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Abstract 29 

Studies that quantify nitrous oxide (N2O) fluxes from African tropical forests and adjacent 30 

managed land uses are scarce. The expansion of smallholder agriculture and commercial 31 

agriculture into the Mau forest, the largest montane forest in Kenya, has caused large-32 

scale land use change over the last decades. We measured annual soil N2O fluxes 33 

between August 2015 and July 2016 from natural forests and compared them to the N2O 34 

fluxes from land either managed by smallholder farmers for grazing and tea production, 35 

or commercial tea and eucalyptus plantations (n=18). Air samples from 5 pooled static 36 

chambers were collected between 8:00 am and 11:30 am and used within each plot to 37 

calculate the gas flux rates. Annual soil N2O fluxes ranged between 0.2-2.9 kg N ha-1 yr-38 

1 at smallholder sites and 0.6-1.7 kg N ha-1 yr-1 at the commercial agriculture sites, with 39 

no difference between land uses (p=0.98 and p=0.18, respectively). There was marked 40 

variation within land uses and, in particular, within those managed by smallholder farmers 41 

where management was also highly variable. Plots receiving fertilizer applications and 42 

those with high densities of livestock showed the highest N2O fluxes (1.6+0.3 kg N2O- N 43 

ha-1 yr-1, n=7) followed by natural forests (1.1+0.1kg N2O-N ha-1 yr-1, n=6); although these 44 

were not significantly different (p=0.19). Significantly lower fluxes (0.5+0.1kg N ha-1 yr-1, 45 

p<0.01, n=5) were found on plots that received little or no inputs. Daily soil N2O flux rates 46 

were not correlated with concurrent measurements of water filled pore space (WFPS), 47 

soil temperature or inorganic nitrogen (IN) concentrations. However, IN intensity, a 48 

measure of exposure of soil microbes (in both time and magnitude) to IN concentrations 49 

was strongly correlated with annual soil N2O fluxes.  50 
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1. Introduction 60 

Nitrous oxide (N2O) is a potent greenhouse gas (GHG), estimated to contribute about 6% 61 

to anthropogenic climate forcing (Blanco et al. 2014). The atmospheric N2O concentration 62 

has increased from 270 ppbv during the pre-industrial era to approximately 320 ppbv, 63 

mainly due to stimulated soil N2O emissions following the use of increasing amounts of 64 

reactive N synthesized via the Haber-Bosch process for crop production (Parkin et al. 65 

2012). While agricultural soils are considered major N2O sources primarily due to fertilizer 66 

application, tropical forest soils are also a major natural N2O source because of often high 67 

soil N availability and environmentally favorable conditions for N2O production (Fowler et 68 

al. 2009; Werner et al. 2007a) 69 

In soils, N2O is mainly produced through two microbial, enzyme-mediated processes: 70 

nitrification (autotrophic and heterotrophic) and denitrification (Butterbach-Bahl et al. 71 

2013; Davidson et al. 2000), although other production pathways such as nitrifier-72 

denifrication (Kool et al. 2010) and dissimilatory nitrate reduction to ammonia (Silver et 73 

al. 2001) have also been reported. Autotrophic nitrification is enhanced by oxygen 74 

availability, moderate water content (approximately 60% water filled pore space WFPS), 75 

ammonium (NH4
+-N) availability, temperature greater than 5°C and soil pH greater than 76 

5. Heterotrophic nitrification requires organic carbon (C), NH4
+-N supply and occurs in 77 

acidic soils (Wood 1990; Zaman et al. 2012). Denitrification, an anaerobic microbial 78 

process where nitrogen oxides are used as alternative terminal electron acceptors instead 79 

of O2, is driven by high soil water content (above 60% WFPS) as this hampers O2 diffusion 80 

and results in creation of soil anaerobiosis. Besides the availability of nitrate (NO3
-) and 81 

nitrite (NO2
-), denitrification also requires the availability of easily degradable C 82 

substrates. Several studies have observed a linear relationship between NO3
--N pools 83 

and soil N2O fluxes (Groffman et al. 2000; Schelde et al. 2012). However, at higher levels 84 

of NO3
--N (>0.4 µg NO3

--N g-1) the N2O flux yield by denitrification often decreases 85 

(Gelfand et al. 2016; Schelde et al. 2012) as C substrate availability might become the 86 

rate limiting factor. Both nitrification and denitrification therefore, are influenced by the 87 

size of inorganic-N pools in the soil, and these pools depend on N turnover through 88 

mineralization and soil amendments such as fertilizers and livestock excreta. 89 
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Nitrification and denitrification have been linked to N2O fluxes through a conceptual “hole 90 

in the pipe” model (Davidson et al. 2000) that links fluxes to the “size of the pipe” (i.e. the 91 

amount of N that is nitrified and denitrified), and the “size of the holes” (i.e. the N2O losses 92 

from each process). Typically, this model relates the hole-size to soil water content, which 93 

controls the anaerobic status of the soil through its effect on gas diffusion. However, 94 

prediction of N2O fluxes based on simultaneously observed environmental factors and 95 

substrate concentrations (NH4
+-N and NO3

--N) shows very weak to no correlations in most 96 

studies (Gelfand et al. 2016; Maharjan and Venterea 2013; Veldkamp et al. 2008; Wolf et 97 

al. 2011), partly because of complex interactions between drivers and temporal variation 98 

in soil moisture. Mixed evidence has been reported with strong correlations between 99 

cumulative N2O and cumulative NO3
-, referred to as nitrate intensity (Burton et al. 2008), 100 

however another study found no relationship between either nitrate or ammonium 101 

intensity and annual N2O flux but did find a strong correlation with nitrite intensity 102 

(Maharjan and Venterea 2013).  103 

N2O fluxes measurements from agricultural and natural ecosystems in Africa are limited 104 

(Kim et al. 2016; van Lent et al. 2015). Recently, some studies have measured soil N2O 105 

emission datasets from African tropical forests covering lowland (Castaldi et al. 2013; 106 

Gharahi Ghehi et al. 2013; Werner et al. 2007b), and montane (Gütlein et al. 2017) 107 

tropical forests. However, these studies cover mostly a few weeks, and thus do not 108 

capture seasonal variability in fluxes (Werner et al. 2007b). Also, the focus of these 109 

studies has been on natural forests and not necessarily on the succeeding land uses. 110 

