James et al., 2013), thereby restricting a shift in 

focus from flood recovery to planning. Nevertheless, end products (i.e. high-

resolution inundation maps) are available via the Charter Activations web page and 

can be applied to support flood modelling processes and inform decision making 

before, during and after a flood event. 

4. The deficiencies of space-borne images application in flood modelling and 

mapping are quite pronounced in various landscapes, irrespective of the sensor type 

and their particular advantages (Long et al., 2014, Corcoran et al., 2012). The 

private sector has played a vital role in advancing geo-informatics in developing 

regions (AARSE and EARSC, 2016), investing hugely in high-resolution satellite 

and airborne data needed for operational and disaster management purposes (Eyers 

et al., 2013, Nwilo and Osanwuta, 2004). A unique opportunity for collaboration is 

identified here, as privately sourced data can be integrated with open-access remote 

sensing and crowd-sourcing (Degrossi et al., 2014) to improve flood mapping in 

data sparse regions. 

5. Though this literature review focused on fluvial flood modelling and mapping, it is 

important to note that precipitation data (in situ and satellite) could also vital in this 

process, and has been widely applied, especially in data-sparse regions from flood 

modelling and hazard mapping (Yoshimoto and Amarnath, 2017, Komi et al., 2017, 

https://www.disasterscharter.org/web/guest/activations/charter-activations
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Yu et al., 2016, Revilla-Romero et al., 2015a). However, this is beyond the scope of 

this thesis.  
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7.2 Summary of thesis methodologies for analytical chapters 3 - 7  

Chapter Gaps address using method Method description Available data 

3 

This chapter attempts to fill the gap in 

hydrological data evident during flooding, 

that emanates from restricted access to 

remote locations to acquire river 

measurements manually, as well as the 

destruction of measuring equipment during 

peak floods that deter continuous data 

acquisition. 

Two approaches, empirical and statistical are 

applied to assess the prospect of estimating 

peak flows needed for direct flood frequency 

estimation, as well as ascertain the variation 

in the flood frequency estimates derived using 

both approaches. The empirical (Radar 

Altimetry) and statistical (Multiple 

Imputation) are respectively applied to curtail 

missing data deficiency at locations where 

supplementary data available and unavailable. 

Annual peak flow time series with gaps 

varying from 1 to 3 years (consecutive) 

and > 3 years (inconsecutive). 

4 

In situations where gauging stations are non-

existent or data collected is short in length, 

regional flood frequency can enable 

Regional flood frequency is adopted and 

considers climate variability effect.  The 

analysis is executed using the International 

Annual peak flow time series for 

gauging stations within the Ogun-Oshun 

river basin of Nigeria, SRTM DEM, and 
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hydrological data agglomeration from 

nearby stations with similar hydrological 

parameters. 

Centre for Integrated Water Resources 

ManagementïRegional Analysis of 

Frequency Tool (ICI-RAFT) software with 

inherent climate indices database to enable 

climate variability assessment. Climate 

variability is accounted for due to the 

significant trends and homogeneity observed 

in the available historical data. 

global climate indices time series from 

the National Oceanic and Atmospheric 

Administration (NOAA). 

5 

During flooding, swift response is expected, 

therefore disaster management authorities 

require Real or Near-Real-Time (NRT) 

information on exposure to respond, to 

mitigate flood impact. Such datasets are 

seldom available in many developing 

countries. 

Typically, government agencies develop 

To deliver the required NRT flood 

information, twice daily overpass (Terra and 

Aqua satellites) MODIS Water Product 

(MWP) is combined with crowd-sourcing in 

this chapter. The MWP flood extent is 

generated automatically by a NASA through 

an algorithm that uses a ratio of MODIS 250 

m resolution Bands 1 and 2, and a threshold 

Inundation extent derived from the 

MWP; georeferenced crowdsourcing 

data points of responses from citizens 

on knowledge of flooding around their 

surrounding (flooded or non-flooded) 

and supplementary information that 

infer preparedness, response and 

recovery; and the Annual Flood 



Application of Open-access and 3rd Party Geospatial Technology for Integrated Flood Risk Management in Data Sparse Regions of Developing Countries 

56 
 

maps of perceived flood risk before a flood 

occurs, to inform flood management 

decisions. However, if such flood risk maps 

are developed from coarse and inaccurate 

data, the perception of flooding will differ 

considerably from reality, resulting in flawed 

decision making. 

of Band 7 to provisionally identify pixels as 

water. Crowdsourcing data is acquired using 

web GIS application developed by the author 

using ArcGIS GeoForm platform.  

The discrepancy between government and 

citizen flood risk perception is also evaluated 

using data acquired from crowdsourcing is 

also assessed, as well as factors that affect 

citizen preparedness, response and recovery. 

Outlook of Nigeria (2015). 

6 

Hydrodynamic models provide a viable 

approach to estimate known or expected 

flood extent and water level needed for flood 

management decision making. These models 

typically require hydrological, topographic 

and calibration (known historical flood 

extent, water levels, discharge or 

Variable degrees of data availability was 

evident in the model domain (i.e. Niger-

South, Nigeria). Therefore, the whole study 

domain is modelled and calibrated using 

CAESAR-LISFLOOD, due to the availability 

of input hydrological data upstream of the 

domain, while validation is segmented into 

Whole domain: Hydrological input 

data (Umaisha and Baro gauging 

stations, along Benue and Niger rivers 

respectively), and SRTM DEM (with 

Urban and Vegetation elevations 

reduced). 

Lokoja : River bathymetry (acquired in 
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watermarks) data, which as seldom available 

in many developing regions. 

sub-domains to reflect the variable data 

availability. The three (3) sub-domains are 

named Lokoja, Onitsha and Niger Delta. 

2011), NRT MWP, TerraSAR-X, water 

level measurement at Lokoja gauging 

station. 

Onitsha: River bathymetry (acquired in 

2001), NRT MWP, and water level 

measurement at Onitsha gauging 

station. 

Niger Delta: NRT MWP, Geotagged 

overflight photos, CosmoSkyMed and 

RADARSAT-2. 

`7 

Flood extents extracted from passive and 

active satellite images such as MODIS, 

RADARSAT 2, and TerraSAR-X are usually 

impaired by environmental conditions 

including reflectance from vegetation cover, 

urban land-use and cloud cover. These 

Decision tree based algorithm is adopted and 

applied here using WEKA data mining 

software. This approach integrates various 

open -access datasets including hydrology 

(river), geology, soil composition, land 

use/cover, DEM and its derivatives to 

CosmoSkyMed, RADARSAT-2, 

Landsat-8, soil composition, geology 

map, SRTM DEM, DEM derivatives 

(Topographic Wetness Index, and 

Stream Power Index), geotagged 

overflight images.  
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conditions are particularly evident in the 

Niger delta region. 

improve radar flood detection potential in the 

mangrove dominated Niger delta region. 

 

Further details of specific methodologies are presented in individual chapters 
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CHAPTER 3: INFILLING MISSING DATA IN HYDROLOGY: SOLUTIONS 

USING SATELLITE RADAR ALTIMETRY AND MULTIPLE IMPUTATION  

FOR DATASPARSE REGIONS 

Abstract 

Floods are undoubtedly one of the most devastating natural disasters on earth, triggered 

mostly by climatic activities and aggravated by anthropogenic factors. Due to the 

disastrous consequences of flooding, it is important that proper structural and non-

structural measures be put in place to manage the effects of flooding, and the first step 

towards this is the estimation of expected flood magnitude and the probability of 

occurrence. Gaps in hydrological data, particularly in developing countries increases the 

complexity of flood frequency analysis and could contribute to flood estimates 

uncertainty, consequently resulting in poor flood management decisions.  

In this study, two methods for fill ing hydrological data gaps are deployed, (i) 

incorporating river level data derived from satellite-based Radar Altimetry and (ii) 

Multiple Imputation technique, and the impact of these approaches of derived flood 

estimates are quantified. The approaches presented here were applied along the Niger 

and Benue rivers in Nigeria to assess scenarios of supplementary data availability and 

unavailability, to fill data gaps at specific gauging stations.  

The study revealed that Radar Altimetry missing data infilling approach outperformed 

Multiple Imputation, especially for widely gapped time series (> 3 years), but did not 

differ significantly for data sets with gaps of 1-3 years. Also, previously unquantified 

2012 and 2015 flood events in Nigeria were quantified as 1-in-100 and 1-in-50 year 

floods respectively, suggesting that the impact of these flood events would have been 

mitigated considerably if such information was available, having filled the historic data 

gaps.  
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This study demonstrates the potential of altimetry and statistical computation for 

providing information to support flood management in developing regions where in situ 

data is sparse, especially where gauging stations have been destroyed, discontinued or 

are newly established.   

Keywords 

Hydrology, Missing data, Radar Altimetry, Multiple Imputations, Uncertainty, Flood 

Frequency Analysis 

1. Introduction 

Flooding is one of the most devastating natural hazards, increasing in frequency, 

magnitude and impact due to changing climatic conditions and anthropogenic 

triggers/factors (Lavender and Matthews, 2009). Reliable flood information is required 

by flood risk managers and stakeholders when deploying measures to effectively 

counter the impacts of floods. Typically, networks of hydrologic gauging stations are 

established for this purpose (Hipel, 1995, Herschy, 2008), distributed across several 

locations of interest to collect long-term hydrological data. However, operating such in 

situ measurement systems, especially in developing regions are often problematic due to 

underfunding of implementation agencies by governments (Starrett et al., 2010), 

inaccessibility and security challenges at some locations (Ampadu et al., 2013b), lack of 

commitment by gauging station operators, and equipment malfunction, replacement, 

damage, modification and discontinuity (Olayinka et al., 2013).  

These factors contribute to hydrological network inadequacy, and decline of functional 

stations and gaps in available records that flood modelling processes can result in 

uncertain estimates. Even when data is available, in many cases for developing regions, 

these records are usually short, and river water level measurements and discharge 
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estimation processes further subjects the available hydrological data to aleatory and 

epistemic uncertainties (Merz and Thieken, 2005, Baldassarre and Montanari, 2009, 

Beven and Hall, 2014). This paucity of data is particularly severe in developing 

countries, further limiting their capacity to mitigate and cope with the impact of 

flooding on people, infrastructure and socio-economic activities. 

Researchers have explored several techniques to compensate data deficiencies to 

estimate flow for ungauged or sparsely gauged river basins, including remote sensing 

applications (Bjerklie et al., 2005, Tarpanelli et al., 2013, Birkinshaw et al., 2014a, 

Gleason and Smith, 2014), hydrodynamic modelling (Biancamaria et al., 2009a, Neal et 

al., 2012, Sanyal et al., 2014), combined remote sensing and hydrodynamic models 

(Pereira Cardenal et al., 2010, Tarpanelli et al., 2013, Yan et al., 2015a), catchment 

geomorphological and meteorological data applications (Jotish et al., 2010, Grimaldi et 

al., 2012, Rigon et al., 2015), and hydrological regionalization (Saf, 2009a, Smith et al., 

2015, Kumar et al., 2015, Rahman et al., 2014). These techniques provide varying 

advantages and challenges and are applicable in different scenarios depending on 

available data. Furthermore, all of these approaches require some form of ground data 

for verification, given that in situ observations provides better insight into local 

hydrological processes and catchment response to changing climatic conditions 

(Hrachowitz et al., 2013), and the output of each technique is strongly dependent on the 

input data accuracy. 

Irrespective of the method adapted for flood magnitude estimation, missing data within 

the hydrological time-series increases the uncertainty in the estimate, resulting in flawed 

flood management decisions (Jung and Merwade, 2015). To curtail this deficiency, 

hydrologists have devised several means to fill gaps in hydrological time-series using 
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both statistical and empirical methodologies (Campozano et al., 2014). Statistical 

techniques are centred on filling missing data by simulating missing data using 

trends/patterns from available data using methods such as regression analysis 

(Westerberg and McMillan, 2015, Olayinka et al., 2013), interpolation (Lee and Kang, 

2015, Hasan and Croke, 2013) and artificial neural networks (Steven et al., 2010, 

Starrett et al., 2010).  

Traditional missing data infilling  approaches generally involve removal of incomplete 

data or single data imputation methods such as arithmetic mean or median imputation, 

regression-based imputation and principal component analysis-based imputation (Peugh 

and Enders, 2004). Though the deletion method is usually convenient (King et al., 

1998), this approach reduces sample size, thereby introducing statistical bias and 

reducing the statistical power and precision of standard statistical procedures (Little, 

2002). Single imputation approaches contrastingly replace missing data while retaining 

the original sample size. However, single imputation techniques lead to distorted 

parameter estimates, reduced data variability (Baraldi and Enders, 2010, Little, 2002), 

predictable bias, high variable correlation (Donders et al., 2006), and dimensional 

subjectivity (Jolliffe, 2002). 

To curtail the limitations of the single imputation approach, Multiple Imputation (MI)  

has been proposed; an approach that fundamentally replaces missing time series values 

using two or more plausible values derived from a distribution of possibilities (Graham 

et al., 2007, Graham and Hofer, 2000). Multiple imputation is widely used in 

hydrological studies (Asian et al., 2014, Khalifeloo et al., 2015, Graham et al., 2007, 

Yozgatligil et al., 2013, Tyler et al., 2011, Lo Presti et al., 2010, Li et al., 2015), as it 
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provides the unique advantage of accounting for missing data uncertainty, and do not 

overestimate correlation error (Lee and Carlin, 2010).  

Empirical methods on the other hand fill missing data using supplementary data sets 

from upstream or downstream gauging stations close to the location of interest, as well 

as  other data sets such as digital elevation model (Pan and Nichols, 2013), bathymetry 

(Tommaso et al., 2013) and/or satellite imagery data sets (Tarpanelli et al., 2013, 

Gleason and Smith, 2014, Birkinshaw et al., 2014b) and radar altimetry (Dubey et al., 

2015, Asadzadeh Jarihani et al., 2013). Of all listed empirical approaches, only 

altimetry provides direct water level estimates that can be integrated seamlessly into 

existing hydrological time series without complex computation (Pandey and Amarnath, 

2015, Silva et al., 2014, Papa et al., 2010). Given that altimetry virtual station networks 

are globally distributed (See Figure 11 ï 13, Chapter 2), a unique opportunity for 

infilling  hydrological time series gaps is presented, especially in developing regions 

during peak flood seasons when in situ stations are usually disrupted or damaged. 

Notwithstanding radar altimetryôs advantages, its application is not without limitation, 

as factors including atmospheric state during data acquisition, satellite sensor properties, 

temporal resolution, water surface characteristics and altimetry ground footprint 

contribute to the measurement variability and uncertainties (Belaud et al., 2010, Jarihani 

et al., 2015b, Clark et al., 2014). Furthermore, considering the recent launch of Jason-3 

(NESDIS, 2016) and Sentinel-3 (ESA, 2016) in early 2016, and the prospective launch 

of  Surface Water and Ocean Topography (SWOT) in 2020 (Avisio, 2016), altimetry 

data collection is expected to continue, and dominate sustainable water resource 

management for years to come. 

The objectives of this chapter are detailed as follows: 
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I. Explore the prospect of filling missing hydrological timeseries using radar 

altimetry and multiple imputation. 

II.   Estimate flood frequency and magnitude using contrastingly filled hydrological 

time series and the effect of the gap length. 

III.  Assess the accuracy and discordancy of derivatives from both approaches  

IV.  Quantify the magnitude of the recently experienced flood in 2012 at the location 

of interest (Nigeria), using data filled by both approaches, to demonstrate the 

practicality of this study. 

2. Study region  

The Niger south Hydrological Area (HA5) (Figure 1A) is the focus of this study and 

encircles 22,170,300 persons within a 54000km2 area. The hydrology of the region is 

defined by Niger Basin water inflow from Niger and Benue rivers (Figure 1B) travelling 

downstream to the Atlantic Ocean through Nun and Forcados distributaries in the Niger 

Delta (Figure 1C), and to the Anambra-Imo river basin through Anambra river. Annual 

rainfall in the Niger Basin varies from 1100 mm to 1400 mm, while the land cover/use 

along the Niger and Benue is comprised of built-up areas, cultivated land, plantations, 

wetlands, mixed land use, grasslands, vegetation and bare surfaces (Odunuga et al., 

2015). HA-5 encompasses sections of some of the most impacted states (i.e. Kogi, 

Anambra, Imo, Delta Bayelsa and Rivers)  during the 2012 and 2015 flood events, of 

which the 2012 flood was reported to have caused the greatest impact/damage in 40 

years (Ojigi et al., 2013, Tami and Moses, 2015). The impacts include disruption of 

socio-economic activities, damage to properties and infrastructure, and sadly deaths 

(FGN, 2013, Erekpokeme, 2015). Both events were triggered by intense precipitation 

which resulted in the release of excess water from dams in Nigeria (Kainji, Shiroro and 

Kiri) and Cameroon (Lagdo), with the impact exacerbated by poor planning due to 



Application of Open-access and 3rd Party Geospatial Technology for Integrated Flood Risk Management in Data 

Sparse Regions of Developing Countries 

65 
 

insufficient data and poor communication (Ojigi et al., 2013, Olojo et al., 2013, FGN, 

2013). Hence, this study site is valuable as it explores the challenges and opportunities 

associated with hydrological data acquisition, the potential of alternative data sources 

and their applicability. Figure 1A also shows in situ gauging stations, radar altimetry 

tracks and virtual stations along the Niger and Benue rivers. 

 

Figure 1:  (A) Map of Nigeria showing in situ gauging stations, altimetry virtual stations 

and tracks along Niger and Benue Rivers. (B) Map of Africa showing Niger Basin 

imprint on Nigeria. (C) Niger South hydrological area showing tributaries (Niger and 

Anambra) and distributaries (Nun and Forcados). 
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3. Materials and Methods 

3.1. In -situ hydrological data  

Hydrological data (Discharge, Water level and Rating curve) for the five (5) in situ 

stations (Table 1) used in this study were acquired from the Nigerian Hydrological 

Service Agency (NIHSA), National Inland Waterways Authority (NIWA) and the Niger 

Basin Authority (NBA). Daily mean water level data is manually collected using staff 

gauges, then converted to discharge using pre-defined and up-to-date rating curves (i.e. 

the relationship between in-situ discharge and water levels), see Appendix 3. The 

respective gauging stations were established before the establishment of upstream dams 

that alter the Niger and Benue river hydrological regimes (Abam, 2001b), i.e. Baro 

(1915), Lokoja (1915), Umaisha (1980), Onitsha (1955) and Taoussa (1954). Therefore, 

post-dam establishment hydrological time series is applied to eliminate hydrological 

heterogeneity caused by dam creation. Hydrological data for Taoussa gauging station 

located in Mali was acquired from the Niger Basin Authority (NBA) for validation 

purpose, as none of the datasets available within the area of interest was without gaps 

(Supplementary Figure 1 ï 3). Only annual maximum flow time series data are used in 

this study. 
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Table 1 In situ gauge station characteristics 

Station 

Name 
River Lat. (º) Long. (º) Area (km2) Period of record GBM (m) 

River Width 

(km) 

Missing annual 

peak data 

Baro Niger 8.6066 6.4170 730,000 1985 - 2011 57.22 0.64 12 

Lokoja Niger 7.8167 6.7333 752,000 1989 - 2012 45.77 1.65 6 

Umaisha Benue 8.0000 7.2333 335,000 1985 - 2012 18.87 0.61 19 

Onitsha Niger 6.1667 6.7500 1,100,000 1989 - 2011 24.14 1.03 16 

Taoussa Niger 16.9500 -0.5800 340,000 1985 - 2015 N/A 0.47 0 

* GBM: Gauge Bench Mark above Mean Sea Level, N/A: Not Applicable (Source: NISHA, NIWA and NBA) 
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3.2. Radar altimetry data collection and application for  missing filling data gaps 

Radar altimetry data is acquired via a process that measures the distance between the 

orbiting satellite and water surface in relation to a reference datum (Earth Gravitational 

Model (EGM) 2008), using satellite sensor echo pulse return intervals from when 

emitted, to when received upon reflection by the water surface (Sulistioadi et al., 2015, 

Belaud et al., 2010). Altimetry water levels are measured at virtual stations located 

intermittently where altimetry satellite tracks cross path with rivers (Birkinshaw et al., 

2014b, Musa et al., 2015). Off-the-shelf Topex/Poseidon (T/P), Envisat, Jason-1 and 

Jason-2 altimetry missions (See Table 2 for properties) data from the Centre for 

Topological studies of the Ocean and Hydrosphere (CTOH) (Crétaux et al., 2011) 

database are applied in this study.  

Altimetry water level data downloaded from CTOH are pre-processed using the Virtual 

Altimetry Stations (VALS) software and takes into cognizance the distance between the 

satellite and water body, and uncertainty contributing factors such as the ionosphere, 

humid and dry atmospheric conditions, polar tide, and  solid earth tide (da Silva et al., 

2010).  
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Table 2 Radar Altimetry mission and characteristics 

S/N Mission Ground footprint 

(m) 

Return period 

(days) 

Operation timeline Vertical 

Accuracy (m) 

References  

1 Topex/Poseidon ~600 9.9 1993 - 2003 0.35 (Frappart et al., 2006) 

2 Envisat ~400 35 2002 - 2012 0.28 (Frappart et al., 2006) 

3 Jason-1 ~300 10 2002 - 2009 1.07 (Jarihani et al., 2015a) 

4 Jason-2 ~300 10      2008 ï 0.28 (Jarihani et al., 2015a) 

 

The EGM 2008 vertical datum for altimetry data used in VALS was converted to MSL which corresponded with the in-situ gauge station 

datum. This conversion was performed using datum correction parameters derived from the geoid calculator GeoiedEval 

(http://geographiclib.sourceforge.net/cgi-bin/GeoidEval2). 

                                                           
2 http://geographiclib.sourceforge.net/cgi-bin/GeoidEval 

http://geographiclib.sourceforge.net/cgi-bin/GeoidEval
http://geographiclib.sourceforge.net/cgi-bin/GeoidEval
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3.3. Missing Data Imputation, Pre-processing and Flood frequency analysis 

3.3.1. Missing Data Imputation  

Missing data is a regularly occurring phenomenon in hydrological analysis, depicted by 

gaps within hydrological time series that emanate due to poor data management, 

equipment damage/malfunction and un-acquired data due to inaccessibility, thus 

resulting in poor flood magnitude estimates and management decisions. Two 

approaches, Radar altimetry and Multiple imputation are explored in this study, aiming 

to reduce the uncertainty associated with applying gapped in historical hydrological 

datasets. 

3.3.1.1. Radar Altimetry Missing Data Imputation 

This approach involves establishing a correlation relationship between upstream or 

downstream altimetry virtual station datasets those of a nearby in-situ gauging station 

when water level data exist at both stations. The established relationship is then applied 

to estimate missing in-situ data when only altimetry data is available. At locations 

where data is not available at similar dates for in-situ and altimetry virtual stations to 

establish an empirical relationship, previously established relationship from a nearby 

altimetry station can be adopted, provided the distance between both virtual stations is 

minimal, the change in river width is negligible, no hydraulic structure or tributary exist 

between both virtual stations (Papa et al., 2010, Pandey and Amarnath, 2015).  This 

approach is consistent with previous studies (Papa et al., 2010, Michailovsky et al., 

2012, Dubey et al., 2015), where the rating curve for a nearby gauging station was 

adapted for another station where data was unavailable. The newly estimated water at 

In-situ station is then converted to discharge using a pre-defined rating curve/equation. 

Figure 1 showed the altimetry virtual stations chosen for this study which was along 

Niger and Benue rivers located upstream and downstream of the in-situ gauging 
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stations. The framework presented in Figure 2 describes the methodology for infilling 

missing data using altimetry, while the characteristics of altimetry virtual stations are 

presented in Table 3.  

 

 

 

 

 

 

 

 

 

Figure 2 Methodology for estimating missing discharge data using radar altimetry, in 

situ water level and rating curves 
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Table 3 Characteristics of the altimetry virtual stations within the study area 

Name Mission River Temporal 

coverage 

Latitude Longitude Distance from GOI 

(km) 

Data match points 

(Alt  vs In situ) 

R2 

Env_702_01 Envisat Niger 2002-2010 6.6500 6.6500 115.4 (Lokoja)-DS 42 0.59 

Env_029_01 Envisat Niger 2002-2010 5.9900 6.7200 23.7 (Onitsha)-DS 9 0.95 

Env_158_01 Envisat Benue 2002-2010 8.0200 7.6700 54.3 (Umaisha)-US 15! 0.934! 

tp198_4_moy T/P Nun 1993-2002 6.0981 4.7563 234.7 (Onitsha)-DS 88 0.66 

j2_020_1 Jason-2 Benue 2002-2011 8.0082 7.7540 62.9 (Umaisha)-US 15 0.95 

j2_211_3 Jason-2 Niger 2002-2011 8.3675 6.5570 33.8 (Baro)-US 20 0.94 

j2_161_1 Jason 2 Niger 2002 - 2015 17.0107 -1.5247 112.5 (Taoussa) -US 14 0.92 

GOI: Gauge of interest, DS = Downstream of in situ gauge, US = Upstream of in situ gauge, R2 = correlation coefficient, (!) denotes that 

the correlation relationship at the J2_020_1 virtual station was adopted for Env_158_01 due to the absence of in situ measurements near 

that virtual station. The distance between the two virtual stations was limited (9.3 km). 
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Table 3 (R2) indicates that the correlation between RA-derived and in situ stage data 

was higher as the distances between virtual and in situ gauge stations reduce and vice 

versa. Also, the reduced correlations between virtual stations (Env_702_01 and 

tp198_4_moy) and in situ stations water levels at Lokoja and Onitsha respectively are 

attributed to tributaries discharging into the main rivers. These findings are consistent 

with other studies at Brahmaputra river (Dubey et al., 2015), Lake Argyle (Asadzadeh 

Jarihani et al., 2013) and Lake Victoria (Crétaux et al., 2011, Asadzadeh Jarihani et al., 

2013, Dubey et al., 2015) and Benue river (Pandey and Amarnath, 2015). 

