
 
 

 

  

Abstract—The basic concept, formulation, background, and a 
panoramic view over the recent research results and open 
problems in the newly emerging area of research that is on the 
crossroads of computational intelligence and cybernetics is 
compressed in this short communication. Intelligent systems can 
be defined as systems that incorporate some form of reasoning 
that is typical for humans. Fuzzy Systems are well known for 
being able to formalize the approximate reasoning that still 
separates humans from machines. Artificial neural networks 
have proven to be a useful form of parallel processing of 
information that employs principles from the organization of 
the brain. Finally, the evolution is a phenomenon that was 
initially used to solve optimization problems inspired by the so 
called ‘genetic algorithms’ due to D. E. Goldberg and ‘genetic 
programming’ due to J. Koza. These types of evolutionary 
algorithms are mimicking the natural selection that takes place 
in populations of living creatures over generations. More 
recently, the evolution of individual systems within their life-span 
(self-organization, learning through experience, and 
self-developing) has attracted the attention. These systems 
called ‘evolving’ came as a result of the research into the 
development of practical on-line algorithms that work in 
real-time and are close to the theoretically optimal, analytical 
solutions, suitable for non-stationary, non-linear problems of 
modeling, control, prediction, classification, clustering, signal 
processing. Due to the limited space and the specific purpose of 
this communication only the basic elements of the concept will 
be outlined. This concept represents, in fact, a higher level 
adaptation that concerns model structure as well as model 
parameters. It can also be considered as an extension of the 
multi-model concept known from the control theory, and of the 
on-line identification of fixed structure fuzzy rule-based models. 
It can also be considered as an extension of the learning neural 
networks methods in direction of on-line applications with a 
structure that can grow and shrink. This new concept of 
‘evolving intelligent systems’ can also be treated in the 
framework of the knowledge and data integration. 
Evolutionary, population/generation  based computation, can be 
applied to optimize parameters and features of an individual 
system, that learns incrementally from incoming data. The 
specific of this paper lays in the generalization of the recent 
advances in the development of evolving fuzzy and neuro-fuzzy 
models and the more analytical angle of consideration through 
the prism of knowledge evolution as opposed to the usually used 
data-centred approach. This powerful new concept has been 
recently introduced by the authors in a series of parallel works 
and is still under intensive development. It forms the conceptual 
basis for the development of the truly intelligent systems. A 
number of applications of this technique to a range of industrial 
and benchmark processes have been recently reported. Due to 
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the lack of space only some of them will be mentioned primarily 
with illustrative purpose. 

I. INTRODUCTION 

T is widely accepted that systems that are capable of 
decision making and reasoning, that posses knowledge, 
are regarded as ‘intelligent’ [1]. Until 1970s it was 

assumed that this can be achieved by building so called 
‘expert’ systems [2]. Currently, it is recognized that the 
techniques that contribute to increase of the ‘machine 
intelligence quotient’ [3] of a system are primarily fuzzy logic 
(introduced in 1965 by L.A. Zadeh [4] and used widely since 
1980s), artificial neural networks (more widely used after 
seminal publications of P. Werbos in 1980s [5]), machine 
learning and evolutionary algorithms (initially introduced by 
J. Holland [6] and further developed by D. E. Goldberg [7] 
and J. Koza [8]). These branches form the triad of the so 
called computational intelligence.  
 A specific aspect of the development of ‘intelligent’ 
systems has attracted research attention recently. It concerns 
the problems of adaptivity of such systems, their use in 
on-line mode, for real-time applications in a wide range of 
real tasks originating from process industries, defense, 
advanced technology. This led during the last few years to the 
formation of the area of evolving intelligent systems (eIS)  

The Oxford Advance Learner’s Dictionary gives the 
following definition for ‘evolve’: ‘unfold; develop; be 
developed, naturally and gradually’ [9, p.294]. One can 
compare this with the more general ‘evolutionary’ [9, p.294] 
‘development of more complicated forms of life (plants, 
animals) from earlier and simpler forms’, which is naturally 
related to the ‘genetic’ [9, p.358] ‘branch of biology dealing 
with the heredity, the ways in which characteristics are passed 
on from parents to offspring’.  

We use further the term ‘evolving’ intelligent (e-ntelligent) 
systems (eIS) in the sense of gradual development of the 
system structure (rule-base or the architecture of the neural 
network that represents this system) and their parameters. 
This new paradigm was initially introduced for neural 
networks [10-11] and for fuzzy rule-based systems [12-13] by 
the authors and can be regarded as a higher level adaptation. 
Indeed, conventional adaptive systems known from control 
and system theory [43] deal predominantly with parameter 
adaptation of linear systems. By comparison, so called 
evolutionary algorithms (genetic algorithms [7], genetic 
programming [8] etc.) mimic the evolutionary processes that 
take place in populations of individuals and use operators 
based on paradigms such as 'crossover', 'mutation', 'selection', 
'recombination' of chromosomes as mechanisms of 
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adaptation. The emerging evolving systems paradigm mimics 
the evolution of individuals in the Nature during their 
life-cycle, especially humans: learning from experience, 
inheritance, gradual change, knowledge generation from 
routine operations, and knowledge generation from the data 
streams. If use a trivial analogy the approach mimics the way 
people learn during their life – starting with an empty 
rule-base or a neural network which is not trained; they learn 
new rules (develop the links of their neural network) during 
their life from experience based on the data streams that their 
preceptors generate to their brain. The development of the 
rule-base or neural network structure is gradual, but the 
rules/neurons are not fixed or pre-defined. They generate new 
rules (neurons) each time new data does not fit into the 
existing model/understanding (fuzzy rule-base or neural 
network), but at the same time only when this new data is 
informative enough (is not outlier).  