Only a few studies, (e.g. Gütlein et al. 2017, Arias-Navarro et al. 2017) have attempted 111 

to fill this data gap and have studied GHG fluxes from tropical montane forests and 112 

compared those to agricultural land uses. However, the latter study is an incubation study 113 

with intact soil cores and applied regression analysis using observed changes in soil 114 

moisture to calculate annual fluxes.  115 

In the tropics, primarily in the Brazilian Amazon and Sumatra, conversion of natural forest 116 

to agricultural land use has been shown to elevate soil N2O emission for a short period 117 

after which the emissions become lower or equal to the original forest (Melillo et al. 2001; 118 

van Lent et al. 2015; Verchot et al. 2006). In land uses where inorganic fertilizers and 119 
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organic/manure inputs were used, soil N2O emissions were often greater than those from 120 

the fluxes from the original forest soils (Katayanagi et al. 2008; Lin et al. 2012; Veldkamp 121 

et al. 2008). 122 

Land use change involves changes in vegetation type and management practices that 123 

may cause changes in soil organic stocks and their quality (Metcalfe et al. 2011), soil 124 

microbial communities and microclimate modification (i.e. soil temperature and water 125 

content), all of which will influence GHG fluxes (Gates 2012). The Mau forest is the largest 126 

contiguous montane forest in Kenya (Wass 1995). Land use change in this forest has 127 

occurred rapidly since the 1960s driven by the expansion of smallholder agriculture and 128 

by commercial agriculture. While tea plantations replaced forests more than 50 years ago, 129 

smallholder agriculture, primarily for grazing or for small-scale tea plantations, continue 130 

to drive forest loss. Within large tea estates, the main land uses are either tea or 131 

eucalyptus and cypress plantations, with the wood used as fuel for the boilers to run the 132 

tea processing plants. On both the small and large-scale farms, tea fields are typically 133 

fertilized with NPK (26% N, 5% P2O5 and 5% K2O) compound fertilizer once or twice a 134 

year suggesting that emissions from these fields could be higher than emissions from the 135 

natural forests.  136 

The aim of this study therefore, was to quantify annual soil N2O emissions from a tropical 137 

montane forest and compare these to the annual soil N2O emissions from converted land 138 

uses: grazing land, tea in smallholder agriculture, tea in commercial plantations and 139 

eucalyptus plantations. We also examined mineral nitrogen availability, soil pH, soil 140 

temperature and soil water content to explain spatial changes in soil N2O fluxes. We 141 

hypothesized that tea fields and grazing lands have higher soil N2O fluxes compared to 142 

natural forest and eucalyptus plantations due to fertilizer application and animal excreta 143 

deposition. In addition, we hypothesized that natural forests would have greater soil N2O 144 

emissions than the eucalyptus plantations. 145 
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2. Experimental methods and design 146 

2.1 Study sites 147 

This study was carried out in the South West (SW) Mau forest of Kenya in East Africa. 148 

The Mau forest is a tropical montane forest, with high rates of deforestation (Baldyga et 149 

al. 2008). Overall, forest cover was reduced from 520,000 ha to 340,000 ha between 1986 150 

and 2009 (Hesslerova and Pokorny 2010), while between the 1990s and early 2000s the 151 

forest area of the SW Mau decreased from 84,000 to 60,000 ha (Kinyanjui 2009). The 152 

vegetation in the SW Mau is classified as afro-montane mixed forest with broad-leafed 153 

species such as Polyscias fulva (Hiern.Harms), Prunus Africana (Hook. f Kalkman), 154 

Macaranga capensis and Tabernaemontana stapfiana (Britten), further information on 155 

vegetation of the study area is reported by (Kinyanjui et al. 2014). This forest ranges from 156 

2100 to 3300 m above sea level, has a mean annual rainfall of 1,988±328 mm at 2100 m 157 

elevation (Jacobs et al., 2017) in a bimodal pattern with three to five drier months, and a 158 

mean annual air temperature between 15 and 18°C, and so it is situated in a semi-humid 159 

climatic zone (Kinyanjui et al. 2014). During the study period (1 August 2015 to 31 July 160 

2016), the study site received 2,050 mm of rainfall and the average daily air temperatures 161 

was 16.6±3.9°C. The area received rainfall throughout the year, except for a drier period 162 

between January 2016 and mid-April 2016, during which 217 mm of precipitation was 163 

recorded. Weather data were obtained from a weather station (Decagon Devices, Meter 164 

group, Pullman WA, USA) installed within a radius of 5-10 km of our study sites at 165 

elevation 2,173 m asl. A preliminary study revealed that the major land uses at adjacent 166 

to the natural forests and settlements were grazing lands, tea and eucalyptus plantations 167 

(Swart 2016). 168 

 169 

For this study, we selected two sites (Table 1 and Figure 1) approximately 5 km apart. 170 

Chepsir is an area occupied by smallholder farms, with most of the land used for annual 171 

cropping, grazing or tea production. The second site was at Kapkatugor, where most of 172 

the land was used for commercial tea and eucalyptus production. Tea production at both 173 

sites involves fertilizer application. At the commercial tea plantations (Kapkatugor site) 174 

fields received 150-250 kg N ha-1 yr-1 as NPK fertilizer, while the application rates at the 175 

smallholder farms (Chepsir site) ranged from no fertilizer to 125 kg N ha-1. The rates and 176 
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timing of fertilizer applications varied between sites and between the replicates at the 177 

smallholder site and are shown in Figures 2e and 3e for the smallholder and tea estate 178 

sites, respectively. The soils at both sites are classified as humic Nitisols (Jones et al. 179 

2013), which are well drained, very deep, dark reddish brown to dark red soils, with friable 180 

clays (FAO 2015). 181 

2.2 Experimental design 182 

At each site, we selected three transects crossing the land uses of interest (Table 1), in 183 

such a way that slope position, slope gradient and elevation were similar for each 184 

transect. At the tea estate site of Kapkatugor the land uses were tea plantation (TET1, 185 

TET2 and TET3), eucalyptus plantation (TEP1, TEP2 and TEP3) and natural forest 186 

