
1 

 

The Bayes Factor vs. P-Value 

Albert Assaf and Mike Tsionas 

Abstract 

The use of p-value for hypothesis testing has always been the norm in the tourism literature. The 
aim of this paper is to highlight some of the “misconceptions” of p-value and illustrate its 
performance using some simulated experiments. Importantly, the paper proposes the use of the 
Bayes factor as an attractive alternative for hypothesis testing in the tourism literature. As the 
Bayes factor is based on the Bayesian approach, which relies solely on the observed sample to 
provide direct and exact probability statements about the parameters of interest, it is more suited 
for the purpose of hypothesis testing. Importantly, in this paper we show that the Bayes factor is 
more objective and has nicer properties than the p-value, a fact that should be of interest 
irrespective of whether the user is Bayesian or not.  We discuss in more details the concept of 
Bayes factor, and propose other related strategies aiming to improve the process of hypothesis 
testing in the tourism literature. 

1. Introduction 

“ A hypothesis that may be true is rejected because it has failed to predict observable results that 
have not occurred. This seems a remarkable procedure (Sir Harold Jeffreys, 1939, p. 316)” 

While it is highly common in tourism research to use the concept of p-value to test hypotheses, 
we believe it is time to highlight the advantage of the Bayesian approach for hypothesis testing.  
The reliance of p-values should not be discouraged, but at the same time, p-values should not be 
blindly used, or poorly interpreted. As Goodman (2008, p.135) stated, the interpretation of p-
value has been “made extraordinarily difficult because it is not part of any formal system of 
statistical inference”. Recently, the American Statistical Association (ASA) has also released a 
statement on p-values, focusing on aspects and issues that are too often “misunderstood and 
misused” (Wasserstein and Lazar, 2016). We also support the view shared by Ionides et al. (2017) 
that any method that is very commonly used will often be misused and misinterpreted.  This 
should not however be taken as a statement for researchers and practitioners to completely avoid 
p-value (Ionides et al. 2017).  Rather the focus should be on highlighting some misconceptions 
about the method and suggest other alternatives to either complement it or replace the p-values 
with methods that have better statistical interpretations and properties.  In this paper, we 
highlight the advantages of the Bayesian approach for such purposes, discuss how it can provide 
better statistical interpretations, and lead to more correct and consistent hypotheses statements 
even in the sampling – theory context.  

Specifically, we focus on contrasting the p-value with its Bayesian counterpart, the Bayes factor, 
which is more suited to address the problem of comparing hypotheses. Across several fields of 
social science, the Bayesian approach is gaining increased popularity because it expands “the 
range of testable hypotheses and results can be interpreted in intuitive ways that do not rely on 
null hypothesis significance testing” (Zyphur and Oswald, 2013). From a Bayesian perspective, 
Bayes factors can be considered “as alternatives to p-values (or significance probabilities) for 
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testing hypotheses and for quantifying the degree to which observed data support or conflict 
with a hypothesis” (Lavine and Schervis, 1999, p.19).  

So far, in tourism studies, there have been only very few applications of the Bayesian approach 
(e.g. Tsionas and Assaf, 2014; Assaf and Tsionas, 2015). With the traditional p-value approach, 
we assume uncertainty in the data (in the form of a sampling distribution), and we fix the 
parameter to a certain value (e.g. H0: β=0). Hence, we conduct hypothesis testing “even though 
everyone knows the null hypothesis is false before conducting the analysis (the probability that 
an unknown parameter is any single value is always equal to zero)” (Zyphur and Oswald, 2015, p. 
392).1This puts us in a difficult situation of testing against a null hypothesis that does not truly 
reflect our belief, and whether we reject the null or no, we cannot reflect how probable the null 
is. In fact, “p-values reflect only the probability of the estimated effect, assuming the null is 
true”, and the calculation of p-value is based on an infinite number of replications that never 
really happened.  