3.3.1.2. Missing Data Multiple imputation 

Multiple imputation (MI) allows for the infilling of missing data in situations where 

supplementary data such as radar altimetry is unavailable and is widely applied in 

hydrological studies (Gill et al., 2007, Schneider, 2001, Lo Presti et al., 2010, Graham 

et al., 2007). MI has also been found to outperform traditional techniques such as mean 

imputation, missing indicator and complete case analysis (Roderick, 2011, Schafer, 

1997, van der Heijden et al., 2006). MI fills data gaps by generating a plausible number 

of values after fitting the existing data to a distribution based on the statistical 

parameters such as  mean and standard deviation of the dataset, while accounting for 

uncertainty about the supposed true value (Li et al., 2015, Rubin, 1987, Yozgatligil et 

al., 2013). The term ñMultiple imputationò implies the missing data is simulated 

multiple times, in this case (5 times) using XLSTAT Ms Excel add-in, thus quantifying 

the uncertainty in the simulation process and reducing false precision attainable with 

single imputation (Li et al., 2015). The MI algorithm is implemented in XLSTAT which 

adopts the Markov Chain Monte Carlo approach (van Buuren, 2007), whereby missing 

values are estimated by random sampling from a distribution of plausible values derived 
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from multiple simulations undertaken using mean and standard error parameters similar 

to that of the original dataset under the assumption of normal distribution. 

3.3.2. Pre-processing 

3.3.2.1. Preliminary Analysis Prior to Flood Frequency Estimation 

Preliminary analysis is an integral part of flood frequency estimation, as it ensures the 

applied dataset meets the required prerequisite to ensure the data sets applied does not 

contribute additional uncertainty to probability distributions and flood frequency 

estimates (Lamontagne et al., 2013). These include test for outliers, trends, homogeneity 

and serial correlation 

Á Grubbs and Becks (Grubbs and Beck, 1972) and multiple Grubbs and Becks outlier 

test: applied to identify Potentially Influential Low Floods (PILFs). 

Á Mann-Kendall test (Mann, 1945, Kendall, 1975): applied to assess trends in the 

time-series. 

Á Pettitôs test (Pettitt, 1979):  assess historical data homogeneity 

Á Lag-1 correlation coefficient statistics (Kendall and Stuart, 1969): test the serial 

correlation between the independent observations of a time-series.  

All data pre-processing except the multiple Grubbs and Becks test (mGBt) was 

undertaken using XLSTAT MS Excel Add-in. The mGBt was performed in Flike flood 

frequency analysis software (Kuczera, 1999, Lamontagne et al., 2013). mGBt assesses 

the anomaly of the (kth) smallest sample in comparison to the peak flood population 

dataset (n) and uses a threshold to remove this anomaly. Nonetheless, Pedruco et al., 

(2014) warned on the need to be cautious when removing PILFs to ensure data that 

significantly affects the quantile estimate is not eliminated. Other uncertainties factors 

that contribute to hydrological data uncertainty include changes in land cover, 
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catchment geomorphological, river channel, and the construction of hydraulic 

structures; these are somewhat curtailed by consistently updated rating curves (Dubey et 

al., 2015).  

3.3.2.2. Simple Rating Curve extrapolation uncertainty assessment 

In addition to the impact of missing peak flow data on flood frequency estimates, the 

rating curve from which discharge is derived can contribute to design-flood uncertainty 

(Baldassarre and Montanari, 2009, Di Baldassarre et al., 2012, Kuczera, 1983). Rating 

curves present the relationship between in-situ stage and discharge at gauging station  

(Haddad et al., 2014). This, therefore, allows for the estimation for discharge from river 

water level measurement acquired using staff gauge, which is usually the case in most 

developing countries due to the absence of sophisticated equipment (van Meerveld et 

al., 2017). Typically, rating curves are developed from data collected within river 

boundaries. However, during flooding rivers rise above known boundaries used in 

rating cures derivation, resulting in extrapolation uncertainty (Herschy, 2008). Other 

factors that contribute to rating curve uncertainty include rating curve overfitting 

(Haque et al., 2014, Baldassarre and Montanari, 2009), river cross-section changes due 

to erosion or aggradation, land cover change, hydraulic structure design (Jalbert et al., 

2011), and  measurement errors (Baldassarre and Montanari, 2009). 

A simple Ratings Ratio (RR) approach is applied to identify stations with a high degree 

of extrapolation uncertainty (Haddad et al., 2010). RR is ascertained by dividing the 

maximum discharge for each year (QF) by the maximum measured discharge applied in 

the ratings curve development (QM). The equation below defines RR as:           

22  
1

1
                                                                          ς 
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If the RR value is less than 1, the corresponding QF value is assumed to be free from 

extrapolation uncertainty and the presence of extrapolation uncertainty is pronounced if 

RR is much greater than (>>) 1 (Haque et al., 2014). 

3.3.3. Flood frequency estimation 

Flood frequency estimation is a process that entails establishing a relationship between 

flood quantile and the probability of occurrence. ñFlood frequencyò generally refers to 

the likelihood of a flood of specific magnitude/threshold being met or exceeded at any 

given point in time, and ñtimeò being expressed as return period (Reed, 1999). This is 

undertaken by fitting a predefined probability distribution to historic  Annual Maximum 

Series (AMS) or partial series data from a single or combination gauging stations, thus 

capturing the probability of a peak flood occurrence (Stedinger and Griffis, 2008).  

The length of available data also contributes to flood estimates uncertainty, thus the 

availability of more historical data implies improved flood estimates and confidence in 

the decision made from such estimates. The Reed (1999) Flood Estimation Handbook 

(FEH) 5T rule of thumb for length of data required for flood estimation is adopted, i.e. 

the historical data should be at least five times the target return periods, thus providing 

acceptable uncertainty limits. 

Varying probability distributions including Generalized Extreme Value (GEV), 

Generalized Logistic (GLO), Extreme Value (type 1 ï 3), Generalized Pareto (GPA), 

and Log-Pearson type 3 (LP3) have been applied to fit Annual Maximum time series, 

and providing contrasting levels of flood estimates, even for the same dataset (Laio et 

al., 2009). Typically, a suitability analysis is undertaken to access the best probability 

distribution (Peel et al., 2001), but GEV is adopted to estimate flood frequency and 

magnitude in this study, due to its robustness, flexibility (Komi et al., 2016, 
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Hailegeorgis and Alfredsen, 2017, Papalexiou and Koutsoyiannis, 2013) and wide 

applicability in the area of interest, for consistency (Izinyon and Ehiorobo, 2014, Garba 

et al., 2013b, Fasinmirin and Olufayo, 2006). GEV probability distribution estimates are 

however affected by tropical cyclones and extratropical weather systems that results in 

extremely large shape parameters (Smith et al., 2011, Villarini and Smith, 2010), and 

these events do not manifest in Nigeria. Furthermore, GEV like other probability 

distributions is affected by short hydrological time series, resulting in uncertain flood 

estimates (Ragulina and Reitan, 2017, Botto et al., 2014). 

GEV is expressed as thus: 
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where, t, Ŭ, and k represents location, scale and shape parameters of the distribution 

function. 

Once the GEV parameters were fitted to the peak flood historical data for each station, 

the uncertainty limits (i.e. upper and lower boundaries) are ascertained by a bootstrap 

approach that samples the original dataset to create random data series with similar 

parameters as the original dataset, then applies the pre-defined distribution function to 

estimate various flood magnitudes at different return periods (Efron, 1979a, Efron, 

1979b, Kuczera, 1999, Hu et al., 2013).Flood frequency analysis was undertaken in the 

Flike flood frequency analysis software.  
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3.3.4. Comparative Analysis (Permutation test and Kolmogorov-Simonov test): 

Permutation and Kolmogorov-Simonov tests are applied to ascertain the significance of 

the missing data imputation approaches on the flood estimates and variation in the 

quantile distributions respectively.  Permutation test is the non-parametric alternative to 

parametric t-test, used in ascertaining the difference between two treatments (Good, 

2000), i.e. Multiple Imputation and Radar Altimetry Imputation in this case, while the 

Kolmogorov-Simonov test (Kolmogorov, 1991) assesses if two distributions are the 

same or if a distribution differs from a reference distribution. Both analysis was 

undertaken in R. 

3.3.5. Infilling  method evaluation for contrastingly gapped data at Taoussa, Mali: 

To further evaluate the effect of the infilling approaches applied on flood estimates, 

complete hydrological time series available at Taoussa gauging station in Mali (See 

location map in Supplementary Figure 1) was acquired from the Niger Basin Authority 

Database: http://nigerhycos.abn.ne/user-anon/htm/3, due to the absence of gap-free data 

in Nigeria. Historical water levels were converted to discharge using ratings curve 

presented in Supplementary Figure 2. Flood estimates derived from data filled using 

Multiple Imputation (MI) and Radar Altimetry (Alt) for both consecutively (Ò 3 years) 

and inconsecutively (> 3 years) gapped data are then compared to estimates derived 

from complete data using Permutation and Kolmogorov-Simonov tests. 

 

                                                           
3 http://nigerhycos.abn.ne/user-anon/htm/ 

http://nigerhycos.abn.ne/user-anon/htm/
http://nigerhycos.abn.ne/user-anon/htm/
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4. Results and Discussion 

4.1. Missing Data Infilling: Radar Altimetry  (RA) and Multiple Imputation  (MI)  

Figure 3 (a-d) shows the Annual Maximum Series data for each of the four gauging 

stations, with gaps filled using RA and MI data infilling  approaches. Both approaches 

respectively address situations of supplementary data (i.e. remote sensing) availability 

and unavailability and provides options for hydrological data gaps infilling , considering 

that altimetry tracks and virtual stations are not present at every river. 

Points of data overlap between the MI and RA time-series depicts points where 

historical data exist, and the space between time-series represents peak flood estimated 

by the varying approaches. The RA derived discharge is higher its MI counterpart at 

Umaisha, compared to any other station. At Baro, Lokoja and Onitsha gauging stations, 

RA peak flood estimates were mostly lower than those estimated by MI, and higher 

only in 1993 at Baro and Onitsha, and 1995 and 2001 at Baro only. The consistently 

low peak flood estimates displayed at Umaisha reveals the deficiency of MI, especially 

when estimating missing data for time series with wide gaps (Tyler et al., 2011). The 

higher Altimetry peak flood estimates at Baro and Onitsha is also consistent with 

historical flood events reported by the Dartmouth Flood Observatory (DFO) Archive. 

The high discharge values estimated from the RA infilling  method compared to MI 

were most evident for data sets with inconsecutive (>3 years) missing data.    
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Figure 3 (a) Baro station MI and RA Infilled time series 

 

Figure 3 (b) Lokoja station MI and RA Infilled time series 
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Figure 3 (c) Umaisha station MI and RA Infilled time series 

 

Figure 3 (d) Onitsha station MI and RA Infilled time series 

0

5000

10000

15000

20000

1980 1985 1990 1995 2000 2005 2010 2015

D
is

c
h

a
rg

e
 (m

3/
s
)

Year

Discharge-MI

Discharge-Alt

0

5000

10000

15000

20000

25000

1985 1990 1995 2000 2005 2010 2015

D
is

c
h
a

rg
e

 (
m

3
/s

)

Year

Discharge-MI

Discharge-Alt



Application of Open-access and 3rd Party Geospatial Technology for Integrated Flood Risk Management in Data 

Sparse Regions of Developing Countries 

82 
 

Figure 4 (a - b) shows the time series for Taoussa reference station in Mali, used as the 

validation station for the methods applied in this study for consecutively and 

inconsecutively spaced historical time-series. Both figures generally reveal that 

estimated peak discharge discordant from the real values, but RA estimates were closer 

to the in-situ measurements, compared to MI estimates, especially for consecutively 

gapped data. Results from the further quantitative analysis are presented and discussed 

in section 4.6, and more information on the exacted figures of these outcomes are 

presented in Supplementary Figure 1.  

 

Figure 4 (a) Taoussa Complete and Consecutive missing data  

0.000

500.000

1000.000

1500.000

2000.000

2500.000

1
9

9
2

1
9

9
4

1
9

9
6

1
9

9
8

2
0

0
0

2
0

0
2

2
0

0
4

2
0

0
6

2
0

0
8

2
0

1
0

2
0

1
2

2
0

1
4

2
0

1
6

2
0

1
8

D
ic

h
a

rg
e

 (
c
u

m
e

c
s
)

Year

Discharge Complete

Discharge (Consecutive) MI

Discharge (Consecutive) ALT



Application of Open-access and 3rd Party Geospatial Technology for Integrated Flood Risk Management in Data 

Sparse Regions of Developing Countries 

83 
 

 

Figure 4 (b) Taoussa Complete and Inconsecutive missing data  
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suggesting the absence of significant hydrological trends and homogeneity 

(breakpoints), indicating stationarity. These results indicate the long-term consistency of 

environmental and physical conditions within the catchment at the time of data 

collection (Kang and Yusof, 2012). Although dams upstream of the gauge stations have 

altered the hydrological regime of the Niger and Benue rivers when established (Abam, 

2001b, Olayinka et al., 2013), this study used data sets acquired after dam construction, 

thus sudden changes in discharge were not observed. Also, average serial correlation of 

all sites ranging from (-0.044 ï 0.519) suggests the absence of statistically significant 

correlation between peak floods for each site. 
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Table 4. Preliminary analysis results (Mean, Homogeneity, Trend, Outlier, Serial correlation) 

 

Station 
n 

 

 

Mean 

 

Homo. (P-Value) Trend (P-value [+/-]) Outlier LO - UO (P-Value) Lag1 correlation 

MI  RA MI  RA MI  RA MI  RA MI  RA 

Baro 27 5414.464 5282.514 0.568 0.567 0.680 [+] 0.967 [+] 1805.638 - 8679.583 (0.149) 1805.638 - 8679.583 (0.664) -0.044 -0.021 

Lokoja 23 18912.48 17805.802 0.663 0.142 0.433 [+] 0.228 [+] 13846.000 - 23797.980 (0.415) 10752.972 - 23797.980 (0.364) 0.26 0.291 

Umaisha 27 11838.31 12416.21 0.887 0.525 0.869 [-] 0.680 [+] 8775.407 - 15318.597 (0.209) 10138.233 - 13408.253 (0.893) 0.05 0.519 

Onitsha 23 16742.22 15457.1 0.963 0.29 0.917 [-] 0.403 [-] 15161.802 - 19829.556 (0.063) 10451.462 - 19829.556 (0.286) -0.103 0.119 

Taoussa1 23 1759.316 1697.879 0.208 0.284  0.256 [-] 0.132 [-] 1542.080 - 1984.615 (0.208) 1286.796 - 1984.615 (0.352) 0.060 -0.113 

Taoussa2 23 1774.456 1652.969 0.129 0.052 0.791 [+] 0.170 [-] 1536.970 - 1984.615 (0.980) 1044.185 - 1984.615 (0.054) -0.072 0.191 

MI = Multiple Imputation, RA = Altimetry, LO = Lower Outlier, UO = Upper Outlier, n = Number of data points, (-) = negative trend, (+) 

= positive trend, Taoussa1 = Consecutively gapped, Taoussa2 = Inconsecutively gapped. 
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4.3. Rating Ratio: rating  curve extrapolation uncertainty 

Figure 5-9 shows plots of Rating Ratios (RR) of peak flood data derived from the two 

infilling  approaches (MI and RA), in relation to the threshold value of 1. As suggested 

by Haque et al., (2014), a RR much greater than (>>) 1 implies the presence of residual 

uncertainty in the discharge estimates due to ratings curve extrapolation.  

From the results presented, the maximum RR values are observed at Baro (1.0172) and 

Taoussa (1.045) gauging stations, and are slightly greater than (>>) 1, suggesting 

minimal rating curve extrapolation uncertainty. Therefore further analysis is not 

undertaken to integrated rating curve extrapolation effect into the flood frequency 

estimation procedure using approaches such as Coefficient of Variation (CV), 

Likelihood framework and Bayesian framework suggested by Haque et al., (2014), 

Petersen-Øverleir and Reitan, (2009) and Lang et al., (2010).  

 

Figure 5 Baro ratings ratio (RR) 
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Figure 6 Lokoja ratings ratio (RR) 

 

Figure 7 Umaisha ratings ratio (RR) 
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Figure 8 Onitsha ratings ratio (RR) 

 

Figure 9 Taoussa ratings ratio (RR) 

Figure 5 -9 ratings ratio (RR) for all stations, Multiple Imputation (MI)  and Radar 

Alt imetry (RA) comparison 
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4.4. Flood frequency estimation, uncertainties and application 

Flood quantiles estimates, upper and lower confidence limits based on 90% confidence 

interval for five return periods (1-in-2, 1-in-5, 1-in-20, 1-in-50 and 1-in-100 year flood 

events) are presented in table 5 - 8, and the flood frequency plots for Lokoja and 

Umaisha gauging stations are presented in Figure 10 (a-d). At Lokoja, an equal number 

of missing data were filled with radar altimetry and Multiple Imputation, while Umaisha 

has the most missing data (gaps). Presenting the results from these stations with varying 

gaps allowed for the assessment of the effect of the two missing data infilling  

approaches for datasets. The dash lines above and below the expected quantile line 

(Figure 10 a-d) represent the upper and lower uncertainty boundaries, and the area 

within the uncertainty boundaries defines the confidence or credibility limits of the 

derived estimates, i.e. the smaller, the better and vice versa. Flood frequency curves of 

other sites are presented in Supplementary Figure 4 ï 8.  

The difference between MI and RA infilled flood estimates generally tend to increase 

with increasing return periods, and these differences are more pronounced for 

inconsecutively gapped historic time series such as Umaisha (Table 7), where MI 

approach resulted in much lesser flood estimates than RA. MI is typically known for its 

ineffectiveness in filling inconsecutive missing data points (Tyler et al., 2011), thus this 

result was expected. At Baro, Lokoja and Onitsha gauging stations that exhibited 

consecutive gaps, the MI flood estimates were higher than those of RA (Table 5, 6 and 

8). These results imply that both methods can be applied interchangeably for 

consecutively gapped time-series. Nevertheless, the statistical significance of these 

results is further evaluated by permutation and Kolmogorov - Simonov tests and 

presented in section 4.5.1. 
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Table 5 Baro flood quantile estimates and uncertainty boundaries for MI and RA filled 

datasets 

Return 

Period  

(1-in-Year) 

Expected quantile 

(m3/s) 

Lower Uncertainty Limit 

(m3/s) 

Upper Uncertainty L imit 

(m3/s) 

MI RA MI  RA MI  RA 

2 5415.9 5244.3 4906.3 4676.8 5770.9 5858.3 

5 6753.9 6741.0 5949.4 6090.3 7444.5 7565.0 

20 8018.9 8267.1 7209.9 7408.6 11870.9 10194.6 

50 8614.7 9039.3 7845.3 7971.0 17085.9 12145.3 

100 8980.1 9536.3 8229.0 8271.4 23207.5 13887.6  

 

Table 6 Lokoja flood quantile estimates and uncertainty boundaries for MI and RA 

filled datasets 

Return 

Period 

(1-in-Year) 

Expected quantile  

(m3/s) 

Lower Uncertainty 

Limit (m3/s) 

Upper Uncertainty 

L imit (m 3/s) 

MI  RA MI  RA MI  RA 

2 19006.2 17934.5 17947.2 16529.0 20198.5 19479.5 

5 22200.2 22013.5 20653.9 20115.6 24413.6 24548.2 

20 26592.40 27139.4 23856.4 24056.5 32051.6 33002.4 

50 29529.4 30294.0 25698.7 26172.6 39055.4 39780.8 

100 31812.1 32611.4 26987.0 27559.2 45774.8 45710.1 
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Table 7 Umaisha flood quantile estimates and uncertainty boundaries for MI and RA 

filled datasets 

Return 

Period  

(1-in-Year) 

Expected quantile  

(m3/s) 

Lower Uncertainty 

Limit (m 3/s) 

Upper Uncertainty 

L imit (m 3/s) 

MI  RA MI  RA MI  RA 

2 11868.8 12409.9 11540.7 11723.9 12232.2 13140.8 

5 12995.2 14478.52 12489.1 13573.6 13672.2 15642.9 

20 14676.3 17019.0 13718.3 15580.5 16370.9 19756.0 

50 15887.6 18549.5 14497.5 16615.7 18832.8 23108.6 

100 16878.1 19657.8 15071.1 17269.6 21156.0 25951.1 

 

Table 8 Onitsha flood quantile estimates and uncertainty boundaries for MI and RA 

filled datasets 

Return 

Period 

(1-in-Year) 

Expected quantile  

(m3/s) 

Lower Uncertainty 

Limit (m 3/s) 

Upper Uncertainty 

L imit (m 3/s) 

MI RA MI RA MI RA 

2 16575.0 15649.5 16167.9 15110.1 17029.2 16229.4 

5 17723.2 17110.0 17151.4 16419.0 18565.1 18063.1 

20 19302.0 18901.5 18272.96 17806.3 22009.8 21251.1 

50 20357.7 19979.5 18840.6 18508.7 25557.4 24003.6 

100 21178.3 20759.5 19194.3 18947.0 29506.5 26585.8 
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Figure 10 (a) Lokoja-MI flood frequency plot   

   

 

Figure 10 (b) Lokoja-RA flood frequency plot  
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Figure 10 (c) Umaisha-MI flood frequency plot 

  

Figure 10 (d) Umaisha-RA flood frequency plot 

Figure 4 (a-d): Probability distribution plots (PDP) of flood quantiles based on Multiple 

Imputation (MI) and Radar Altimetry (RA) filling methods. 



Application of Open-access and 3rd Party Geospatial Technology for Integrated Flood Risk Management in Data 

Sparse Regions of Developing Countries 

94 

 

4.5. 2012 and 2015 floods return period estimations 

The unprecedented flood of 2012 was reported as one of the most devastating floods in 

Nigeria in 40 years, followed by subsequent flood event of 2015. The post-flood need 

assessment report (FGN, 2013), revealed (i) economic and infrastructure loss worth 

16.9 billion US Dollars, (ii) displacement of 3.8 million people, and (ii) loss of 363 

lives.  

 A retrospective approach was undertaken in this study to categorise the flood 

magnitude that resulted in these devastating impacts having filled the data gaps. The 

results are presented with better details in Table 6 and 7 revealed that the peak flood 

magnitudes of 2012 (31700 m3/s at Lokoja; 18800 m3/s at Umaisha) and 2015 (22700 

m3/s at Lokoja) detailed in the Nigerian Flood Outlook (NIHSA, 2016) were within the 

90% confidence level bounds of 1-in-50 and 1-in-100-year flood events. This implies 

that radar altimetry application in filling gaps in hydrological datasets can be 

instrumental in improving flood management decisions in data-sparse regions through 

the provision of substantial information that would enhance mitigation efforts to reduce 

the impact of flooding on the potentially exposed populace.  

At Baro (Niger River), the 2012 and 2015 flood events were captured as 1-in-100 year 

flood events i.e. 13200 m3/s and 13000 m3/s respectively from data derived from both 

missing data infilling methods. Furthermore, the upper uncertainty boundaries of the 

quantile estimates derived from MI was greater than RAôs, depicting the possibility of 

design over-estimation in practice, if MI flood estimates are implemented for flood risk 

management. 
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4.6. Assessment of missing data infilling method effect on flood quantile estimates 

4.6.1. Assessment of Radar Altimetry and Multiple Imputation infilling , Niger and 

Benue rivers, Nigeria 

The results of the Permutation and Kolmogorov - Simonov tests presented in Table 9 

assesses statistical significance of the difference between flood quantiles estimated 

using multiple imputation and radar altimetry infilling approaches.  Radar altimetry data 

was not available for all the missing data years, hence the Missing /infilled-RA column 

of Table 9 shows the number of missing data points and available altimetry data points. 

Umaisha gauging station had the most missing data (19), of which (14) radar altimetry 

data points where available to fill the gaps, and the remaining (5) filled with multiple 

imputation. At Lokoja, the 6 missing data points where equality filled with multiple 

imputation and radar altimetry approach, thus providing a reference station for equal 

comparison of both approaches. 