(TEF1, TEF2 and TEF3), thus each land use was replicated three times (Table 1). The 187 

eucalyptus plantations were monoculture eucalyptus planted at 2500 trees ha-1 that 188 

received no fertilizer inputs. The tea companies restrict human access to the adjacent 189 

natural forest which results in reduced human activity and therefore limits illegal activities 190 

such as charcoal production (Arias‐Navarro et al. 2017) and illegal logging. At the 191 

smallholder site of Chepsir, the three land uses we were grazing (SHG1, SHG2 and 192 

SHG3), tea (SHT1, SHT2 and SHT3) and natural forest (SHF1, SHF2 and SHF3), thus 193 

land uses were replicated three times. The natural forest site at the smallholder landscape 194 

had less control and therefore more human encroachment; charcoal production and 195 

illegal logging were more common than in the natural forest adjacent to the tea estates. 196 

Grazing management was variable, with some farmers using continuous grazing at low 197 

stocking densities (SHG3; 1.3 head ha-1) and others using rotational grazing at higher 198 

stocking densities (SHG1 and SHG2; 66 and 26 heads per ha-1). In the two rotational 199 

grazing paddocks, the animals were kept for approximately 12 hours per day for only 4-5 200 

months of the year, while the continual grazing paddock (SHG3) consisted of a large area 201 

(39 ha) where 50 cattle grazed throughout the entire year. 202 

 203 

2.3 Gas sampling and analysis 204 

We used the static chamber method (non-flow-through, non-steady state) to estimate soil 205 

N2O fluxes. At each sampling point five, 0.35 by 0.25 m PVC frames were inserted 206 

approximately 0.07 m deep in the soil at least 24 hours prior to the first sampling and 207 
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these frames remained in place until the end of the sampling campaign. In a few cases 208 

bases were re-inserted after being removed or when broken/damaged, with gas sampling 209 

done at least 24 hours after re-insertion. The sampling was done twice per week from 210 

August to December 2015, after which we sampled once per week until the end of the 211 

campaign (31 July 2016). We increased the sampling frequency immediately after a 212 

fertilization event when we sampled every two days until fluxes returned to pre-fertilization 213 

levels.  214 

During gas sampling, a ventilated PVC chamber fitted with a fan, a non-forced vent and 215 

a sampling port was mounted to the PVC frame by metal clamps. Rubber sealing between 216 

frame and chamber ensured air-tight sealing. We removed 10 ml of gas from each 217 

chamber immediately upon closure and then after 15, 30 and 45 min. The five gas 218 

samples from each of the five chambers were then pooled for analysis as explained by 219 

(Arias-Navarro et al. 2013). During gas sampling, soil water content at a depth of 0.05m 220 

was measured using a digital Pro-Check sensor (Decagon Devices, Inc. Pullman, 221 

WA99163, US), while soil and chamber temperatures were taken with a digital probe 222 

thermometer (TFA-Dostmann GmbH, Zum Ottersberg, Germany). Atmospheric pressure 223 

was measured using a Garmin GPS version V (Garmin International, 1200 East 151 224 

street, Olathe, Kansas 66062, USA). 225 

 226 

Gas samples were transported to the Mazingira Environmental Center at the International 227 

Livestock Research Institute (ILRI), Nairobi, Kenya and analyzed within a week by gas 228 

chromatography using a 63Ni electron capture detector (SRI 8610C) for N2O detection. 229 

The minimum flux detection limit was 1.3 µg N2O-N m-2 h-1 (Parkin et al. 2012). For further 230 

details on GC analytical conditions see e.g. Breuer et al. (2000). Gas concentrations (ppb) 231 

were calculated by comparing peak areas of the samples to peak areas of standard gases 232 

with known N2O concentrations. The N2O fluxes were calculated from observed changes 233 

in headspace N2O concentration during chamber deployment using linear regression after 234 

accounting for air pressure and temperature (Pelster et al. 2017). Annual cumulative 235 

fluxes were obtained by calculating the area under the flux-time curve and summing the 236 

results while assuming linear changes in measurements between time intervals. 237 

 238 
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2.4 Soil sampling and analysis 239 

At each sampling plot, five soil samples were taken from depth 0-0.05m and 0.05-0.2m 240 

using a Eijkelkamp core sampler and rings (Eijkelkamp Agrisearch Equipment, Gies beek, 241 

The Netherlands). Soil samples were air dried at 30°C and sieved through 2mm sieve. 242 

These samples were used for soil texture, pH, and total C and N measurements. Soil 243 

samples for bulk density determination were dried at 105°C until constant weight was 244 

attained. Soil texture was analyzed by the hydrometer method (Gee and Bauder 1986). 245 

Soil pH was measured in 1:2.5 soil to deionized water slurry using a glass electrode 246 

(Jackson 1958). The sieved soil was finely ground to powder and analyzed for total C and 247 

N using the elemental combustion system (ECS 4010, Costech Instruments, Italy). 248 

 249 

Inorganic N concentrations (NH4
+-N and NO3

--N) were determined every fourteen (14) 250 

days during the gas sampling campaign. At each sampling plot, a composite fresh soil 251 

sample was taken from 0-0.05m depth from at least 3 points beside the chamber frames 252 

using a sharpened-edge PVC cylinder (0.05 m height and inner diameter). Each fresh 253 

sample had the plant litter removed and was mixed thoroughly. Approximately 10 g of the 254 

fresh soil sample was placed into a plastic bottle and 50ml of 0.5M K2SO4
- was added. 255 

The slurry was shaken for 1 hour on a reciprocating shaker and was then filtered through 256 

110 mm WhatmanTM filter enhanced with a vacuum pump, further filtering was done using 257 

a 0.45 µm syringe filter (Minisart®, Sartorius Stedim Biotech Gmbh, 37079 Goettingen, 258 

Germany) to remove fine particles and filter blank corrections were applied. The extracts 259 

were frozen immediately until analysis. Analyses for NH4
+-N and NO3

--N were done using 260 

an Epoch™ micro-plate spectrophotometer (BioTek® Instruments, Inc., Winooski, USA). 261 