Suppose, for example, we have a certain parameter β in a regression model and we wish to test 
whether it is statistically different from zero. Suppose the p-value of the usual t-test is 0.001. 
Most researchers would argue that, at significance level α=0.05, since p<α, we must reject the 
null hypothesis (that β=0).  Clearly, the p-value is not the probability that the null is true. The p-
value is only the probability of observing results as extreme or more extreme than the observed 
data, given that the null holds true. The null : 0oH    involves an unknown parameter  , 

which is not a random variable but a constant. Hence, there can be no such thing as the 
probability of the null being true or false in sampling-theory based statistics.  At best, the p-value 
provides indirect evidence about the null hypothesis, as the parameters are not allowed to be 
random variables. Moreover, it is known that the p-value might overstate the evidence against 
the null (Berry, 1996; 2005; Goodman, 1999, 2005, 2008; Kass and Raftery, 1995; Louis, 2005; 
Spiegelhalter et al., 2004). There are of course other potential misconceptions of p-value, which 
we aim to highlight in this paper.  

The Bayesian approach enables us to make direct probability statements about the parameter of 
interest (e.g. β ). We elaborate further on these issues in the paper. We start with a more detailed 
discussion of the various misconceptions about p-values. We then provide a background of the 
Bayesian approach and its plausible advantages over the traditional p-value approach for 
hypothesis testing. We introduce the concept of Bayes factor and provide some background 
details on how it can be calculated. Throughout the paper, we will provide various illustrations 
on the performance of both the p-value and the Bayes factor. 

 

2. The p-value 

We focus here on some on two important aspects: Interpretation and performance of p-value. 
Different misconceptions about p-values have been identified in the literature (Goodman, 2008, 

                                                           
1
  To be fair, most researchers do not really believe that the parameter is zero but rather “close enough” to 

zero for their purposes. 
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Rouder et al. 2009; Zyphur and Oswald, 2013). We elaborate on some of these misconceptions 
here.  We also conduct an experiment to illustrate the performance of p-value before discussing 
the Bayesian approach and the concept of Bayes factor. 

 

 

2.1. Misconceptions about the interpretation of p-value 

 

1. Let us assume that we are using a 5% significance level to test the impact of tourism on 
economic growth, and find that the p-value is 0.04. In this case, we would reject the null. 
While this is statistically fine, it is of course one of the main mistakes we make in our 
understanding of p-value. A simple way to illustrate this, is that the p-value is derived 
with the assumption that the null is true, so how it can be also the probability that the null 
is false? The only way we can calculate the exact probability is by using the Bayesian 
approach. This illustrates immediately that the p-value is not the probability that the null 
is “wrong”. 

2. Let us, on the other hand, assume that we found a non-significant impact of tourism on 
economic growth (p>0.05). Hence, we would assume that the observed data support the 
null hypothesis. However as discussed by Goodman (2008, p.138), “this does not make 
the null effect the most likely. The effect best supported by the data from a given 
experiment is always the observed effect, regardless of its significance”.  

3. Going back to the case where we find significant impact of tourism on economic growth, 
we generally tend to say that the impact of tourism on economic growth is highly 
important. However, the p-value does not reflect the size of the impact.  

4. If another study conducted on a different destination Y found a conflicting finding to 
our study conducted on destination X we tend to say that the results from this study 
contradict other findings from the literature. However, we all know that the results are 
only conflicting when the findings have not likely occurred by chance. For example, p-
value is sensitive to sample size and the data used, as it is inherently a sampling-based 
concept. However, most researchers erroneously think that small p-values tend to persist 
in similar samples. 

5. Even in the case when the two studies find exactly the same p-value, one cannot safely 
assume that the two tourism industries for destinations X and Y behave similarly.  For 
example, even highly different effects can result in the same p-value.    

6. The relationship between p-value and type I error needs also to be highlighted. For 
example, setting significance level α=0.05 assumes that rejecting the null will result in 5% 
type Ι error. However, this goes back to limitation 1. For instance, a type Ι error simply 
means that there is a significant “difference” when no “difference” exists. However, “if 
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such a conclusion represents an error, then by definition there is no difference. So a 5% 
chance of a false rejection is equivalent to saying that there is a 5% that that the null 
hypothesis is true”, which is in line with what we say in limitation 1. (Goodman, 2008, 
p.138). 