It is well known that both fuzzy rule-based systems and 
neural networks are universal function approximators [15, 
16]; they are suitable for extracting interpretable knowledge 
therefore, they are considered to be a promising framework 
for designing effective and powerful prognostic, 
classification, and control systems.  

Traditionally, machine learning of ‘intelligent systems’ has 
been addressed primarily for the batch (off-line) case and the 
structure of the ‘intelligent’ system was assumed to be fixed 
or known a priori. Recently, the attention has been shifted 
towards the on-line learning [17-19]. One can group the 
‘intelligent’ systems learning methods into two broad 
categories [20]: 

1) direct (single phase) learning;  

this approach performs supervised learning and addresses the 
identification task as a non-linear optimization problem that is 
solved numerically [12]; 

2) indirect (two phases) learning;  

this approach presumes initial data partitioning using 
unsupervised data clustering methods and parameter 
identification using supervised learning method such as 
recursive least squares (RLS) [10,11,13,20-23],. 

According to the evolving systems paradigm, the structure 
of the ‘e-ntelligent’ system is not fixed, it gradually evolves 
(can expand or shrink).  

Computationally efficient indirect learning methods were 
developed recently that are applicable to so called 
Takagi-Sugeno type of fuzzy rule-based systems as well as to 
neuro-fuzzy systems [11, 13, 21-22]. It should be noted that 
they apply to the more general multi-input-multi-output 
(MIMO) case [23] as well as to the so called simplified 
Mamdani type of fuzzy rules. Parallel results were reported 
for other types of neural networks (such as radial-basis 
functions, RBF type [24], self-organizing maps [25], etc.). 

There is a certain parallel between the system identification 
(a terminology used in control theory and cybernetics) 

[14,43] and the more general and philosophical concept of 
knowledge generation or discovery from the data [26]. Both 
refer to the non-trivial process of identifying valid and 
understandable/interpretable structure in the data. In this 
respect system identification is meant in this paper mostly as a 
model structure identification rather than the more limited 
and practically more often used parameter identification. One 
can note that the parameter identification under a fixed model 
structure is nothing more than an adjustment, tuning and thus 
has obviously limitations related first of all to the choice of 
the model structure. Since the data streams are often 
non-stationary it is logical to assume the structure of the data 
to be also dynamic, that is, to evolve. An e-ntelligent system 
continuously learns new data to integrate this data with the 
existing models. It develops its structure and functionality 
continuously, always adapting and modifying its knowledge 
representation. The e-ntelligent system approach is 
demonstrated here through two system modelling techniques 
that the authors have introduced recently and are continuing 
to develop, namely the evolving connectionist systems [11] 
(ECOS) and evolving fuzzy systems [12,13] (EFS).  

The remainder of the paper is organized as follows. Section 
II summarizes the EFS approach on a conceptual level and 
illustrates the approach on several industrial applications. 
Section III outlines the ECOS approach – some of its 
implementations and applications. Section IV discusses the 
issues of incremental (on-line) optimization of parameters 
and features for e-ntelligent systems using incremental PCA, 
incremental LDA and GA. Section V concludes the paper. 

II. EVOLVING FUZZY SYSTEMS 

A. Problem Formulation 
The problems of modeling of non-linear non-stationary 

processes is a generic one that includes the problems of 
prediction, tracking, estimation, control, classification, and 
clustering as special cases. This can be illustrated with simple 
block-diagrams if ignore the details and concentrate on the 
signal transformation only. Thus, it will be sufficient to 
consider the system being modeled (a process, time-series, a 
controller, a data stream etc.) as a simple ‘black-box’ as 
presented in Fig. 1.  

 
Figure 1 A generic representation of the MIMO system 

Note, that this does not limit our further considerations to 
the so called ‘black-box’ type of models. As it will be seen 
later on, the proposed modeling technique has excellent 
transparency and interpretation capabilities. 

In Fig.1 the following notations where used: 
T

nxxxx ],...,,[ 21= is the input vector; 
T

myyyy ],...,,[ 21=  is the m-dimensional output vector. 
For the case of clustering (unsupervised learning) the output 

? 

x1 y1

...
xn ym

...



 
 

 

vector is absent. In the case of control the output represents 
the control signal. In the case of prediction, the output 
represents the future value of the input vector. In case of 
classification, the output vector represents integer labels of 
respective classes, while input vector is composed by the set 
of the features. In the case of estimation/filtering the output 
represents the current value of an unobservable state of the 
system [27]. In so called state-space representation, the 
outputs represent the observations. Usually the subject areas 
of control, estimation, modeling, clustering, and 
classification are considered separately and often use 
different terminology for the same problems. By combining 
all of them we propose a generic solution that is suitable for 
all these types of problems and applicable in on-line and 
real-time. The aim is to identify a satisfactory candidate for 
the non-linear and non-stationary function y=f(x) from Fig.1.  

The approaches that are widely used in practice are based 
on (in historical order): 

i) First principles (deterministic approach, highly 
problem dependent, often cumbersome); 

ii) Stochastic function approximation [27-28] – 
based on a number of assumptions that does not 
hold in practice, not transparent (‘balck-box’ 
type); 

iii) Neural networks – usually off-line, not 
transparent (‘balck-box’ type) [24]; 

iv) Fuzzy rule-based models – transparent, usually 
off-line [29,30]. 

