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Abstract

Compression artifacts reduction (CAR) is a challenging problem in the field of remote sensing. Most

recent deep learning (DL) based methods have demonstrated superior performance over the previ-

ous hand-crafted methods. In this paper, we propose an end-to-end one-two-one (OTO) network,

to combine different deep models, i.e., summation and difference models, to solve the CAR prob-

lem. Particularly, the difference model motivated by Laplacian pyramid is designed to obtain the

high frequency information, while the summation model aggregates the low frequency information.

We provide an in-depth investigation into our OTO architecture based on the Taylor expansion,

which shows that these two kinds of information can be fused to gain more capacity of handling

complicated image compression artifacts, especially the blocking effect in compression. Extensive

experiments are conducted to demonstrate the superior performance of the OTO networks, as com-

pared to the state-of-the-arts on remote sensing datasets and other benchmark datasets. The source

code will be available here1.
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1. Introduction

In remote sensing, the satellite- or aircraft-based sensor technologies are used to capture and

detect objects on Earth. Thanks to various propagated signals (e.g., electromagnetic radiation),

remote sensing makes the data collection from dangerous or inaccessible areas possible, and therefore

plays a significant role in many applications including monitoring, military information collection5

and land-use classification [1, 2, 3, 4]. With the technological development of various satellite

sensors, the volume of high-resolution remote sensing image data is increasing rapidly. Hence,

proper compression of the satellite image becomes essential, which enables information exchange

much more efficient, given a limited band width.

Existing compression methods generally fall into two categories: lossless (e.g., PNG) and lossy10

(e.g., JPEG) [5]. The lossless methods usually provide better visual experience to users, but lossy

methods often achieve higher compression ratios via non-invertible compression functions along

with trade-off parameters to balance the data amount and the decompressed quality. Therefore

the lossy compression schemes are always preferred by consumer devices in practice due to higher

compression rate [5]. However, high compression rate comes with the cost of having compression15

artifacts on the decoded image, which is a barrier for many applications, such as image analysis.

Therefore, there is a clear need for compression artifact reduction, which is able to gain visual quality

of the decompressed image, which can influence the visual effect and low-level vision processing [6].

In theory, the compression artifacts are in relation to the schemes used for compression. Take

JPEG compression as an example, blocking artifacts are caused by discontinuities at the borders20

when encoding adjacent 8 × 8 pixel blocks, which are in the form of ringing effects and blurring

due to the coarse quantization of the high frequency components. To deal with these compres-

sion artifacts, an improved version of JPEG, named JPEG 2000, is proposed, which adopts the

wavelet transform to avoid blocking artifacts, but still undergoes ringing effects and blurring. As

an excellent alternative, SPIHT [7] showed that using simple uniform scalar quantization, rather25

than complicated vector quantization, also yields superior results. Due to its simplicity, SPIHT

has been successful on natural (portraits, landscape, weddings, etc.) and medical (X-ray, CT, etc.)

images. Furthermore, its embedded encoding process has proved to be effective in a broad range

of reconstruction qualities. For instance, it can code fair-quality portraits and high-quality medical

images equally well (as compared with other methods in the same conditions). However, in the30

field of remote sensing, the images usually suffer from severe artifacts after compression as shown
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Figure 1: Left: the SPIHT-compressed remotely sensed images with obvious blocking artifacts. Right: the restored
images by our OTO network, where lines are sharp and blurring is removed.

in Fig. 1, which poses challenges to many high-level vision tasks, such as object detection [8, 9],

classification [1, 10], and anomaly detection [11].

To cope with various compression artifacts, many conventional approaches have been proposed,

such as filtering approaches [12], [13], [14], specific priors (e.g., the quantization table in DSC [15]),35

and thresholding techniques [16, 17]. Inspired by the great success of deep learning technology

in many image processing applications, researchers start to exploit this powerful tool to reduce

the compression artifact. Specifically, the Super-Resolution Convolutional Neural Network (SR-

CNN) [18] exhibits great potential of an end-to-end learning in image super-resolution. It is also

pointed out that conventional sparse-coding-based image restoration model can be equally seen as40

a deep model. However, if we directly apply SRCNN to the compression artifact reduction task,

the features extracted by its first layer are noisy, which will cause undesirable noisy patterns in
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reconstruction. Thus the three-layer SRCNN is not suitable for compressed image restoration, es-

pecially when dealing with complex artifacts. Thanks to transfer learning, ARCNN [6] has been

successfully applied to image restoration tasks. However, without exploiting the multi-scale infor-45

mation, ARCNNs fail to solve more complicated compression artifact problems. Although many

deep models with different architectures have been explored (e.g., [18, 6, 19]) to solve the artifact

reduction problem, there is little work incorporating different models in a unified framework to

inherit their respective advantages.

In this paper, a generic fusion network, dubbed as one-two-one (OTO) network, is developed for50

complex compression artifacts reduction. The general framework of the proposed OTO network is

presented in Fig. 2. Specifically, it consists of three sub-networks: a normal-scaled network, a small-

scaled network with max pooling to increase the network receptive field, and a fusion network to

perform principled fusion of the outputs from the summation and difference models. The summation

model aggregates the low frequency information captured from different network scales, while the55

difference model is motivated by the Laplacian pyramid which is able to describe the high frequency

information (such as edges). By combining the summation and difference models, both low and high

frequency information of the image can be better characterized. This is motivated by the fact that

adopting different schemes to process high frequency and low frequency information always benefits

to low-level image processing applications, such as image denoising [20] and image reconstruction60

[21]. Most importantly, we provide an in-depth investigation into our OTO architecture based

on the Taylor expansion, which shows that these two kinds of information are fused in a nonlinear

scheme to gain more capacity to handle complicated image compression artifacts. From a theoretical

perspective, this paper proposes a principled combination of different CNN models, providing the

capability of coping with the extremely challenging task of the large blocking effect. Extensive65

experimental results verify that combining diverse models effectively boosts the performance. In a

summary, we have the following contributions in this paper.