The remaining composite fresh soil sample was oven dried at 105°C until constant soil 262 

weight to determine soil water content; thereafter inorganic N (IN) was calculated on dry 263 

soil mass basis. Annual cumulative NH4
+ and NO3

- was calculated by integrating the area 264 

under respective curves and herein referred to as NH4
+-N intensity and NO3

--N intensity 265 

(Burton et al. 2008) respectively, and the total of NH4
+-N and NO3

--N named “Inorganic N 266 

intensity”. 267 

 268 

2.5 Data analysis 269 
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The mixed linear model of the lmerTest in the R package (R Team 2016) was used to 270 

analyze the effect of fixed factor land use, with transect and/or sampling month as 271 

blocking (random) factors on soil N2O fluxes and/or monthly soil N2O means. We also 272 

compared soil N2O fluxes from 1) natural forest to converted land uses where 2) no 273 

external inputs were added (N) and 3) those that received external inputs fertilizer or 274 

animal excreta (Y) (Table 1). Here, ‘external inputs’ was the fixed factor while land use 275 

was the random variable in the mixed linear model. Prior to analysis, data were tested for 276 

normality using Shapiro-Wilk test (Shapiro and Wilk 1965) and log transformed (apart 277 

from pH) when necessary. Differences of least squares means (difflsmeans) of the 278 

lmerTest in the R package (Kuznetsova et al. 2015) were used for multiple comparison 279 

of the treatments. When normality could not be achieved through data transformation, we 280 

used the Friedman non-parametric test to carry out ANOVA. Correlations between annual 281 

soil N2O fluxes and soil variables were evaluated using the Spearman rank test. One point 282 

of the grazing land use (SHG2) was not used for correlation analysis between soil N2O 283 

fluxes and total inorganic N after it was identified as an outlier with standardized residual 284 

4.5 times larger than the standard deviation. To test the effect of rainfall on N2O fluxes, 285 

we categorized dry and wet periods based on WFPS (%) rather than using the seasons. 286 

We decided to do this because the study site receives sporadic rains even during the dry 287 

seasons. For our tests, we used 40% WFPS as a threshold that divides periods from 288 

being dry to wet assuming this value to be between wilting point and field capacity 289 

(Harrison-Kirk et al. 2013).    290 

3. Results 291 

3.1 Soil properties 292 

There were marked variations in soil properties among the land uses at both depths (0-293 

0.05 and 0.05-0.20m) and at both sites (Table 2). Soil texture was generally clay except 294 

for the grazing and forest land uses in the smallholder sites, which were clay loams and 295 

loams respectively. Total C and N in both soil depths were strongly affected by land use 296 

(p<0.01). The highest concentrations of total soil nitrogen (TN) in the top soil was 297 

measured in the native forest soils, while lowest values were observed at the tea and 298 

grazing land at the smallholder site (Table 2). At the lower depth (0.05 – 0.20 m), the 299 
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grazing land and forest land use at the smallholder site had the highest TN. Total carbon 300 

concentrations varied similarly to TN in both soil depths. The C:N ratio was highest for 301 

the tea plantations while the forest C:N ratio was lowest for both soil depths. Soil pH in 302 

the top soil ranged from 3.8 at the tea plantation to 6.6 at the smallholder forest plot, with 303 

a similar trend observed at the lower soil depth. Soil bulk density (BD) was highest under 304 

grazing land and lowest under forest at both soil depths. Intermediate BD values were 305 

observed in the rest of the land uses. 306 

Soil water varied widely through the year in all land uses, ranging from 20 to 80% WFPS, 307 

while soil temperature remained near to 15°C for most of the land uses (mean=16.7°C), 308 

with the exception of the grazing plots where temperatures were consistently higher 309 

(mean=18.8°C) than in all other plots (Figure 2c). Soil inorganic concentrations ranged 310 

from 3.6 to 40 µg N g-1 soil through most of the season, but increased up to 132 µg N g-1 311 

soil in the tea plantations shortly after synthetic fertilizers were applied (Figure 2e and 3e, 312 

Table 3) although the highest concentration (111 µg N g-1 soil) was measured in grazing 313 

lands, likely because of animal excreta deposition. Differences in IN intensities were 314 

observed only at the tea estate site where both IN intensity and NH4
+-N intensity were 315 

higher (p= 0.016 and p<0.001, respectively) in the tea than the forest and eucalyptus land 316 

uses. However, there was marked variation within land uses especially for the tea plots 317 

at the smallholder site, where the coefficient of variation (CV%) was 89% (Table 3). 318 

3.2 N2O fluxes  319 

Mean N2O flux rates for the different land uses from 1st August 2015 to 1st August 2016 320 

ranged between 0.87±3.5 g N2O-N m-2 hr-1 (on 6th October 2015) and 153.4±6.7g N2O-321 

N m-2 hr-1 (on 23rd May 2016) for land uses at the tea estate site of Kapkatugor; and from 322 

-2.1±2.4 g N2O-N m-2 hr-1 (on 5th January 2016) to 118±123 g N2O-N m-2 hr-1 (on 17th 323 

September 2015) for land uses at the smallholder site of Chepsir. At both sites and all 324 

land uses, the mean daily fluxes were lower when WFPS was below 40%, but increased 325 

significantly when WFPS was above 60% (Figure 2d and 3d, Appendix Table A1). Peak 326 

soil N2O fluxes corresponded to wetter periods, whereas soil N2O fluxes observed during 327 

the drier periods were between half to one-third smaller (Appendix Table A1). Weekly 328 

temperatures of the top soil (0-0.05 m) were higher in the grazing land use (18.8±1.3°C) 329 
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compared to the natural forest (15.2±0.8°C) and tea plots (15.7±1.1°C) at the smallholder 330 

site (Figure 2c). At the tea estate, soil temperatures were consistent among the different 331 

land uses. Despite these differences in soil temperature, there was no significant 332 

correlation between N2O fluxes and soil temperature (Appendix Fig A1). 333 

Peak soil N2O fluxes corresponded to IN peak concentrations in the tea plots from 334 

Kapkatugor as well as high values for WPFS (above 60%), although the relationship 335 

between weekly N2O fluxes and IN concentrations and WFPS was very weak across land 336 

uses (r<0.01, p>0.10). Annual N2O fluxes were similar between the different land uses at 337 

the smallholder (p=0.985) and at the tea estate (p=0.179) sites. However, high 338 

coefficients of variation (CV) in soil N2O fluxes were observed within similar land uses of 339 

the smallholder site; especially in the grazing lands (CV=107%) and tea fields (CV=62%). 340 