Permutation test results (Pperm = 0.02) at Umaisha station with inconsecutively gapped 

data suggests that flood frequency estimates derived from MI and RA imputation 

approaches differed significantly, and the Dks statistic = 0.571 and Pks = 0.017 for the 

Kolmogorov - Simonov test further reveals the difference in the quantile distribution for 

both estimates. This deviation is attributed to the high number of missing data filled by 

the contrasting techniques i.e. 14 out of 19 missing data, and MI inability to accurately 

fill inconsecutively gapped datasets (Graham et al., 2007, Rochtus, 2014, Tyler et al., 

2011). At Lokoja station where an equal number of missing data were filled by both 

techniques, the difference between derived flood frequency estimates and distributions 

was not statistically significant (Pperm = 0.713, Dks = 0.143, and Pks = 0.98). Similarly, at 

Onitsha and Baro, the estimated quantiles and probability distribution were not 

statistically different (P> 0.05), implying that the application of altimetry in filling  

missing data did not result in any viable change in the quantile estimates and 

distributions when compared to MI. Therefore, both approaches can be applied 

interchangeably depending on the number of gaps and spread within the historical time 

series. 
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Table 9:  Kolmogorov-Simonov and Permutation test results 

Stations Missing/infil

led-RA 

Permutation test 

Pperm-Value 

Kolmogorov - Simonov test 

K-S Statistic (Dks) Pks-Value 

Umaisha 19 (14) 0.020 0.57143 0.0017 

Onitsha 16 (9) 0.407 0.19048 0.8531 

Lokoja 6 (6) 0.713 0.14286 0.9870 

Baro 12 (1) 0.063 0.38095 0.0948 

 

4.6.2. Assessment of Radar Altimetry and Multiple Imputation infilling at Taoussa, 

Mali  

Flood frequency estimates and the upper and lower uncertainty bounds for a 1-in-2 to 1-

in-100year flood events are presented in Table 10 to capture varying scenarios of gaps 

(consecutive and inconsecutive) and infilling  approaches (Radar Altimetry and Multiple 

Imputation).  The results show that flood estimates for both infill ing approaches are 

within the uncertainty bounds of the complete data flood events for all return periods, 

except the 1-in-2year flood derived from inconsistently gapped data filled with radar 

altimetry. Permutation and Kolmogorov - Simonov test results (Table 11) further 

revealed that though flood estimates did not significantly differ (Pperm> 0.05), the Dks 

and Pks-Values for the radar altimetry estimates for both consecutive and 

inconsecutively gapped time series showed significant differences in distribution when 

compared to complete data. The observed difference in distribution suggests that the 

two complete and RA imputed flood estimates are not drawn from the same distribution 

despite not being significantly different (Ewemoje and Ewemooje, 2011). Therefore, an 

assessment of the optimal probability distribution for fitting the historical time series 

derived infilling  the varying infilling  approaches is suggested, rather than using a 
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predefined distribution such as GEV as was the case in this study, given that varying 

probability distribution can result in very different flood estimates even for the same 

dataset (Laio et al., 2009). 

Table 10: Taoussa flood quantile estimates and uncertainty boundaries for complete 

historical data and consecutively and Inconsecutively gaped missing data filled with MI 

and RA approaches 

Return 

Period 

Discharge 

Complete 

Lower 

Limit 

(Complete) 

Upper 

Limit 

(Complete) 

Discharge 

(Consecutive) 

MI  

Discharge 

(Consecutive) 

RA 

Discharge 

(Inconsecutive) 

MI  

Discharge 

(Inconsecutive) 

RA 

2 1787.79 1734.88 1842.2 1760.15 1709.32 1779.18 1669.77 

5 1898.39 1850.91 1954.0 1874.26 1861.13 1887.62 1835.12 

20 1983.25 1938.07 2087.7 1978.07 1984.19 1976.08 1986.4 

50 2015.89 1967.17 2170.6 2025.17 2034.14 2012.2 2055.43 

100 2033.39 1978.96 2229.2 2053.36 2061.89 2032.35 2096.89 
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Table 11 Kolmogorov-Simonov and Permutation test results, Taoussa gauging station 

Data gap infilling comparison 
Permutation  

(Pperm-Value) 

Kolmogorov - Simonov test 

K- S Statistic (Dks) Pks - Value 

Complete Vs Consecutive (MI)  0.731 0.381 0.095 

Complete Vs Consecutive (RA) 0.870 0.429 0.041 

Complete Vs Inconsecutive (MI)  0.997 0.238 0.603 

Complete Vs Inconsecutive (RA) 0.873 0.476 0.016 

 

5. Conclusion 

Missing data in hydrological time series is an unavoidable part of ground monitoring 

and emanates due to varying factors that include natural, technical, physical, procedural 

and financial constraints. These challenges consequently result in uncertain design flood 

estimates (Tyler et al., 2011, Starrett et al., 2010), thus increasing flood exposure and/or 

cost of flood control and management measures implementation based on such results. 

Advancement in open-access radar altimetry provides reasonably accurate continuous 

water level measurements not hampered by gaps as evident in in situ measurements 

(Escloupier et al., 2012), especially during extreme flood events. Also, advances in 

computational hardware and software have reduced the challenges associated with 

undertaking complex statistical imputations to estimate missing data (Little, 2002).  

This study applies Radar Altimetry and Multiple Imputation to fill gaps in hydrological 

historical time-series and flood frequency estimations, thereby capturing scenarios of 

supplementary data availability as unavailability respectively, as usually, the case along 

several rivers in developing regions. Furthermore, the effect of both approaches on 
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flood frequency estimates was evaluated for gauging stations along the Nigeria and 

Benue rivers, accounting for the variation in missing data apparent in the study area, i.e. 

consecutive (1-3 years) and inconsecutive (> 3 years). To further evaluate the most 

suitable infilling approach, data was deliberately removed from complete dataset to 

depict these missing data variations. 

Results from this study revealed  (i) improved correlation between in situ water level 

measurements and radar altimetry as the distance between them reduce and vice versa, 

(ii) the size of the gaps in the hydrological time series (consecutive and inconsecutive) 

determines to a large extent the missing data imputation approach applied; (iii) Radar 

Altimetry missing data infilling approach outperformed Multiple Imputation, especially 

for widely gapped time series (> 3 years), but did not differ much for data sets with gaps 

of 1-3 years, hence can be applied interchangeably for datasets with consecutive gaps; 

and (iv) the previously unquantified 2012 and 2015 flood events in Nigeria were 

quantified as 1-in-100 and 1-in-50year floods respectively, and can be applied to inform 

flood management decisions having filled the historic data gaps. Despite the progress 

and potential portrayed in this study, the outcome could contain residual uncertainties 

that have propagated from in situ and altimetry hydrological data collection process, 

rating curve extrapolation, probability distribution and methodology selection. The 

quantification of these uncertainties is however beyond the scope of this study. 

Furthermore, hydrodynamic flood modelling and mapping of flood depth and extent 

based on the outcome of this section will be undertaken in Chapter 6. 
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Chapter 3 Supplementary Figures and Tables 

 

Supplementary Figure 1. Approach validation in-situ and Altimetry virtual station 

locations 

 

 

Supplementary Figure 2. Taoussa Rating Curve 
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Supplementary Figure 3. In situ Station (Taoussa) vs Virtual Station (Taoussa) 

Supplementary Table 1. Radar Altimetry Missing data filling outcome 

S/N Year 
Altimetry Water 

level (m) 

Filled Water level 

(m) 

Filled Discharge 

(m3/s) 

1 2002 200.773 4.754 1487.468 

2 2003 199.642 3.710 1044.185 

3 2004 200.730 4.714 1470.615 

4 2005 200.992 4.956 1573.303 

5 2006 201.056 5.015 1598.387 

6 2007 201.268 5.210 1681.478 

7 2008 200.947 4.914 1555.666 

8 2009 201.205 5.152 1656.786 

9 2010 200.846 4.821 1516.080 

10 2013 200.790 4.769 1494.131 

11 2014 200.743 4.726 1475.710 

12 2015 200.261 4.281 1286.796 
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Supplementary Figure 4 Taoussa Complete flood frequency plot 

 

 

Supplementary Figure 5 Taoussa Consecutive Altimetry flood frequency plot 
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Supplementary Figure 6 Taoussa Consecutive Multiple Imputation flood frequency plot 

 

 

Supplementary Figure 7 Taoussa Inconsecutive Altimetry flood frequency plot 
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Supplementary Figure 8 Taoussa Inconsecutive Multiple Imputation flood frequency 

plot 
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CHAPTER 4: ACCOUNTING FOR CLIMATE VARIABILITY IN REGIONAL 

FLOOD FREQUENCY ESTIMATES FOR WESTERN NIGERIA  

Abstract 

Extreme flood events are becoming more frequent and intense, owing to climate change 

and other anthropogenic factors. Nigeria recently has been impacted immensely, 

resulting in damage to infrastructures, displacement of people, and loss of lives. To 

reduce such impacts in the future, effective planning is required, underpinned by 

analytical work based on reliable data and information. Such data is however sparse in 

developing regions, owing to financial, technical and organisational drawbacks. 

Regional Flood Frequency analysis (RFFA) is applied in this study to curtail data 

unavailability and short record deficiency challenges, by agglomerating data from 

various sites with (i) similar hydro-geomorphological characteristics, (ii) governed by a 

similar probability distribution, and (iii) differ only by an ñindex-floodò that can be 

estimated using proxy information. Using ICI-RAFT tool to implement the RFFA, 

climate indices are integrated to account for climate variability effect.  

Data from seventeen gauging stations within the Ogun-Osun River basin in western 

Nigeria were analysed, resulting in the delineation of three sub-regions delineated, of 

which two were homogeneous and one non-homogeneous. Generalized Logistic (GLO) 

distribution was fitted to the annual maximum flood series for the two homogeneous 

regions to estimate flood magnitudes and probability of occurrence while accounting for 

climate variability. The influence of climate variability on flood estimates was linked to 

Madden-Julian Oscillation (MJO) and resulted in an increased probability of high return 

period flood (i.e. 1-in-100year) occurrence. The results reiterate the importance of 

taking climate variability into account in flood frequency estimation and suggests a 

review flood management measures based on the assumption of stationarity. 

Keywords: Climate variability; Regional flood frequency; climate-indices; L-moment, 

Madden-Julian Oscillation (MJO); Generalised Logistic (GLO) 

1. Introduction 

Floods are natural hazards aggravated by anthropogenic factors and result in the 

destruction of agricultural landforms, livestock and crops, disruption of socio-economic 

activities, damage to properties and infrastructures, loss of lives and financial loss 

(FGN, 2013). In Nigeria (the case study of this research), the recent unprecedented 
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levels of flooding and impact resulted in increased public, government and other 

stakeholders concern and curiosity about the probability of flood recurrence, in order to 

plan and implement appropriate mitigation measures to reduce flood impact (Agada and 

Nirupama, 2015). Knowledge of flood frequency estimates is crucial in ensuring that 

socio-economic activities and infrastructural development are planned appropriately 

(Hosking and Wallis, 1997). Accurate estimates of flood frequency estimates, also 

known as Annual Exceedance Probabilities (AEP) are also important for design of flood 

defence structures (dykes, levees, dams, etc.), construction of hydraulic structures 

(Bridges and culverts), development for floodplains and urban land-use regulations, 

emergency management and insurance policy development (Kjeldsen et al., 2002, Saf, 

2009b). Under-estimation of the design flood can lead to increased flood risk with 

potentially damaging consequences, while overestimation can lead to resource wastage 

and flood aggravation upstream or downstream (Mishra et al., 2009).  

To accurately estimate AEP, networks of gauging stations are established to collect 

hydrological data over a long period (Herschy, 2008). However, it is logistically 

difficult due to harsh topography and cost intensive to establish gauging stations at 

every location of interest. Hence, some locations are usually left ungauged or with short 

data for newly established stations. In several developing regions many catchments are 

poorly/sparsely gauged, due to (i) lack of commitment by station operators, (ii) 

deteriorating conditions of observation equipment, (iii) insecurity challenges, and (iv) 

inaccessibility to remote locations (Ampadu et al., 2013a, Olayinka et al., 2013). The 

absence of quality and sufficient data leads to poor flood predictions, as often the case 

in developing regions (Dano Umar et al., 2011). Therefore, It is essential to explore 

techniques with the capacity to extract the maximum value from any available data, to 

develop reasonable flood frequency estimates (Oyegoke and Oyebande, 2008). 

Generally, the choice of techniques for flood frequency estimation depends on the 

availability of historical flood records at/or around the specific site of interest (Reed, 

1999). When sufficient historical flood data are available, AEP is estimated by the 

application of direct (at-site) flood frequency analysis which involves fitting predefined 

probability distribution to the annual maximum flood or partial flood time series 

(Herschy, 2008). Where data is insufficient, indirect flood estimation procedures are 

used which includes (i) the adoption of hydro-meteorological data from other locations 
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similar in characteristics to the site of interest (Hrachowitz et al., 2013, Wagener, 2007, 

Gupta et al., 2008) and (ii)  the incorporation of  data from other sources such as remote 

sensing (Smith et al., 2015, Owe and Neale, 2007). In the present study, the former 

approach is adopted while in our ongoing related work the merits of the latter approach 

are being investigated. 

A major factor that affects future flood regimes and must be considered when 

estimating flood magnitudes is the changing climatic conditions, which results in more 

intense and frequent flooding (Kunkel, 2003). Estimating frequencies under climate 

variable conditions require the incorporation of non-stationarity effects defined by 

statistically significant breakpoints (Pettitt, 1979) and trends (Kendall and Stuart, 1969) 

within historical time series. While stationary flood frequency methods entail directly 

fitting predefined probability distributions to historical data, non-stationary approaches 

are not as straight and requires the integration climate variability using climatic indices - 

a mechanism for depicts climatic influence (OôBrien and Burn, 2014, Kochanek et al., 

2013, Hounkpè et al., 2015b). Several studies have demonstrated the benefits of 

incorporating climatic variability into flood frequency estimation procedures (Kochanek 

et al., 2013, Li and Tan, 2015, Machado et al., 2015, OôBrien and Burn, 2014), and 

emphasized the need for a paradigm shift in approach to enable the development of 

robust and resilient predictions (Hounkpè et al., 2015b, Solecki and Rosenzweig, 2014). 

Also, recent evidence from studies in West Africa (Mouhamed et al., 2013, New et al., 

2006, Diatta and Fink, 2014) and Nigeria (Salau et al., 2016) further supports this 

argument and provides evidence of strong correlations between climatic variability and 

hydro-meteorological events in these regions (Aich et al., 2014a, Hounkpè et al., 2015b, 

De Paola et al., 2013). 

Therefore, this study aims to tackle the problem of data sparsity and limited resources to 

estimate flood frequency while taking into consideration climate variability effect, as 

often the case in developing countries. In subsequent sections, (2) describes the study 

area and data sources; (3) details preliminary analysis and L-moment based regional 

flood frequency techniques, taking climate variability effect into account; (4) presents 

the results of preliminary analysis, direct and regional L-moment based flood frequency 

estimates; and (5) concludes one the findings and implication of the results on flood 

management. 
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2. Study Area and Data Sources 

The Ogun-Osun River Basin (OORB) is in western Nigeria (6 3̄0¡ - 8 2̄0¡N latitude and 

3 2̄3¡- 5 1̄0¡E longitude), and encompasses four states including Ogun, Osun, Oyo and 

Lagos, within a 66,264 km2 area. The basin is drained by two major tributaries, Ogun 

and Osun, and other minor tributaries including Yewa, Ibu, Ona, Sasa and Ofiki  Rivers. 

The climate of OORB is influenced by tropical continental and maritime air masses 

(Adeaga et al., 2006), and experiences an annual rainfall of 1400 mm to 1500 mm; 

mean annual air temperature between 25.7°C and  30°C; and relative humidity varying 

from 37% ï 85% for dry and wet seasons respectively (Adeleke et al., 2015). OORB 

has experienced recurring flooding recent years, caused by factors such as intense 

precipitation; poor urban planning and waste management; and failure of upstream 

hydraulic systems, resulting in socio-economic, infrastructural, ecological and 

environmental impacts (Jinadu, 2015, Komolafe, 2015). 

Hydrological data (discharge, water levels and rating curves) used for this study were 

provided by the Ogun-Osun River Basin Development Authority (OORBDA), the 

agency responsible for the collection and management of data in the basin. Additional 

data sets for two hydrological station, i.e. Yewa Mata and Ona River/Sala village were 

extracted from published research Olukanni and Alatise (2008) and Ewemoje and 

Ewemooje (2011) respectively, using the WebPlotDigitizer (Rohatgi, 2014). The 

catchment area for each station was delineated from 30 m Shuttle Radar Topography 

Mission (Farr et al., 2007) using Arc Hydro in ArcMap. The properties of the gauging 

stations for OORB is presented in Table, and the spatial distribution of gauges is 

presented in Figure 1, showing the spread and sparsity of the hydrological monitoring 

network. Climate indices were provided by the National Oceanographic and 

Atmospheric Administration (NOAA) (GCOS-AOPC/PPOC, 2016), available within 

the International Centre for Integrated Water Resources Management (ICIWaRM) 

Regional Analysis of Frequency Tool (ICI-RAFT) database, and includes multi-decadal 

meteorological events such as Pacific Decadal Oscillation, El Nino/Southern 

Oscillation, MaddenïJulian Oscillation (MJO), North Atlantic Oscillation and others. 
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Table 1 Gauge stations properties 

S/N Station ID Years Data Lat. Long. Missing Cat. Area (km2) 

1 Eggua 1980-2012 26 7.05 2.92 0 0.64 

2 Idogo 1980-2012 24 6.83 2.92 0 0.923 

3 Ajilete 1980-2012 29 6.70 2.92 0 2.89 

4 Oba/Oyo-Obgbomoso 1966-1988 23 6.70 2.92 0 2.90 

5 Ebute Igboro 1980-2012 25 6.90 2.90 0 7.92 

6 Yewa Mata 1982-1994 14 6.95 2.92 0 24.05 

7 Ijaka-Oke 1980-2012 27 7.18 2.90 0 63.15 

8 Ogun/Oyo-Iseyin road 1966-1988 23 7.85 3.94 0 578.00 

9 Ofiki/Ofiki town 1966-1988 23 7.63 3.21 1 715.00 

10 Ogun/Shepeteri 1966-1988 23 8.63 3.65 0 1190.00 

11 Oyan/Ilaji-Ile 1982-2009 26 7.98 3.00 1 1460.00 

12 Ofiki/Iganna-Ilere road 1966-1988 23 7.95 3.23 0 3978.00 

13 Ofiki/Igangan 1966-1988 23 7.68 3.18 0 2732.00 

14 Oshun/Iwo railway 1965-1988 24 7.85 3.93 0 4325.00 

15 Ona river/Sala Village 1982-1999 18 7.01 3.015 0 8500.00 

16 Ogun/Olokemeji 1966-1987 22 7.45 3.09 0 9140.00 

17 Ogun/Ibaragun 1965-1988 24 6.77 3.33 0 21660.00 
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Figure 1:  The OORB study region. 

3. Methodology  

3.1. Data Preparation and Preliminary analysis 

Data preparation is a prerequisite for RFFA, and entails data formatting, filling of 

missing data gaps and statistical test analysis. River water levels were converted to 

discharge using rating curves provided by the OORBA. Multiple imputation techniques 

(van Buuren, 2007) was applied to fill the gaps in the hydrological data due to the 

consecutive gaps of 1-3years inherent in the hydrological data (Khalifeloo et al., 2015). 

Multiple imputations were executed using Microsoft Excel XLSTAT add-on that 

implements a coupled Markov Chain Monte Carlo and ordinary least squares regression 

approach to estimate missing annual peak flows (van Buuren, 2007).  

RFFA application is also based on the assumption that the data used satisfies the 

conditions of randomness, serial non-correlation, outliers absence and homogeneity, to 

reduce the inherent data uncertainty (Kang and Yusof, 2012). 
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The randomness of hydrologic data points at each station was estimated using the trend 

identification function Mann-Kendall  (M-K) test (Mann, 1945). The M-K  test assesses 

the upward and downward trends in the time series (Yue and Wang, 2002). Serial 

correlation within hydrological records at a particular site results in discrepancies in 

regional variance and increased data skewness (Stedinger, 1983), thus contributing to 

uncertainty in regional flood frequency estimates (Kuczera, 1983, Hosking and Wallis, 

1997). To assess the magnitude of the serial correlation, Lag1 correlation coefficients 

(Kendall and Stuart, 1969) was applied to derive values ranging from -1 (perfect non-

correlation) to 1 (perfect correlation). The presence of outliers also affects data quality, 

and consequently flood estimates. Outliers are attributed to gauge failure, sampling 

inconsistencies, typo errors, or gauge disruptions, and are not considered part of the real 

flood population data set (Pedruco et al., 2014). Outliers were identified by using the 

Grubbs and Beck test (Grubbs and Beck, 1972). Finally, breakpoint analysis (Pettitt, 

1979) was applied to assess significant homogeneity within the hydrological time series, 

attributed to changing climatic conditions. 

3.2. Climate indices - climate variability  effect 

Climate variability affects the frequency and magnitude of extreme flood events (Kwon 

et al., 2008, Gutiérrez and Dracup, 2001). Warmer climate implies increased 

evaporation and atmospheric water moisture, resulting in persistent precipitation and 

consequently flooding (CEDEAO-ClubSahel/OCDE/CILSS, 2008). While in the past 

hydrologic models have assumed stationarity, current climate change conditions imply 

that the future is expected to vary despite what is known of the past  (He et al., 2006, 

Sayers et al., 2015). Processes in the ocean-atmosphere system that influence 

precipitation, atmospheric pressure and temperature can be defined by climatic indices 

and is useful in tracking long-term hydrological changes (Li and Tan, 2015, Machado et 

al., 2015, López and Francés, 2013, Giovannettone, 2015). Some key climate indices 

that characterize the frequency, intensity and duration of extreme climatic events 

include the Arctic Oscillation (AO), North Pacific Oscillation (NPO), North Atlantic 

Oscillation (NAO), Pacific Decadal Oscillation (PDO), Pacific/North American Index 

(PNA), El Nino/Southern Oscillation (ENSO), and MaddenïJulian Oscillation (MJO) 

(Mouhamed et al., 2013).  
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In this study, the correlation between the annual maximum series and climatic indices 

are evaluated, and the influence of these indices on the hydrologic time-series are 

accounted for within the flood frequency estimation process (Hounkpè et al., 2015b, 

Giovannettone, 2015). The International Centre for Integrated Water Resources 

Management (ICIWaRM) Regional Analysis of Frequency Tool (ICI-RAFT) developed 

by Giovannettone and Wright, (2011) embeds various climate indices, including those 

previously mentioned to enable analysis and inclusion of climate variability for the 

estimation of Annual Exceedance Probability (AEP). ICI-RAFT tends to correlate peak 

flood values with each climate indices, to determine that with the highest correlation 

coefficient (R2) (Giovannettone, 2015), thus inferring the influence of climate indices. 

3.3. L-moment - Index Flood Regional Flood Frequency Analysis (RFFA) 

Regional flood frequency analysis is based on the agglomerate hydrological data in 

regions characterised by similar physiographical parameters including catchment area, 

catchment slope, stream length, precipitation, and/or elevation. Hydrological data 

available at the sites within the defined region are used to estimate the regional flood 

quantile based on the assumption that they are defined by the same probability 

distribution, and differ only by the index flood (Hosking and Wallis, 1997). This 

process therefore reduces the inconsistencies associated with data shortage (Mishra et 

al., 2009).  

The Index flood technique developed by Dalrymple (1960) has been applied widely in 

determining flood estimates for catchments of varying sizes, gauged and ungauged, 

applied at global, regional and local scales (Smith et al., 2015, Padi et al., 2011, Izinyon 

and Ajumka, 2013). The general assumption for this technique is that the probability 

distributions of the annual maximum floods across sites in the region are similar, and 

differ only by a site-specific scaling factor termed the ñindex flood ï mean or medianò 

(Hosking and Wallis, 1997, Reed, 1999, Dalrymple, 1960).  

The flood quantile (1 ) for a T-year return period at a site of interest É, given a 

regional  probability distribution factor 8 , common to all sites, can be 

mathematically expressed as:  

1  1 8                                (4) 
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Index-flood (1  for an ungauged site of interest is usually derived from an 

established relationship between available catchment characteristics information such as 

catchment area and the index-flood of gauged sites within the homogeneous region 

(Stedinger and Griffis, 2008).  The regional probability distribution is a dimensionless 

parameter determined using a best-fit statistical approach discussed in a later section of 

this study.  

L-moment based flood frequency analysis was undertaken using ICI-RAFT 

(Giovannettone and Wright, 2011), and the procedure includes (i) data screening of 

clustered sites using the discordancy measure (D), based on Wards hierarchical 

clustering approach, (ii) regional homogeneity testing using the heterogeneity measure 

(H), (iii) selection of the appropriate distribution using the goodness-of-fit measure (Z), 

for the estimation of the frequency distribution using the index flood procedure 

(Hosking and Wallis, 1997). L-moment is a widely-preferred method for RFFA due to 

the robustness of Linear (L) - moments in comparison to ordinary moments in handling 

extreme values over a wider range of probability distributions, and its reduced 

susceptibility to bias.  The components of L-moment analysis are detailed in Hosking 

and Wallis (1997) and other studies (Izinyon and Ehiorobo, 2014, OôBrien and Burn, 

2014, Kjeldsen et al., 2002, Saf, 2009a, Peel et al., 2001). The individual L-moment 

components and processes are not explained in details but summarised below.  

Data screening: The discordancy measure is based on L-Moments (L-Mean, L-

Covariance, L-Kurtosis and L-Skewness), and identifies sites whose L-Moment ratio 

are discordant from that of the whole group, denoted by a critical value of (D Ó 3). 