1. We develop a new one-two-one (OTO) network, to combine different models based on an

end-to-end deep framework aiming to effectively deal with complicated artifacts, i.e., the big

blocking effect in compression.70

2. We are motivated by the idea of Laplacian pyramid, which is extended in the deep learning

framework, and explicitly used to capture the high frequency information in images. We show

in the experiments that the difference model is able to effectively improve the compression
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Table 1: A brief description of variables used in the paper.

Y : input compressed image F1: normal-scaled network

Ỹ : output of the first convolutional layer F2: small-scaled network
N1: output of F1 N2: output of F2

Sum: summation of N1 and N2 Dif : difference between N1 and N2

GS : summation model GD: difference model
HS : output of GS HD: output of GD

F3: fusion network α: weight term between the two sub-networks
G′S(·): derivative of GS G′D(·): derivative of GD

γ: constant term o[·, ·]: higher order infinitesimal
X: uncompressed target image

artifact reduction performance.

3. Based on the Taylor expansion, we lead to two OTO variants, which provide a profound75

investigation into our method.

4. Extensive experiments are conducted to validate the performance of OTO over the state-of-

the-arts on both the benchmark datasets and remote sensing datasets.

For ease of explanation, we summarize main variables in Table 1. The rest of the paper is

organized as follows. Section 2 introduces the related works, and Section 3 describes the details80

of the proposed method. Experiments and results are presented in Section 4. Finally, Section 5

concludes the paper.

2. Related work

The OTO network is proposed to combine summation and difference models in the end-to-end

framework. Particularly, the difference model motivated by the Laplacian pyramid is designed85

to obtain high frequency information, while the summation model aggregates the low frequency

information. Compared to the summation model, the difference model can provide more details

information. In this section, we briefly described the related work about how the high frequency

information used in low-level image processing, and also the previous CAR methods.

On the high frequency information. High frequency information has been exploited in tasks90

such as pansharping [22], superresolution [23] and denoising [24]. However, the way of exploring it

is different from ours. More specifically, in image superresolution, a low resolution input image is

first interpolated to have the same size of the high resolution image as input. Then the goal of the
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network becomes learning the high resolution image from the interpolated low resolution image [23].

In other words, the network essentially aims to learn the high frequency information in order to95

obtain the high resolution output [25, 26]. In pansharpening, high frequency details are not available

for multispectral bands, and must be inferred through the model [27, 28, 22] starting from those of

Pan images. In denoising, residual learning is utilized to speed up the training process as well as

boost the denoising performance [29, 20, 24]. The Laplacian pyramid is ubiquitous for decomposing

images into multiple scales and is widely used for image analysis [30, 31], which is computed as the100

difference between the original image and the low pass filtered image. This process is continued

to obtain a set of band-pass filtered images, since each is the difference between two levels of the

Gaussian pyramid. Laplacian pyramids have been used to analyze images at multiple scales for a

broad range of applications such as compression [31], texture synthesis [32], and harmonization [33].

Traditional CAR methods. Traditional methods for compression artifacts reduction are gen-105

erally categorized into deblocking-based and dictionary-based algorithms. The deblocking-based al-

gorithms mainly focus on removing blocking and ringing artifacts using filters in the spatial domain

or utilizing wavelet transforms and setting thresholds at different wavelet scales in the frequency

domain. Among them, the most successful work is Shape-Adaptive Discrete Cosine Transformation

(SA-DCT) [17], which achieved the state-of-the-art performance during the 2000s. However, similar110

to other deblocking-based methods, SA-DCT suffers from blurry edges and smooth texture regions

as well. It is worth noting that SA-DCT is an unsupervised method, which is more powerful than

supervised methods when there are not enough samples available. The supervised dictionary-based

algorithms, such as RTF [34], S-D2 [15], take compression artifacts reduction as a restoration prob-

lem and reverse the impact of DCT-domain quantization by learned dictionaries. Unfortunately, the115

optimization procedure of sparse-coding-based approaches is always complicated and the end-to-end

training does not seem to be possible, which limits their reconstruction performance.

Deep CAR methods. Recently, deep convolutional neural networks have shown promising

performance on both high-level vision tasks, such as classification [35, 36], detection [37, 38, 39,

40] and segmentation [41, 42, 43], and low-level image processing like super-resolution. Super-120

Resolution Convolutional Neural Networks (SRCNN) [18] utilize a three-layer CNN to increase

the resolution of images and achieve superior results over the traditional SR algorithms like A+

[44]. Following the idea of SRCNN, Yu et al. [6] eliminate the undesired noisy patterns by directly

applying SRCNN architecture for compression artifacts suppression and prove that transfer learning
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also succeeds in low-level vision problems. Compression artifacts reduction CNN [6] mainly benefits125

from transfer learning in three aspects: from shallow networks to deep networks, from high-quality

training datasets to low-quality ones and from one compression scheme to another scheme. Svoboda

et al. [45] learn a feed-forward CNN by combining residual learning, skip architecture and symmetric

weight initialization to improve image restoration performance. The generative adversarial network

(GAN) is also successfully used to solve the CAR problem. In [46], the Structural Similarity (SSIM)130

loss is devised, which is a better loss with respect to the simpler Mean Squared Error (MSE), to

re-formulate the compression artifact removal problem in a generative adversarial framework. The

method obtains better performance than MSE trained networks.