7. A p-value of 0.05 is not the same as a p-value of <0.05. Recent studies have highlighted 
the importance of reporting the exact p-value and not write them as inequalities. If the 
interest is just on testing hypotheses, then reporting the p-value as an inequality is fine, 
but if we would like to assess the strength of the effect, then reporting the exact p-value 
is always recommended. Unfortunately, such practice is not yet common in the tourism 
or social science literature in general, but other related fields such as psychology have 
now moved in that direction.  

 

2.2. Evaluating the performance of p-value 

Not only the interpretation of p-value but also its performance has been a subject of criticism in 
the literature.  We focus here on this issue using the following experiment: Let us assume that 
there is a single regressor , 1,...,ix i n  which we generate from a standard normal distribution 

and remains the same in repeated samples. The data generating process is 

 , 1,..., ,i i iy x u i n     

where ~ (0,1).iu iidN  and β will assume different values. We start the analysis setting β=0.  The 

estimated model contains an intercept, viz.  

 1 2 , 1,.., .i i iy x u i n       

Of course, we expect that 1 0   and 2  . Let 1b  and 2b b  denote the least squares (LS) 

estimates of 1  and 2 , respectively. The t-statistic for testing 2: 0oH    is: 
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Student-t distribution with 2n   degrees of freedom.  

The question that we wish to address concerns the sampling behavior of p-value in relation to 

oH . We begin our illustration with the case 2 0.1   , that is the null hypothesis is incorrect 

but it is unlikely that we will be able to reject the null since the error variance is relatively large. 
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For this purpose, we conduct 100,000 simulations.  The results are reported2 in Figure 1. We can 
see that even in samples of size n=100 or n=500 there is a high probability that the null will be 
accepted.  

 

FIGURE 1. Sampling behavior of p-values when β=0.1 
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Suppose now  =0 so that the null is correct. The sampling distribution of p-values is reported 
in Figure 2. It turns out that the sampling distributions are uniform! Therefore, decision—
making based on p-values will be, more or less, arbitrary. This result is well known in the 
statistical literature (see for example Rouder et al. 2009) but not in applied research. We find it 
particularly disturbing because what it means is that, when the null is correct, one can obtain any 
p-value with equal probability in (repeated or observed) samples. 

Suppose now we set  =0.5. The results are reported in Figure 3. Although the results are 
“better”, there are still samples in which the null will be accepted even when n=100. In samples 
of size n=500 this will not happen. Suppose now that  =1 but the errors follow a Cauchy 
distribution, that is a Student-t with one degree of freedom (defined as the ratio of two 
independent standard normal random variables). The results are reported in Figure 4. Even in 
samples of size n=500 there is a sizable probability that we will obtain samples in which the null 
will be accepted even though it is wrong. 
                                                           
2 All software used in the present study is available from the authors. All programs are written in 
WinGauss and Matlab. 
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FIGURE 2. Sampling behavior of p-values when β=0 
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FIGURE 3. Sampling behavior of p-values when β=0.5 
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FIGURE 4. Sampling behavior of p-values when β=1 and errors are Cauchy 
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The fact that p-values overstate the evidence against the null is best illustrated in Figure 2 where the null 
is correct but the probability that we can obtain a value near zero or a value near one, are equal! 
Even when the null is incorrect, Figures 3 and 4 illustrate nicely the fact that there are samples in 
which we falsely accept. Clearly, this does not have to do with type-I or type-II errors; it is an 
“independent” property of p-value.  In the words of Goodman (1992): “[T]he probability of 
repeating a statistically significant result, the ‘replication probability’, is substantially lower than 
expected”. Therefore, using the conventional rule “p < 0.05” is suspect, and cannot be used in 
practice to provide evidence of “significance”3.  

Reinforcing this issue, Goodman (1992) considered a similar experiment and asked the following 
question which is of central interest in applied tourism research: “If we repeat this experiment under 

identical conditions (similar groups, same sample size, same intervention), what is the probability of observing 

another statistically significant result in the same direction as the first?” On his results Goodman (1992) 
wrote: “if an experiment produces a correct result with p = 0.01, there is still greater than a one in four chance 

that a repetition of this experiment will not reach statistical significance at α = 0.05. We do not achieve a 95 per 

cent probability of replication until p = 0.00032, and 99 per cent probability at p = 2 x 10-5. That this is a 

best-case scenario is confirmed by the Bayesian calculations, which more accurately reflect the fact that there is still 

uncertainty about the true difference after the first experiment. They show that when p < 0.05, the replication 