Homogeneity testing: Heterogeneity measure (H) compares the variation between L-

moments for a group of sites and what is expected of a homogeneous region to justify 

that the group of sites are defined by a similar probability distribution. The region is 

deemed acceptably homogeneous if H <1, possibly heterogeneous if 1 Ò H < 2, and H Ó 

2 if the region is definitely heterogeneous (Hosking and Wallis 1997). Probability 

distribution selection: The Z-Statistic is a goodness-of-fit measure that assesses the 

probability distribution that best fits the weighted-average regional L-moment 

parameters of each site in a homogeneous region (L-Skewness and L-Kurtosis) 

(Borujeni and Sulaiman, 2009). An optimal probability distribution can also be 

visualised using L-moment diagram (L-Kurtosis vs. L-Skewness), with the best 
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distribution is approximated as the distribution curve closest to the majority of the 

sample data points (Komi et al., 2016).  

4. Results and Discussion 

4.1. Data characteristics and preliminary analysis 

Data preparation results for this study are presented in Table 2. Lag1 correlation results 

show that the serial correlation between data sets at each site varied from -0.002 to 

0.516 (-1 = perfect non-correlation; 1 = perfect correlation), suggesting the absence of a 

strong relationship among peak floods at each site. No low outlier was detected from the 

Grubbs and Beck test, and high outliers identified at Oba/Oyo-Obgbomoso, Ofiki/Ofiki 

town, Ofiki/Iganna-Ilere road, Ofiki/Igangan, Ogun/Shepeteri, Ogun/Oyo-Iseyin road, 

and Ogun/Ibaragun gauging stations were consistent at each site, as well as with flood 

events recorded in past literature (Olukanni and Alatise, 2008). The trend and 

breakpoint analysis (homogeneity test) result revealed that significant upwards trends 

were evident at Ijaka-Oke, Oyan/Ilaji -Ile, and Oba/Oyo-Obgbomoso stations, while no 

significant trends were identified at the remaining sites. These trends were consistent 

with those of the neighbouring Oueme River Basin in the Benin Republic (Hounkpè et 

al., 2015b), influenced by similar climatic conditions. The time series plots presented in 

Figure 2 (a - d) show the annual maximum discharge of the four stations selected for 

further analysis. These selections capture the varying spectrum of trends displaying 

spikes and troughs that represent peak flood variability at Ijaka-Oke and Ofiki -Igangan 

(Figure 2 (a-b)), while changes in hydrologic regimes defined by the breakpoints 

analysis are for Ofiki/Iganna-Ilere road and Oba/Oyo-Obgbomoso stations are presented 

in Figure 2 (c-d). Changes in the hydrological regime are evident in the breakpoint 

analysis plots from 1965 to 1957 and 1979 to 1988, corresponding to documented years 

of changes in precipitation patterns in Nigeria and West Africa that depict dry to wet  

(intense drought to rainfall) zone transition (New et al., 2006, Oguntunde et al., 2011, 

Ogungbenro and Morakinyo, 2014, Adeaga, 2006). 
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Table 2 Preliminary test results 

 

S/N Station ID N Missing Outlier Trend (+/-) Homogeneity Lag1 cor. 

1 Ijaka-Oke 33 6 0.464 0.001 + 0.081 0.516 

2 Eggua 33 7 0.017 0.721 + 0.149 0.083 

3 Ebute Igboro 33 8 0.005 0.420 + 0.193 0.083 

4 Idogo 33 9 0.001 0.768 + 0.776 0.330 

5 Ajilete 33 4 0.016 0.457 - 0.290 -0.025 

6 Yewa Mata 14 0 0.049 0.518 - 0.885 -0.209 

7 Oyan/Ilaji-Ile 26 0 0.838 0.000 - 0.548 0.319 

8 Ona river 18 0 0.955 0.654 - 0.439 0.019 

9  Oshun/Iwo railway 24 0 0.061 0.132 + 0.189 0.305 

10  Oba/Oyo-Obgbomoso  23 0 0.298 0.016 + 0.001 0.272 

11 Ofiki/Ofiki town 23 1 0.128 0.566 + 0.659 -0.254 

12 Ofiki/Iganna-Ilere road 23 0 0.370 0.057 + 0.013 0.302 

13 Ofiki/Igangan 23 0 0.398 0.057 + 0.047 0.274 

14 Ogun/Shepeteri 23 0 0.079 0.172 + 0.183 -0.164 

15 Ogun/Oyo-Iseyin road 23 0 0.312 0.566 + 0.444 0.125 

16 Ogun/Ibaragun 24 0 0.279 0.472 + 0.463 -0.018 

17 Ogun/Olokemeji 22 0 0.000 0.617 - 0.170 0.077 

Trend-direction (+/-), Outlier, and Homogeneity depicted by p-values, Lag1 correlation varies from -

1 to 1  
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 (a) Ijaka-Oke       (b) Ofiki-Igangan 

        

(c) Ofiki/Iganna-Ilere road     (d) Oba/Oyo-Obgbomoso  

Where: mu1 (---) and mu2 (---) represent the mean discharge of both break points, 

representing the average difference in hydrological regimes. 

Figure 2 (a-d) Trends and breakpoints plots for some of the non-stationary gauging 

stations 

4.2. Identification of homogeneous regions and determination of discordancy 

measure 

Regional L-moment statistics, discordancy (D) and heterogeneity (H) statistics are 

presented in Table 3, while site-specific results of same statistics are presented in Table 

4. An  H statistic value of  8.89 (i.e. H>1) reported for the entire catchment area reveals 

the variable land cover, hydrologic and catchment characteristics over the Ogun-Osun 

River Basin (Oyegoke and Oyebande, 2008). Consequently, the region was divided into 

three sub-regions and tested for homogeneity (Table 3), and the L-moment statistics of 
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sites constituting each sub-region are presented in Table 4. The H-Statistics for sub-

regions 2 and 3 showed homogeneity (H<1), while sub-region 1 was heterogeneous 

(Table 3). For the H and L-statistics of all defined regions are presented in Table 4, only 

Idogo was discordant (D = 4.2232) and was removed from further analysis. All other 

sites within the homogeneous sub-regions were within the prescribed critical limit for 

discordancy (D<3). The combination of gauging station historic data within the 

homogeneous sub-regions provides a means to improve long-term flood magnitude 

estimation by using a combined data set record of 126 years (sub-region 2) and 141 

years (sub-regions 3), thus satisfying in excess the Nigerian guideline of time series 

length for RFFA of 30 years in Nigeria (FME, 2005b). 

Table 3 Regional Average L-Statistics and H-Statistic for defined regions 

Region No of 

Stations 

Mean  L-CV   L-

Skew. 

 L-Kurt. Dis. 

(D) 

H Homogeneity 

All  17 66.144 0.252 0.146 0.198 3.000 8.89 Heterogeneous 

1 6 35.458 0.224 0.112 0.226 0.165 12.42 Heterogeneous 

2 5 70.680 0.248 0.180 0.172 1.333 0.62 Homogeneous 

3 6 98.865 0.275 0.175 0.171 1.648 0.87 Homogeneous 

L = Linear, CV = Covariance, Skew = Skewness, Kurt = Kurtosis, Dis = Discordancy, H = 

Heterogeneity  

 

Table 4 L-Moments and Discordancy Statistics for the Sites in the three Sub-regions 

Region   Station ID Mean L-CV L-Skew. L-Kurt. LM-ratio 
Dis 

(D) 

1  Eggua 7.965 0.456 0.449 0.296 0.134 1.587 

1  Ebute Igboro 17.312 0.219 0.189 0.235 0.114 0.279 

1  Ajilete 31.219 0.120 0.176 0.229 0.129 0.854 

1  Idogo* 11.905 0.049 -0.434 0.276 -0.211 4.223 

1  Yewa Mata 10.203 0.461 0.352 0.159 0.143 1.264 
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1 
 Ona river/Sasa 

Village 
189.723 0.137 0.053 0.033 0.016 0.667 

2  Ijaka-Oke 5.613 0.234 0.236 0.178 0.021 0.633 

2   Oshun/Iwo railway 200.474 0.218 0.169 0.163 0.111 0.808 

2 
  Oba/Oyo-

Obgbomoso  
20.808 0.209 0.132 0.198 0.058 0.532 

2  Ogun/Shepeteri 17.822 0.261 0.128 0.238 -0.018 2.09 

2 
 Ogun/Oyo-Iseyin 

road 
131.331 0.322 0.213 0.078 -0.022 1.462 

3  Oyan/Ilaji-Ile 13.691 0.293 0.026 0.125 -0.034 1.3635 

3  Ofiki/Ofiki town 16.270 0.253 0.185 0.159 0.032 0.3348 

3 
 Ofiki/Iganna-Ilere 

road 
73.918 0.303 0.116 0.129 0.001 0.4341 

3  Ofiki/Igangan 90.501 0.305 0.142 0.203 0.059 1.3824 

3  Ogun/Ibaragun 190.916 0.216 0.041 0.187 -0.044 0.975 

3  Ogun/Olokemeji 218.108 0.359 0.455 0.346 0.188 0.667 

4.3. Regional Distribution and Goodness of Fit Measures 

Z Statistics provides a more viable statistical approach that quantifies individual 

probability distributions. Table 5 shows the Z Statistics for all distributions for each 

sub-region and demonstrates that GLO is significant at the 10% confidence interval (Z Ò 

ȿρȢφτ ȿas prescribed by Hosking and Wallis (1997) for regions 2 and 3, while 

Generalised Extreme Value (GEV) provides the second best distribution for these 

regions. The LïMoment ratio diagram on the other hand (Figure 3), displays the 

relationship between regional average L-skewness and L-kurtosis fitted to varying 

probability distributions for all three regions. The 3-parameter distribution line/curve 

closest to L-moment ratio points of sub-regional sites portray the optimal distribution 
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(Peel et al., 2001, Reed, 1999), and in this case, Generalized Logistic (GLO) curve 

satisfies this approximation. Three (3) parameter were selected due to their robustness 

and optimal representation of probability distribution parameters (Hailegeorgis and 

Alfredsen, 2017). This optimal probability distribution corresponds with those applied 

in previous single-site and regional studies in proximity to our study area (Komi et al., 

2016, Izinyon and Ehiorobo, 2014). The insignificance of the probability distribution 

for the combined sites and region 1 (Z >1.65) shows that all individual sites within this 

region are not defined by a particular distribution, hence the heterogeneity.  

Table 5 Z Statistics for different probability distributions for the sub-regions 

Region LNO GEV GLO 

All  -3.97 -3.44 -1.45 

1 -4.69 -4.58 -3.13 

2 -1.83 -0.50 0.49a 

3 -3.27 -1.31 -0.23a 

a = optimal distribution 

 

Figure 3 L-Moment ratio diagram for the three (3) sub-regions 
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4.4. Regional flood frequency and parameter estimation: 

After identifying GLO as the optimal probability distribution for regions 2 and 3, a 

flood frequency relationship was established to derived flood magnitudes. The GLO 

probability density function is given by:   

ÆØ   , Ù
Ë ÌÎρ   Ë π

                                     Ë π
                    (2) 

where ʊȟɻ and Ë are location, scale and shape parameters, respectively (Hosking and 

Wallis, 1997).   

The range of x is defined asЊ Ø ʊ )Æ Ë π Њ Ø ЊȠ )Æ Ë πȠ ʊ

Ø Њ )Æ + π.  

The location parameter (‚) dictates the position of the distribution about a symmetric 

axis, the scale parameter (‌) defined the distribution spread, and the shape parameter 

(Ὧ) indicates the behaviour of the upper tail of the distribution. Theses parameters were 

derived from L-moments, and applied to derive T-year flood exceedances based on the 

GLO (XT) is defined by: 

╧╣  Ⱪ  
♪

▓
╣ ▓  Ⱪ  

♫

▓
╣ ▓   = ɝ ╩╣       (3)         

where ɼ  ɻȾʊ,  4 is the return period and  : is the growth curve of 4. 

GLO distribution parameters estimated for each sub-region using L-moments were 

substituted into equation (3) to estimate the sub-regional growth factor for ungauged 

and sparsely gauged basins and presented in Table 6.  
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Table 6 Regional distribution parameters for the sub-regions   

Region Distribution ɝ Ŭ k Sub-region Growth Factor 

1 GLO 0.959 0.219 -0.112 πȢωυω 
πȢςρωχ

πȢρρςσ
ρ 4 ρ Ȣ  

2 GLO 0.928 0.235 -0.180 πȢωςψ 
πȢςστυ

πȢρψπσ
ρ 4 ρ Ȣ  

3 GLO 0.922 0.261 -0.175 πȢωςς 
πȢςφρ

πȢρχυ
ρ 4 ρ Ȣ  

4.5. Climate Indices and flood relationship  

Ijaka-Oke, Oba/Oyo-Obgbomoso, Ofiki /Igangan-Ilere road and Ofiki -Igangan were 

identified by break points and trends to be heterogeneous, and further investigated to 

ascertain the influence of climate variability by the correlating peak annual flood and 

global climate indices, then regional flood frequency estimates were determined in ICI-

RAFT using the highest correlated indices. 

MaddenïJulian Oscillation (MJO) demonstrated the highest correlation with annual 

maximum time series for the four sites (Figure 4), using an optimal lag time of 1 month 

selected in ICI-RAFT, considering that only single peak flood for each year was 

applied. Correlation coefficients (R2) based on MJO (7) (i.e. longitude 40W) were 0.27, 

0.50 0.31 and 0.45 for Ijaka-Oke, Ofiki Igangan, Ofiki/Iganna-ilere road and Oba/Oyo-

Obgomoso, respectively, suggesting the presence of evidence that shows that between 

27 to 50 percent of the variability in the annual maximum flood series was induced by 

climate dynamics. The correlation values derived in this study were consistent with 

those revealed in other studies (Li and Tan, 2015, Liu et al., 2015), considering that, 

local catchment properties, land use/cover changes and hydraulic factors also contribute 

to changes in hydrological regimes (Leclerc and Ouarda, 2007, Hall et al., 2014). These 

other contributing factors are beyond the scope of this study. MJO is known to be a 

strong driver of rainfall variability in tropical regions (Madden and Julian, 1971, 

Ventrice et al., 2011, Schreck et al., 2013), governing atmospheric pressure and 

temperature around the equator. The MJO is also reported to significantly influence 

regional rainfall (Mohino et al., 2012, Lavender and Matthews, 2009, Janicot et al., 
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2009), and prompted the 2012 flood event in Nigeria (ACMAD, 2012). Arnold et al., 

(2015) and Caballero and Huber, (2010) further suggested in their study that, due to the 

dependence of MJO on Sea Surface Temperature (SST) and Outgoing Longwave 

Radiation (OLR), MJO activity may increase in response to global warming, resulting 

in more frequent MJO influenced events. 

   

  (a)  Ijaka-Oka     (b) Ofiki-Igangan 

 

(c) Ofiki/Igangan-Ilere road            (d) Oba/Oyo ï Obgbomoso 

Figure 4 (a-d) relationship between climate indices and stations Peak Annual Flood 

Time series  

4.6. Climate Variability effect and flood quantile estimation 

Results capturing climate variability inclusion and omission are presented in Table 7 

and Figure 5, and reveal that climate variability effect on flood quantile estimates 

increases with a return period, thus demonstrating the time dependence of the climate 

(Hounkpè et al., 2015b, Machado et al., 2015). Also, climate variability influence was 

evident at sites that exhibited high correlation with climate indices (i.e. Ofiki Igangan 
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and Oba/Oyo-Obgomoso). Criss-cross plot patterns observed at Ijaka-Oke for climate 

variability inclusion for regional flood frequency estimation, suggests that caution must 

be taken when accounting for climate variability effect in FFA (López and Francés, 

2013), especially when the relationship between climate indices is low (R2 = 0.28). 

Also, the significance of the homogeneity (0.081) rather than trends (0.001), is 

identified as the key indicator of nonstationarity, as evident at Ijaka-Oke gauging 

station.  

Table 7 Flood frequency estimates (Non-Stationary, Stationary regional and at-site) ï

m3/s 

Ijaka -Oke 2 5 20 50 100 

Regional/ Climate variability 5 7 9 11 17 

Regional 5 7 10 13 15 

Direct/Climate variability 5 7 10 13 15 

Direct 5 7 10 13 15 

Oba/Oyo ï Obgbomoso 2 5 20 50 100 

Regional/ Climate variability 24 31 41 47 52 

Regional 19 27 38 47 54 

Direct/Climate variability 24 28 36 44 52 

Direct 20 26 35 41 47 

Ofiki/Igangan-Ilere road 2 5 20 50 100 

Regional/ Climate variability 95 123 157 179 196 

Regional 70 98 136 163 185 

Direct/Climate variability 94 127 168 194 214 

Direct 70 103 147 177 203 

Ofiki -Igangan 2 5 20 50 100 

Regional/ Climate variability 110 143 182 207 227 

Regional 86 120 167 200 227 

Direct/Climate variability 103 138 193 237 276 

Direct 84 125 182 223 257 
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(a) Ijaka-Oke           (b) Ofiki -Igangan  

                

(c) Ofiki/Igangan-Ilere road          (d) Oba/Oyo ï Obgbomoso   

Figure 5 Probability plots of regional and direct (at-site) flood frequency analysis taking climate variability into account.
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At Oba/Oyo-Obgomoso, the regional flood estimates were similar for both climate 

variability inclusion and omission, for 50-year flood, but differed slightly (by 2 m3/s) 

for a 100-year flood, and were higher than the direct flood estimates. For Ofiki/Igangan 

and Ofiki/Igangan-Ilere road, the opposite was detected, regional flood estimates for 

both climate variability inclusion and omission were less than that of direct flood 

estimates. Furthermore, Figure 4 revealed that for each approach, the maximum flood 

experienced at each sample site in the OORB was less than the 1-in-100year stipulated 

for flood management planning in Nigeria (FME, 2005b). This suggests that even at 

locations where climate variable regional flood estimates were less than direct and 

regional counterparts when climate variability is not taken into account, flood 

management measures (structural and non-structural) based on such estimates would 

substantially curtail flood impacts, even with reduced capital investment. 

The variations exhibited among sites when climate variability was taken into account is 

generally similar to those revealed by OôBrien and Burn (2014), where varying trends at 

different sites resulting in varying quantile estimates when climate variability was 

accounted for. Also, In Spain, López and Francés (2013) observed that flood estimates 

that accounted for climate variability were higher than those predicted under the 

assumption of stationarity, while in a different study in Canada (Cunderlik et al., 2007), 

the reverse was the case.  

5. Conclusions 

Managing flooding is particularly challenging when historical hydrologic data is sparse 

or short, due to administrative, logistics, financial and technical drawbacks. This 

increases the complexity of flood frequency estimation, thus prompting the need for a 

shift in focus from direct to regional flood frequency that combines data from various 

stations to improve data availability and consequently reduce flood estimates 

uncertainty associated with poor data usage (Izinyon and Ajumka, 2013). By combining 

regional flood frequency analysis with climatic indices using the open-access ICI-RAFT 

tool in this study, climate variability effect was accounted for in the flood frequency 

estimation process, thereby capturing the mechanism of climate responsible for rainfall 

or flow behaviour and variation in the region (Adeaga, 2006). 
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This study evaluated hydrological data from 17 gauging stations in the Ogun-Osun river 

basin, Western Nigeria, and identified significant trends and breakpoints in the 

hydrological time series that negates the assumption of homogeneity often employed for 

flood frequency estimation in the region (Izinyon and Ajumka, 2013, Izinyon and 

Ehiorobo, 2014, Awokola and Martins, 2001). Three (3) sub-regions were delineated 

from the river basin, two homogeneous and one heterogeneous, based on L-moment 

regionalization, and four (4) sample sites of varying trends and break-points selected 

from the two homogeneous regions to assess the impact of climate variability and data 

agglomeration in flood frequency estimation. 

Madden-Julian Oscillation (MJO) was identified as the most influential climate indices, 

especially at gauging stations where high climate indices to peak flood correlation were 

observed, and the effect of climate variability increased with return period. This 

revealed the time dependency of climate variability, as well as resulted in more realistic 

flood estimates that were still higher than the maximum flood experienced in the 

OORB. 

The outcome of this study further iterates the need to integrate climate variability into 

flood frequency analysis and suggests the need for a review of flood management 

measures based on the obsolete assumption (Solecki and Rosenzweig, 2014, Izinyon 

and Ajumka, 2013, Sayers et al., 2015), and given that MJO driven events are expected 

to be more frequent as average global temperature trends continue to rise. Nevertheless, 

it is important to note that the outcome of this section could likely inhabit uncertainties 

that have propagated from in situ hydrological data collection process, rating curve 

extrapolation, probability distribution and methodology selection. The quantification of 

these uncertainties is however beyond the scope of this study. 
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CHAPTER 5: INTEGRAT ING CROWD-SOURCING AND OPEN-ACCESS 

REMOTE SENSING FOR FLOOD MONITORING IN DEVELOPING 

COUNTRIES 

Abstract 

Managing floods effectively requires the efficient coordination of efforts before, during 

and after flooding, i.e. planning, response and recovery respectively. Planning and 

recovery are usually undertaken at a controlled pace, while the response is undertaken 

rather swiftly to mitigate the immediate effect of the flood event on people, resources, 

critical infrastructures and socio-economic activities. Hence, during flooding real/near-

real-time flood management data and information is required to inform decision-making 

and actions to minimize immediate flood impact.  

These datasets are usually sparse in developing regions, therefore hampering effective 

flood management. Hence, remote sensing and crowd-sourcing provide an alternative to 

in situ data collection, as it enables flood delineation and information gathering for 

flood management in several remote locations. 

This study was undertaken in 2015 during the peak flood season (September and 

October) in Nigeria (a typical developing country). An integrated remote sensing and 

crowd-sourcing approach are adapted to (i) optimise recurrent flood delineation, (ii) 

assess the factors that contribute to citizen flood risk perception and (iii) analyse the 

discrepancy between government and citizen risk perception. 

The results from this study revealed from MODIS NRT Water Product flood images 

that 76% of locations flooded in 2015 were previously affected in 2012, and the 

integrated remote sensing (MODIS Water Product) and crowd-sourcing approach 

adopted resulted in improved flooded detection in comparison to each independent 

approach, as the methodology enabled the capture of macro and micro scale floods. 

Statistical analysis suggests that the relationship between flood risk perception and 

flood risk indicator (i.e. awareness, worry and preparedness) was insignificant. This is 

contrary to previous studies and is likely as a result of the limited data collected during 

the peak flood season to enable a statistically valid conclusion. Nonetheless, qualitative 

analysis of individual themes of indicators revealed an understanding of the (i) causes of 

flooding, (ii) varying flood management responsibility, (iii) lack of knowledge of the 
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existing flood risk maps, displacement camp locations and (iv) poor flood insurance 

subscription.  

Furthermore, the discordance between government and citizens flood perception was 

apparent, suggesting the need for improved flood data collection, modelling, and 

synergy between government and citizens to enhance flood management and risk 

communication. 

Keywords: Crowd-sourcing, Volunteer-GIS, MODIS Water Product, Near-Real-Time, 

Flood monitoring, Flood Risk Perception 

1. INTRODUCTION  

With flood events becoming increasingly frequent and intense due to climate change 

and anthropogenic factors, hydrological and inundation extent information are needed to 

make informed flood management decisions and deployment of measures such as early-

warning communication, relief materials, evacuation planning and rehabilitation (Lo et 

al., 2015, Maxwell, 2013). Typically flood management efforts are coordinated before, 

during and after the flood to enhance preparedness, response and recovery respectively, 

thus ensuring reduced exposure of people, damage to infrastructure and impact on 

socio-economic activities from flooding (APFM, 2011). 

Pre and Post-flood management activities are usually deliberately paced, adapting 

existing methods supported by available data (Ekeu-wei and Blackburn, 2016). For 

instance, Annual flood exceedance probabilities and flood magnitude estimates require 

knowledge of past flood trends (Reed, 1999), which is propagated through 

hydrodynamic models to route floods and quantify hazards (Sarhadi et al., 2012). Pre-

flood plans can be implemented based on flood estimates and hydrodynamic model 

outcomes to reduce exposure when flood occurs, while post-flood measures, on the 

other hand, entails identifying impacted locations, settlements and critical infrastructure 

to quantifying the damage/impact for reconstruction and rehabilitation purposes (Eyers 

et al., 2013, Thorne, 2014). 

Responding to floods in the heat of the event is particularly challenging in developing 

regions, as real-time data processing and information required are usually unavailable. 

Floods are unexpected occurrences, thereby making it difficult  and impractical to 
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monitor large-scale floods using ground-based (in situ) approach (Temimi et al., 2004). 

Nevertheless, technological advancements such as  remote sensing satellite and 

telemetry provide alternatives to in situ data collection, as they enable data acquisition 

from remote locations (Li et al., 2006, Pereira Cardenal et al., 2010) and hydrological 

information transfer (Sene, 2010, Sene, 2012) in real and near-real-time to enable early 

warning and flood response.  