Due to the fixed quantization table in the JPEG compression standard, it is reasonable to take

advantage of JPEG-related prior for better restoration performance. Deep Dual-domain Convo-135

lutional neural Network (DDCN) [47] adds DCT-domain prior into the dual networks so that the

network is able to learn the difference between the original images and compressed images in both

pixel-domain and DCT-domain. Likewise, D3 method [48] converts sparse-coding approaches into

an LISTA-based [49] deep neural network, and gains both speed and performance. Both of DDCN

and D3 adopt JPEG-related priors to improve reconstruction quality. One-to-many network [50]140

is proposed for compression artifacts reduction. The network consists of three losses, a perceptual

loss, a naturalness loss, and a JPEG loss, to measure the output quality. By combining multiple

different losses, the one-to-many network is able to achieve visually pleasing artifacts reduction.

Challenges of the CAR problem. In spite of already achieving good compression artifact

removal performance, they still have limitations, especially when dealing with satellite imagery.145

Prior-based methods may not be generalized to other compression schemes like SPIHT, and there-

fore their applications are limited for the reason that satellite- or aircraft-based sensor technologies

use variable compression standards. Another ignored problem-specific prior is the size of blocks,

which is typically 8×8. The existing JPEG-based methods crop images into sub-samples or patches

with small size like 32 × 32 and use 8 × 8 blocks for processing. However, larger block size like150

32 × 32 is often adopted in the digital signal processor (DSP) of satellites for parallel processing.

In this case, an image patch only contains a whole block and might have negative impact on the

training process. As a result, it is important for sub-samples to contain several blocks so that the

networks can perceive the spatial context between adjacent blocks. On the other hand, the existing

deep learning based compression artifact removal approaches mainly focus on the architecture de-155
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sign [6, 18, 45] or changing the loss function [46, 50], with no theoretical explanations so that they

fail to provide more profound investigation into methodologies. Moreover, the benefits of different

network architectures are not fully explored for solving the CAR problem.
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Difference Model
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Figure 2: The architecture of One-Two-One (OTO) Network. Two different CNN models are combined in a principled
framework, the outputs of which are further processed based on a fusion network. The details of the three sub-
networks are also included.

3. One-Two-One Networks

The OTO networks are designed to reduce compression artifacts based on a unified framework.160

As shown in Fig. 2, two different models (summation model and difference model) are used to
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restore the input image individually, whose advantages are inherited by a CNN fusion network,

and thus leading to a better performance than using each of them individually. In what follows,

we address two issues to build the OTO network. We first describe the motivation of OTO, along

with a theoretical investigation into the network architecture which leads to two variants. We165

then elaborate the structures of the proposed OTO network, which are divided into three specific

sub-networks. For each of them, we give the details of the implementation.

3.1. Theoretical Investigation of OTO

OTO is a general framework aiming to combine different deep models of different architectures.

In OTO, a hierarchical CNN structure is exploited to capture multi-scaled texture information,

which is very effective in dealing with various compression artifacts. In addition, each network

in our framework carries out a specific objective, i.e., different-scaled textures, and we end up

combining them together to obtain better results. The idea origins from the Laplacian pyramid

for capturing edge information, but we use the different scaled networks to implement the idea

in the deep learning framework. The small-scaled network involves spatial max pooling, which

essentially increases the network receptive field and aggregates information in larger spatial area.

Therefore, by combining small-scaled network and normal-scaled network features, the network

learns features from different scales. Inspired by the Laplacian pyramid, the difference model

is exploited in the deep framework and able to describe high frequency information, while the

summation model captures low frequency information. We then combine both in a principled end-

to-end deep framework. We like to highlight our idea from a more basic way. We provide a sensible

way to combine the low and high frequency information in the deep learning framework, and also

theoretically explain it with the Taylor expansion. In OTO, we have:

N1 = F1

(
Ỹ
)
, (1)

and

N2 = F2

(
Ỹ
)
, (2)

where Ỹ is the output of the first convolutional network, which is designed to pre-process the input

compressed image Y based on convolution layers. N1 and N2 denote the outputs of the two branch

networks, i.e., normal-scaled network and small-scaled network. To better restore the input image
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X, we exploit two different networks, i.e., summation model and difference model, based on Ỹ ,

which complement each other in terms of different network architectures. The summation model

is used to mitigate the disparity between two networks, while the difference model highlights that

different CNNs are designed for different purposes in order to obtain better restoration results. We

have:

Sum = N1 +N2, (3)

which actually aggregates the low frequency information.

Dif = N1 −N2, (4)

which describes the high frequency information as shown in the Laplacian pyramid. GS and GD

denote the two branches following the summation and subtraction operation in Fig. 2 respectively.