Since it was proven that both neural networks and fuzzy 
rule-based models are universal approximator [15,16], the 
last two group of models are attractive candidates to address 
the problem stated earlier. The main stumbling block until the 
end of the 20th century was the problem of their 
learning/design/identification. The existing state-of-art by 
that time was limited to off-line cases. At the same time, the 
classical control [43] and estimation theories [27,28] had 
already for quite some time developed well established 
algorithms and approaches addressing on-line estimation, 
control and prediction, albeit primarily limited to the 
assumption of a linear structure of the function f(x) and in any 
case to it having a fixed structure. The extensions for 
non-linear cases were limited to temporal linearization and 
other assumptions, such as Gaussian type of the noise [31]. 
The challenge in the beginning of this century was to develop 
and design modeling (in the broader sense as described 
above, including control, classification, prediction etc.) 
techniques that are flexible enough to cope with the real 
problems formulated by the industry, defense, and society.  

Two of the successful extensions of the fuzzy system 
identification and neural networks learning problems where 
reported independently in the beginning of this century 
[10-13]. During last five years there are increasing number of 
publications that treat similar problems in both fuzzy systems 
and neural networks domains [17-25]. As recognition of the 
growing importance of this area the International Symposium 

on Evolving Fuzzy Systems brought together more than sixty 
high quality contributions [32]. 

In the remainder of this section, the evolving fuzzy 
rule-based systems (EFS) approach will be briefly outlined 
Let us consider a multi-input-multi-output (MIMO) set of 
fuzzy rules of the following form: 
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  rule antecedent; iy  is the output of the ith linear 

sub-system. 
Note that the type of the fuzzy rule depends on the type of 

the consequent: 
• It is of so-called first order Takagi-Sugeno type [10] 
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are the parameters of the m 
local linear sub-systems 
• It is of zero order Takagi-Sugeno type (that can also be 

considered as a simplified Mamdani, type) when the 
consequents are singletons (crisp scalar values): 

ii af =   (3) 

where [ ]Ti
m

iiia 00201 ααα= are the parameters of the m 

local linear sub-models 
Note that equations (1) and (3) describe simplified 

Mamdani model while the conventional Mamdani type fuzzy 
model assumes fuzzy consequents [18]. The overall output of 
the NF system, y is formed as a collection of loosely/fuzzily 
combined multiple simpler sub-systems, yi. The degree of 
activation of each rule is proportional to the level of 
contribution of the corresponding sub-system to the overall 
output of the system. 
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where λi is the normalized activation level of the ith rule; is 
the activation level of the ith rule. 
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This way of aggregating the partial contributions of the 
local models is also known as ‘center of gravity’ (CoG) [18]. 
There are other techniques to produce the overall output (to 



 
 

 

assume different structure of the model). For classification 
sub-problem a popular choice is so called ‘winner-takes-all’ 
mechanism: 
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The activation levels, τi can be determined as t-norms 
(Cartesian product) of the fuzzy sets that form the specific 
fuzzy rule [30]: 
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where  i
jµ is the membership value of the jth input xj, 

j=[1,n]), to the ith fuzzy set ,i=[1,N]; 
The membership function is usually of Gaussian type (this 

choice is justified by its generalization capabilities since it 
resembles normal distribution and covers the whole domain 
of the variables, thus avoids potential computational 
problems): 
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where ( )2i
jσ , i=[1,N] j=[1,n] is the spread of the 

membership function, which also represents the radius of the 
zone of influence of the cluster/rule.  

The system considered in this paper and described by 
equations (1)-(2) or (1)-(3) can be graphically represented as 
a five-layer feed-forward neural network: 

 
Figure 2. The proposed neuro-fuzzy system. Note, this structure is not 
pre-defined and fixed – it rather evolves ‘from scratch’ by learning from the 
data simultaneously with the parameter adjustment/adaptation 

The first layer consists of neurons corresponding to the 
membership functions of particular fuzzy set. This layer takes 
as inputs the data, x and gives as output the degree, µ to which 
these fuzzy descriptors are satisfied. The second layer 
represents the antecedent parts of the fuzzy rules. It takes as 

inputs the membership functions values and gives as output 
the firing level of the ith rule, τi. The third layer of the 
network takes as inputs the firing levels of the respective rule, 
τi and gives as output the normalized firing level, λi  as CoG 
of τi. As an alternative one can use ‘winner takes all’ operator. 
This operator is used usually in classification, while CoG is 
preferred for time-series prediction and general system 
modeling and control. The fourth layer aggregates the 
antecedent and the consequent part that represents the local 
sub-systems (singletons or hyper planes). Finally, the last 
fifth layer forms the total output of the NF system. It performs 
a weighed summation of local sub-systems according to 
(4)-(5). 

B. Real-time Learning Methodology 
Due to the lack of space only the basic concept of the 

learning methodology will be outlined in this paper. For more 
details, please refer to [13,20,22]. Learning is combining 
unsupervised learning in respect to the antecedent part of the 
model (1) (that is in terms of the model structure) with the 
supervised in terms of the consequent parameters, a. 

In this way, the learning is o fthe second type according to 
the classification given in section I (a two-phase process). 
Note, that both phases (models structure identification using 
on-line clustering and model parameter identification using a 
version of coupled recursive least squares learning) are 
perfomed together at the model update stage, which is 
combined with the prediction step and both are performed per 
time instant. This type of (model update)-(model use for 
prediction) is typical for on-line estimation, adaptive control 
etc. [43].  