The cost of acquiring such timely data is usually high, and in some instances turbulent 

floods disrupt in-situ gauges, thereby impeding high flow measurements (Olayinka et 

al., 2013, Yan et al., 2015a). Open-access remote sensing makes available alternative 

free satellite data (Imagery and Altimetry water levels) including Landsat, MODIS 

(Terra and Aqua), Sentinel 1/2, ENVISAT, Topex/Poseidon, Jason 1/2, etc. (Musa et 

al., 2015). Also, the consortiums of satellites for global disaster monitoring and 

management (Bessis et al., 2004) when activated provides member nations with free 

high-resolution satellite data in Near-Real-Time (James et al., 2013).  

Despite the wide application of open-access satellite data in flood modelling and 

mapping in several regions, certain challenges persist, including coarse spatial 

resolution, low temporal resolution and data processing delivery time frame, inherent 

system properties and external landscape characteristics which result in poor flood 

detection in vegetation and urban landscape dominated regions (Yan et al., 2015a, Musa 

et al., 2015, Veljanovski et al., 2011b). Due to these deficiencies, alternative data 

acquisition approaches are required to capture the true state of inundation in poorly 

detection locations, and persons living in remote locations can help fill such data gaps. 

1.1.  Crowdsourcing and Volunteered Geographic Information (VGIS) 

Citizen involvement in science has been proven to be an invaluable source of data in 

inaccessible locations for flood management processes that include (i) flood  impact 

assessment (Werritty et al., 2007, Verger et al., 2003), (ii) exposure evaluation (Riggs et 

al., 2008), (iii) vulnerability analysis (Ologunorisa, 2004, Kron, 2005), (iv) risk 

perception evaluation  (Siegrist and Gutscher, 2006), (v) resilience capacity assessment 

(Brouwer et al., 2007) and (vi) flood model validation (Yu et al., 2016). Crowd-

sourcing is particularly useful in populated regions and aided by wide-coverage mobile 
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telecommunication and internet systems (Wang et al., 2017). The global population and 

internet users are currently estimated at 7,300,000,000 and 3,378,588,043 respectively 

(Haub et al., 2011). In Nigerian (the proposed case study for this study), the population 

is approximately 186,987,563, of which 46 % have access mobile internet and 8 % are 

active social media users (Kemp, 2015, Facebook, 2016, NBS, 2016). Figure 1 shows 

the Nigerian population, telephone subscribers and internet users growth in Nigeria 

(Doghudje, 2016).  

 

Figure 1 Population, Telephone subscribers and Internet users growth in Nigeria 

(Sources: NBS, Internetlivestats and Nigerian Communication Commission) 

Crowd-sourcing (CS) integrates ñcrowdò, ñoutsourcingò and ñinternet technologyò 

(Saxton et al., 2013) in a system whereby a virtual crowd (citizens) perform an 

organizational task such as data collection during an emergency using internet driven 

technology. Crowd-sourcing can be active or passive, depending on the information 

collection structure (Meek et al., 2014); active CS  to refer surveys completed directly 

by respondents, while passive CS involves social media mined information.  

With advancement in telecommunication, increasing internet coverage and growing 

population, near-real-time data gathering during disaster events can be undertaken over 

a large spatial extent. Various social media platforms have been used in acquiring 
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crowd-sourced data (passive crowdsourcing), including Twitter, Facebook, Flickr, and 

YouTube, which allows victims of disaster to report first-hand details of on-ground 

situation, thus improving situational awareness data for informed decision making by 

policy makers and first responders (Huiji Gao et al., 2011). Some instances of social 

media application in flood monitoring include (i) Assessment of road damage due to 

flooding using Twitter hashtags (#flood) and crowdsourced images and videos 

(Schnebele et al., 2014); (ii ) Community need assessment using Facebook feeds and 

updates in the cities of City of Calgary, Canada and Boston, United States (Magnusson, 

2014, Franks and Evans, 2015); and (iii ) Disaster monitoring using combined social 

media data sources (Musaev et al., 2014). Further literature on social media application 

in emergency management is entailed in Simon et al., (2015). 

Despite this progression, the practicality of harnessing, validating and leveraging 

crowd-sourcing data to inform flood management is being hampered by the 

complexities arising from the variable data structure, formats and multi-sourced nature 

of the data. Volunteer Geographic Information system (VGIS) provides a platform that 

curbs these deficiencies, as it enables the collection, coordination and management of 

location-based data in the required format (Goodchild, 2007). VGIS also enables 

thorough disaster impact assessment, considering that the respondents are victims of 

disaster and reside within the impact zones at the time of the event (Triglav-Ļekada and 

Radovan, 2013, Poblet et al., 2014). Additionally, VGIS aids crowd-sourced data 

quality assurance, which is one of the most predominant issues associated with 

crowdsourced data collected from anonymous (non-expert) sources at various locations 

(Foody et al., 2013, Miorandi et al., 2013, Foody et al., 2014). 

1.2. About Risk Perception and Indicators 

The perception of flooding directly influences flood mitigation actions and depends on 

flood risk awareness, worry and preparedness, linked to past exposure experiences, 

socio-economic and demographic characteristics (Raaijmakers et al., 2008, King, 2000).  

Understanding the cause of flooding (awareness) is essential for flood management. 

Climate change, poor urban planning/enforcement, improper drainage systems, poor 

waste disposal, excessive rainfall and excess water released from upstream dams have 
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been identified as some of the major causes of flooding in several developing regions 

(Olayinka et al., 2013, Nkwunonwo et al., 2016, Ologunorisa, 2004). Unique 

management measures are required depending on the flood type/cause. For instance, 

poor waste management results in the blockage of drainage systems and a reduction in 

drainage hydraulic capacity (Parkinson, 2003), therefore, managing flood caused by 

poor waste management requires the clearing of solid waste trapped in drainage systems 

and awareness campaigns for behavioural change to improve waste management 

practices (Momodu et al., 2011). Managing excess water releases from dams, on the 

other hand, require improved reservoir planning, preparation from scenario-based event 

models, risk communication and learning from experiences (Olojo et al., 2013, 

Vanguard, 2015, Ramirez et al., 2016).  

Worry depends on the awareness of the frequency of exposure to flood hazard, severity 

and concern for individual or community welfare, and therefore prompts preparedness 

(Tapsell et al., 2004). This consequently impacts on the coping capacity to manage 

expected flood hazard (Raaijmakers et al., 2008, Harvatt et al., 2011). Worry is usually 

based on previous experience of flooding, social responsibility (e.g. family size) and 

economic capacity (e.g. employment status) (Boamah et al., 2015), therefore a person or 

group of persons would perceive flood risk as high if they have previously experienced 

flooding, have a large family size, and have less economic capacity to cope with flood 

consequence/recovery and vice versa (Brilly and Polic, 2005, Siegrist and Gutscher, 

2006, Adelekan and Asiyanbi, 2016).  

Preparedness is built on the awareness of expected flood hazard and sufficient worry 

which therefore prompts planning and resilience improvement before a flood event 

(Veen and Logtmeijer, 2005). Preparedness can be categorized as technical, social, 

economic or institutional; where (i) Technical preparedness entails putting in place 

structural measures that modify the environment or building/properties to reduce 

potential impact and exposure (e.g. flood walls, dykes, dredging, etc.); (ii) Social 

preparedness refers to personal skill development and knowledge gathering  to manage 

expected flood impact (e.g. awareness campaigns) (Buckland and Rahman, 1999); (iii) 

Economic preparedness denotes the financial capacity to cope with flood impact, or 

measures put in place to reduce financial loss and risk transfer (e.g. insurance); and (iv) 

Institutional preparedness involves the design, communication and implementation of a 
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disaster management plan to reduce flood risk and impact through measures such as 

evacuation and emergency staff capacity development (Raaijmakers et al., 2008). Flood 

risk maps are also essential for preparedness, as it enables town planners and residents 

understand infrastructural development and socio-economic activities exposure to flood 

hazard and management measures required to mitigate disaster effect (Porter and 

Demeritt, 2012).  

1.3. Study Objectives 

This study is aimed at leveraging open-access remote sensing and crowd-sourcing data 

for flood monitoring in developing countries in Near-Real-Time, with the specific 

objectives of: 

¶ Compare recurring flood events and impact to assess management measure 

efficiency 

¶ Explore the feasibility of applying crowd-sourcing for Near-Real-Time flood 

monitoring. 

¶ Integrate crowdsourced and open-access remote sensing data to enhance near-

real-time flood monitoring and mapping. 

¶ Analyse flood risk elements; Awareness, Worry and Preparedness in relation to 

flood risk perception using crowd-sourcing data. 

¶ Evaluate citizen and government flood risk perception using crowd-sourcing 

data and government flood model respectively. 

2. STUDY AREA  

Nigeria is located at the downstream end of the Niger Basin (Figure 2). The Niger Basin 

drains a 2,111,475 km2 area and encircles 93,617,850 persons from 12 countries 

(TWAP, 2016). Multi-decadal climatic variation intensifies precipitation in the region, 

resulting in frequent flooding (Adeaga, 2006). In the past decade, Nigeria has 

experienced severe flood events arising from extreme precipitation and excess water 

releases from upstream dams within Nigeria (i.e. Kainji, Jebba, Shiroro, Kiri, etc.) and 

Cameroon (i.e. Lagdo) along Niger and Benue river respectively, with the 2012 event 

reported to have caused the greatest flood impact/damage in 40 years (Tami and Moses, 

2015, Ojigi et al., 2013). These high magnitude floods have resulted in the damage to 
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properties and infrastructures, displacement of people, disruption of socio-economic 

activities and loss of lives (FGN, 2013).  

 

Figure 2 Map of the Niger River Basin within Africa and across Nigeria 

The recent flood events in Nigeria coupled with the growing vulnerable population, 

internet subscribers and social media users trend presents a unique opportunity for 

crowd-sourcing exploration in Nigeria as will be demonstrated in this study. Al though 

citizen science has been previously explored in Nigeria, the focus has been on pre and 

post-flood data gathering using questionnaires (Eguaroje et al., 2015, Raheem 2011, 

Jinadu, 2014, Adelekan and Asiyanbi, 2016, Adelekan, 2011). This study proposes to 

apply crowd-sourcing for near-real-time flood data gathering in Nigeria, to inform flood 

management during flooding (Schnebele and Cervone, 2013, Schnebele et al., 2014, de 

Brito Moreira et al., 2015). 

3. METHODOLOGY  

3.1. Research framework for crowdsourcing 

The United Nations Office for Disaster Risk Reduction (UNISDR) disaster 

communication framework developed to communicate disaster warning at a local scale 

to inform decision/response is adapted for this study. The communication framework 
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comprises of five components including (i) a credible source; (ii ) a duly designed 

message; (iii ) an efficient communication channel; (iv) a specific Audience; and (v) a 

feedback process to enable message scrutiny and local input.  

 

Figure 3 UNISDR Disaster Communication Model adapted for this study 

This study applies the UNISDR Disaster Communication Model (Figure 3) in reverse, 

with a source of information being the people and audience depicting the responsible 

agencies (government), hence ñcrowd-sourcingò. The message is whether a location is 

flooded or not, and the channel is a Geographic Information System (GIS) (i.e. 

Volunteered GIS), while the feedback refers to the action by the agencies, such as 

resources distribution, rescue, or evacuation during a flood event. 

3.2. Data and Analysis 

Data for this study were simultaneously acquired using remote sensing and crowd-

sourcing techniques during the peak flood season (between September and October) of 

2015 in Nigeria. 

3.2.1. Questionnaire Survey 

Quantitative and qualitative data on hazard impact/awareness, demographic and socio-

economic characteristics used as indicators for flood risk perceptions were acquired 

using a custom designed ESRI GeoForm web application (Appendix 4). The platform 

allows for the collection of Geocoded alpha-numeric and photo data that can be 

extracted for spatial analysis in ArcMap. The offline submission option was enabled 

within the GeoForm setting to allow for data collection and storage without internet 
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coverage. The GeoForm accessible through the link: http://arcg.is/1sn5CXG4 was 

shared on Facebook within different social groups encompassing members from the 

various states in Nigeria. 50 responses were collected for analysis in this study during 

the peak flood season. 

3.2.2. MODIS Near-Real-Time (NRT) Flood Maps 

Global 250 metres resolution Near-Real-Time binary flood maps derived from 

Moderate Resolution Imaging Spectro radiometer (MODIS)  Bands (1, 2 and 7) using 

Dartmouth  Flood Observatory (DFO) algorithm (Nigro et al., 2014) was applied in this 

study. MODIS instrument onboard the National Aeronautics and Space Administration 

(NASA)ôs Terra and Aqua satellites acquires optical satellite images for 1 to  2 days that 

are automatically processed by the Dartmouth  Flood algorithm to produce MODIS 

Water Product (MWP), and can be downloaded through the webpage 

http://oas.gsfc.nasa.gov/floodmap/5 (Revilla-Romero et al., 2015b). The algorithm uses 

a ratio of MODIS 250-m Bands 1 and 2, and a threshold on Band 7 to provisionally 

identify pixels as water.  Nigro et al. (2014) further disclosed that the performance of 

the NRT MWP varies from 40% to 66% for clouded and cloud-free conditions 

respectively, for good, excellent, almost perfect flood detection that captures from half 

to almost all flooded surfaces. Also, poor and fair flood detection that captures no flood, 

poorly classify flooded surfaces and less than half the flooded area, vary from 23% to 

34% for clouded and cloud-free conditions respectively. 

A combination of the MWP time series for September and October of 2012 and 2015 

that corresponds with the peak rainfall and river flow season in Nigeria were applied to 

delineate NRT flood extent. MODIS imagery has been widely applied in similar respect 

for flood monitoring and mapping (Nkeki et al., 2013, Zhang et al., 2014, Revilla-

Romero et al., 2015b) and is known for wide-coverage flood delineation and high 

temporal resolution. Nevertheless, MODIS flood maps are usually distorted by spatial 

resolution, cloud covers, and rugged terrain (Nigro et al., 2014), resulting in inundation 

underestimation, and consequently flawed decision making. By integrating MODIS and 

                                                           
4 http://arcg.is/1sn5CXG 

5 http://oas.gsfc.nasa.gov/floodmap/ 

http://arcg.is/1sn5CXG
http://oas.gsfc.nasa.gov/floodmap/
http://arcg.is/1sn5CXG
http://oas.gsfc.nasa.gov/floodmap/
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Crowd-sourcing in this study, we hope to leverage on the merits of both approaches to 

improve NRT flood monitoring and mapping.  

3.2.3. Government Flood Risk Perception: The Annual Flood Outlook (AFO), 

Nigeria 

Communicating flood risk to the general public is an important and integral part of 

flood management, to ensure precautionary measures are put in place to mitigate flood 

impact (Hagemeier-Klose and Wagner, 2009). In Nigeria (the case study for this 

research), the technical guideline on flood management (Federal Ministry of 

Environment, 2005b) stipulates the need to prepare and publish flood risk maps to 

sensitise the public. The aftermath of the unprecedented flood in 2012 resulted in the 

initiation of the Annual Flood Outlook (AFO) through a collaboration between the 

Nigerian Hydrological Service Agency (NIHSA) and the Nigerian Meteorological 

Agency (NiMET), with the aim of providing flood hazard information to mitigate the 

impact of flood on the populace, socio-economic activities and infrastructure (NIHSA 

AFO, 2013). This information is used by the government to plan for flood events and 

advise citizens at risk of flooding to relocate. 

The AFO is generated based on the Geospatial Stream Flow Model (GeoSFM) and Soil 

and Water Assessment Tools (SWAT), using data sets such as the previous flood extent 

of 2012, Nigerian Meteorological Agency (NiMET) Seasonal Rainfall Prediction (SRP), 

SRTM DEM, Land use/cover, stream and rain gauge historical data and satellite 

precipitation data, to categorize state and local government scale flood risk exposure as 

high, medium and low (NIHSA AFO, 2014, NIHSA AFO, 2015, NIHSA AFO, 2013). 

Furthermore, the AFO exist as paper-based maps and reports and was converted to a 

digital format compatible with ArcMap for spatial analysis and comparison with citizen 

flood risk perception. In this study, governmentôs flood risk perception is evaluated 

against that of the citizens, to assess whether government flood management measures 

are effectively deployed as required by the affected populace.  

3.2.4. Geo-Spatial data and Analysis 

Administrative shapefiles that outline national, state, local government and settlement 

boundaries were downloaded from the DIVA-GIS database (Hijmans et al., 2004), 
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while population density estimates were acquired as Gridded Population (GPW: v4), 

from the Socioeconomic Data and Applications Centre (SEDAC) database. The 

combined MODIS Water Product (MWP) composites were mosaic to extract inundated 

areas and spatial analysis (overlay and zonal statistics) undertaken to identify flooded 

states, local government, settlements, and the inundated populace. All spatial analysis 

was performed in ArcMap 10.2, after importing GeoForm data from ArcGIS online.  

Chi-square test and Mann-Whitney U statistical analysis were undertaken in SPSS (Nie 

et al., 1975) to assess the relationship between flood risk perception and risk elements. 

Chi-square test evaluates the relationship between two categorical variables (Laerd 

Statistics, 2016a), while Mann-Whitney U test assesses the relationship between 

categorical and continuous variables (Laerd Statistics, 2016b). The 50 crowd-sourced 

data responses (flooded/non-flooded) were compared with MODIS flood extracts and 

later combined to assess possible improvements flood detection. Flooded locations from 

both approaches were also compared to media reports i.e. online newspapers, bulletins, 

blogs, and post from established outlets such as Vanguard, Independent,  Today,  

Tribune, and Nation as some form of validity check. 

4. RESULTS AND DISCUSSION 

4.1. NRT-MODIS Flood River Niger and Benue flood extents of 2012 and 2015 

In this study, a retrospective approach is also applied to quantify flood extent and 

impacts of the 2012 and 2015 flood events using remote sensing and GIS technology. 

At the national level, 35 out of the 36 states in Nigeria were flooded in 2012, with the 

exemption of Borno, while in 2015 Borno, Enugu and Yobe were the states not flooded. 

Similarly, 58% and 41% of the 774 Local Government Areas in Nigeria were affected 

in 2012 and 2015 respectively, corresponding to 8,876 and 4,884 settlements (towns) 

for the respective years, out of 56012 settlements (towns). Further details of both 

impacts are presented in Table 1. Comparative spatial analysis of 2012 and 2015 flood 

events showed that 76% of the locations affected in 2015 were previously impacted in 

2012, despite the reduced flood extent in 2015 as a result of the agreement between 

Nigeria and Cameroon in 2013 to manage excess water release from Lagdo dam 

(Jinadu, 2015). The recurrent flood affected 400,181 persons, thus reiterating the need 

http://bit.ly/28N1E5j
http://bit.ly/28Phuvd
http://bit.ly/28MxPO3
http://bit.ly/28OHlFR
http://bit.ly/28JoHuf
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to manage recurring flood risk despite the agreements that resulted in reduced flooding 

originating from riparian countries. Figure 4 shows the extent of flooding in 2012 (Red), 

2015 (Green), and recurrent flood in both years (Blue), and corresponding crowd-

sourced data points with similar colour codes for the respective years.  

In 2015 the United Nations Office for the Coordination of Humanitarian Affairs 

(OCHA, 2015) reported reduced levels flooding, owing to the agreement between 

Nigeria and Cameroon to collaboratively manage dam subsequent water releases and 

communicate risk effectively (Jinadu, 2015). This study portrays the effect of that 

agreement and decision, evident in the reduced extent of inundated area in 2015 when 

compared to 2012 despite the less than 1 metre water levels variation between both 

years along the Benue river Kainji Lake (Schwatke et al., 2015a) from which flow 

contributed to both flood events (See Supplementary Figure 1 (a-b)). 

Table 1 Quantitative flood risk assessment based on MODIS NRT Flood Data 

Flood Event Flooded Area 

(km2) 

States Local Govt. Settlements Impact 

Population 

2012 12,050.80 35 446 8,876 1,927,390 

2015 4,337.57 33 321 4,884 528,803 

2012 & 2015 3,716.57 33 174 3511 400,181 

Settlement based on 5 km buffer. The total number of states = 36, Local Governments = 774, 

Settlements = 56012. 
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Figure 4 Overlay map of Flood extents (ext.) and crowdsourced data (Map) for 2012 

and 2015 flood events 

4.2. NRT-MODIS and Crowd-sourcing VGIS Integration  

Crowdsourced data was compared with MODIS NRT flood maps as presented in Figure 

4 for 2012 and 2015 flood events, then combined to access improvement in flood 

detection in relation to media report. Table 2 shows higher levels of remote sensing 

flood detection than crowd-sourcing in 2012 and 2015 (i.e. the percentage of flooded 

data points). Integrating both approaches resulted in an increase in flood detection 

percentage for both years. This result aligns with the resolve that crowdsourced data 

allows for the capture of micro-scale flood, while the 250m resolution MODIS satellite 

image enables macro scale flood detection (Moel et al., 2015, Penning-Rowsell, 2014). 

The microscale approach (crowd-sourcing) provide the unique advantage of usability 

for specific need/damage assessment, while macro flood outcome enables large-scale 

planning at the national or state levels. The Integrated approach was further compared 

to online media reports, and the results showed a 75% and 53% agreements in 2012 and 
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2015 respectively. The high level of online media agreement with the integrated remote 

sensing and crows-sourcing flood detected areas in 2012 is likely due to the wide extent 

and impact of the 2012 flood event which resulted in intense media publicity. Some of 

the locations identified by media reports as well as this study are presented in Figure 5, 

including Ughelli, Patani, and Amassoma (Alamy, 2012, Voice of America, 2012, 

Koriake, 2015). 

Table 2 Percentage of flood detection points from respondents - MODIS and VGIS 

Integration 

Year MODIS VGIS VGIS and 

MODIS 

(VGIS and MODIS) vs 

Media 

2012 53.1 49.0 81.6 75.5 

2015 32.7 20.4 71.4 53.1 

 

 

Figure 5 Zoomed-in flooded locations (Ughelli (C1), Amassoma (C2) and Patani (C3)) 

in the Niger Delta (B). 
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The crowd-sourcing platform was designed to enable photo collection as evidence of 

flooding to enable validation, as well as provide flood hazard, impact and socio-

economic information. Figure 6 (A-B) shows flood scenario at Amarata in Yenagoa, 

Nigeria captured at the point of crowd-sourcing data collection, showing rainfall and 

urban flood resulting from local conditions, thereby revealing the advantage of crowd-

sourcing to capture micro-climate phenomenon (Muller et al., 2015). More photos could 

not be captured due to technical challenged experienced using the VGIS platform. 

Figure 6 (C-D) shows evidence of fluvial flood at Amassoma highlighted by media 

reports (Koriake, 2015), which resulted from Nun river overflow due to the release of 

excess dam water along upstream Niger and Benue rivers. The flood scenario in 

Amassoma was captured by both MODIS and crowdsourcing, due to large-scale extent 

and localized impact (Akintoye et al., 2016, Ohimain et al., 2014).  

 

Figure 6 (A-B) Amarata, VGIS detected flood in Yenagoa, Bayelsa state (2015), and 

(C-D) Media reported flood in Amassoma, Bayelsa state (2015). 
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4.3. Flood Risk Indicator Analysis 

Outcomes of the flood risk indicators analysis are presented in Table 3, encompassing 

flood risk elements of awareness, worry and preparations as the key themes that infer 

flood risk perception as earlier disclosed. A total of 50 responses were recovered, 

covering 11 out of the 37 Nigerian states. 



Application of Open-access and 3rd Party Geospatial Technology for Integrated Flood Risk Management in Data Sparse Regions of Developing Countries 

144 

 

 

Table 3 Descriptive Statistics Summary of Flood Risk Indicators 

Themes  Variables 

Responses to questions 

option (1) option (2) option (3) option (4) 

Awareness Flood Cause 

Rivers Proximity 

Flood Management 

responsibility 

Heavy Rain (14) 

No (30) 

Federal Govt. 

(20) 

Poor Drainage & Waste (60) 

Yes (70) 

State Govt. (34) 

Dam Release (12) 

- 

Local Govt. (20) 

All causes (14) 

- 

Individual (26) 

Worry Risk perception 

Previously Affected 

Family size 

Employment status 

Low (44) 

No (24) 

1 (6) 

Unemployed (18) 

Medium (44) 

Yes (76) 

2-4 (30) 

Employed (56) 

High (12) 

- 

5-Above (64) 

Student (26) 

- 

- 

- 

- 

Preparedness Aware of Flood Map 

Property Insurance 

Displacement Camp 

No (86) 

No (88) 

No (72) 

Yes (14) 

Yes (12) 

Yes (28) 

- 

- 

- 

- 

- 

- 

Results presented as percentage of recipients (%) 
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4.3.1. Flood Risk Awareness 

The awareness elements assessed in this study are (i) the knowledge of flood causation 

factors, (ii) nearness to hazard and (iii) flood management responsibility, given that the 

understanding of the cause of flooding influences the management measure deployed by 

the responsible authority. 

4.3.1.1. Flood Cause  

Intense precipitation is the underlying cause of flooding globally, aggravated by 

changing climatic and anthropogenic conditions that result in more frequent and intense 

storms  (Hounkpè et al., 2015a, Giustarini et al., 2015). Flooding in Nigeria has been 

attributed to factors including climate change, poor drainage planning, urbanisation and 

other anthropogenic activities such as dam water releases and hydraulic structures 

design failure (Nkwunonwo et al., 2016). Results presented in Table 3 reveals that 60% 

of the respondents identified poor drainage and waste management as the primary cause 

of flooding, 14% heavy rainfall, 12 % dam water release and the 14% suggested a 

combination of factors.  The results reveal a recognition of a broad range of flood-

causing factors in Nigeria as previously highlighted by Shabu and Tyonum, (2013) and 

Agbola et al., (2012), where intense rainfall, drainage blockage due to poor waste 

disposal, and dam breakage were also identified as the leading causes of flooding. 