Both kinds of information are then combined together for a better restoration of the input, and we

have:

HS = GS (Sum) , (5)

and

HD = GD (Dif) , (6)

where HS and HD are the outputs of the two branches. They are then combined together via a

nonlinear operation, which is designed to be robust to the artifacts in the compressed images. And170

we have:

F3

(
Ỹ
)

=HS + αHD = GS (Sum) + αGD (Dif)

= GS (N1 +N2) + αGD (N1 −N2)

(7)
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where α is a weight factor to balance different models. Based on Taylor expansion on GS and GD,

we prove that our OTO is actually the combination of N1 and N2 based on a nonlinear scheme as:

F3

(
Ỹ
)

=G′S
(
(N1 +N2)

∗)× (N1 +N2) + αG′D
(
(N1 −N2)

∗)× (N1 −N2)

+ γ + o [(N1 +N2) , (N1 −N2)]

=
(
G′S

(
(N1 +N2)

∗)
+ αG′D

(
(N1 −N2)

∗))
N1+(

G′S
(
(N1 +N2)

∗)− αG′D
(
(N1 −N2)

∗))
N2 + γ + o [(N1 +N2) , (N1 −N2)] ,

(8)

where ∗ means that there is a point, which is always differential, used in Taylor expansion. γ

denotes the constant term, and o[(N1 + N2), (N1 − N2)] denotes the higher order infinitesimal.

More specifically, o[(N1 + N2), (N1 −N2)] in Eq. 8 is the non-linear part and the remaining parts

are linear parts. Note that the adopted nonlinear OTO model includes both the linear and non-175

linear parts.

Based on Eq. 8, two linear OTO variants can be obtained as shown in Fig. 3 and Fig. 4. The

first one, termed as OTO(Linear), is:

F3,1

(
Ỹ
)

= N1 + αN2, (9)

which can be derived from the linear part of Eq. 8. In its implementation we learn α that is

elaborated in the experimental part. Particularly α = 1, we obtain the second one:

F3,2

(
Ỹ
)

= N1 +N2, (10)

which leads to our baseline, termed as OTO(Sum).

3.2. The architectures of OTOs

There are three distinct parts in OTOs: a) normal-scaled restoration network, b) small-scaled

restoration network, c) fusion network. For sub-networks a) and b), three kinds of CNN models are180

available: R, D and C (short for ResNet, DenseNet and Classic CNNs respectively). The details

about the OTO network are shown in Fig. 2.

ResNet(R): For each ResUnit, we follow the latest variant proposed in [51], which is more

powerful than its predecessors. More specifically, in each ResUnit, batch normalization layer [52],
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Figure 3: The architecture of OTO(Linear)
with a learned α to balance the two branch
networks.
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Figure 4: The architecture of OTO(Sum)
without the difference model.

ReLU layer [53] and convolution layer are stacked twice in sequence.185

DenseNet(D): Inspired by Densely Connected Convolutional Networks [54], to further improve

the information flow between layers we propose a different connectivity pattern: we introduce direct

connections from any layer to all subsequent layers. In DenseNet, the feature fusion method is

converted from addition to concatenation compared with ResNet, resulting in wider feature maps.

The growth rate k is an important concept in DenseNet which means how fast the width of feature190

maps grows and in our implementation, we set k to 8. For each DenseUnit, we also follow the

pre-activation style unit as ResUnit except the number of convolutional layers is reduced to 1. As

can be seen in Fig. 2, five DenseUnits are stacked sequentially followed by a convolutional layer to

reduce the width of feature map so that it can be fused with the other sub-network.

Classic CNNs(C): The classic CNN models only take advantages of convolutional layers and195

activation layers. The CnnUnit consists of one convolutional layer and one ReLU layer, and 6

CnnUnits are stacked to form the Classic CNN sub-network.

In the sub-network b), we utilize 2 × 2 max-pooling to decrease the size of feature map by half,

which obtains the following benefits: the computational cost is decreased to 1/4, and with more

robust features extracted compared to the sub-network a), and thus enlarging the perceptional field.200

Fusion Network: Following Eq.7, we construct the fusion network. Convolutional layers with

ReLUs serve as the non-linear operation, and scale layers serve as the auto-learned term. After

fusion, we stack 5 more ResUnits to further restore the images.

OTO Naming Rules: For convenience, we use abbreviations to represent the three kinds

of sub-networks. The first and second abbreviations after OTO represent the normal-scaled and205
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small-scaled sub-networks respectively. For example, OTO RD stands for an OTO network whose

normal-scaled sub-network is a ResNet and whose small-scaled sub-network is a DenseNet.

Multi-scale OTO Networks: To further investigate our proposed OTO network, we design a

multi-scale network whose structure is shown in Fig. 5. × 1
2 and × 1

4 -scale features are first fused by

the first fusion network to get the combined × 1
2 -scale feature. Then the fused feature along with210

the ×1-scale feature serves as the input of the second fusion network. Except for the architecture,

all the other details are the same as the two-scale OTO network.

It should be noted that the proposed OTO network exploits a series of ResUnits to fit the residual

of the input and target images. In other words, there is a long and direct shortcut connecting the

input image and the output of the subsequent network apart from the identity shortcut of each215

ResUnit. VDSR [23] has already proved that learning the residual between low-resolution and high-

resolution image is more efficient and effective in the super-resolution task, because the difference

is small, i.e., residual is sparse. In CAR task, this intuition is tenable because the compression

algorithms do not change the essence of the image. As a result, the ResUnit leads to a sparse

residual and thus we can train the network efficiently.
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Up -

+

Conv+ReLU
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1/4-Scaled Network Fusion Network

Y X
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Conv+
ReLU
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Figure 5: The architecture of multi-scaled OTO network (OTO RRR) in which ×1,× 1
2

and × 1
4
−scaled features are

exploited. The sub-networks are the same as in Fig. 2.