Management of similar land uses differed largely within the smallholder site (Table 1). In 341 

grazing lands, the N2O fluxes were highest in the plots with high stocking density (SHG2, 342 

followed by SHG1), while the lowest fluxes were measured in the plot with low stocking 343 

density (SHG3, 1.3 head per hectare). There were also large variations in N2O emissions 344 

within the smallholder tea fields with the lowest fluxes in plot SHT3 (0.67 kg N2O-N ha-1 345 

yr-1) where no fertilizer was applied, and the highest (2.34 kg N2O-N ha-1 yr-1) at plot SHT1 346 

where 125 kg N ha-1 of fertilizer was applied (Table 1).  347 

Annual fluxes were highest (1.6±0.3 kg N2O-N ha-1 yr-1) for plots receiving N inputs (SHT1, 348 

SHG1, SHT2, SHG2, TET1, TET2 and TET3), which were similar (p=0.19) to the annual 349 

flux of the natural forest plots (1.1±0.1 kg N2O-N ha-1 yr-1). Annual fluxes from the 350 

converted plots receiving no N inputs (SHT3, SHG3, TEP1, TEP2 and TEP3) were lower 351 

(0.5±0.1 kg N2O-N ha-1 yr-1; p<0.01) than both the natural forest and the managed plots 352 

receiving N inputs. 353 

Monthly soil N2O flux at the smallholder site followed the same trend as annual fluxes 354 

where no significant difference (p=0.627) between land uses was observed. However, 355 

monthly soil N2O fluxes were significantly different among land uses at the tea estate site, 356 

where fluxes from forest soils and tea plantations were higher (p=0.001) than from 357 

eucalyptus plantations. 358 
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There were strong correlations between annual N2O fluxes from all plots and IN intensity 359 

(p<0.001; r=0.72), ammonium intensity (p<0.01; r=0.57) and nitrate intensity (p<0.05, 360 

r=0.57) (Figure 5 and Table 4). No relationships were observed (p>0.05) between annual 361 

N2O flux from all plots and other soil properties (e.g. pH, total carbon and nitrogen). The 362 

combination of converted sites with no or little external N inputs and natural forest showed 363 

positive correlations between annual N2O fluxes and total N (p<0.01, r=0.74) and total C 364 

(p<0.05; r=0.67) concentration, while bulk density (p<0.01; r=0.72) and C:N ratio (p<0.05; 365 

r=0.47) were negatively correlated with annual N2O fluxes (Table 4). Also, the relationship 366 

between annual N2O and IN and NO3
--N intensities were stronger among plots where no 367 

or little external inputs were applied (inclusive of natural forest plots).  368 

4. Discussion 369 

Cumulative annual N2O fluxes from natural montane forest in this study (1.1±0.11 kg N2O-370 

N ha−1 yr−1) were within the range measured in other tropical and sub-tropical montane 371 

forests; 1.2 kg N2O-N ha−1 yr−1 in Panama (Koehler et al. 2009), 1.1-5.4 kg N2O-N ha−1 372 

yr−1) for sites in Queensland, Australia (Breuer et al., 2000), 0.3–1.1 kg N2O-N ha−1 yr−1 373 

for sites at Mt. Kilimanjaro, Tanzania (Gütlein et al. 2017), and 0.29 -1.11 kg N2O-N ha−1 374 

yr−1 in Central Sulawesi, Indonesia (Purbopuspito et al. 2006). However, annual 375 

cumulative N2O fluxes at our forest sites were at the lower end compared to earlier studies 376 

in Africa: 3.0±2.0 kg N2O-N ha−1 yr−1 (Castaldi et al. 2013) in a tropical humid forest in 377 

Ghana, and 2.6 kg N−N2O ha−1 yr−1 (Werner et al. 2007b) for a tropical lowland forest in 378 

Kenya.  Spatial variation in N2O fluxes from different forest sites have been attributed to 379 

thermal and hydrological variations that drive processes such as soil organic matter 380 

mineralization, nitrification and denitrification (Zhuang et al. 2012). Mean annual air 381 

temperature at the Kakamega is 20.4oC (Werner et al. 2007b) compared to 16.6°C at our 382 

study area, difference that can be explained by elevation (1530 m Kakamega forest site, 383 

2200 m at our study sites). Higher elevation and lower temperatures are associated with 384 

reduced net mineralization rates (Koehler et al. 2009; Liu et al. 2017) resulting in lower N 385 

availability in the soil (Arnold et al. 2009; Purbopuspito et al. 2006; Wolf et al. 2011), and 386 

with reduced rates of biological N2 fixation at ecosystem scale (Cleveland et al., 1999). 387 
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These differences are consistent with observations that highland forests are typically N 388 

limited (Nottingham et al. 2015) 389 

The annual N2O fluxes from the smallholder and tea estate sites in this study (1.4±0.5 390 

and 1.2±0.3 kg N2O-N ha-1 yr-1, respectively) were higher than the fluxes (0.38 and 0.75 391 

kg N ha-1 yr-1) reported by Rosenstock et al. (2016) for other tea producing areas in the 392 

western Kenyan highlands where farmers applied approximately 112 kg N ha-1 yr-1. The 393 

authors attributed the relatively low rates to low sampling frequency that could have led 394 

to missing out N2O emissions peaks after fertilizer application as discussed by Barton et 395 

al. (2015). Because we sampled every two days immediately following a fertilization 396 

event, we likely captured any N2O emission pulses that occurred after the addition of N, 397 

resulting in a more accurate representation of cumulative N2O fluxes from tea crops. 398 

Additionally, the soils at the western Kenyan highlands in the study by Rosenstock et al. 399 

(2016) were more porous (sandy clay loams) compared to the clay soils in our study 400 

region. Generally, relatively porous soils emit less N2O because the development of soil 401 

anaerobic state that is required for denitrification is restricted by relatively high oxygen 402 

diffusion rates into soils (Rochette et al. 2008). At the smallholder site in our study, the 403 

high variability in annual N2O fluxes among the tea plots could be explained by the 404 

different rates of fertilizer applications, which led to differential concentrations of inorganic 405 