4.3.1.2. Distance from River 

The rise in river water level as a result of precipitation runoff that consequently causes 

fluvial flooding has been documented in the EM-DAT: International disaster database 

(Guha-Sapir et al., 2014) to account for 80% of flood events in Nigeria. Therefore, the 

distance from hazard source (i.e. river) contributes to peopleôs perception of flood risk 

(Tehrany et al., 2013). Usually, the further the person lives from a hazard source, the 

less exposed they are and vice versa (Heitz et al., 2009). Although 70% of the 

respondents specified knowledge of residing close to the river, Mann-Whitney statistics 

indicated otherwise when knowledge of exposure to flood hazard was compared to the 

actual distance from the river estimated from google earth (U = 135.5, Z = -2.690 and P 

= 0.007). This evidence suggests that peopleôs knowledge of hazard source (river) and 

actual distance from river differed significantly, indicating a poor sense of hazard source 

identification from respondents. 
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4.3.1.3. Flood Management and Stakeholder Responsibility Mapping 

Flood management is usually undertaken at an individual, local or central government 

(White et al., 2016, Porter and Demeritt, 2012, Box et al., 2013), depending on the scale 

of flood impact, the resource required or urgency of intervention needed. In this study, 

74% of the respondents maintain that the flood management is solely the responsibility 

of the government, operating at the local, state or federal levels. In the early 1960ôs in 

Nigeria, individuals were solely responsible for flood management, prior to the 

establishment of government parastatals for organised flood management (Obeta, 2009, 

Obeta, 2014b). The Government of Nigeria through several federal, state and local 

government parastatals are now responsible for data collection, flood prediction, 

planning and flood management strategy implementation (FMWR, 2013, FME, 2005a). 

These duties highlighted in the Action Plan for Erosion and Flood Control (FME, 

2005a) were divided based on risk management cycle components stipulated in the 

Associated Programme on Flood Management (APFM, 2011), i.e. Preparedness; 

Response; Recovery and Rehabilitation (Table 4) to show the role of specific agencies 

in an integrated flood management framework and further foster collaboration between 

key stakeholders. 

Flood management at a national scale is mostly handled by the Federal Government, 

including cost-intensive projects such as dams establishment (FMWR, 2016), and 

recovery implementation such as the deployment of relief materials and the 

establishment of displacement camps (NEMA, 2012). State and Local scale flood 

management efforts are focused on small-scale structural and non-structural measures 

such as river channelization, dredging (Chisa et al., 2015), city Masterplan development 

and response to local flood hazards (Adejuwon and Aina, 2014). 

The results in table 3 also revealed low levels (12%) of subscription to property 

insurance against flooding. Lack of societal awareness, lack of incentives to insurance 

companies and poor flood data availability have been cited as the factors that contribute 

to poor insurance policy in Nigeria (Nkwunonwo et al., 2015).    
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Table 4 Flood Risk Cycle and Stakeholder Mapping 

Risk Management Cycle Content Federal State Local 

Preparedness Data collection, Early Warning Systems, 

Planning, Prediction, Education, Code 

Enforcement, Flood Risk Mapping. 

FMENV, FMI, NIMET, FMWR, 

NIWA, NEMA, NIHSA, RBDA, 

NIOMR, NASRDA, FMP, FMARD. 

SG, SEMA LG 

Response Infrastructure protection (Dams, Levees, 

Dikes), Evacuation, Channels, 

Displacement camp establishment. 

CBO, NGOs, NEMA, FMWR, RBDA, 

FMP. 

SG, SEMA LG 

Recovery and Rehabilitation Repair and Reconstruction of critical 

infrastructures (Water supplies, 

Electricity, Roads, Post Risk Assessment, 

telecommunication, etc.). 

NDDC, NEMA, FMHUD, FMW, FMP, 

FMARD. 

SG, SEMA LG 

See Supplementary Table 1 for acronym definitions  

Adapted from (Ologunorisa, 2004, Federal Ministry of Environment, 2005a). 
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4.3.2. Flood Hazard Worry  

4.3.2.1. Flood Risk Perception and Worry element 

Bradford et al. (2012) and Raaijmakers (2008) discussed the relationship between flood 

risk perception and worry, suggesting that persons afraid (worried) of flood risk are 

more likely to take preventive actions. Flood risk perception was therefore used as an 

indicator for worry, as the question of ñlevel of worryò was not directly asked in the 

survey. High-risk perception is expected to indicate a high degree of worry and vice 

versa. (Table 5). Results from the analysis of flood risk perception in relation to worry 

elements (Table 5) revealed no significant evidence to support the argument of a strong 

relationship between flood worry elements and risk perception, contrary to other studies 

(Adelekan, 2011).  This lack of relationship is likely due to the bias caused by limited 

responses (Ronald et al., 2015). Nevertheless, the results revealed that 76% of the 

respondents have previously been affected by flooding, and corresponds with the results 

from the remote sensing MODIS approach, where 76% of the populace affected in 2015 

had experienced the 2012 flood (Table 1). 

Table 5 Flood worry elements analysis 

Worry Citizen (P-value) 

Previously Affected 0.850 

Family Size 0.925 

Employment status 0.428 

 

4.3.3. Flood Management Preparedness 

4.3.3.1. Flood Management Preparedness and Risk Perception 

How an individual or community perceives and prepares for flood risk also depends on 

knowledge of exposure, which informs the instigation of mitigation actions for expected 

impact (Miceli et al., 2008). The preparedness elements assessed were knowledge of 

flood risk map for planning, awareness of displacement camp location for relocation 

during flooding and subscription to flood insurance to enhance recovery (Ologunorisa, 

2004, Agada and Nirupama, 2015, Nkeki et al., 2013). Results from Table 6 shows that 

there was no statistically significant relationship between preparedness elements and 

risk perception, contrary to the proven concept that high perception of flood risk 

instigates preparedness for future flood occurrences (Miceli et al., 2008, Wachinger et 
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al., 2013). This is likely due to the limited data collected and skewed nature of the 

responses (Choi and Pak, 2004, Ronald et al., 2015). The results, however, indicate that 

86% of the respondents are unaware of the availability of flood risk maps, 72% 

oblivious of displacement camp locations and 88% are not subscribed to flood 

insurance, thus revealing gaps in communication, institutions and the national flood 

management strategy (Obeta, 2014a).   

Table 6 Flood Risk Perception Relationship with Preparedness Elements 

Preparedness Citizens (P value) 

Aware of Flood Map  0.148 

Property Insurance 0.354 

Displacement Camp  0.417 

4.4. Government and Citizens Flood Perception Analysis in Nigeria 

The role of the Nigerian government in flood management has been well established at 

all levels in table 4, which includes flood management plan implementation; structural 

and non-structural mitigation measures deployment; and resource prioritisation and 

distribution during flooding. These actions rely on their perception of flood risk in a 

particular region of the country, that is based on the annual flood map developed bases 

using combined GeoSFM and SWAT model (Kellens et al., 2011, NIHSA AFO, 2013), 

to designated a region as high, medium or low flood risk area. Figure 7 shows 

individual flood risk perception overlaid on local government scale government risk 

perception, and it revealed the discordancy in risk perception by both parties. 

Comparative analysis also showed that 34% of the risk perceived by the government 

was same as the citizensô, while the remain 66% differed considerably. Furthermore, 

30% of citizens perceived higher risk than the government, and 34% of the citizenôs 

responses indicated the reverse, suggesting that risk perception variability mostly 

influenced by localized flood experiences. Chi-square statistical analysis further 

supported this finding (X2 = 2.037, P = 0.729), revealing the absence of significant 

similarity between government and citizen flood risk perception at corresponding 

locations. 
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The NIHSA AFO identified mostly regions hydraulically connected to river systems as 

high and medium risk flood risk zones, hence accounting mostly for fluvial flooding 

(Adetunji and Oyeleye, 2013, Nkwunonwo et al., 2016). Crowd-sourcing contrastingly 

capture micro-environmental flooding caused by localised climate and anthropogenic 

conditions (Muller et al., 2015, Muller et al., 2013), thereby providing the advantage of 

identifying flood caused by factors that are seldom captured by models developed from 

coarse data. Also, given that  citizens have first-hand flood experiences, personal risk 

perception is mostly based on empirical knowledge (Jacobs and Worthley, 1999), while 

government risk perception is based on flood models likely affected by inherent model 

and data uncertainties (Rowe and Wright, 2001, Beven and Hall, 2014, Siegrist and 

Gutscher, 2006). 

 

Figure 7 Overlay map of NIHSA 2015 Annual Flood Outlook (AFO), crowd-sourcing 

risk perception, and MODIS NRT flood overlay (2012 and 2015). 

5. CONCLUSION 

Understanding flood hazard exposure and impact is essential in flood management, 

especially during flooding to improve response and mitigate immediate flood impact. 

Ground-based flood monitoring and assessment are largely incapable/insufficient of 

efficient flood data gathering due to the logistical challenges that emanate when flood 
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hits peak and inundates transport infrastructure that links remote locations. Remote 

sensing becomes particularly useful in such cases, as it enables large scale flood risk 

assessment without being in direct contact with the region of interest. Remote sensing is 

however hampered by financial, technical temporal, spatial, satellite sensor and 

environmental drawbacks (Musa et al., 2015, Yan et al., 2015a, Wood et al., 2014). 

Also, considering that flood events sometimes occur rapidly with little or no notice 

(especially in riparian countries), estimating the schedule time for satellite devices 

capture the event can be particularly challenging. Citizen involvement in data collection 

(crowd-sourcing) to support scientific research and decision making has been found to 

be one of the compensatory approaches that allow data collection at a wide spatial scale 

and even in vegetated and rugged locations where satellite technology is deficient 

(Goodchild, 2007, Baruch et al., 2016). This has been proven to provide first-hand 

empirical evidence to enhance and validate scientific models and predictions over the 

years (Yu et al., 2016, Goodchild and Glennon, 2010).  

 This study evaluated the feasibility of integrating open-access remote sensing and 

crowd-sourcing for Near-Real-Time flood monitoring, to draw from the strength of both 

approaches during the peak flood season of 2015 in Nigeria to improve flood detection. 

This study also collected retrospective data on a past 2012 flood event, to enable 

comparison with the current 2015 flood event, to enable the assessment the riparian 

flood management agreement effect on downstream flooding and other flood 

management efforts by the government. Flood risk indicator effects on citizen flood risk 

perception were assessed, and citizen flood risk perception is further evaluated against 

governmentôs flood risk perception that is based on annual flood risk maps, upon which 

flood management decisions are based.  

From the results of this study, the following conclusion has been drawn: 

1. This study highlighted recurrent flooding in several locations using both remote 

sensing and crowd-sourcing methodologies, despite reduced flooding in 2015 due 

to the riparian dam water release agreement between Nigerian and Cameroon in 

2013. This, therefore, suggests the need for a revised flood management approach 

in these regions (Egbinola et al., 2015), with a focus on repeatedly flooded 

locations, to improve flood mitigation and recovery.  
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2. Combining remote sensing (MWP) and crowdsourcing resulted in increases flood 

detection compared to when individual approaches were applied individually, 

especially in 2012 when high magnitude flood was experienced. This improved 

flood detection took advantage of the spatial resolution of both approaches, which 

allows for the capture of macro and micro scale flooding caused by a combination 

of regional and local factors (Muller et al., 2015, Revilla-Romero et al., 2015b), i.e. 

fluvial and urban flooding. Therefore, an integrated remote sensing and crowd-

sourcing approach is recommended, given that it provides the best approach to 

flood detection especially in mangrove dominated, urban areas, rugged terrains and 

cloud covered areas where individual approaches could be deficient. 

3. The relationship between flood risk perception and flood risk indicator elements 

(Worry, Awareness and Preparation) was statistically insignificant, and owing to 

the limited data collected, no decisive conclusion can be made. Nevertheless, the 

responses obtained revealed an appreciation of the diverse causes of flooding and 

flood management responsibility designations, while knowledge of existing flood 

maps, displacements camps and flood insurance was limited.  

4. Citizen and government flood risk perception varied considerably, owing to 

inherent model and data uncertainties, and in the integrated SWAT and GeoSFM 

model (Yang et al., 2008, Daggupati et al., 2015, Tan et al., 2015) from which 

government flood perception is based. Also, the government flood model is biased 

towards fluvial flood risk detection, while crowdsourcing's is capable of capturing 

flooding caused by local factors such as intense precipitation in poorly drained 

urban areas and drainages clogged by poor waste management practices. As such, 

an integrated approach is suggested for effective flood risk assessment, 

incorporating citizen risk detection and improved flood models based on sufficient 

in situ and satellite remote sensing data (Renschler and Wang, 2017). 

5. A unique challenge of reluctance to divulge socio-economic information in 

combination with flood impact during active crowd-sourcing is revealed in this 

study, peculiar to developing regions, owing to experiences and perception of 

internet fraud in recent years (Jegede, 2014). 

6. Although the prospect of crowd-sourcing for improving flood detection is clearly 

evident in this work, the responses received and used in the analysis presented are 
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quite limited, as such the outcomes of this section are not definitive due to this 

limitation. 

Having understood the potential of integrated crowdsourcing and remote sensing for 

near-real-time flood monitoring, going forward it is expected that such an approach if 

coordinated by a designated disaster management agency such as the National 

Emergency Management Agency (NEMA) in Nigeria would improve citizen 

participation, and can aid large-scale flood detection, damage impact assessment and 

resource prioritization and distribution to alleviate immediate flood impact and inform 

rehabilitation activities (Dashti et al., 2014, Roxanne and Andrej, 2014).  
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Chapter 5 Supplementary Figures and Tables 

 

Supplementary Figure 1 (a) Kainji Lake Water Levels and Variations 

 

Supplementary Figure 1 (b) Benue River Water Levels and Variations 

 

 

 



Application of Open-access and 3rd Party Geospatial Technology for Integrated Flood Risk Management in Data 

Sparse Regions of Developing Countries 

155 

 

Supplementary Table 1. Definition of acronyms 

S/N Name of Mini stries Acronyms 

1 Federal Ministry of Water Resources   FMWR 

2 Nigerian Meteorological Agency NIMET 

3 Nigerian Inland Waterways Agency NIWA  

4 River Basin Development Authorities RBDA 

5 Nigerian Hydrological Service Agency NIHSA 

6 Federal Ministry of Environment FMENV 

7 National Emergency Management Agency NEMA 

8 Federal Ministry of Housing and Urban Development FMHUD 

9 Federal Ministry of Works FMW 

10 State Government SG 

11 Local Government LG 

12 Niger Delta Development Commission NDDC 

13 National Institute of Oceanography & Marine Research NIOMR 

14 Federal Ministry of Information FMI 

15 Community Based Organisation CBO 

16 Non-Governmental Organisation NGO 

17 Federal Ministry of Agriculture and Rural Development FMARD 

18 Federal Ministry of Power FMP 
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CHAPTER 6: HYDRODYNAMIC MODELLING OF EXTREME FLOODS IN 

DEVEL OPING REGIONS USING MULTIPLE OPEN -ACCESS REMOTE 

SENSING AND 3RD PARTY DATA  SOURCES. 

Abstract 

The sparsity of hydrological data hampers flood modelling in many developing regions, 

due to the logistical, administrative and financial challenges associated with the data 

collection processes. As floods become more frequent and increase in magnitude, 

alternative data sources need to be explored in order to provide reliable information 

required for managing known and expected flood impacts. This study explores the 

contribution of open-access remote sensing datasets in all stages of fluvial flood 

modelling and mapping including (i) flood frequency estimation, (ii) hydrodynamic 

modelling, and (iii) inundation mapping. 

It uses a case study of Niger South region of  Nigeria and integrates radar altimetry, 

digital elevation model, optical and Synthetic Aperture Radar (SAR) images, 3rd party 

(independent organization) acquired bathymetric survey data and aerial geotagged 

photos in the CAESAR-LISFLOOD-FP 2D hydrodynamic model to simulate flooding. 

The model was calibrated/validated by varying the Manning's roughness from 0.01 to 

0.045, with 0.04 established as the optimal roughness value for maximum accuracy. A 

combination of SAR and optical satellite images was found to improve the model 

predictive accuracy in comparison to when only optical imagery was used, due to the 

presence of cloud cover during the wet season in the Niger Delta section of the study 

domain. Breaking the study domain into three sections for validation showed how 

hydrodynamic model prediction varied with data availability and geomorphology, 

resulting in F-Statistics of 0.81, 0.53 and 0.19 at Lokoja, Onitsha and Niger Delta 

respectively for combined SAR and optical images, decreasing with reduced data 

availability. The RMSE of modelled water levels evaluated against in Situ 

measurements at Lokoja and Onitsha were 0.56, 3.65 m respectively. Geotagged 

overflight photos showed an improved model to reality accuracy, revealing SAR 

inundation delineation deficiency in the Niger Delta dominated by mangrove cover. 

Incorporating the 1-in-100 year AEP flood into the study at Lokoja where less error was 

evident revealed that the 2012 flood event was the 90% confidence level bounds of the 

1-in-100-year. This implies that open-access remote sensing and 3rd party data can be 

instrumental in improving flood management decisions in data-sparse regions through 
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the provision of substantial information that would enhance mitigation efforts to reduce 

the impact of flooding on the potentially exposed populace. 

Keywords: Open-access remote sensing; hydrodynamic model; 2012 Flood Nigeria; 

Radar Altimetry; Digital Elevation Model; Optical and Radar Satellite images. 

1. Introduction 

The magnitude and frequency of flood events are continuously increasing, and with 

climate change altering long-term climate and short-term weather patterns this scenario 

is not expected to change in the foreseeable future (Balbus et al., 2013). The total global 

cost of flood damage stands at a staggering 46 trillion US Dollars and is projected to 

increase to 158 trillion Dollars by 2050, based on growing population and GDP rates 

(Jongman et al., 2012). Population increase and urban sprawl typically result in the 

migration of people towards settling in floodplains, which are flooded annually during 

peak flow periods (Yukiko et al., 2013, McGranahan et al., 2007, Syvitski et al., 2012). 

Hallegatte, (2014) documented a 170% increase in the number of floodplain dwellers 

between 1970 and 2010 globally. As a typical example of a developing country, Nigeria 

has seen a substantial increase in population inhabiting floodplains over the recent 

decade (Mahmoud et al., 2016, Komolafe, 2015, Daura and Mayomi, 2015, Mayomi et 

al., 2013, Tamuno et al., 2003). Thus there is a need for the development of measures to 

reduce flood exposure as the upward trends in urbanization and population continue. 

 To manage floods and their impacts efficiently, accurate information that depicts 

the extent of the hazard (i.e. inundation extent, flood depth and propagation velocity) is 

essential (Els, 2013). However, deriving such information requires detailed data inputs 

for flood modelling procedures such as flood frequency estimation, flood routing and 

hazard mapping (Aerts et al., 2009). Flood frequency estimation requires the 

approximation of the magnitude of flood at a certain return period by fitting a defined 

probability distributions to the annual maximum or partial discharge time series 

(Kuczera, 1999, Reed, 1999) when enough data is available. For ungauged rivers , 

alternative methods based on runoff estimation (Merz and Blöschl, 2005, Rogger et al., 

2012), empirical altimetry forecast rating curve extrapolation (Pandey and Amarnath, 

2015, Clark et al., 2014) and regionalization techniques (Haddad et al., 2014, Izinyon 

and Ajumka, 2013, López and Franc®s, 2013, OôBrien and Burn, 2014) can be applied. 

Flood routing models (1 and 2 ï Dimensional) utilise topography data (river channel 
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and floodplain terrain details), hydrographic data, and river channel and floodplain 

roughness that define terrain resistances, in order to derive water depth, velocity, 

propagation timeline, and inundation extent (Aerts et al., 2009, Seung Oh et al., 2013, 

Skinner et al., 2015). Lastly, flood maps communicate the outcomes of hydrology and 

hydrodynamic models in an easy to assimilate and implementable format (Kron, 2005), 

and have recently become interactive, allowing public involvement via volunteer 

geographic information systems and crowd-sourcing (Degrossi et al., 2014, Bordogna et 

al., 2016). Flood maps can be presented in probabilistic or deterministic forms, 

depending on the type of flood information and accompanying uncertainty to be 

communicated (Di Baldassarre et al., 2010, Domeneghetti et al., 2013).  

In many developing countries, flood modelling and mapping are hampered by a lack of 

sufficient in situ hydrological data (Sanyal, 2013, Yan et al., 2015a). This data sparsity 

challenge results in uncertain outcomes used in flood management (Sanyal et al., 2013, 

Yan et al., 2015a), consequentially causing aggravated exposure and socio-economic 

loss when planning is based on poorly derived information (Mishra et al., 2009).  

River gauge stations are usually set-up to collect hydrological data (Bshir and Garba, 

2003), however logistical and financial challenges in developing countries restrict 

spatial coverage of gauge networks (Ngene, 2009). Where gauge stations do exist they 

often collect insufficient data due to disruption of infrastructure due to intense floods, 

poor planning and organization (Izinyon and Ehiorobo, 2014, Olayinka et al., 2013, 

Ngene et al., 2015). Likewise, detailed high-resolution ground survey or satellite data 

that capture terrain details are cost-intensive, hence researchers have recently shifted 

focus to open-access remote sensing data to curb the cost associated with such data 

collection (Patro et al., 2009, Yan et al., 2015b, Yan et al., 2015a).  

There have been advancements in open-access remote sensing over the past decade, 

with applications in many different aspects of flood modelling and mapping having 

been demonstrated. Brief reviews of the application of open-access remote sensing are 

presented later in Section (2.1), with emphasis on optical and Synthetic Aperture Radar 

(SAR) satellite images, radar altimetry, Digital Elevation Models (DEMs), and 

bathymetry. In this chapter, the use of multiple open-access geospatial technologies 

(data and model) is explored, complemented by 3rd party (independent organization) 

collected datasets with the aim of modelling flood dynamics, simulating the extent and 
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depths of a high magnitude flood event at the chosen study site and assessing in 

retrospect the extent in comparison to a 1-in-100-year Annual Exceedance Probability 

(AEP) flood for management purposes. The Limitations associated open-access data 

usage in flood modelling are addressed, including the implications of missing in situ 

data in hydrological flood magnitude estimation, the accuracy of the Shuttle Radar 

Topography Mission (SRTM) derived DEM used in hydrodynamic modelling, and the 

discrepancies associated with flood extent mapping based on optical and SAR Images. 

1.1. Study area 

The study area Figure 1(A) is located within hydrological area 5 (Niger South) in 

southern Nigeria, encompassing a substantial part of the Niger and Benue rivers, which 

meet at Lokoja and travel downstream to discharge into the Atlantic Ocean via Nun and 

Forcados rivers (Abam, 2001a). The Niger basin covers a large proportion of West 

Africa (2,170,500 km2) and is represented in Figure 1 (B). The Niger Basin drains into 

the Niger South hydrological area, collecting an average discharge of 6000 m3/s from 

11 riparian countries (Gaston, 2013). Due to these high flows, many rivers within the 

basin have been dammed for hydroelectric power generation, irrigation and flood 

control (Aich et al., 2014b, Andersen and Golitzen, 2005).   

In recent years the Niger and Benue rivers have been heavily influenced by excess water 

released from upstream reservoirs in Nigeria, Niger and Cameroon (Ojigi et al., 2013, 

Olojo et al., 2013), resulting in flooding of the low-lying settlements within floodplains 

(FGN, 2013, Agada and Nirupama, 2015, Odunuga et al., 2015). The annual average 

rainfall in the region varies from 750 to 1600mm, and the average temperature from 18 

to 28̄ C.  

The flood model domain used in this study is represented by the DEM area in Figure 1, 

while subdomains defined by the red rectangles in Figure 1 (Lokoja, Onitsha and Niger 

Delta) were selected for subsequent analysis and accuracy assessment given the 

differences in data availability and geomorphological characteristics i.e. River 

confluence, Canyon and delta. 

The three sub-domains were among the most affected when Nigeria experienced 

unprecedented levels of flooding in 2012 (Ojigi et al., 2013, Tami and Moses, 2015, 

Nkeki et al., 2013, Olojo et al., 2013). The interflow of water from the Niger and Benue 
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rivers initiated flooding at Lokoja (Odunuga et al., 2015), the Onitsha/Asaba floodplain 

was flooded due to constricted channels and high upstream flow (Efobi and Anierobi, 

2013); and the Niger Delta region was flooded as a result of its low-lying topography 

and the influx of rising upstream water levels (Tami and Moses, 2015, Olojo et al., 

2013). 

 

Figure 1 (A) Map of study area, showing the Niger-South river basin (hydrological area 

5), gauging stations, ICESat elevation points, bathymetry points, DEM/Model domain 

and sub-domains. Figure 1 (B) Map of Africa showing the Niger Basin that discharges 

through the HA-5 into the Atlantic Ocean.  