220

4. Implementation and Experiments

4.1. Datasets

In order to evaluate the OTO network, three groups of training and test dataset settings are

designed, which are given according to their different test sets.

LIVE1 and Classic 5: Following the protocol of ARCNN [6], we evaluate our proposed network225

based on BSD500 [55], where the training and test set are combined to form a 400-image training
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set and a 100-image validation set. The disjoint dataset LIVE1 [56] containing 29 images is chosen

as our test set. Another test set we adopt is Classic 5, one of the most frequently used datasets for

evaluating the quality of images.

BSD500 Test set: The BSD500 test set contains 200 images, which is more challenging than230

LIVE1, and more widely adopted in the recent research papers [47]. Considering that the 200-

image BSD500 training set is too small to generate enough sub-samples when a large stride is

chosen, we perform data augmentation by rotating the original images by 90, 180 and 270 degrees.

The remaining 100-image BSD500 validation set is used for validation.

Remotely Sensed Datasets: There are two public remote sensing datasets on “ISPRS Test235

Project on Urban Classification and 3D Building Reconstruction”: “Downtown Toronto” and “Vai-

hingen” [57]. To validate the performance of OTO on remote sensing images, “Downtown Toronto”

dataset is employed, which contains various landscapes, such as ocean, road, house, vehicle and

plant. To build a dataset for the compression artifact reduction problem, we preprocess the high-

resolution images in the “Downtown Toronto” dataset by using various compression algorithms, but240

obviously without the need for labeling the ground truth. SPIHT compression algorithm is used.

The SPIHT algorithm can be applied to satellite images, where the original images is cropped into

sub-images with a specific size 32× 32. Compared to JPEG, the size of block artifacts in SPIHT is

32×32, which is much larger than that used in JPEG. It is different from the quality factor in JPEG

that the compression degree is decided by compression ratio, such as 8, 16, 32 and 64. Afterwards,245

we build the datasets used for training and validation. We randomly pick up 400 non-overlapping

sub-images from the source images and the compressed images to form the training set and each

image has a uniform size of 512×512. Then we do the same operation to get the 200-image disjoint

validation set. For testing, we use the other dataset “Vaihingen” to build a 400-image test set that

has the same setting as the training set.250

Evaluation Metrics: To quantitatively evaluate the proposed method, three widely used met-

rics: peak signal-to-noise ratio (PSNR), PSNR-B [58] and structural similarity (SSIM) [59] are

adopted in our experiments. PSNR is an engineering term for the ratio between the maximum

possible power of a signal and the power of corrupting noise that affects the fidelity of its rep-

resentation, which is most commonly used to measure the quality of reconstructed image after a255

lossy compression. The PSNR-B modifies PSNR by including a blocking effect factor resulting in a

better metrics than PSNR for quality assessment of impaired images. SSIM index is a method for
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predicting the perceived quality of digital images. SSIM considers image degradation as perceived

change in structural information. While incorporating important perceptual phenomena, it also

includes both luminance masking and contrast masking terms.260

Other Settings: We only focus on restoring the luminance channel of the compressed image,

and RGB-to-YCbCr operation is applied via MATLAB function. We also use MATLAB to carry

out JPEG compression to generate compressed images with different qualities, such as QF-10, 20,

30 and 40. It is also worth noting that we crop every image such that the number of pixels in height

and width are even since an odd number will affect the process of down-sampling and up-sampling265

(padding is necessary). To train the proposed OTO network, we choose SGD as the optimization

algorithm with a momentum 0.9 and a weight decay 0.001. The initial learning rate is 0.01 with

a degradation of 10% over every 30000 iterations before it reaches the maximum iteration number

120000.

4.2. Sub-networks and Multi-scaled network270

Table 2: Results on different combination of sub-networks. Red marks mean the best results and blue marks mean
the second best results

LIVE1 Quality OTO CC OTO CR OTO RC OTO DD OTO DR OTO RD OTO RR OTO RRR

PSNR

10 29.01 29.25 29.24 29.25 29.24 29.23 29.28 29.38

20 31.39 31.61 31.61 31.63 31.63 31.61 31.67 31.79

30 32.52 33.04 33.05 33.04 33.06 33.07 33.08 33.10

40 33.56 34.07 34.08 34.09 34.09 34.09 34.10 34.13

SSIM

10 0.8213 0.8289 0.8293 0.8293 0.8296 0.8293 0.8298 0.8301

20 0.8851 0.8946 0.8949 0.8952 0.8951 0.8950 0.8954 0.8958

30 0.9124 0.9212 0.9217 0.9215 0.9218 0.9218 0.9218 0.9218

40 0.9274 0.9358 0.9361 0.9361 0.9362 0.9362 0.9362 0.9365

PSNR-B

10 28.74 28.94 28.92 28.95 28.92 28.91 28.95 29.13

20 31.03 31.09 31.14 31.15 31.14 31.14 31.17 31.29

30 31.67 32.46 32.47 32.44 32.45 32.45 32.48 32.52

40 33.04 33.40 33.43 33.44 33.44 33.45 33.48 33.53

As mentioned before, the OTO network is a framework that can take advantage of any CNNs,

e.g., ResNet(R), DenseNet(D) and Classic CNN(C), as its sub-networks. The results of combining

different kinds of sub-networks are shown in Table 2. Classic CNNs obtain the worst results, but

which can be improved by using different scales (OTO CC) or combining with ResNet (OTO CR

and OTO RC). The OTO based on the densely connected network (OTO DD) is designed to en-275

courage feature reuse, but the lack of an identity mapping enforces the network to learn residual,

which deems its failure. The combination of DenseNet and ResNet with different scales (OTO DR
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and OTO RD) are affected by two kinds of discriminated features. In contrast, residual learning

benefits more on the CAR problem, and the combination of two ResNets (OTO RR) outperforms

all other combinations. Multi-scaled features show promising results, and we design a multi-scaled280

OTO network (OTO RRR) by adding an 1/4-scaled sub-network to OTO RR. The result outper-

forms OTO RR with a large margin on all three metrics. Even though OTO RRR has outstanding

performance, its computational cost increases almost 25%, resulting in more training and test time.