Each one of the fuzzy rules of type (1) operate in certain 
sub-area of the input/output data space, [ ]TTT yxz ;= ; mnRz +∈ . 
To identify these regions one can employ real-time clustering 
thus effectively learning the antecedent part of the fuzzy rules 
[33]. Two parameters are needed to define a membership 
function of the type (7), namely the focal point, *ix and the 

spread, i

jσ . If locate the focal points of the rules, *ix at the 

cluster centre (note, only coordinates for the inputs are used 
to define the focal point although coordinates of the outputs 
are also used in the clustering) and if determine the spread, 

i

jσ  based on the data the antecedent part of the fuzzy rules 

are defined. Details about the real-time clustering approach 
used in this paper can be found in [33]. It can be noted that 
this clustering method has the following specific features that 
separate it from the other clustering approaches: 

 It is non-iterative (no search is involved); 
 It has very low memory requirements, because 

recursive calculations are used; 
 It is fully unsupervised in the sense that number of 

clusters are not pre-defined (they are determined based 
on the data density alone); 

 it can start ‘from scratch’ from the very first data 



 
 

 

sample assumed to be the first cluster centre; 
 changes of the cluster number and parameters are 

gradual, incremental, not abrupt. 
Once the antecedent part of the fuzzy model is determined 

and fixed the parameters of the consequent part, ai can be 
identified using fuzzily weighted RLS as detailed in [13]. The 
overall output of the evolving NF system can be given in 
vector form as follows: 

θψ Ty =   (8) 

where ( ) ( ) ( )[ ]TTNTT
πππθ ,...,, 21= is a vector formed by 

the sub-system parameters; TT
e

NT
e

T
e xxx ],...,,[ 21 λλλψ =  

is a vector of the inputs that are weighted by the normalized 
activation levels of the rules, iλ , i=[1,N] for the first order 

Takagi-Sugeno model (2) and  TN ],...,,[ 21 λλλψ = for the 

simplified Mamdani, (3). 

For a given data point, [ ]TT
k

T
k yx ;  the optimal in least 

squares sense solution, 
^

kθ  that minimizes the following cost 
function: 

( ) ( ) min→Ψ−Ψ− θθ TTT YY  (9) 
can be found applying fuzzily weighted RLS as detailed in 

[13].  

It should be noted that the real-time algorithm must 
perform both tasks (data partitioning and parameter 
estimation) at the same time instant (per data point) for a time 
significantly shorter than the sampling period. 

In this way, the antecedent part of the rules can be 
determined in a fully unsupervised way, while the consequent 
part requires a supervised feedback. Note that the clustering 
sub-problem does not require a consequent part. 
Classification sub-problem requires ‘winner-takes-all’ 
aggregation as given by equation (5a). The error feedback 
used in the supervised learning guarantees optimality (subject 
to fixed rule base structure) of the parameters of the 
consequent part. 

C. Knowledge and Data Integration 
In this paper we treat e-ntelligent systems through the prism 

of the knowledge and data integration (KDI) approach and 
so-called participatory learning [33]. KDI paradigm brings 
together the adaptation (which is relatively well covered by 
parameter adaptation techniques known from the 
‘conventional’ adaptive systems theory [43]) with the 
problem of generalisation and knowledge capture. The latter 
concept is addressed in ‘conventional’ modelling disciplines 
(including both fuzzy and linear systems) by different 
cross-validation techniques. ‘Conventional’ techniques, 
however, assume all of the data to be known a priori or to 
continue to support an assumed model structure (in the case 
of ‘conventional’ adaptive system theory [43]). The problem 

of acquiring new data that does not support the a priori 
assumed model structure has not been addressed before the 
introduction of the evolving modelling concept. An 
e-ntelligent system, by differ from a conventional system, 
including a ‘conventional’ ‘intelligent’ system, continuously 
learn new data to integrate this data with existing models. 
The incoming data may contain new valuable information 
regarding new regimes or states of the system in question. 
The e-ntelligent system develops their structure and 
functionality continuously, always adapting and modifying 
its knowledge representation.  

The introduction of the e-ntelligent system paradigm is done 
through the analysis of the integrating existing knowledge (e.g. 
formulas, rules) with new data. Despite of the advances in 
mathematical and information sciences, there is a lack of efficient 
methods to extend an existing system to accommodate new 
(reliable) data set for the same problem. Examples of existing 
models that need to be further modified and extended to new data 
are numerous: differential equation models of cells and neurons 
[36], a regression formula to predict outcome of cancer [37], an 
analytical formula to evaluate renal functions [38], a logistic 
regression formula for evaluating the risk of cardiac events [39], 
a set of rules for the prediction of outcome of trauma, gene 
expression classification and prognostic models [40,41], models 
of gene regulatory networks [42], and many more, e.g. [43].  

One existing tool for reconciliation of the newly acquired 
information and the existing knowledge/understanding is the 
well known participatory learning approach by R. Yager [33]. It 
was recently applied to EFS learning [34,35]. 

D. Illustrative Applications of EFS technique 
The proposed EFS approach has been applied to a wide 

range of problems (both benchmarks and real). Due to space 
limitations only one specific problem of an e-ntelligent sensor 
of exhaust gases of car engines will be given in this 
communication with illustrative purposes.  