2. Methodology 

2.1. Data sources and their application 

The flowchart of the overall study methodology is presented in Figure 2, detailing how 

the various datasets were integrated for flood modelling and risk evaluation in the 
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Niger-South Basin of Nigeria. Further details are presented in subsequent sections 2.1.1 

to 2.4. 

CAESER-Lisflood

Flood Frequency 

Analysis

Validation and 

Calibration

ICESat

SAR (TerraSAR-X, 

CosmoSkyMEd, 

Radarsat2)

Optical 

(MODIS NRT)

100 year flood extent 

and depth

2012 Flood extent and 

depth

Accuracy Assessment

In-filling missing data

Altimetry

(T/P, Envisat, Jason 1)

Discharge

2012 Hydrograph

Digital Elevation 

Model

Bathymetry

In situ water level

 

Figure 2 Conceptual flowchart of integrated flood modelling and mapping in the Niger 

South 

2.1.1. Optical and Radar Satellite Images, and their application 

The passive remote sensing Moderate Resolution Imaging Spectroradiometer (MODIS), 

Landsat and the recently made open-access Advanced Spaceborne Thermal Emission 

and Mission Radiometer (ASTER) images have been the most widely applied satellite 

data in flood management processes (Forkuo, 2011, Qi et al., 2009, Gareth et al., 2015, 

Nigro et al., 2014). The high temporal resolution of MODIS (1-2days) and the high 

spatial resolutions of Landsat and ASTER (i.e. 30 and 15 meters respectively) provides 

unique advantages for varying scales and frequencies of flood mapping (Ojinnaka et al., 

2015, Ojigi et al., 2013, Jeb and Aggarwal, 2008, Tarpanelli et al., 2013). Nevertheless, 

optical satellite data application is hampered by cloud cover, especially during the wet 

season when cloud formation leads to rain and consequently runoff and flooding (Asner, 

2001, Musa et al., 2015, Revilla-Romero et al., 2015b). To minimise these deficiencies 
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and improve optical imagery application, several techniques have been proposed and 

applied, including imagery fusion to leverage the best features of combined images. For 

example, Zhang et al. (2014) combined MODIS and Landsat to map inundation extent 

in urban regions of New Orleans, thus improving the spatial and temporal resolution of 

the outputs. Phuong and Yuei-An (2015) employed MODIS and Landsat-8 in mapping 

inundation over rice paddies downstream of the Mekong River in Cambodia. MODIS 

and ASTER were also combined and applied in validating the Coupled Routing and 

Excess Storage (CREST) hydrologic model in the ungauged basin of Nzoia (Khan et al., 

2011). Trigg et al., (2013) developed and applied a gap filling approach that improved 

the hydraulic connectivity of the MODIS flood water extent for large-scale flood 

detection by accounting for spatial uncertainty, using geostatistical connectivity 

approach that quantifies the probability of a location being flooded given a known flood 

location and specified distance (Pardo-Igúzquiza and Dowd, 2003). 

Active sensor SAR, on the other hand, allows for day and night image acquisition and 

penetrates cloud cover, thus allowing for an effective inundation extent delineation 

process (Musa et al., 2015). Commercial SAR satellite data has dominated flood 

mapping studies for decades, due to their high spatial resolution and capacity for water 

discrimination. Some examples include low-cost ERS SAR/Envisat ASAR, 

CosmoSkyMed, Radarsat 1 and 2, TerraSAR-X, and ALOS PALSAR (Betbeder et al., 

2015, Frappart et al., 2006, García-Pintado et al., 2013, Yan et al., 2015a). Although 

open-access 10-metre resolution SAR Sentinel-1is now available for flood mapping in 

several developing regions (Kyriou and Nikolakopoulos, 2015, Donato et al., 2014), at 

the time of the flood event of interest for this study occurred in 2012, Sentinel 1 was yet 

to be launched. Hence, the emphasis in this study is on commercial satellites made 

freely available by independent organizations (3rd parties) operating in the flood-prone 

region of interest. Despite the advantages associated with SAR imagery, the inability of 

C and X-band sensors to penetrate vegetation cover and the misinterpretation of 

imagery over different land use types have been identified as significant limitations 

(Bruce et al., 2015), and must be considered when applying SAR data.  

In the context of the present study, remotely sensed data will be used to assess the 

capacity of a hydrodynamic model to depict the observed extent of flooding. A 

combination of TerraSAR-X, MODIS Near-Real-Time flood maps, Radarsat2 and 
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CosmoSkyMed images acquired at the time of the 2012 flood event in Nigeria were 

used in mapping the inundation extents. Optical and radar images were combined to 

capture the alignment of flood extents with hydrographic changes throughout the flood 

event (rise, peak and fall), thereby compensating for the deficiencies in inundation 

extent derived from both sensors (Wood et al., 2014, Mason et al., 2016, García-Pintado 

et al., 2013). Details of the images used, dates of acquisition and discharge measured at 

upstream gauging stations (which are mapped in Figure 1) are presented in Table 1. 

MODIS coverage was deficient in the Niger Delta due to high cloud cover in the region 

(Uchegbulam and Ayolabi, 2013), hence the SAR data compensated for this gap. SAR 

images with Horizontal-Horizontal (HH) polarisation only were used as they provided 

good discrimination between flooded and non-flooded area pixels (Mason et al., 2016). 

The MODIS Near-Real-Time (NRT) Water Product was developed by the National 

Aeronautics and Space Administration (NASA) and available via 

https://oas.gsfc.nasa.gov/floodmap/, TerraSAR-X from the disaster charter activated in 

2012, while Radarsat2 and CosmoSkyMed provided by the Shell Petroleum 

Development Company (SPDC) Nigeria (Appendix 5), acquired on the 18th, 19th and 

20th of October 2012. The SAR images flood extent was extracted by histogram 

thresholding approach (Long et al., 2014). In addition to the MODIS and SAR 

imageries which covered specific locations of the study domain, Landsat 8 Operational 

Land Imager (OLI) was acquired for the whole study area. This was used to derive land 

use maps following similar maximum likelihood supervised classification approach 

employed by Butt et al., (2015), in order to determine the built-up area inundated, based 

on satellite and modelled derived flood extents.  

Furthermore, given the deficiencies of optical and SAR satellite images previously 

highlighted, this study took a further step by incorporating geotagged overflight photos 

acquired from a helicopter over the Niger Delta region during the peak of flooding in 

2012 using NIKON D7000 camera. Geotagged photos points (287) were manually 

classified as flooded and non-flooded, and applied in extracting corresponding values 

for the model and observed flood extents for comparative analysis (Section 3.3). The 

geotagged photos were captured at an average distance of 2 km from focus on the 

helicopter (see Supplementary Figure 5), thus a 2 km buffer was created and spatial 

zonal statistics applied to select the dominant (majority) cell value (flooded/Non-

https://oas.gsfc.nasa.gov/floodmap/
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flooded) contained within the buffer area, to identify flooded areas detected by the 

model and SAR imagery in 2012. 

Table 1 Satellite imagery used in the study with acquisition dates and corresponding 

upstream gauge station discharge values and Annual Exceedance Probability (AEP).  

Dates 

[YYYY -MM-

DD] 

Images 

 

Baro 

Gauge 

(m3/s) 

AEP Umaisha 

Gauge 

(m3/s) 

AEP 

TSX MDS R2 CSKD    

2012-09-03 - X x - 5,187 2 12,303 2 

2012-09-25 x x - - 8,533 50 20,328 100 

2012-10-09 - x x - 6,969 5 17,378 50 

2012-10-11 - x x - 6,696 5 16,771 20 

2012-10-12 - X X - 6,504 5 16,520 20 

2012-11-06 - x x x 3,270 2 7,955 2 

TSX = TerraSAR-X, MDS = MODIS, R2 = Radarsat2, CSKD = CosmoSkyMed 

 

2.1.2. Radar Altimetry and application in study 

Recent advancements in open-access remote sensing have led to the availability of high 

temporal and spatial resolution radar altimetry data sets (European Space Agency 

(ESA), 2016, NESDIS, 2016, Donato et al., 2014). This means that hydrological data 

(water levels) can now be captured in remote and inaccessible locations that have 

previously been ungauged or with newly established gauges with short records. 

Altimetry is applicable in several aspects of hydrodynamics modelling and flood 

mapping, discharge estimation at ungauged or data sparse river basins (Papa et al., 

2010, Sridevi et al., 2016, Getirana and Peters-Lidard, 2013, Tarpanelli et al., 2016), 

digital terrain data accuracy evaluation (Carabajal and Harding, 2005, Fricker et al., 

2005, Kon Joon Bhang et al., 2007), river bathymetry characterisation and assimilation 

(Chávarri et al., 2012, Yoon et al., 2012) and hydrodynamic model calibration and 

validation (Domeneghetti et al., 2014, Sun et al., 2012, Sun et al., 2015).  

Gaps in hydrological time series due to intermittent gauging station recording or 

disruption to the station network, which frequently occurs in most developing countries, 
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resulting in uncertain flood frequency estimates (Gill et al., 2007, Lee and Kang, 2015). 

In the present study, altimetry data sets (Topex/Poseidon, Envisat, Jason 1, and Jason 2) 

were used to fill  missing data for flood frequency estimation, using the method 

described in Chapter 3 (Section 3.1.1.1).  

Ice, Cloud, and land Elevation Satellite (ICESat)/Geoscience Laser Altimeter System 

(GLAS) SPOT points were applied in this study to assess the accuracy of the SRTM 

DEM in the absence of ground surveyed elevation (again a typical situation in 

developing countries). Also, for the Niger Delta region where bathymetry data is 

unavailable, the average elevation difference between the two systems was deducted 

from the DEM river channel delineated from Landsat OLI, based on the Patro et al. 

(2009) approach, to compensate for SRTM C-band radar inability to penetrate water 

surface.  

Altimetry datasets were downloaded from the Database for Hydrological Time Series of 

Inland Waters (DAHITI ) (Schwatke et al., 2015b, Schwatke et al., 2015a), the Centre 

for Topographic studies (CTOH) of the Ocean and Hydrosphere archive 

(HYDROWEB) and ICESat-derived inland water surface spot heights (IWSH) data was 

downloaded from the recently developed database (O'Loughlin et al., 2016a). All digital 

elevation models were directly compared to ICESat spot height ñn05e005_GLA14ò, as 

all data sets were on the same vertical datum WGS96-Geiod and projected to 

WGS_1984_UTM_Zone_32N. The properties of the altimetry missions used in this 

study are listed below (Table 2): 

Table 2 Altimetry data and properties for sources used in this study (O'Loughlin et al., 

2016a) 

Mission Ground 

Footprint (m) 

Vertical 

Accuracy (m) 

Frequency (days) Operation timeline 

Jason-2 ~ 300 0.28 10         2008 - active 

Jason-1 ~ 300 1.07 10 2002 - 2009 

Envisat ~ 400 0.28 35 2002 - 2012 

ICESat ~ 70 0.10 - 2003 - 2009 

T/P ~ 600 0.35 9.9 1993 - 2003 

http://dahiti.dgfi.tum.de/en/map/
http://www.legos.obs-mip.fr/fr/soa/hydrologie/hydroweb/Page_2.html
http://data.bris.ac.uk/data/dataset/15hbqgewcrti51hmzp69bi4gky
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2.1.3. Digital Elevation Model (DEM), Bathymetry, accuracy assessment and 

application 

DEMs are essential in hydrodynamic modelling as they provide a continuous 

topographical surface upon which the flood is routed. Shuttle Radar Topography 

Mission (SRTM) DEM (Farr et al., 2007) is one of the most widely applied open-access 

terrain datasets for hydrological and hydrodynamic modelling globally (Biancamaria et 

al., 2009a, Neal et al., 2012, Sanyal et al., 2013, Gleason and Smith, 2014, Smith et al., 

2015) and Nigeria in particular (Bas van de et al., 2012, Olayinka et al., 2013, Adeaga 

et al., 2006). Despite the wide applicability of SRTM, the C and X-band radar cannot 

penetrate the water surface to detect channel geometry, therefore resulting in an 

overestimation of the bed elevation and consequently flawed flood model outcomes  

(Yan et al., 2015a). Other challenges linked to SRTM usage are its inability to 

completely penetrate vegetation cover in forested areas and reflections of radar signals 

off the top of building in urban areas, resulting in positively biased elevation estimates 

(Brown et al., 2010, Neal et al., 2012) and consequently biased outcomes when applied 

in hydrological and hydrodynamic modelling studies (Yamazaki et al., 2012).  

Several studies have adopted various techniques to curb this deficiency at local scales. 

In Baugh et al., (2013), 50 to 60 percent of the vegetation height estimated from 

MODIS, ICESat vegetation canopy height, as well as the Simard et al. (2011) and 

Lefsky (2010) global vegetation height data sets were reduced from SRTM DEM. This 

resulted in SRTM vegetation correction and improved model accuracies when 

compared to Topex/Poseidon and JERS (Japanese Earth Resources Satellite) 

observations. Betbeder et al., (2015) reduced vegetation bias by adopting a systematic 

method in the Amazon that harnesses vegetation height (Simard et al., 2011), Landsat 

land cover and Radar altimetry to deliver a hydrological corrected DEM, thereby 

reducing SRTM DEM bias by 64 percent. Patro et al., (2009) and  Sanyal et al., (2013) 

refined SRTM DEM-derived channel cross-section used for one-dimensional MIKE 11 

and two-dimensional LISFLOOD-FP flood models respectively. This was done by 

subtracting the average errors derived from comparing STRM DEM cross sections and 

Differential GPS survey data sets. Neal et al., (2012) adopted a hydrodynamic model 

approach that reduces channel and floodplain elevation overestimations by defining 

calibratable hydraulic geometry parameters (i.e. channel depth and width) within the 

two-dimensional sub-grid LISFLOOD-FP model. This led to significant improvements 
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in water level, wave propagation and inundation extent accuracies. In Siberia,  

Biancamaria et al., (2009a) applied a simple approach that reduced the SRTM derived 

channel elevation by 5, 10 and 15 metres to determine an appropriate assumption for 

optimal flood modelling for Obi Rivers. This resulted in 10 metres being identified as 

the optimal river depth estimates for efficient hydrodynamic modelling for Obi rivers. 

At a global scale, a few studies have derived hydrologically corrected SRTM DEMs, 

aimed at reducing elevation errors caused by voids, vegetation non-penetration and 

urban rooftop bounce-off. O'Loughlin et al. (2015)  systematically combined SRTM, 

MODIS vegetation canopy (DiMiceli et al., 2011), ICESat GLAS and varying 

percentages of satellite-derived vegetation (Simard et al., 2011) to produce the Global 

Bare-Earth SRTM DEM (BARE) with reduced uncertainties in various climatic zones 

(Broxton et al., 2014, Peel et al., 2007).  This approach resulted in the reduction of 

average vegetation bias from 4.94 to 0.4 m, and standard deviation from 7.12 to 4.80 m 

in comparison to ICESat and cross-sections of LiDAR respectively. Sampson et 

al.(2015) applied an alternative approach to correct SRTM bias caused by vegetation 

and urban land use/cover to generate the Bare Earth SRTM Terrain (BEST). This 

approach uses a moving window filter algorithm (Elvidge et al., 2007) to reduce 

urbanization elevation bias, while similar algorithm adopted by O'Loughlin et al. 

(2015), i.e. adaptive smoothing (Gallant, 2011) is applied to reduce vegetation bias. The 

BEST model resulted in a RMSE reduction from 10.96 to 6.05 m in comparison to local 

LiDAR-derived validation data and an overall bias reduction from 15.08 to -0.1 m. 

Robinson et al. (2014) developed a global DEM from a combination of CGIAR-CSI 

SRTM version 4.1, ASTER GDEM and  Global Land Survey Digital Elevation Model 

(GLSDEM) to fill voids in the DEM data and systematically reduced noise by applying 

an adaptive smoothing approach by (Gallant, 2011), thereby reducing SRTM vertical 

error to between 4.13 and 10.55 m. 

In the present study, the BARE and BEST DEMs covering the study domain were 

combined using the ArcGIS 10.2 mosaic ñminimumò function that outputs the 

minimum cell value of two overlapping cell, based on the assumption that the lowest 

DEM value represents bare earth elevation. This approach is intended to curb 

overestimation bias that results from unremoved vegetation and urban areas heights 
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from individual DEMs. Mean Error (M.E.) and Root Mean Squared Error (RMSE) was 

used for accuracy assessment and were applied in this study, defined by: 

                                              2-3%
ρ

Î
Ù Ùǲ                                                 ρ 

Where ñÎͼ is the total data points, ͼÙͼ the ICESat elevation,  ͼÙͼ the SRTM DEM-

extracted elevation points, ͼВͼ summation and В Ù Ùǲ is the Mean Error 

(ME). 

M.E informs us of the vertical bias in the DEM, quantifying the consistency in elevation 

underestimation (negative M.E) and overestimation (positive M.E) in relation to the 

reference (ICESat elevation) value. RMSE on other hand characterizes the overall DEM 

surface error by a single quantity (Patel et al., 2016).  

In the Niger Delta region where river bathymetry data is unavailable, the vertical bias 

was applied in correcting the offset between ICESat and DEM elevations. The mosaiced 

and river channel adjusted DEM was then converted to contour points and combined 

with bathymetric survey data points, then interpolated at a 90-metre grid spacing using 

the nearest neighbour method (Sibson, 1981). This resulted in a hydrologically 

smoothed DEM (Arun, 2013), that was then converted to ASCII format for use in the 

CAESAR-LISFLOOD model. 

Surveyed bathymetry enables improved river geometry detailing, leading to improved 

hydrodynamic model outputs with reduced uncertainties (Sanyal et al., 2013). In 

Nigeria, most bathymetry data are restricted and subject to confidentiality, thus creating 

artificial  data scarcity. For this study, bathymetric data were obtained from two 

companies after signing confidentiality documents that the data would be used for 

research purposes only. Digital Horizon Co. is a private company contracted to survey 

from Lokoja (Confluence) to Makurdi (Benue River), over a 240km distance. The 

survey was undertaken between 8th March to 16th April 2011 using HYDROSTAR 

ELAC 4300 DUAL Echo-sounder and C-Nav 2050 differential GPS systems. The 

bathymetric data were projected in Clarke 1880 Minna datum and UTM Zone 32. 

Bathymetric survey data from Jamata to Aboh ï 300km along the Niger river was 
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obtained from Royal Haskoning. These data were collected on-behalf of Nigerian 

Inland Waterways Authority (NIWA) in 2002 using an Ashtech Z12 Real Time 

Kinematics (RTK) GPS, Navisound 210, Navisound 50 and Raytheon 210Kc digital and 

analogue echo sounders. The bathymetric surveys were based on a Mean Sea Level 

(MSL) vertical datum and WGS84 spatial reference. 

2.1.4. Hydrological Data, Flood Frequency Estimation and application 

 

Flood magnitude for a specific return period is essential in planning for flood events and 

designing hydraulics structures to mitigate flood impact (Reed, 1999). In this study a 

Generalised Extreme Value (GEV) probability distribution was fitted to annual 

maximum flood series (Jenkinson, 1955), an approach that has been widely adopted in 

hydrological studies in several regions (Leclerc and Ouarda, 2007, Kochanek et al., 

2013, El-Jabi et al., 2015, Smith et al., 2015, OôBrien and Burn, 2014). See 

supplementary material and Chapter 3 for more details. 

Hydrological data from Baro, Umaisha, Lokoja and Onitsha were obtained from the 

Nigerian Hydrological Service Agency (NIHSA) and the National Inland Waterways 

Authority (NIWA), the agencies responsible for hydrographic data collection and 

management in Nigeria. Discharge values at Baro and Umaisha were used as input 

boundary conditions for the model (Di Baldassarre, 2012) for simulating floods for the 

hydrological year of 2012 (See Supplementary Figure 6 for the input hydrographs), and 

those at Lokoja and Onitsha were used in the model calibration and validation 

downstream (See Figure 1A or Figure 1 in Chapter 3). The maximum flood quantile 

(upper uncertainty bound) for the 1-in-100 Year AEP flood obtained from Chapter 3 

was modelled for comparison with the 2012 hydrograph. Flood frequency plots from 

Chapter 3 are further presented as supplementary materials in this study (Supplementary 

Figure 1 - 2). The choice of upper uncertainty bound application is supported by the fact 

that the high discharges are often underestimated when using the rating curve (Di 

Baldassarre and Claps, 2011), coupled with the need to plan for the worst-case scenario.  

2.2. CAESAR-LISFLOOD  (CL) Hydrodynamic Model Description and Setup 

CAESAR-LISFLOOD hydrodynamic and geomorphological (erosion and deposition) 

modelling tool (Van De Wiel et al., 2007) embeded with the LISFLOOD-FP code 
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(Bates et al., 2010) was selected for this study due to its effectiveness and applicability 

for fluvial flood modelling in data sparse regions, using coarse resolution terrain data 

sets (Biancamaria et al., 2009b, Trigg et al., 2009, Neal et al., 2012, Sanyal et al., 2013, 

Yan et al., 2015a, Seenath, 2015, Luke et al., 2015, Skinner et al., 2015). The 

CAESAR-LISFLOOD 2-Dimensional grid discretized flood plain model calculates 

fluxes flow between two Cartesians coordinates (X and Y) driven by gravity as a result 

of the free surface height between two elevation cells, given by the equation: 

                                  1

 
Ñ ÇÈ ЎÔ

ЎÈ Ú
ЎØ

ρ ÇÈ ЎÔÎȿÑȿÈ
ϳϳ
ЎØ                                                         ς 

where 1 is defined as the flow between neighbouring cells, Ñ is the flux between cells 

from previous time steps, Ç is the acceleration due to gravity, Î is the manningôs 

roughness coefficient, È is the water depth, Ú is the bed elevation, È  Is the maximum 

flow depth between cells, ЎØ is the grid resolution, and Ô is time.  The depth of water 

within each cell is defined by: 
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Where É and Ê are the cell coordinates. The model time step controlled by the shallow 

water Courant-Friedrichs-Lewy (CFL) conditions is defined by: 

                                             ЎÔ  ɻ
ЎØ

ÇÈ
                                                                              τ 

Where ɻ is a coefficient factor (courant number) that varies from 0.3 to 0.7 depending 

on the cell size, and influences the model stability (Almeida et al., 2012, Bates et al., 

2010). High values of ɻ increase model time-step and reduced model run time, but can 

result in more unstable models. For this study, ɻ was approximated as 0.7 based on 

suggestions by Coulthard et al., (2013) for cell size greater than 50 metres. 

In the present study, DEM was resampled from 90 to 270 metres, reducing the number 

of cells  to 1,793,400 (active = 1,256,656) within a 9,1610 km2 domain area, thus 

reducing the computational cost and SRTM DEM noise (Neal et al., 2012, Craig et al., 

2012), to meet CAESAR-LISFLOOD cell computation limit of fewer than 2 million 
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cells (Seoane et al., 2015). The river channel width within the study area varied from 

0.3 to 1.5 km, represented by 1 to 6 cells after resampling. Final model outcomes were 

post-processed in ArcMap using the model presented in Appendix 6. The model 

parameters and sediment input grain sizes and distribution adapted from Olayinka 

(2012) are presented in Appendix 8. 

2.3. Model Calibration and Validation  

Flooded model calibration is usually undertaken by adjusting the manningôs roughness 

(n) coefficients for the river channels and floodplains corresponding to input discharge 

parameters, while comparing the resultant outputs (Inundation extent and water depth) 

to observations from other data sources such as radar altimetry (Belaud et al., 2010), 

optical and radar satellite imagery (Sanyal et al., 2013, Trigg et al., 2009, Lewis et al., 

2013, García-Pintado et al., 2013), aerial photography (Neal et al., 2011b)  and/or in situ 

river measurements (Skinner et al., 2015, Luke et al., 2015, Jung et al., 2012). The aim 

is to ensure the model is capable of predicting reality within acceptable uncertainty 

limits fit for a particular purpose (Di Baldassarre, 2012, Hunter et al., 2007); in this case 

flood risk assessment. Usually, a range of roughness coefficient is predetermined based 

on existing literature (Chow, 1959, Arcement and Schneider, 1989, Kalyanapu et al., 

2010), assigned to represent the degree of flow resistance caused by varying land 

use/cover types (Medeiros et al., 2012). Depending on the level of details required, 

spatially distributed or static roughness values can be assigned to the model (Seenath, 

2015). In this study static manningôs roughness was applied, which varied from 0.01 to 

0.045 to capture the roughness that defines the Niger South region broadly (Olayinka, 

2012).   

Several test statistics including Root Mean Squared Error (RMSE) (Lewis et al., 2013), 

F-Statistics (Amarnath et al., 2015, Horritt, 2006, Md Ali et al., 2015), Nash-Sutcliffe 

efficiency (Sanyal et al., 2013, Neal et al., 2012), P-error, Skill value (Skinner et al., 

2015),  and R-Squared (Lewis et al., 2013, García-Pintado et al., 2013) have been used 

as goodness-of-fit measures for flood models. In the present studies, the F-Statistic 

(Critical Success Index), BIAS, percentage (%) flood capture and RMSE were adopted 

as the validity measures, to enable the comparison of model output comparison with 

independent data on flood extent and water surface elevation (Di Baldassarre, 2012).  
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The RMSE equation used was similar to that previously presented in Equation 1 

(Section 2.1.3), with ͼÙͼ depicting in situ water levels and   ͼÙͼ The simulated value.  