After evaluating the pros and cons, we choose OTO RR as our main framework and if not men-

tioned, OTO means OTO RR in the following. We further design an experiment by removing one285

of the sub-networks each time to investigate the function of the sub-networks. The results in Table

3 indicate that the normal-scaled feature is shown to be more helpful than the small-scaled feature

when only one sub-network is adopted.

Table 3: Experiments on the sub-networks.

LIVE1 Algorithm PSNR PSNR-B SSIM

QF-10

OTO(normal-scaled) 28.65 27.91 0.8263

OTO(small-scaled) 28.26 27.62 0.8245

OTO 29.28 28.95 0.8298

Figure 6: Left: the feature map of the summation model, which describes the low frequency information. Right: the
feature map of the difference model, which describes the high frequency information.

4.3. OTO vs. its two Variants

As mentioned above, OTO has the capability to utilize the nonlinear model, i.e., the summation290

and difference models, which is fully evaluated in this section. To do that, OTO(Linear) and
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Table 4: Comparative results between OTO and its two variants on LIVE1

LIVE1 Algorithm PSNR PSNR-B SSIM

QF-10

JPEG 27.77 25.33 0.7905

OTO(Linear) 29.26 28.91 0.8295

OTO(Sum) 29.26 28.91 0.8287

OTO 29.28 28.95 0.8298

QF-20

JPEG 30.07 27.57 0.8683

OTO(Linear) 31.62 31.12 0.8950

OTO(Sum) 31.60 31.07 0.8941

OTO 31.67 31.17 0.8954

QF-30

JPEG 31.41 28.92 0.9000

OTO(Linear) 33.06 32.45 0.9218

OTO(Sum) 32.65 32.27 0.9160

OTO 33.08 32.48 0.9218

QF-40

JPEG 32.35 29.96 0.9173

OTO(Linear) 34.03 33.43 0.9349

OTO(Sum) 33.68 33.35 0.9316

OTO 34.10 33.48 0.9362
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OTO(Sum) are fully investigated in our comparison. The former one learns a weight factor to

balance the significance of two branch networks, which adaptively combine two CNNs to solve

the CAR problem. It is verified to be very effective for the reason that the significance of each

CNN should be well considered in the fusion process. For the OTO(Sum) network, the weight295

factor is fixed to 1, which means that this version of OTO is not only shortage of the nonlinear

representation ability but also impossible to tell which branch network contains more important

information to suppress compression artifacts. In other words, OTO(Sum) just directly applies

the addition operation to the two sub-networks. In this experiment, all comparative networks

are in fair comparison, which are trained based on BSD500 training and testing sets, and then300

tested on LIVE1 and Classic5. The results are shown in Table 4 and Table 5. The OTO network

along with its two variants have remarkable restoration performances on the four quality factors.

These results demonstrate the effectiveness of the auto-learned weight factor α and the nonlinear

operation on the summation and difference of the two branch networks. PSNR-B metric is designed

specifically to measure the blocking artifacts. Particularly, we analyze the PSNR-B gain of OTO and305

OTO(Linear) compared to their baseline OTO(Sum). We observe that for low-quality (QF-10, QF-

20) compression images, the nonlinear operation benefit more than the weight factor on suppressing

blocking artifacts, but different for high-quality images (QF-30, QF-40). We trained OTO models on

GTX 1070, I7-6700k with 32G memory. The training time for OTO, OTO(Linear), and OTO(Sum)

are 6h12m, 5h42m and 5h31m, respectively. The average test time for OTO, OTO(Linear), and310

OTO(Sum) are 0.1803s, 0.1738s and 0.1734s per image, respectively.

We further evaluate how the weight factor α shown in Eq. 9 affect on the final performance.

Results are shown in Table 6. α is implemented based on a scale layer of the Caffe platform, which

can be updated by the BP algorithm. We can also give a constant α by manually setting the learning

rate of this layer to be 0, so that α keeps unchanged during the training process. Firstly, we revisit315

OTO(Linear) and get the learned α, 0.0651 and 0.0544 for QF=20 and 30 respectively. The weight

of the small-scaled sub-network is 20 times smaller than that of the normal-scaled sub-network,

indicating that the normal-scaled features contain much richer information than small-scale ones.