N in the soil (cf. Fig. 5). 406 

Other studies that compared N2O fluxes from forests and converted land use found either 407 

increased, decreased or no difference fluxes between forest and converted land use 408 

depending on the time of conversion and management practices which affected soil 409 

carbon and nitrogen content (Cheng et al. 2013; Melillo et al. 2001; Veldkamp et al. 2008; 410 

Wang et al. 2006). Lack of a difference in annual N2O fluxes between land uses  was due 411 

to the high variability of management intensities within plots of a given land use. In both 412 

the smallholder tea and smallholder grazing sites, there was a wide range of management 413 

intensities. The N2O fluxes from the grazing land use in our study was similar to those 414 

from a previous study on grazing land in western Kenyan highlands with annual flux rates 415 

of between 0.5 and 3.9 kg N2O-N h-1 yr-1 (Rosenstock et al. 2016), where variation was 416 

attributed to management practices. Likewise, there were large variations in animal 417 
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densities between the three different grazing plots. The plots with the higher stocking 418 

densities had higher annual N2O fluxes (1.18 and 3.01 kg N ha-1 yr-1, respectively) than 419 

the plot with low stocking densities (SHG3; 0.20 kg N ha-1 yr-1) perhaps because there 420 

was greater transfer of nutrients from outside to inside the paddocks via animal excreta, 421 

but also likely due to more rapid cycling of N associated with pulses of high intensity. 422 

More animal excreta likely led to N2O emissions directly from the dung and urine (Pelster 423 

et al. 2016), as well as increased N and C inputs to the soil that contributed to N2O 424 

emissions. However, when considering converted plots where no external inputs were 425 

added, we observed a reduction in soil N2O relative to natural forest, consistent with 426 

observations by van Lent et al. (2015) where reduced fluxes were attributed to lower N 427 

availability. This is further supported by our results where topsoil N concentrations were 428 

lower in eucalyptus and tea plots that received no inputs (Table 2). 429 

Monthly soil N2O fluxes from eucalyptus plantations were the lowest in our study and the 430 

annual fluxes (0.6±0.2 kg N2O-N ha-1 yr-1) were also on the lower end compared to the 431 

other land uses. Lower soil N2O flux from eucalyptus plantations may be related to lower 432 

N cycling rates as reflected by lower IN intensities (Table 3). Relatively slower N 433 

mineralization has been previously reported in eucalyptus plantation soils (Bernhard-434 

Reversat 1988). Net mineralization decreases with increased soil C:N ratio (Springob and 435 

Kirchmann 2003) and consequently reduced N2O fluxes. In our study we also observed 436 

a strong negative correlation between C:N ratio and soil N2O fluxes (Table 4). In addition, 437 

total N was lowest in eucalyptus plantations (Table 2). Therefore, the lower total N 438 

coupled with lower N mineralization likely caused the lower soil N2O fluxes in eucalyptus 439 

plantations. 440 

The environmental variables that we measured at weekly intervals and soil inorganic N 441 

concentrations did not predict soil N2O fluxes well. This is consistent with studies by 442 

Veldkamp et al. (2008) in the humid tropical forest margins of Indonesia and of Rowlings 443 

et al. (2012) in a subtropical rainforest site in Australia who found no correlation between 444 

N2O and inorganic N (NH4
+ and NO3

-) concentrations, while studies by Wolf et al. (2011) 445 

and Purbopuspito et al. (2006) also found no correlation between WFPS and soil N2O 446 

fluxes. This could be attributed to three factors:  447 
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(i) complex interactions between drivers of soil N2O fluxes in time and space (i.e. 448 

hot moments and hot spots: Groffman et al. 2000) in a way that mask the effect 449 

of the measured variables in our study; 450 

(ii) gases originate from deeper soil layers for which environmental parameters 451 

were not measured (our study: 0-0.05 m). This is supported by studies by 452 

Verchot et al. (1999) in native forests and coffee plantations in Sumatra and by 453 

Wang et al. (2014) for winter-wheat and summer-maize rotation in Northern 454 

China who reported larger gas fluxes from deeper layers. Furthermore, Nobre 455 

et al. (2001) reported the highest soil N2O production from 5 to 20 cm of soil 456 

depth. The soils in our study area are deep and well drained. Thus, deeper 457 

layers might contribute significantly to the soil N2O fluxes at the soil-458 

atmosphere boundary; 459 

(iii) time lags between measurements of inorganic N concentrations and increases 460 

in soil N2O fluxes. Such effects, which are partly related to low frequency 461 

sampling (Barton et al. 2015), can only be captured by using of automatic high-462 

resolution temporal sampling.  463 

Nevertheless, inorganic N intensities (NH4
+-N, NO3

--N and total IN intensities) correlated 464 

well with annual N2O fluxes, which was previously observed by Burton et al. (2008). In 465 

our study the magnitude and temporal persistence of IN are likely related to the amount 466 

of substrate added through management (inorganic fertilizer, manure and urine) or the 467 

speed of N cycling in plots where no external N was added and in the natural forests. 468 

Soil temperature did not influence N2O fluxes in our study, the same observation was 469 

reported by Werner et al. (2007b) in Kakamega forest in Kenya, contrary to what has 470 

been observed in many other studies as summarized by Skiba and Smith (2000). In our 471 

study area, temperature within land uses did not vary much throughout the study period, 472 

as is the case in many tropical systems. 473 

The significant positive relationship between annual N2O fluxes and annual IN intensity 474 

shows that N2O fluxes were closely coupled to N availability. The missing saturation 475 

effect, which finally manifests as an exponential increase in N2O fluxes (Shcherbak et al. 476 

2014), might be used to indicate that N2O fluxes in this ecosystem are still N limited 477 
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(Davidson et al. 2000; Rowlings et al. 2012) and that increasing N availability, e.g. through 478 

increased fertilization applications, would result in even higher N2O fluxes.  479 