                                                           
3
 This is, of course, a great problem in applied research because we cannot hope to increase the sample 

size in order to gain more information about the null. 
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probabilities are even lower.” (pp. 876-877). Therefore, the conventional rule “p < 0.05” or even “p 
< 0.01” might not be totally unjustified, and we may need much lower bounds for p-values such 
as 10-5. For more details, the interested reader can consult Edwards et al. (1963); Goodman 
(1999); Jeffreys (1961); Sellke, Bayarri, & Berger (2001) and Wagenmakers & Grόnwald (2006). A 
related problem is that in large samples even phenomenally small differences become statistically 
significant. This suggests that bounds for p-values cannot, in fact, be independent of the sample 
size. In other words, critical values for t-tests cannot, in fact, be independent of the sample size. 
The problem does not seem to be well known in applied tourism research. 

To avoid all the above limitations and dilemmas, one can resort to the Bayesian approach.  We 
will illustrate below the main differences between the Bayes factor and p-value for hypothesis 
testing.  

 

4. The Bayesian Approach and the Concept of Bayes Factor 

Fundamentally, the Bayesian approach and the frequentist (i.e. p-value) approach have each their 
unique characteristics. The Bayesian approach however is more realistic as it provides inferences 
and compares hypotheses for the given data we analyze. With the frequentist approach, the data 
always carrying uncertainty. However, the “Bayesian thinking places the focus on whether or not 
parameters and models are sensible for a set of data (e.g., credibility intervals instead of 
confidence intervals), rather than whether a specific “correct” model has been specified or a null 
model is rejected” (Zyphur and Oswald, 2013, p.3). Hence, with the Bayesian approach we do 
not need to worry about setting up the null and we can make direct probability statements about 
a certain parameter  . The Bayesian approach does this in a somehow reverse order, by 
referring “directly to the parameter β itself (instead of treating parameters as fixed null 
hypotheses), and observed data in y are treated as fixed” (Zyphur and Oswald, 2013, p.3). In 
other words, the Bayesian approach makes direct probability statements about the parameters 
using the observed sample, whereas the p-value is calculated based on the assumption of drawing 
a hypothetical infinite number of samples (i.e. sampling distribution) that we never really 
observe. Finally, the Bayesian approach is also known to deal better with small samples, where 
on the contrary, it is highly unlikely to support hypothesis with p-value due to statistical power 
problems. The Bayesian approach has also the advantage of incorporating prior information 
(about previous findings and theory) into the estimation, which sometimes can prove to be 
highly useful. 

All the above advantages can translate to the concept of Bayes factor, which as mentioned, is the 
Bayesian counterpart of the p-value for hypothesis testing.  The Bayes theorem can be written as: 

 (1) 

where   is the proportionality symbol. Here, ( | )p y  is the posterior distribution, and is 
proportional to the product of the prior ( )p  and the likelihood function (y | )p  , which 
summarizes the information from the data. Hence, from here, we can draw the distinction 
between the Bayesian and the frequentist approach. For example, with the Bayesian approach, 

( | ) (y | ) ( )p y p p  
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the posterior is conditional on the data, while with the frequentist approach “we consider the 
data [as] random, and we investigate the behavior of test statistics over imaginary samples from 

(y | )p  ” (Rossi and Allenby,  2003, 305). 
 
To place the Bayes factor into the equation, the theorem in (1) can be written in words as : 
 
Odds of the null hypothesis after obtaining the data  
 
=Odds of the null hypothesis before obtaining the data  Bayes factor  
 
or in more technical details as: 
 
Posterior odds ( 0H , given the data)        (3) 

 

= Posterior odds ( 0H , given the data)  
 
 

0

1

,   

,   

P Data under H

P Data under H
  

 

Hence, the Bayes factor is nothing but the ratio of the posterior probabilities of the two 
hypotheses, viz.: 

 0
1:2

1

( | )
.

( | )

P H Y
BF

P H Y
   (4) 

This is naturally defined in Bayesian analysis but it has no meaning in sampling—theory 
statistics4.  How do interpret the Bayes factor?  
 