Then, we set α to 0.01, 0.1 and 1.0 (when α = 1.0, it leads to OTO(Sum)). The results show

that when α is set to 0.01 and 0.1, close to the auto-learned value, the performance is slightly320

worse than OTO(Linear)(learned α), but much better than OTO(Sum) (α = 1), particularly on

QF=30. Considering on all cases that OTO(Linear) achieves best results, we can conclude that
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Table 5: Comparisons between OTO and its two variants on Classic 5

Classic5 Algorithm PSNR PSNR-B SSIM

QF-10

JPEG 27.82 25.21 0.7800

OTO(Sum) 29.36 28.92 0.8207

OTO(Linear) 29.34 28.93 0.8222

OTO 29.36 28.94 0.8222

QF-20

JPEG 30.12 27.50 0.8541

OTO(Sum) 31.56 31.00 0.8767

OTO(Linear) 31.54 31.01 0.8774

OTO 31.64 31.10 0.8785

QF-30

JPEG 31.48 28.94 0.8844

OTO(Sum) 32.52 31.99 0.8966

OTO(Linear) 32.93 32.28 0.9021

OTO 32.95 32.33 0.9022

QF-40

JPEG 32.43 29.92 0.9011

OTO(Sum) 33.46 32.91 0.9114

OTO(Linear) 33.77 33.06 0.9139

OTO 33.85 33.13 0.9155

Table 6: The weight factor α evaluation experiments on LIVE1

LIVE1 α PSNR PSNR-B SSIM

QF-20

0.01 31.59 31.12 0.8947

0.1 31.59 31.12 0.8949

1.0 31.60 31.07 0.8941

0.0651(auto-learned) 31.62 31.12 0.8950

QF-30

0.01 33.03 32.41 0.9214

0.1 33.04 32.43 0.9214

1.0 32.65 32.27 0.9160

0.0544(auto-learned) 33.06 32.45 0.9218
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an auto-learned α is significant for a practical CAR system especially when a proper α cannot be

given in advance. In addition, OTO(Sum) means that no difference model is in use, in contrast our

OTO with the difference model always achieve a better performance as shown in Table 4 and Table325

5, which prove that OTOs benefit from the high frequency information. We visualize the feature

maps of the summation model and the difference models in Fig. 6 for a picture from LIVE1, and

the results clearly support our motivation.

4.4. On Remote Sensing Image Datasets

Figure 7: The difference between JPEG and SPIHT compression algorithm. Left: JPEG with block size 8×8, Right:
SPIHT with block size 32×32. The blocking artifact caused by SPIHT is more severe than by JPEG.

For JPEG-based compression artifacts reduction methods, their target block size is 8 × 8, but330

in our SPIHT-based algorithm, blocking artifacts with a larger size like 32× 32 will occur, which is

shown in Fig. 7. Remotely sensed images are quite different from the natural images like BSD500

in terms of color richness, texture distribution and so on. ARCNN is first designed for restoring

natural images. For a fair comparison, we retrain ARCNN on the remote sensed image dataset

with the architecture of the network unchanged. We adopt better training parameters with step-335

attenuated learning rate compared to its fixed one. The network tends to converge early in the four

compression rates, 8, 16, 32 and 64 and then we evaluate it on the remote sensing task. We train

and test our OTOs on remotely sensed image dataset, and the results are shown in Table 7. The
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Table 7: Results on Remotely Sensed Dataset

Quality Evaluation SPIHT ARCNN OTO

8

PSNR 37.19 35.71 39.21

SSIM 0.9782 0.9775 0.9854

PSNR-B 31.90 33.12 37.95

16

PSNR 33.47 32.69 35.23

SSIM 0.9523 0.9554 0.9652

PSNR-B 28.80 30.61 34.38

32

PSNR 30.47 30.39 32.23

SSIM 0.9111 0.9200 0.9361

PSNR-B 26.31 28.54 31.53

64

PSNR 27.90 27.83 29.54

SSIM 0.8489 0.8547 0.8875

PSNR-B 24.19 26.55 29.20

parameters in PSNR-B and SSIM algorithms are modified to evaluate the 32 × 32-sized blocking

artifacts.340

It is astonishing that in various compression rates, ARCNN does not increase three scores except

for PSNR-B, while OTO successfully suppressed compression artifacts on all measures. In Fig. 10

and Fig. 11, the images restored by ARCNN tend to be blurry with blocking artifacts remained.

The failure of ARCNN and the success of the OTO verify that OTO are quite effective for remote

sensing images restoration, when suffering from larger blocking artifacts problems. However, when345

compression rate becomes bigger, i.e., 64, the details of the compressed images are almost lost, our

OTO fail to restore the edges and structure details of the balcony as shown in Fig. 12.

4.5. On LIVE1 and BSD500 Tests sets

LIVE1: As mentioned above, the proposed OTO outperform ARCNN on the remote sensing

image dataset and shows the promising results on restoring SPIHT-based compression artifacts.350

The following experiments further support that even compared with recently proposed deep learning

methods, OTO can still achieve the state-of-the-art results on publicly LIVE1 and BSD500 test sets

based on the JPEG compression.

We compare OTO with the most successful deblocking oriented method, SA-DCT, which achieves

the state-of-the-art results. Then ARCNN is also included for a complete assessment, using the355
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Table 8: Results on LIVE1

LIVE1 Algorithm PSNR PSNR-B SSIM

QF-10

JPEG 27.77 25.33 0.7905

SA-DCT 28.65 28.01 0.8093

AR-CNN 29.13 28.74 0.8232

OTO 29.28 28.95 0.8298

QF-20

JPEG 30.07 27.57 0.8683

SA-DCT 30.81 29.82 0.8781

AR-CNN 31.40 30.69 0.8886

OTO 31.67 31.17 0.8954

QF-30

JPEG 31.41 28.92 0.9000

SA-DCT 32.08 30.92 0.9078

AR-CNN 32.69 32.15 0.9166

OTO 33.08 32.48 0.9218

QF-40

JPEG 32.35 29.96 0.9173

SA-DCT 32.99 31.79 0.9240

AR-CNN 33.63 33.12 0.9306

OTO 34.10 33.48 0.9362

same metric as before. The results are shown in Table 8. ARCNN does not use data augmen-

tation technique on the training set in the initial conference version, but in its extended journal

version 20× augmentation method is used so as to gain restoration performance improvement. In

our experiments, no data augmentation is applied with the aim to accelerate the training process.