The real experimental data (courtesy of Dr. Edwin 
Lughofer, Johan Kepler University, Linz, Austria) concerns 
the problem of real-time modelling NOx emissions from the 
exhaust in a car engine using the following three input 
attributes measured in real-time: N - engine rotation speed, 
rpm; P2 - pressure offset in cylinders, bar; Te - engine output 
torque, Nm, Nd – speed at the dynamometer, rpm. Based on 
the knowledge of the problem the following input/output 
dependence is expected [44]:         

),,,2,( 66554 −−−−−= kkkkkk NNdTePNfNOx   (10) 
The sampling period of 1s has been used and thus a 

prediction 4 second will be possible if a non-linear (and 
non-stationary) dependence of the above type can be 
identified in real-time. A test was carried out with a sequence 
of just over 4 hours of real data (sampled into 1491 samples 
with a sampling interval of 1s) [44]. Fig. 3 illustrates the 
comparison of the predicted in real-time versus the real data 
sequence of the NOx emissions in the car engines for about 
2.5 minutes (samples between 667 and 824). 



 
 

 

 
Figure 3. Validation of the e-ntelligent sensor with real data from car engines 
test 

This result was achieved with a fuzzy rule-based system 
that started to learn ‘from scratch’ (with an empty rule-base) 
and have developed its rule-base by learning from data in 
real-time. At the end of the test it contained 7 fuzzy rules: 

R1: IF( 4−kN  is Medium) AND ( 52 −k
offsetP  is Low) AND 
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R3: IF( 4−kN  is Medium) AND ( 52 −k
offsetP  is Medium) AND 

( 5−kTe is High) AND ( 6−kNd is …) AND ( 6−kN is Low) 
THEN 
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R4: IF( 4−kN  is Low) AND ( 52 −k
offsetP  is Very Low) AND 

( 5−kTe is Medium) AND ( 6−kNd is …) AND ( 6−kN is 
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R5: IF( 4−kN  is Very High) AND ( 52 −k
offsetP  is Very Low) 

AND ( 5−kTe is Low) AND ( 6−kNd is …) AND ( 6−kN is Low) 
THEN 
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R6: IF( 4−kN  is Low) AND ( 52 −k
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Figure 4 depicts four of the fuzzy sets of the first fuzzy rule 
(evolved automatically from the data): 

 
Figure 4. Fuzzy sets of Engine rotation speed, Pressure in the cylinders, 
torque, and the speed of the dynamometer of a car engine (data are real, but 
normalized). 

Figure 5 depicts the evolution with time of the parameters 
in the consequent part of the fuzzy rules. 

 
Figure 5. Parameters evolution of the consequents of one of the fuzzy rules. 

The precision of the evolved model can be measured in 
different metrics: 

• Variance Accounted For (VAF): 85.034 
• Correlation 0.92213  
• MSE     0.0037546  
• RMSE   0.061275  
• NDEI   0.38991  

It is well known that the ideal values for the VAF is 100%, 
for the correlation is 1, and for the remaining metrics is 0. 

This e-ntelligent sensor has the following advantages: 
 It is precise (the results were compared to the 

known off-line and on-line approaches that are 
based on a fixed structure models [44] and EFS 
demonstrated superior performance; 

 It is flexible and has inherently build-in 
robustness and insensitivity to noise and outliers 



 
 

 

[13]; 
 It is computationally efficient – a version of this 

approach was developed on chip (FPGA) [45]; 
 It does not require prior knowledge about the 

structure of the model/sensor – it can start 
learning ‘from scratch’; 

 It is suitable for re-calibration of sensors; 
 It can be used from extracting transparent 

linguistic rules from data streams in real-time. 

III. EVOLVING CONNECTIONIST SYSTEMS (ECOS)  

A. General Principles of ECOS 
 
Evolving connectionist systems (ECOS) are modular 
connectionist-based systems that evolve their structure and 
functionality in a continuous, self-organised, on-line, 
adaptive, interactive way from incoming information. They 
can process both data and knowledge in a supervised and/or 
unsupervised way [10,11].   
    ECOS learn local models from data through clustering of 
the data and associating a local output function for each 
cluster. Clusters of data are created based on similarity 
between data samples either in the input space (this is the case 
in some of the ECOS models, e.g. the dynamic neuro-fuzzy 
inference system DENFIS [25]), or in both the input space 
and the output space (this is the case in the EFuNN models 
[10]). Samples that have a distance to an existing cluster 
center (rule node) N of less than a threshold Rmax (for the 
EfuNN models it is also needed that the output vectors of 
these samples are different from the output value of this 
cluster center in not more than an error tolerance E) are 
allocated to the same cluster Nc. Samples that do not fit into 
existing clusters, form new clusters as they arrive in time. 
Cluster centers are continuously adjusted according to new 
data samples, and new clusters are created incrementally.  
    The similarity between a sample S = (x,y) and an existing 
rule node N = (W1,W2) can be measured in different ways, the 
most popular of them being the normalized Euclidean 
distance:  

        d(S,N) = [Σ (i=1,..,n)  (xi – W1(i)) 2 ] /n,                                  
(11) 

     where n is the number of the input variables.   

    ECOS learn from data and automatically create or update a 
local output function for each cluster, the function being 
represented in the W2 connection weights, thus creating local 
models. Each model is represented as a local rule with an 
antecedent – the cluster area, and a consequent – the output 
function applied to data in this cluster, e.g.: 

IF (data is in cluster Nc) THEN (the output is calculated with 
a function Fc)                                                                     (12)                

Implementations of the ECOS framework require 
connectionist structures that support these principles. One 
implementation of ECOS is the evolving fuzzy neural 
network (EFuNN). 