 Bayes factor of 1 indicates no evidence (i.e. equal support for both hypotheses). 
 Bayes factor between 1 and 3 indicates anecdotal evidence for H0. 
 Bayes factor between 3 and 10 indicates  substantial evidence for H0. 
 Bayes factor between 1/3 and 1 indicates anecdotal evidence for H1. 
 Bayes factor between 1/10 and 1/3 indicates substantial evidence for H1.  

 
We should notice here the difference between Bayes factor and Posterior Odds Ratio. The POR 
is the BF multiplied by the ratio of prior probabilities that we attach to the two hypotheses. Since 
we rarely have information to come up with a reasonable prior odds ratio we set it to unity (so 
that the two hypotheses receive the same prior probability) and, therefore the BF is simply the 
POR. 
 
We provide in Appendix A some more technical details about the Bayes factor for regression 
models under alternative priors. Hence, from this discussion, it turns out that in Bayesian 

                                                           
4 It is, perhaps, worthwhile to compare the marginal likelihood to the maximum value of the likelihood 

function, ˆ( ; )L Y  where ̂  is the maximum likelihood (ML) estimate. Even if the likelihood is 
multimodal, the ML estimate is the global maximum. In contrast, the marginal likelihood weights all 
values of   using the prior as the weighting function and thus takes into account multimodality in the 
proper manner 
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analysis we compare hypotheses rather than test a null against an alternative. In other words, we 
are interested in the plausibility of one hypothesis relative to another, given the data.  
 
 
5. Why is the Bayes factor an attractive alternative to the p-value? 
 

1- If we look at (3) and (4), we can see that the Bayes factor is not probability itself but a 
ratio of probabilities, ranging from zero to infinity. It necessitates two different 
hypotheses: “for evidence to be against the null hypothesis, it must be for other 
alternative” (Goodman, 1999, p.1006). In other words, it has a more objective 
interpretation. For example, a Bayes factor of 0.5 simply indicates that the results we 
observe have half the probability under the null as they are under the alternative. To 
explain further: P- values “are based on calculating the probability of observing test 
statistics that are as extreme or more extreme than the test statistic actually observed, 
whereas Bayes factors represent the relative probability assigned to the observed data 
under each of the competing hypotheses. The latter comparison is perhaps more natural 
because it relates directly to the posterior probability that each hypothesis is true” 
(Johnson, 2013, p.19313).  

2- The Bayes factor relies only on the observed data at hand, and not on some hypothetical 
repeated samples, which we do not observe and they are the essence of the calculation of 
the p-value.  

3- The Bayes factor accounts for the likelihood under both H0 and H1 and provide evidence 
for and not only against H0. This is contrary to the (admittedly peculiar) habit of 
frequentists who do not reject a null but cannot accept it. 

4- The Bayes factor is more convenient at it shows the size of an effect. This is because the 
Bayes factor is a ratio of probabilities, while the p- value is a probability to obtain a more 
significant result in repeated sampling which never occurs.  

 

5- It is a widespread belief that the Bayes Factor approach significantly depends on 
correctness of parametric assumptions and on prior selections (Vexler et al. 2016). This is 
true but the p-value approach also depends on correctness of parametric assumptions. If 
the parametric model is misspecified there is no way for a Bayesian or a non-Bayesian 
researcher to reach the correct conclusion. We also agree that the Bayes Factor approach 
significantly depends on prior assumptions. We show through our simulations below that 
for given ‘hostile’ priors (the term ‘hostile’ will be defined below) and a nearly-flat prior 
the sampling behavior of the Bayes factor is much better to the sampling behavior of p-
values. For example the Bayes factors do not exhibit the ‘dancing phenomenon’ that is 
well known for p-values and which we also document in this paper. The performance of 
Bayes factors is excellent and certainly better compared to the sampling-theory 
performance of p-values.  
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6. Evaluating the Behavior of the Bayes factor and comparing its performance with the 
p-value 

 

To illustrate the behavior of the Bayes factor we consider in this section several experiments.  In 
the next section, we also provide the results from a real data set.  
 