Specifically, for the PSNR metric, we achieve an average gain of 0.90 dB compared with SA-DCT360

and 0.32 dB compared with ARCNN. For the PSNR-B metric, the gains are even larger to 1.38 dB

and 0.34 dB respectively. It shows that OTOs are suitable for suppressing compression artifacts for

natural images.

BSD500: We compare OTO with the traditional approaches like DSC and also convolutional

deep learning based approaches, such as ARCNN and Trainable Nonlinear Reaction Diffusion365

(TNRD) [60]. In DDCN, the DCT-Domain branch took advantage of JPEG-based prior so it

is unfair for OTO only using pixel-domain information. Guo et al. propose a variant of DDCN by

removing the DCT-domain branch so that no extra prior is utilized, which is alternatively used in

the comparison. The comparative results are shown in Table 9 with four quality factors from 10
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Table 9: Results on BSD500 Test Set

Quality Evaluation JPEG DSC DDCN(-DCT) TNRD ARCNN OTO

10

PSNR 27.8 28.79 29.26 29.16 29.10 29.31

SSIM 0.7875 0.8124 0.8267 0.8225 0.8198 0.8278

PSNR-B 25.1 28.45 28.89 28.81 28.73 28.92

20

PSNR 30.05 30.97 31.55 31.41 31.28 31.64

SSIM 0.8671 0.8804 0.8923 0.8889 0.8854 0.8943

PSNR-B 27.22 30.57 30.84 30.83 30.55 30.95

30

PSNR 31.37 32.29 32.92 32.77 32.67 33.03

SSIM 0.8994 0.9093 0.9193 0.9166 0.9152 0.9211

PSNR-B 28.53 31.84 32.01 31.99 31.94 32.17

40

PSNR 32.3 33.23 33.87 33.73 33.55 34.00

SSIM 0.9171 0.9253 0.9336 0.9316 0.9296 0.9357

PSNR-B 29.49 32.71 32.86 32.79 32.78 32.98

to 40. OTO outperforms all the other algorithms in terms of three metrics, which indicates that370

OTO has a competent restoration ability. More specifically, OTO obtains about 0.7 dB and 0.4 dB

gains compared with DSC on the PSNR and PSNR-B respectively. ARCNN is beaten by 0.35 dB

on the PSNR and 0.26 dB on the PSNR-B, which is consistent with the results on LIVE1.

Original
PSNR/SSIM/PSNR-B

JPEG
32.92/0.9316/29.67

ARCNN
35.61/0.9564/34.57

OTO
36.13/0.9628/35.68

Original
PSNR/SSIM/PSNR-B

JPEG
32.92/0.9316/29.67

ARCNN
35.61/0.9564/34.57

OTO
36.13/0.9628/35.68

Figure 8: Qualitative comparison of OTO and ARCNN by JPEG with Quality Factor=20 where ringing effects is
carefully handled after being restored by OTO network.

5. Conclusion and future work

The CAR problem is a challenging in the field of remote sensing. In this paper, we have375

developed a new and general framework to combine different models based on a non-linear method
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Original
PSNR/SSIM/PSNR-B

JPEG
30.49/0.7727/28.19

ARCNN
31.71/0.8101/31.59

OTO
31.94/0.8173/31.81

Figure 9: Qualitative comparison of OTO and ARCNN by JPEG with Quality Factor=10, where severe block
artifacts are removed and the edges are sharp again.

Original
PSNR/SSIM/PSNR-B

SPIHT
32.86/ 0.9256/28.30

ARCNN
31.88/0.9311/30.36

OTO
34.63/0.9494/33.88

Original
PSNR/SSIM/PSNR-B

SPIHT
34.24/0.9617/29.44

ARCNN
32.86/0.9619/31.43

OTO
35.86/0.9723/35.08

Figure 10: Qualitative comparison of OTO and ARCNN by SPIHT with Compression Rate=16.

to effectively deal with complicated compression artifacts, i.e., big blocking effect in the compression.

Based on the Taylor expansion, we lead to two simple OTO variants, which provide a more profound

investigation into our method and pose a new direction to solve the artifact reduction problem.

Extensive experiments are conducted to validate the performance of OTO and new state-of-the-art380
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Original
PSNR/SSIM/PSNR-B

SPIHT
30.61/0.9054/26.38

ARCNN
30.76/0.9158/28.71

OTO
32.17/0.9290/31.34

Original
PSNR/SSIM/PSNR-B

SPIHT
31.34/0.9284/26.68

ARCNN
30.55/0.9312/29.03

OTO
33.84/0.9528/33.09

Figure 11: Qualitative comparison of OTO and ARCNN by SPIHT with Compression Rate=32.

Original
PSNR/SSIM/PSNR-B

SPIHT
27.87/0.8503/24.67

ARCNN
27.61/0.8564/25.23

OTO
28.13/0.8728/27.68

Figure 12: Qualitative comparison of OTO and ARCNN by SPIHT with Compression Rate=64.

results are obtained. In the future work, we will deploy more complicated network in our framework

to gain better performance.
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