 

B. Evolving Fuzzy Neural Network EFuNN 
A general EFuNN architecture has 5 feed-forward layers and 
a feedback layer of neurons, but the second and the fourth 
fuzzy representation layers and also - the feedback layer, are 
optional  – fig. 6. The third layer contains rule nodes that 
evolve through supervised / unsupervised learning. The rule 
nodes represent prototypes of input-output data associations. 
Each rule node r is defined by two vectors of connection 
weights, W1(r) and W2(r), the latter being adjusted through 
supervised learning based on the output error, and the former 
being adjusted through unsupervised learning based on a 
similarity measure within a local area of the problem space. 
The fourth layer of neurons represents fuzzy quantization for 
the output variables, similar to the input fuzzy neurons 
representation. The fifth layer represents the real values for 
the output variables. 
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Figure 6.  An EFuNN architecture with a short term memory and feedback 
connections (adapted from [10,11,46]) 
 

The evolving process can be based on either of the two 
assumptions:  (1) rule nodes exist prior to learning and only 
connections are created during learning; (2) all nodes are 
created during the evolving process.  

Each rule node (e.g., r1) represents an association between 
a hyper-sphere from the fuzzy input space and a hyper-sphere 
from the fuzzy output space, the W1(rj) connection weights 
representing the co-ordinates of the centre of the sphere in the 
fuzzy input space, and the W2(rj) – the co-ordinates in the 
fuzzy output space. The radius of an input hyper-sphere of a 
rule node is defined as (1 – Sthr), where Sthr is the sensitivity 
threshold parameter defining the minimum activation of a 
rule node (e.g., r1) to an input vector (e.g., (Xd2,  Yd2)) in 
order for the new input vector to be associated to this rule 
node. 



 
 

 

Through the process of associating (learning) a new data 
vector Xd to a rule node, the centre of this node hyper-sphere 
is adjusted in the fuzzy input space depending on a learning 
rate lr1 and in the fuzzy output space depending on a learning 
rate lr2. The adjustment of the centre r1

1 to its new position r1
2 

can be represented mathematically by the change in the 
connection weights of the rule node r1 from W1(r1

1) and 
W2(r1

1) to W1(r1
2) and W2(r1

2) as it is presented in the 
following vector operations: 

W1(r1
2) = W1(r1

1) + lr1 * Ds(Xd, W1(r1
1))                     (13) 

 
W2(r1

2) = W2(r1
1) + lr2 * Err(Yd, Yd’) * A1(r1

1)                   (14) 
 

where: Err(Yd, Yd’) = Ds(Yd, Yd’) is the distance between the 
desired and the obtained in the system output vectors in the 
output space; A1(r1

1) is the activation of the rule node r1
1 for 

the input vector Xd. 

While the connection weights from W1 and W2 capture 
spatial characteristics of the learned data (centres of 
hyper-spheres), the temporal layer of connection weights W3 
from Fig.6 captures temporal dependences between 
consecutive data examples. If the winning rule node at the 
moment (t – 1) (to which the input data vector at the moment 
(t – 1) was associated), was r1 = inda1(t – 1), and the winning 
node at the moment t is r2 = inda1(t), then a connection 
between the two nodes is established as follows:  

W3(r1, r2)(t)=W3(r1,r2)(t-1) + lr3 * A1(r1)(t-1) * A1(r2)(t)                (15) 

where: A1(r)(t) denotes the activation of a rule node r at a time 
moment (t); lr3 defines the degree to which the EFuNN 
associates links between rules (clusters, prototypes) that 
include consecutive data examples (if lr3 = 0, no temporal 
associations are learned in an EFuNN). 

The following is a new learning rule that takes into 
account both spatial similarity and temporal correlation) 
through introducing two parameters Ss and Tc , such that the 
activation of a rule node r for a new data example dnew is 
defined as the following vector operation: 

A1(r,dnew) = f(Ss*D(W1(r),dnew)+Tc*W3(r(t-1), r))                     
(16) 

where: f is the activation function of the rule node r; D(W1(r), 
dnew) is the normalized fuzzy distance between the new input 
vector and the W1(r) representing the spatial component; r(t-1) 
is the winning neuron at time moment (t – 1). The second term 
in equation (16) represents the temporal component.    

An EFuNN functional implementation can include pruning 
nodes and aggregating nodes [10,11]. An example of a 
pruning rule is: 
       IF (a rule node rj is OLD) AND (average activation  
A1av(rj) is LOW) AND (the density of the neighbouring area of 
neurons is HIGH or MODERATE THEN the probability of 
pruning node (rj) is HIGH. 

Nodes can also be aggregated [10,11].  

     C. Dynamic Evolving Neuro-Fuzzy Inference Systems 
(DENFIS) [25] 

While EFuNN is a fuzzy neural network that evolves 
incrementally its structure and functionality using supervised 
clustering, DENFIS is a dynamic fuzzy inference system that 
incrementally creates Takagi-Sugeno fuzzy rules to 
accommodate data in unsupervised learned clusters. New 
fuzzy rules are created and updated during the operation of 
the system. At each time moment the output of DENFIS is 
calculated through a fuzzy inference system based on m-most 
activated fuzzy rules which are dynamically selected from the 
existing fuzzy rule set.  As the knowledge, fuzzy rules can be 
inserted into DENFIS before, or during its learning process 
and, they can also be extracted during the learning process or 
after it.  The fuzzy rules used in DENFIS are indicated as 
follows: 