The F-Statistics was defined as: 

 &  
!

! " #
                                                                          υ 

Where A = (Simulated wet and observed wet), B = (Simulated wet but observed dry), C 

= (Simulated dry but observed wet) and D = (Simulated dry and observed dry) are 

defined in Table 3, and F can range from 0 to 1, increasing in levels of accuracy. The F-

measure applied herein does not apply D, as a different measure would be needed and 

its inclusion is known to result in bias in the flood fit, as model domains usually contain 

larger dry areas than flooded (Wood et al., 2016). Stephens et al., (2014) however 

highlighted the limitations of this performance measure, as it tends to be biased towards 

high magnitude floods. Nevertheless, for this study, the measure is suitable as it was 

applied for relative comparison of flood extents only. 

To assess the BIAS and percentage of observed flood correctly captured, both indices 

are stipulated as: 

                                                ")!3 
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Table 3 Parameter definition for performance indices 

 Observed wet Observed dry 

Simulated wet A B 

Simulated dry C D 
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2.4. Evaluating model outcome and Flood Management Implications 

To access the flood management implications of this study, overlay analysis was 

performed in order to identify the population, settlements (villages), built-up areas and 

road networks affected by the observed, modelled (2012) and 1-in-100 year floods. The 

population data  (Gridded Population of the World (GPW), v4) was acquired from the 

SEDAC database, settlements points obtained from SPDC Nigeria Limited, land use 

(built-up area) derived from Landsat 8 OLI (Path:189/Row:55) image, using similar 

approach as Bhatti and Tripathi (2014), while Road networks were acquired from the 

Socio-Economic Data and Application Centre (SEDAC) database (Global Roads Open 

Access Data Set (gROADS), 2010 update).  

3. Results and Discussion 

3.1. Floodplain DEM Accuracy assessment with ICESat 

River channel and floodplain elevation statistics extracted from corresponding ICESat 

and DEMs points, and the descriptive statistics, ME and RMSE are presented in Table 

4, while the correlation between ICESat and the combined BARE and BEST DEMs is 

displayed in Figure 3. Combining these DEMs by their minimum values, reduced the 

ME (and RMSE) from 14.51 m (3.81 m) and 15.28 m (3.91 m) for BARE and BEST 

DEMs respectively, to 12.16 m (3.49 m), thereby improving the vertical accuracy when 

compared with ICESat data. The spatial distribution of ICESat elevation correlated 

better with the merged DEM, resulting in a slight improvement of the correlation 

coefficient of (R2 = 0.994) (see Supplementary Figure 3 for others DEMs). The 

difference in elevation between ICESat and the corrected DEM was consistent with the 

average error levels records from previous studies in Nigeria that evaluated SRTM 

DEM against differential GPS elevation data (Isioye and Jobin, 2012, Isioye and Yang, 

2013, Menegbo and Doosu, 2015, Ozah and Kufoniyi, 2008). To compensate for 

riverbed elevation overestimation in the SRTM DEM at the Niger Delta sub-domain 

where bathymetric data was unavailable, the average difference between ICESat and 

DEM elevation of 1.053 meters was subtracted from the SRTM river channel elevation 

using raster calculator function in ArcMap. 
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Table 4 Digital Elevation Model Comparative statistics (units [m]) 

DEMs Points Min Max Mean Std. Dev. ME RMSE 

BARE 694 1.30 302.65 33.64 45.95 
14.51 3.81 

BEST 694 2.00 306.00 33.93 45.63 
15.28 3.91 

SRTM90 694 2.00 309.00 34.44 45.36 
17.03 4.13 

BARE+BEST 694 1.38 302.65 33.28 45.59 
12.16 3.49 

ICEsat 694 0.297 290.45 33.39 45.51   

 

 

Figure 3 Correlation between ICESat and BARE + BEST DEM points. (see 

Supplementary Figure 3 for others DEMs) 

3.2 Model Calibration and Validation 

The modelled flood extent was quantitatively evaluated against combined MODIS 

Near-Real-Time (NRT) Water Product, TerraSAR-X, Radarsat2 and CosmoSkyMed, 

where available (See Supplementary Table 1), to reduce the effect of optical imagery 

limitations. The model F-statistic was found to decrease as cloud cover, and forested 

land use increased downstream of the study domain. A similar decrease in model 
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performance away from domain input was also observed in (Skinner et al., 2015), as 

uncertainty increases with data ambiguity. To compare evaluation criteria based on 

varying imagery types (optical and SAR), static roughness parameters was varied from 

0.01 to 0.045 (Figure 4) at an interval of 0.05 to determine the optimal manningôs 

roughness (n = 0.04), at Lokoja, Onitsha and the Niger Delta sub-domains respectively. 

The TerraSAR-X imagery flood extent at Lokoja was applied for comparison with 

MODIS analysis, while RADARSAT2 and CosmoSkyMed images in the Niger Delta 

region to improve inundation mapping given the limitations of MODIS (Figure 4 and 

Table 5). For simplicity of comparison, the uncertainties associated with flood extent 

delineation from satellite image were not considered in this study, but are understood 

and highlighted in image integration for improved inundation delineation.  

The overall F-statistics is observed to be generally low in Figure 4 and Tables 5 and 6, 

owing to the variation in available topographic, bathymetric and calibration datasets 

(Supplementary Table 1), that contributes to the overall uncertainty of the model 

outcome. This also goes to reveal the value of and need for improved data collection. 

This is further demonstrated in the sub-domain division predictiveness assessment 

revealed the effect of spatial and data disparity. 

The adoption of TerraSAR-X imagery resulted in an insignificant change in the (F = 

0.7884) acquired when compared to MODIS (F = 0.7869), varying only by 0.0015. This 

is attributed to the low degree of cloud cover at Lokoja (James et al., 2013). The F-

Statistic in the Niger Delta region changed from 0.02864 to 0.1562 because of the 

switch from MODIS to SAR imagery validation data sets, an 81.7% improvement in 

model prediction capacity. The BIAS and % flood capture accuracy also improved 

substantially, especially in the Niger Delta region (See Table 5 and 6). In a previous 

study within the region based on a 1-D SODEK model (MUSA et al., 2015), optimal 

channel and channel over bank roughness were 0.01 and 0.04 respectively, when 

comparing simulated and in situ water levels at a cross-section at Onitsha. Some 

description of roughness parameters within the channel and floodplain include matured 

crops, scattered bush, heavy weeds, short grass, early growth vegetation and 

meandering channel (Arcement and Schneider, 1989, Chow, 1959). At Onitsha, this 

model appears to be steady for manningôs roughness above 0.025, owing to the dish-like 

geomorphology of the terrain that supports continuous water intake and gradual 
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propagation despite increased inflow and higher manningôs roughness. The BIAS 

presented in Tables 6 is also consistent with F-Statistic performance measure, 

increasing downstream, while the % Flood capture is high at locations where SAR flood 

extent was available. 

 

Figure 4 F-Statistic (Critical Success Index) versus Manning's roughness (n) 

The reduced model accuracy in the Niger Delta region can be attributed to the lack of 

bathymetry data in the flat terrain area, resulting in flood over-estimation due to ease of 

eater conveyance from shallow rivers to adjacent floodplains Also, undocumented 

levels sand mining activities, water-saturated mangrove and poor dredging practice are 

identified as factors contributing to the model uncertainty within the region. An 

undocumented amount of dredging has been reported in Niger Delta, beginning in the 

late 1990s till date  (Lubke et al., 1984, Abam, 2001a, Tamuno et al., 2009), resulting in 

hydrological changes (Fagbami et al., 1988, Okonkwo, 2012, Agunwamba et al., 2012). 

Dredging of the delta is aimed at deepening the river to alleviate flooding effects and 

improve river transportation (Ohimain, 2004, Okonkwo, 2012), thereby resulting in 

socio-economic benefits and improved operational logistics for oil producing companies 
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in the region. Nevertheless, heaps of dredged and sand-mining materials along river 

banks and floodplains complicate terrain and river channel properties, altering 

mangrove characteristics and act as barriers/levees along the river over banks that 

reduce inundation, drainage and river overtopping (Ohimain, 2004, Ohimain et al., 

2004). 

Table 5 Performance Matrices for optimal manning's roughness calibration (MODIS) 

Performance Overall Lokoja Onitsha Niger Delta 

F 0.235 0.729 0.534 0.095 

BIAS 4.245 1.183 1.140 9.661 

% Flood Capture 99.972 92.012 74.545 92.186 

 

Table 6 Performance Matrices for optimal manning's roughness calibration (TerraSAR-

X/MODIS/RADARSAT2/CosmoSkyMed) 

Performance Overall Lokoja Onitsha Niger Delta 

F 0.273 0.808 0.529 0.187 

BIAS 2.511 0.918 1.132 3.432 

% Flood Capture 75.308 85.679 73.802 69.946 

 

3.3. CAESAR-LISFLOOD  Model outputs: evaluation of inundation maps and 

water levels 

The modelled flood extent patterns derived from the CAESAR-LISFLOOD model were 

similar those observed from satellite (Figure 5 (A-C)). In situ gauging station water 

levels at Lokoja and Onitsha were also compared to model water levels during the rainy 

season (June till September) defined by the hydrography of 2012 figure 6 (A) and (B) to 

supplement the inundation extent evaluation.  

These patterns in Figure 5 (A-C) shows (i) flooding spreading out at the confluence in 

Lokoja where the Niger and Benue rivers meet, (ii) extended flooding at Onitsha 

resulting from the constricted river channel at Asaba that causes backwater filling of the 

upstream dish-like floodplain, (iii) the Niger Delta inundation spread resulting from 
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excess upstream water spreading over the low-lying topography, and overflow from the 

Nun and Forcados distributaries. The overall inundation coverage pattern at Lokoja, 

Onitsha and the Niger Delta are similar to those previously simulated in the region 

using global flood models (Trigg et al., 2016, Sampson et al., 2015), with the model 

agreement index (MAI) decreasing downstream from the narrowly confined floodplain 

into the wetland of the Niger Delta due to DEM and model limitations resulting from 

the flat terrain and channel bifurcation in the delta (Trigg et al., 2016).  
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Figure 5 Lokoja (A), Onitsha (B) and Niger Delta (C) CAESAR-LISFLOOD Model outcome and satellite (Combined MODIS and SAR) 

observation comparison 
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Figure 6 (A) Lokoja model and observed (in situ) water level comparison, (B) Onitsha 

modelled and observed (In situ) flood water level comparison 

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

3
1

/0
5

/2
0

1
2

2
0

/0
6

/2
0

1
2

1
0

/0
7

/2
0

1
2

3
0

/0
7

/2
0

1
2

1
9

/0
8

/2
0

1
2

0
8

/0
9

/2
0

1
2

2
8

/0
9

/2
0

1
2

1
8

/1
0

/2
0

1
2

0
7

/1
1

/2
0

1
2

W
a

te
r 

le
v
e

l 
(m

)

Date (dd/mm/yyyy)

Lokoja In Situ

Lokoja Model

(A)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

3
1

/0
5

/2
0

1
2

2
0

/0
6

/2
0

1
2

1
0

/0
7

/2
0

1
2

3
0

/0
7

/2
0

1
2

1
9

/0
8

/2
0

1
2

0
8

/0
9

/2
0

1
2

2
8

/0
9

/2
0

1
2

1
8

/1
0

/2
0

1
2

0
7

/1
1

/2
0

1
2

W
a

te
r 

le
v
e

l 
(m

)

Dates (dd/mm/yyyy)

Onitsha In Situ

Onitsha Model

(B)



Application of Open-access and 3rd Party Geospatial Technology for Integrated Flood Risk Management in Data 

Sparse Regions of Developing Countries 

181 

 

Water levels extracted from the CAESAR-LISFLOOD model results at river sections 

(2-D cells) around the gauge location was applied in assessing the accuracy of the 

model at in situ gauging stations (see Supplementary Figure 4 and Table 2, for location 

coordinates and map), showing a rising limb from June until peak rainfall in September 

and beginning to fall in October. The RMSE and Coefficient of determination (R2) at 

Lokoja and Onitsha gauging stations were (0.564, 3.653 m) and (0.987, 0.998) 

respectively. Given the residual error in the data (discharge, DEM, Satellite image) as 

well as model uncertainty, the RMSE at Lokoja was within reasonable uncertainty 

limits, similar to other studies in data-sparse regions (Komi et al., 2017, Neal et al., 

2012, Trigg et al., 2013). Figure 6 indicates that the optimal value of manningôs 

roughness determined through calibration was high for water level estimation, owing to 

the poor river channels defined by obsolete bathymetric data in the model (Niger 

(2001), Benue (2011)). Also, the RMSE of this study was within the limit  observed by 

Baugh et al., (2013) LISFLOOD-FP model study using Bare-Earth SRTM floodplain 

DEM and validated against TOPEX/POSEIDON altimetry water level. The discrepancy 

between model and observed water levels at Onitsha can be attributed to the absence of 

downstream bathymetry in the Niger Delta regions and obsolete upstream bathymetry 

data applied in the modelling process (Gautier, 2002), which was acquired prior  to 

dredging activities in 2010 (Van Der Burg, 2010). This is likely to result in backwater 

propagation and water level overestimation due to low downstream river slope (Paiva et 

al., 2013). This was expected as the locations where hydrographic data were available 

was modelled using DEM with channel bathymetry embedded, resulting in improved 

outcomes as seen in other studies that integrated river bathymetry/cross-section surveys 

(Casas et al., 2006, Sanyal et al., 2013, Seenath, 2015). The results presented in Figures 

5 and 6 further suggests that water level estimations within the river channel is more 

sensitive to hydrologic, bathymetric and topographic uncertainties than inundation 

extent across the floodplain. This consistent overestimation of water level by the model 

(Figure 6 (A and B)) could also be because of the simplified river characterization 

within the applied DEM at 290 m resolution as well as the hydrodynamic modelling 

process, which does not capture explicitly details such as river anabranches and 

meandering that would likely attenuate water released from the main river channel.   

The improvement in flood delineation using SAR imagery resulted in the improved 

model to observation alignment (Table 5 and 6, Figure 5 (A-C)). However, SAR is not 



Application of Open-access and 3rd Party Geospatial Technology for Integrated Flood Risk Management in Data 

Sparse Regions of Developing Countries 

182 

 

without its limitations, especially in mangrove, swamps and built up areas (Long et al., 

2014, Phuong and Yuei-An, 2015, Musa et al., 2015). To assess the variation in 

accuracy assessment due to SAR deficiencies in the Niger Delta region, model accuracy 

was compared with SAR flood extracts and classified overflight geotagged photo points 

(Figure 7 (A-D)). The geotagged photos were not captured as orthophotos, hence could 

not be applied to extract the geometric extent of flooding. The quantitative outcomes of 

the comparison are presented in Table 7, with the overall accuracy (i.e. percentage 

match) of the model performing better when compared to overflight data points (69%) 

than SAR observations, which was a 13% match. Figure 8 shows the typical 

environmental/physical variation in the Niger Delta region: (A) mixed land use (built-up 

area greater than vegetation); (B) mixed land use (vegetation greater than built-up); (C) 

bare land, sparsely built and vegetated lands; and (D) matured mangrove vegetation. 

These variations influenced the CAESAR-LISFLOOD model and SAR flood inundation 

capacities, as seen in Table 7, with sections (A) and (B) revealing the highest alignment 

with model and SAR outcomes respectively when compared to overflight data. High 

level of alignment between model outcome, SAR inundation and overflight photos was 

observed in section (C), while flooded locations within the mangrove dominated section 

(D) known to hamper SAR and coarse DEM driven flood model outcomes were mostly 

identified by overflight photos only. This provides a novel approach to ascertaining the 

deficiencies of hydrodynamic models and SAR images in complex terrains using third-

party data collected by organisations operating in the study area. 
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Figure 7 Niger Delta overflight geotagged photo points comparison with model and 

SAR observation outcomes (Photos for green points of focus shown in Figure 8) 
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Figure 8 Sectional examples of overflight photos of flooded areas compared to 

observed and modelled flood in the Delta region, showing points of focus (Figure 7). 

(A) = match between model and photo, (B) = match between SAR and photo, (C) = 

match between model, SAR and photo, (D) = only the overflight showing flooding. 

Table 7 Comparative analysis of overflight data points, model and SAR observation 

flood extents 

Points of focus Data Points (n = 287) Hits Miss % Accuracy 

A Overflight and Model flooded 196 91 69 

B Overflight and SAR flooded 37 250 13 

C Overflight, Model and SAR 

flooded 

43 244 15 

D Overflight only flooded  62   

(A) (B) 

(C) (D) 
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3.4. Model extent and Flood Management Implications 

Estimates of 1-in-100 year flood peak at Baro and Umaisha gauging stations were 

estimated as 13,887 and 19,589 m3/s respectively Chapter 3. The 1-in-100 year flood 

event is stipulated as the AEP for planning and infrastructural development purposes in 

Nigeria by the Ministry of Environment (FME 2005b). The estimated flood magnitude 

is essential in understanding the Niger-South exposure to upstream dam water release as 

was the case in 2012, to inform policy implementation. The 1-in-100-year event was 

simulated and compared with the 2012 flood event to ascertain whether the 

actions/plans based on a 1-in-100 Year flood as stipulated in the National Flood 

Management guideline would have likely mitigated the impact of the extreme flood 

event. Actual (2012) and expected (1-in-100year) flood exposure was assessed by land 

area, population, settlements, Built-up areas and roads impacted and presented in Table 

8 and Figure 6. The emphasis of this assessment is at Lokoja where the highest 

agreement between modelled outputs and observation was imminent due to optimal data 

availability for flood modelling and mapping. Ninety-seven (97) percent of the flooded 

area identified from satellite image was captured as a 1-in-100 year flood event; 

nevertheless, the model could likely be exaggerated, given the possible propagation of 

river discharge, DEM and calibration uncertainties unto the final model outcome. 

Notwithstanding, the results are promising and prove the value of open-access and 3rd 

data integration for flood modelling and mapping in developing regions. The inundated 

area and exposure estimates for impacted population, settlements, built-up areas and 

roads for the observed and modelled flood extent, and are presented in Table 8 and 

Figure 9 for visualization.  

Table 8 Model, Observed and 1-in-100-year flood exposure comparisons 

Flood Area 

(km2) 

Population Settlements Built-up 

(km2) 

Roads 

(km) 

1-in-100 year 

modelled 

427.2 32,867 14 12.834 32.987 

2012 Model 425.8 32,703 14 12.648 34.573 

2012 Observed 440.2 34,391 21 12.326 37.287 
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Figure 9: (A) comparison of SAR observed 2012 and 1-in-100 year modelled flood 

extents, and(B) comparison of SAR observed 2012 and modelled flood extents for the 

same period, as well as impacted settlements, roads and built-up areas in both A and B 

at Lokoja.  

4. Conclusion 

In order to fill data gaps that hinder effective flood modelling, mapping and 

consequently flood management decisions, this study presents an approach that 

incorporates multi-source open-access geospatial and remote sensing for hydrodynamic 

modelling of extreme flooding in the Niger south hydrological area of Nigeria, with the 

aim of reducing model outcome uncertainties in the region. The approach applied here 

systematically fills missing data gaps for flood procedures of flood modelling and 

mapping including (i) flood frequency estimation, (ii) hydrodynamic modelling, and 

(iii) inundation mapping, most pronounced in developing countries. Multiple geospatial 

data sets were used including MODIS NRT flood map, Landsat 8 OLI, vegetation and 

urban areas elevation corrected SRTM DEM, Radar Altimetry (ICESat, Envisat, Jason 2 

and Topex/Poseidon) and 3rd party captured, TerraSAR-X, Radarsat2, CosmoSkyMed, 
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bathymetry and geotagged overflight photos. These data were applied at various stages 

of the flood modelling and mapping process as follows: (i) based on the outcome of 

Chapter 3, radar altimetry was applied to fill missing data in the hydrological time series 

in flood frequency estimation, (ii) ICESat data were used to assess the DEM accuracy 

due to the lack of ground elevation data and to improve river channel elevation where 

bathymetry data was unavailable, (iii) bathymetry data were merged with Bare-Earth 

SRTM DEM for routing upstream hydrography, and (iv) geotagged photos, optical, and 

SAR images were used for hydrodynamic model calibration, validation and comparative 

analysis. 

The following conclusions are drawn from this study: 

1. Other than flow data being one of the predominant sources of uncertainty in 

hydrodynamic models, DEMs, especially those with a low or medium resolution 

that average out terrain properties can result in flawed model outcomes, especially 

in built-up and mangrove dominated areas. Nevertheless, where recent bathymetric 

data is available as was the case in Lokoja, within a constricted river channel, 

improved model accuracy is expected and this should be the basic data required for 

flood routing in developing regions. 

2. The role of remote sensing in modern-day hydrology, hydrodynamics and flood 

mapping cannot be over-emphasized, especially in developing regions where access 

to in situ data is limited. Evidence from this study suggests the availability of data 

in even very remote locations of Nigeria (a typical developing country), though 

segmented and in varying formats and resolutions. A conscious effort must be made 

to scout for and integrate multiple datasets when mapping flooding in developing 

regions. We conclude that data is always available in most remote locations, 

however, accessibility, validity and accuracy remains a challenge. 

3. When modelling floods in large catchments using multiple remote sensing data, an 

understanding of the landscape, climate and seasonal variability are essentials, 

considering their effect on optical and SAR imagery efficiency and usability. 

Upstream of the Niger south catchment (Lokoja) for instance is mostly sparsely 

vegetated and cloud-free during the wet season, hence the negligible difference 

between SAR (TerraSAR-X) and optical (MODIS) inundation extent when used for 

the model calibration and validation. Contrastingly in the Niger Delta region, the 
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mangrove vegetated and cloudy atmosphere resulted in very limited MODIS flood 

capture and even affected SAR inundation delineation capacity. This thereby 

prompted an alternative measure (overflight photos) that enabled flood detection 

within pockets of the mangrove and built-up areas where SAR imagery was 

deficient. 

4. The value of baseline data availability was evident at Lokoja, where the 2012 flood 

event was quantified as a 1-in-100 year flood event, and the effect of the modelled 

and observed flood on the populace, built-up areas and road infrastructure 

simulated. The deteriorating effect of data quality was also evident at Onitsha and 

the Niger Delta regions respectively. These outcomes further suggest the need for 

improved data collection by agencies such as the National Inland Waterways 

Agency (NIWA), Nigerian Hydrological Service Agency (NISHA) and the Niger 

Basin Authority (NBA) for improved flood management. 

5. Modelling the Niger Delta region of Nigeria is a complex task that requires detailed 

and up-to-date bathymetric survey, high-resolution terrain, landscape information 

and in situ river measurements. The complexity of the region is further exacerbated 

by the wetland nature of the region that promotes attenuation, and anthropogenic 

activities such as sand mining and dredging activities (Okonkwo, 2012, Ohimain et 

al., 2004, Ohimain, 2004, Awelewa, 2016) that alters the hydrological regime and 

hydraulic connectivity of the region.  

6. Throughout the modelling process, it is evident that quality hydrological input, 

digital elevation model, bathymetry, and calibration datasets contain uncertainties 

that propagate onto the model outcome. Although because to simplicity and the 

huge computational cost of combined hydrological and hydrodynamic simulations, 

the effects of these uncertainties are not quantified, the calibration process curtails 

the uncertainties to a reasonable extent, through the definition of an optimal 

manningôs roughness parameter to enable the simulation of a known flood extent. 
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Chapter 6 Supplementary Materials 

In this study Generalized Extreme Value (GEV) probability distribution is fitted to 

annual maximum flood series (Jenkinson, 1955), widely adopted in hydrological studies 

in several regions (Leclerc and Ouarda, 2007, Kochanek et al., 2013, El-Jabi et al., 

2015, Smith et al., 2015, OôBrien and Burn, 2014). GEV is expressed as thus: 
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Where:  Ű, Ŭ, and k represent location, scale and shape parameters respectively of the 

distribution function.  

Supplementary Table 1:  Spatial data availability matrix for sub-domains 

 

Spatial Data (Imagery and Survey) 

Locations 

Lokoja Onitsha Niger Delta 

MODIS ã ã × 

TerraSAR-X ã × × 

Radarsat-2 × × ã 

Cosmo-SkyMed × × ã 

Geotagged Photos × × ã 

Bathymetry ã ã × 

Radar Altimetry ã ã ã 

SRTM DEM ã ã ã 
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Supplementary Figure 1 Baro flood frequency plot 

 

Supplementary Figure 2 Umaisha flood frequency plot 
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(a)                                                            (b) 

     

(c)                                     (d) 

Supplementary Figure 3 Correlation between ICESat points and DEM extracts 
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Supplementary Figure 4 Water level points for accuracy assessment 

Supplementary Table 2 Coordinates of Water level points for accuracy assessment 

 Lokoja Onitsha 

S/N Northing (X) Easting (Y) Northing (X) Easting (Y) 

1 255224.796577 873550.54681 252253.53001 683194.262142 

2 254945.095998 872659.407754 252961.522103 683089.984237 

3 872659.407754 872633.389095 253458.21423 682958.264778 

4 254684.909412 871807.296685 253996.068688 683188.773831 
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Supplementary Figure 5 Model, Observation and Overflight line of sight overlaid on 

high-resolution GeoEye Imagery.
























































































































































































