We start with the following model: 
  

1 2 1 3 2 , 1,..., 50,i i i iy x x u i n         

where we generate 1 ~ (0,1)ix iidN , 2
2 1 , ~ (0,0.1 )i i i ix x e e iidN   and ~ (0,1)iu iidN .  We set 

1 2 3 1β β β   , and 2| (0, * )β σ N C σ∼ , where 2 1σ   and C is a constant that changes the 

conjugate prior. Therefore, we have the regressors correlated. We also assume that they are not 
fixed in repeated samples. We use one million simulated data sets. We are interested in the Bayes 
factor of the full model (M1) against a model where 1ix  is omitted (model M2) and a model 

where 2ix  is omitted (M3). With probability 95% the parameters βj will be in the interval [-2σ√C, 

2σ√C] since their prior mean is zero. For ease of presentation, we present the log Bayes factors 
in Figure 5. We use various prior choices for C including C= 0.1, C=10, C=10-4, C=1, and 

C=100, which we believe are common prior choices given that 2 1σ  . As the actual values of 
parameters βj are equal to one, then it follows that conditional on σ=1, priors with C>1 imply 
95% Bayes probability intervals that include the actual values of the parameters. Setting C=0.1 or 
C=10-4 implies more or less dogmatic priors (extremely so in the second  case) while 100 is a 
practically flat prior (relative to the likelihood). Setting C=10 is also flat relative to the prior. So 
the only ‘reasonable’ prior is the one with C=1 which implies a 95% Bayes probability interval [-
2, 2]. By ‘reasonable’ we mean a prior corresponding to some educated guess about the 
parameter5. The other choices of C lead to either dogmatic or flat priors. For example with C=10 
the 95% Bayes probability interval becomes [-2√10, 2√10]. With C=100 it becomes [-20, 20]. 
The likelihood is, clearly, far more concentrated around the actual parameter values (unity) so 
these priors are flat and practically uninformative in this example. The choice C=0.2 implies a 
95% Bayes probability interval of the form [-2√0.2, 2√0.2] which is far from the actual parameter 
value and the prior with C=10-4 is practically dogmatic, almost excluding the actual parameter 
value (which is unity) with very high prior probability. 

So our priors are not helpful in ‘driving’ the ‘correct result’ (viz. that parameters are close to 
unity). Moreover, in this instance the situation for testing is hostile. Not only we have collinearity 
among the regressors but the error variance (σ) is very large whereas the sample size (n) is small. 
A ‘helpful’ prior would have been like: β~N(1, Cσ2) with a value of C like, for example, 1, 5 or 
10. 

 

                                                           
5 An educated guess may come from previous studies of the same problem or associated economic theory 
information, e.g. in the case of elasticities, the marginal propensity to consume and several other similar 
situations. 
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Before proceeding we should mention that we present the sampling distribution of log Bayes 
factors and not Bayes factors themselves as the magnitudes of the latter prevent us from visual 
clarity. So in order for Bayes factor to be greater than 1 we need the log Bayes factor to be 
positive. For Bayes factor to be greater than 10 we need the log Bayes factor to be greater than 
2.33 etc. If the sampling distribution of the log Bayes factor has a long tail to the right it means 
that extremely large values occur that apparently are in favor of the correct model. 

Note that with the error variance being equal to one, the “signal” is buried” into noise.  Despite 
this fact, we can see that the Bayes factor performs consistently across various prior choices. For 
instance, if we look at the case with C=0.1, we can see that the Bayes factors are always favoring 
the full model. The minimum log Bayes factor, for example, is larger than 0 (i.e. Bayes factor are 
greater than 1), and this seems to be consistent across all priors. Importantly, we can see that the 
median log Bayes factors is approximately 3 105., Hence, the message from Figure 5 is clearly 
that Bayes factors favor the correct model as they should be, and seem to perform well across 
various priors despite the “hostile conditions” for testing and model comparison in this context.  

FIGURE 5. Sampling distribution of log Bayes factors. 
 