5. Conclusions 480 

This study of a tropical montane forest in Kenya showed lower annual N2O fluxes (1.1+0.1 481 

kg N2O-N ha-1 yr-1) than those from lowland tropical forests, which typically have fluxes 482 

around 2.0 kg N2O-N ha-1 yr-1 (van Lent et al., 2015). We attribute this difference in fluxes 483 

to differences in environmental conditions such as air temperature. Wide variations of 484 

annual soil N2O fluxes within the managed land uses made it difficult to detect a land use 485 

effect; with variability of soil properties also added a confounding factor. The magnitude 486 

of annual N2O fluxes relative to the natural forest varied considerably within a given land 487 

use depending on management intensity and this makes generalizations difficult. We 488 

found no correlation between N2O flux rates and soil temperature, whereas peaks in flux 489 

rates tended to occur at high (>60% WFPS) moisture content. To understand emissions 490 

at annual scales and the factors that regulate these emissions, we looked at cumulative 491 

N2O fluxes and compared them with IN intensity. We found a linear increase in annual 492 

soil N2O fluxes with increasing IN intensity. Fertilized plots had the highest IN intensities 493 

and also the highest cumulative N2O emissions, indicating that management of converted 494 

lands plays a larger role in determining the amount of N2O emissions than land use in this 495 

environment.   496 
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Figures 806 

 807 

Figure 1. a) Map of the study area in the South West Mau forest. Land uses classes derived 808 

from a Swart (2016) for the smallholder and tea estate sites. b) Daily rainfall, air and soil 809 

temperature from August 2015 to August 2016 measured at the study site in the SW Mau forest 810 

of Kenya 811 

 812 
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 813 

Figure 2: a) Mean (± SE) inorganic nitrogen concentrations of nitrate (NO3
-), b) Ammonia (NH4

+) 814 
measured bi-weekly between August 2015 to December 2015 and weekly between December 2015 to 815 
July 2016, c) Soil temperature, d) Water filled pore space (%WFPS) and precipitation (in mm) and e) Soil 816 
N2O fluxes of different land uses (forest, grazing and tea) with three replications at the smallholder site. 817 
Fertilizer application rates and timing in the tea plots are indicated with arrows in e). Error bars are 818 
standard error of means. 819 
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 820 
Figure 3: a) Mean (± SE) inorganic nitrogen concentrations of nitrate (NO3

-), b) Ammonia (NH4
+) measured 821 

bi-weekly between August 2015 to December 2015 and weekly between December 2015 to July 2016, c) 822 
Soil temperature, d) Water filled pore space (%WFPS) and precipitation (in mm) and e) Soil N2O fluxes of 823 
different land uses (forest, grazing and tea) with three replications at the tea state site. Fertilizer application 824 
rates and timing in the tea plots are indicated with arrows in e). Error bars are standard error of means. 825 
 826 

 827 
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 828 

Figure 4: Annual N2O fluxes from different land uses (Forest, Grazing, Tea and Plantation) at the 829 
smallholder and tea estate sites. Error bars are standard error of annual mean of 3 replicates for land use 830 
at each site. Analysis of variance showed no difference (p> 0.05) between land uses. 831 

 832 

 833 

 834 

 835 
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 836 

Figure 5: Relationship between annual N2O fluxes and cumulative total IN exposure from 837 

different land uses (Grazing, Forest, Tea and Plantation) at the tea and smallholder sites. 838 

 839 

 840 

 841 

 842 

 843 
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Table 1: Characterization of the sampling plots according to dominant land use for the study site at the SW Mau forest of Kenya. 844 

Location and elevation, year in which the land use was established and the corresponding management practices for each plot are 845 

presented. The fertilizer applied in tea fields was NPK.  846 

 847 

 848 

  849 

Site/Land use Code Rep Latitude Longitude Elevation 
(m) 

Year established Management Inputs Management 
intensity 

Smallholder agriculture          

Forest SHF1 1 -0.2978 35.4397 2305 Native vegetation Charcoal burning N 1 

Forest SHF2 2 -0.2995 35.4354 2267 Native vegetation Wood collection N 1 

Forest SHF3 3 -0.3032 35.4235 2234 Native vegetation Open (low tree density) N 1 

Grazing land SHG1 1 -0.2942 35.4365 2319 1997, annual crops before 
Grazing cattle, excreta 
deposited 

Y 3 

Grazing land SHG2 2 -0.2959 35.4339 2319 1970, forest before 
Grazing cattle, excreta 
deposited 

N 3 

Grazing land SHG3 3 -0.2985 35.4203 2283 2005, annual crops before 
Low density cattle, little 
excreta 

Y 2 

Tea SHT1 1 -0.2936 35.4371 2320 1999, shrubland before Fertilizer at 125 kg N ha-1yr-1 Y 3 

Tea SHT2 2 -0.2964 35.4327 2291 1985, forest before Fertiliser at 40 kg N ha-1 yr-1 Y 3 

Tea SHT3 3 -0.2987 35.4196 2294 2012, shrubland before No fertilizer applied N 2 

Tea estates 
 

      
  

Forest TEF1 1 -0.3165 35.3985 2169 Native vegetation Little disturbance N 1 

Forest TEF2 2 -0.3194 35.3964 2173 Native vegetation Little disturbance N 1 

Forest TEF3 3 -0.3225 35.3947 2170 Native vegetation Little disturbance N 1 

Eucalyptus plantation TEP1 1 -0.3143 35.3973 2198 2000, eucalyptus before Timber harvested N 2 

Eucalyptus plantation TEP2 2 -0.3172 35.3956 2163 2000, eucalyptus before Timber harvested N 2 

Eucalyptus plantation TEP3 3 -0.3199 35.3922 2146 2000, eucalyptus before Timber harvested N 2 

Tea TET1 1 -0.3133 35.3968 2208 1973, forest before Fertiliser at 150 kg N ha -1 yr-1 Y 3 

Tea TET2 2 -0.3159 35.3943 2176 1973, forest before Fertiliser at 250 kg N ha -1 yr-1 Y 3 

Tea TET3 3 -0.3187 35.3911 2168 1973, forest before Fertiliser at 150 kg N ha -1 yr-1 Y 3 
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Table 2. Soil physical and chemical characteristics for the study site at the SW Mau forest of Kenya. Values presented are means ± standard error 850 
of mean for the three replicates presented in Table 1.   851 

Soil depth  
(m) 

Site 
 

Land use 
 

Total 
Nitrogen  
(%) 

Total 
Carbon  
(%) 

C:N ratio 
 

pH 
 

Bulk density 
(g cm-3) 

Clay  
(%) 