Rl: if x1 is F11 and x2 is F12 and … and xP is F1P,   
        then  yl  = bl0 + bl1x1 + bl2x2 +… + blPxP                       (17) 

where “xj is Flj”, l = 1, 2, … m; j = 1, 2, … P, are M × P fuzzy 
propositions that form m antecedents for m fuzzy rules 
respectively; xj, j = 1, 2, …, P, are antecedent variables 
defined over universes of discourse Xj, j = 1, 2, …, P, and Flj, 
l = 1, 2, … M; j = 1, 2, …, P are fuzzy sets defined by their 
fuzzy membership functions µFlj: Xj → [0, 1], l = 1, 2, … M; j 
= 1, 2, …, P. In the consequent parts of fuzzy rules, yl , l = 1, 
2, … m, are the consequent variables defined by linear 
functions.  
      In DENFIS, Flj are defined by a Gaussian membership 
function. All fuzzy rules in DENFIS are created and updated 
during a possible ‘one-pass’ training process by applying the 
Evolving Clustering Method (ECM) and the Weighted 
Recursive Least Square Estimator with Forgetting Factors 
(WRLSE) [25].  

     The ECOS models have the following advantages: (1) 
incremental, fast learning (possibly ‘one pass’); (2) on-line 
adaptation; (3) ‘open’ structure; (4) allowing for time and 
space representation based on biological plausibility; (5) rule 
extraction and rule insertion; (6) data and knowledge 
integration (as discussed below)  

D. Integrating Knowledge (Old Models) and Data in ECOS 
     As the eIS, and ECOS in particular, are adaptive, 
knowledge-based systems, they can accommodate both 
existing knowledge on the problem (e.g. formulas, models) 
and new data, allowing for incremental adaptation of the 
system’s rule representation.  
     In many domain areas, such as medical decision support, 
there are existing regression formulas and new data is 
accumulating in time, making the integration of both an 
important issue for a better decision support. 
     In [46,47] ECOS are used to accommodate regression 
formulas and new data in the following away. The formula is 
first used to generate “historical” data. This data is used to 
train an ECOS as an initial knowledge representation 



 
 

 

architecture. Then the ECOS system is further trained 
(adapted) on the new data.  
    In [48] a novel method of “Integrated kernel-regression 
knowledge-based neural networks” is presented for the 
integration of several, used in practice, regression formulas 
and new data into one system. The method optimizes the size 
of the clusters of the data using different kernels, and for each 
cluster – a suitable type of regression is chosen and the 
parameters are adapted on the data:   
 
y(x) = G1(x) F1(x) + G2(x) F2(x)+ .. + GM(x) FM(x) (18) 
where, x = [x1, x2, …, xP] is the input vector; y is the output 
vector; Gl are kernel functions; and Fl are regression 
formulas, l = 1, 2, … M. 
      
E.  Incremental parameter and feature oprimisation using 
GA, incremental PCA and LDA 
  
    An ECOS evolves its structure and functionality in time 
from incoming data, for which the dynamics may not be 
known in advance. That requires an incremental (possibly - 
on-line) parameter and feature optimization. One way to 
optimize these parameters and obtain an optimal for the time 
moment model according to certain criteria (e.g. 
classification accuracy) is through evolutionary computation, 
e.g. GA  [7]. GA optimization can be applied on a population 
of individual models that are  trained and tested on 
consecutive chunks of data, so that at any time of the 
operation of the ECOS the best model (e.g. the model with the 
highest accuracy/ fitness) is selected. A methodology and 
examples are given in [55, 59].   
     In fig. 7 a simple ECOS model, called ECF, is optimized 
with the use of GA. ECF is characterized by 4 parameters 
(maximum field radius Rmax, minimum field radius Rmin, 
number of nodes m to use for a new vector; number of 
membership functions, epochs to train) and initial 12 input 
features describing the outcome of DLBCL cancer of 56 
patients [40] is optimized  as shown in fig. 7.  
 

 
Figure 7.  Using GA for parameter and feature optimization of a simple ECOS 
– ECF (experiments are done in a software environment NeuCom – 
www.theneucom.com) 

 
The variables are a clinical variable (IPI index) and 11 genes 
selected in for the prognosis of DLBCL cancer outcome. In 
the experiment shown in Fig. 7 both the ECF parameters and 
features are optimised with the use of a GA which ran over 20 
generations. At each generation, there are 20 ECF models in a 
population, having different parameter values and feature 
sets, and a fitness criteria of overall highest accuracy for the 
smallest number of features is used. The optimal ECF 
parameters are given in the figure and the best model has an 
overall accuracy of 90.66%, which is higher than any of the 
non-optimised models. The optimal values of all the ECF 
parameters and also the used variables (variables 5,8 and 12 
are not included) are shown in the figure.  
     In some cases, PCA or LDA transformations need to be 
performed on the input feature set to obtain a more compact 
input vectors and to improve the accuracy of the model. 
Incremental PCA and incremental LDA methods are 
presented in [49,54]. After features are selected in an 
incremental way, the ECOS if adapted to these features.   
     

F. A Framework of Multimodal eIS    
     
So far, this paper described some methods for building 
adaptive, evolving, knowledge based models from data. eIS 
may require several evolving models. Fig. 8 presents a 
framework of eIS, that consists of several parts: several 
e-models (EM), higher level decision part, adaptation part, 
featiure selection part where new features may be added in 
time, knowledge (rules) extraction part; interaction with 
environment and an output module [11].       
 
 

 

 

 
 
 
 
 
 
 
Figure 8. A general framework for an e-intelligent system (eIS)   

IV. APPLICATIONS OF ECOS AND EIS 
ECOS and eIS in general have been used for a range of 
applications so far, where adaptation to new data and 
knowledge representation  are crucial requirements. Here we 
present only few examples of them.  
 
A. Medical Decision Support 
 
A renal function prognostic system with the use of DENFIS is 
presented in [51]. The initial data set used has 447 samples, 
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collected at hospitals in New Zealand and Australia. Each of 
the patient records includes six variables (features): 1) age, 2) 
gender, 3) serum creatinine, 4) serum albumin, 5) race, 6) 
blood urea nitrogen concentrations, and one output - the 
glomerular filtration rate value (GFR) [38]. For every data 
cluster, a local model in DENFIS is derived as a logistic 
regression – fig.9.   
 

 
 
Fig.9. A snapshot of an adaptive medical decision support system for renal 
function evaluation [51]. The fuzzy rule on the right side is a regression 
model of the data derived and updated for the highlighted cluster. 
 
B. Bioinformatics 
     
 Bioinformatics is the area concerned with the biological data 
storage, analysis, representation, modeling and knowledge 
discovery. A review of problems and possible solutions is 
given in [52, 59]. Several problems in bioinformatics have 
been successfully solved with the use of adaptive eIS:  
 (a) Micro-array gene expression data analysis and pattern 
discovery [40,59]. Figure 10 shows a graphical representation 
of 5 EFuNN rules, each representing a profile of samples 
clustered together, each of them belonging to the class of     
good prognosis (class 1) or - bad prognosis (class 2) [11, 46, 
52, 56]. 
 

 
 
Figure 10. A graphical representation of 5 EFuNN rules, each representing a 
profile of samples clustered together, and belonging to the class of     
good prognosis (class 1), or - bad prognosis (class 2) [11,46,40]. 
 
(b)  Gene regulatory network modeling (GRN)  
GRNs describe the regulatory interaction between genes in a 
cell [42,59].  Co-expressed  genes  over time relate to each 
other – either one regulates the other, or both  are regulated by 
same other genes. eIS are useful tools for building adaptive 
GRN models from time course gene expression data [50,53. 

In [60] EFuNN and DENFIS have been used to derive a GRN 
of 4 genes from a cell line time course data. The GRN model 
is then used to predict future values of the genes over time. 
Rules can be extracted that explain the relationship between 
the expression of genes at different time moments, e.g.:           
 
 IF g13(t) is High (0.87)  and g23(t) is Low (0.9)  
THEN g87 (t+dt) is High (0.6) and g103(t+dt) is Low 
 
C. Neuroinformatics and Brain Study 
Brain models can be evolved incrementally from EEG brain 
data collected from individuals that belong to different 
categories, or from different brain states of the same 
individual, using standard EEG equipment – fig.11.   

 
Figure 11. A standard set of EEG electrodes to collect data from a brain of an 
individual, used to evolve a model 
      
After evolving models are trained on EEG channel data, rules  
Can be extracted in the form of: IF Channels 13 and 27 have 
high values, THEN the state of the brain is sleep. This type of 
research is reported in [11,46]. 
 
D. Multimodal Information Processing and Biometrics 
     Combining speech, image and other modalities in an 
adaptive way, where new speech samples can be added in 
time, new images, new modalities (e.g. fingerprints) for a 
person recognition, person identification and person 
verification is a promising area of application for eIS – fig. 12 
[11,46].  

 
Figure 12. An example of a multimodal (speech and image) eIS    
 
E. Financial and Business Forecast 



 
 

 

Adaptive learning and future value prediction of financial and 
business time series with the use of eIS is reported in  [46]. 
Fig.13 shows the weekly on-line prediction of the exchange 
rate Euro/US$ for 1-,2-,3- and 4 weeks ahead using 3 input 
variables: ERate, Euro/Yen, Stock-E/US, with  4 week time 
lags each [46]. The lower figure shows  the number of rule 
nodes evolved in an EFuNN structure applying also 
aggregation of nodes.  
  
 
 
 
 
 
 
 
 
 
 
Figure 13. The weekly on-line prediction of the exchange rate Euro/US$ and 
the number of the evolved and aggregated rule nodes in an EFuNN 
architecture. 
 
F. Autonomous mobile robots 
     Evolving, autonomous learning robots, that communicate 
between each other, is an area of growing interest and 
potential for eIS. In  [66] ECOS are used to control the 
position of robocup robots that adapt on the spot to the 
opponent – fig. 14.  
 

 
 
Figure 14. An eIS  is used to locate the players on the field while adapting 
on-line to the opponent’s strategy [66]  

V. CONCLUSIONS 

The concept of eIS has been presented as an effective tool 
to address the problem of modeling non-stationary, highly 
non-linear processes on-line, in real-time. The basic elements 
of the concept and its procedure has been outlined without 
going to details, which are available in a number of recently 
published papers by the authors and their collaborators. In 
essence, the concept of evolving intelligent systems eIS can 
be considered as a higher level adaptation that concerns 
model structure as well as model parameters.   

The eIS approach is demonstrated here through two 
modelling constructs that the authors have introduced 
recently and are continuing to develop, namely the evolving 
connectionist systems, ECOS, and evolving fuzzy systems, 
EFS. 

Further research is planned in application areas as 
highlighted in the paper, along with some novel generic 
methods of eIS to be developed, such as: transductive 
evolving systems [61,62]; evolving spiking neural networks 
[63]; evolving neurogenetic models [64,65]; evolving 
quantum inspired neural networks [46], and others.   

The true intelligent systems must evolve their structure, 
functionality and knowledge – they can not be fixed a priori. 
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