Sand 
(%) 

0-0.05 

Smallholder Forest 1.24±0.05a 13.4±0.7a 10.8±0.1b 6.6±0.1a 0.65±0.03b 22±0.1 46±2.0 

Smallholder Grazing 0.74±0.03b 7.9±0.3b 10.9±0.1b 6.0±0.1b 0.94±0.02a 33±1.8 39±2.4 

Smallholder Tea 0.69±0.03b 8.4±0.5b 11.9±0.2a 5.4±0.2b 0.72±0.05b 45±1.0 24±2.0 

Tea estate Forest 0.94±0.04a 9.5±0.5a 10.1±0.1b 5.1±0.0a 0.60±0.03b 49±1.5 21±1.3 

Tea estate Eucalyptus 0.61±0.02b 7.0±0.3b 11.3±0.7a 5.4±0.1a 0.74±0.03a 61±1.8 18±0.3 

Tea estate Tea 0.91±0.10a 10.6±1.3a 12.0±0.1a 3.8±0.1b 0.67±0.04b 65±4.8 19±2.9 

0.05-0.2 

Smallholder Forest 0.58±0.02a 5.3±0.1b 9.3±0.2 b 6.1±0.1a 0.80±0.03b 49±1.3 21±0.7 

Smallholder Grazing 0.64±0.03a 6.7±0.3a 10.6±0.2b 6.0±0.1ab 0.93±0.02a 40±4.2 30±3.1 

Smallholder Tea 0.46±0.01b 5.1±0.1b 11.2±0.3b 5.7±0.1b 0.84±0.03b 49±1.0 22±0.0 

Tea estate Forest 0.44±0.02a 4.3±0.2b 9.7±0.2b 4.8±0.1b 0.68±0.04b 48±1.2 24±3.4 

Tea estate Eucalyptus 0.42±0.02a 4.6±0.2b 10.7±0.2b 5.5±0.1a 0.79±0.03a 57±0.7 18±1.2 

Tea estate Tea 0.46±0.01a 5.7±0.2a 12.8±0.3a 4.1±0.1c 0.74±0.02a 53±1.8 21±2.9 

Mean values of soil physical and chemical characteristics ± SE followed by same letter for each soil property within a site and soil depth were not significant at p< 852 
0.05  853 

  854 
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Table 3: Inorganic N intensities; ammonium (NH4
+-N) intensity, nitrate (NO3

--N ) intensity and total IN (NH4
+ -N+ NO3

--N) intensity from 0-0.05m soil 855 
depth for the different land uses (forest, grazing land, tea and tree plantations) at the smallholder and tea estate sites from the South West Mau 856 
forest of Kenya. Values presented are means ± standard errors of the mean for three replicates. Analysis for each site was done separately. 857 

Site Land use Inorganic N Intensities (g N kg-1 )   

  NH4
+-N CV (%) NO3

--N CV (%) 
          Total IN  
(NH4

+-N+ NO3
--N) CV (%) 

Smallholder Forest 3.5±0.5a 25 4.0±0.8a 35 7.5±1.3a 30 

Smallholder Grazing  4.6±0.6a 22 1.4±0.4a 46 6.0±0.5a 15 

Smallholder Tea 4.4±2.5a 99 2.7±1.2a 74 7.1±3.7a 89 

Tea estate Forest 2.2±0.3b 21 4.2±0.5a 21 6.4±0.3b 8 

Tea estate Tea 4.5±0.2a 6 5.5±1.5a 46 10.0±1.5a 25 

Tea estate Eucalyptus  1.8±0.3b 28 2.5±0.4a 29 4.3±0.7b 28 
Inorganic intensities IN (mean±SE) followed by same letter for each parameter within a site are not significant at p<0.05  858 
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Table 4: Spearman correlation coefficients between soil properties and annual N2O fluxes for all plots, for all forest plots and plots with no external 859 
inputs (n=11), Forest plots (n=6), plots that received no external inputs (n=5) and plots that received external inputs (n=7) 860 

 
All plots 

Forest + No external 
input 

Forest No external inputs External inputs 

 
Soil parameter n N2O n N2O n N2O  n N2O n N2O 

NH4
+ Intensity 18 0.57** 11 0.36 6 0.49 5 -0.3 7 0.02 

NO3
- Intensity 18 0.47* 11 0.80*** 6 0.37 5 0.4 7 -0.14 

(NH4
+ +NO3

-) Intensity 18 0.72*** 11 0.85*** 6 0.71 5 0.1 7 -0.05 

Total Nitrogen 18 0.35 11 0.74** 6 0.37 5 -0.1 7 0.18 

Total Carbon 18 0.31 11 0.67* 6 0.37 5 -0.3 7 -0.05 

C:N ratio 18 0.11 11 -0.47* 6 0.09 5 0.1 7 -0.54 

Bulk density 18 0.23 11 -0.72** 6 0.14 5 -0.9* 7 0.52 

•,*, **, *** denote significance at p<0.1, p<0.05, p<0.01 and p<0.001, respectively 861 

 862 

 863 

 864 

 865 

 866 

 867 

 868 

 869 
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Appendix 870 

Table A1: Daily N2O fluxes for three different land uses in the two study sites (smallholders and tea estate) calculated for wet and dry periods. 871 
These two periods are defined using a water filled pore space (WFPS) of 40% 872 

      Daily N2O fluxes (µg N2O-N m-2h-1)   

Site Land use n Wet period  Dry period  p-value 

Smallholder Forest 3 20.4±1.4 9.9±1.5 <0.001 

Smallholder Grazing 3 22.7±3.1 11.9±3.2 <0.001 

Smallholder Tea 3 28.1±2.2 7.1±1.9 <0.001 

Tea estate Forest 3 13.3±0.6 7.4±0.6 <0.001 

Tea estate Eucalyptus 3 8.1±0.6 5.2±0.8 <0.001 

Tea estate Tea 3 31.4±2.9 10.8±6.4 <0.001 

 873 

 874 

 875 

 876 

 877 

 878 

 879 

 880 

 881 

 882 

 883 
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 884 

Figure A1. Correlation between N2O fluxes and soil temperature  885 
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 886 

Figure A2. Correlation between N2O fluxes and Water filled pore space (WFPS%)  887 
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