C=0.1 

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

log Bayes factor

fr
eq

ue
nc

y

M1 against M2

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

log Bayes factor

fr
eq

ue
nc

y

M1 against M3

 
C=10 

-10 0 10 20
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

log Bayes factor

fr
eq

ue
nc

y

M1 against M2

-5 0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

log Bayes factor

fr
eq

ue
nc

y

M1 against M3

 



14 

 

 

C= 10-4 
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To further illustrate, we consider another experiment to compare directly between the p-value 
and Bayes factor. We start with the following data generating process, where β=1 so that there is 
an effect in the population: 

 
 2, ~ (0, ),  1,..., 100,  1,  5.i i iy x u u iidN i n            

We chose the value of standard deviation (σ) so that the power of the least square (LS) estimator 
for   is close to 0.506 (i.e. we assume only 50 out of 100 tests to be significant, where in fact 
there is real effect. Of course, in reality, we do not know such information). The standard 
deviation of the LS parameter of β is 0.5 (since σ=5 and the sum of squares of xis follows a chi-
square distribution with n=100 degrees of freedom, and therefore its expectation is 100). So the 
average t-statistic for testing the null that β=0 should be -1/0.5=-2. So this is not too bad for the 
sampling – theory estimator (OLS and associated p-value of the usual t-statistic). 

We are interested in : 0oH    against the two-sided alternative. In Figure 6 we can see the 

fluctuation or what is known as “the dance of p-values” (Cummings, 2011, Dienes, 2014). The 
dotted (red) line corresponds to the conventional significance level of 0.05. The actual p-values 
are reported in Table 1. We can see that in some situations, the actual p-value is showing 
significant effect, while in others do not. In other words, the p-value is making the mistake of 
accepting the null.  

 

Figure 6. Dance of p-values 
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6 We keep the x’s fixed in repeated samples. 
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Table 1. Actual p-values from Figure 6 

 

 

 

 

In Figure 7 we report the sampling distribution of p-values from a simulation using 10,000 
replications. 

Figure 7. Sampling distribution of p-values 
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Suppose now we keep the 20th dataset for which the p-value was large, indicating that β=0. We 
perform a bootstrap7 using a million replications and the resulting sampling density of p-values is 
reported in Figure 8. Contrary, perhaps, to expectations, this distribution is nearly uniform. 
Therefore, we observe, again, the “dancing p-values” phenomenon. The fact that the bootstrap 
does not work in this instance (in the sense that p-values do not appear to be low to indicate 
statistical significance) is because the bootstrap has only an asymptotic justification, and, in fact, it cannot 

perform well independently of  2

1
/

n

ii
x x


  or / n  in the case a simple mean is tested 

(i.e. 1, 1,...,ix i n  ). The asymptotic justification of the bootstrap is not well known, and most 

applied researchers are inclined to believe that it provides a panacea. 

 

                                                           
7 This works as follows. We resample n values from  the yi’s randomly. The xi’s are fixed by assumption. 
For each data set generated we apply LS and we get an estimate of β, its t-statistic and the p-value. The p-
values are saved and to these a kernel density smooth is applied. 

0.049370 0.000112 0.318299 0.000083 0.000831 
0.005598 0.087391 0.003340 0.025822 0.028236 
0.000929 0.756712 0.003966 0.018895 0.094902 
0.353184 0.121725 0.005472 0.179371 0.391317 
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Figure 8. Sampling density of p-values (bootstrap) 
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Next, we examine what happens when n=10 and σ=1, in which case the power is approximately 
75%. Clearly, a lot of them indicate non-significance despite the fact that the null is false, that is 
β is not zero. 

From Figure 10, the sampling and bootstrapped distributions are much improved but, due to 
low power, there is still a non-trivial probability to accept the null. To conclude, there is little hope 

to rely on the bootstrap for computing corrected p-values when the power of test statistic is low (even a 
power of 75% is low as we have seen). In fact the bootstrap-based distribution is nearly uniform, 
again.Therefore, the case for small-sample econometrics, that is a case that does not focus on 
asymptotic theory but rather small-sample based exact inference, does not appear to be 
promising. This is despite the facts that some Bayesians have advised in favor of it to cure, at 

least, the “asymptotic theory” disease that plagues modern applied econometrics practice. In fact, 
the bootstrap is not a panacea; the bootstrapped distributions of p-values can still be nearly 
uniform when the data at hand yield a large p-value in the original LS estimation. 

More fundamentally, a p-value that indicates non-significance (that is, β=0) is quite common 
when, in fact, the hypothesis is correct (we have had β=1 in our case). Therefore, large p-values 

cannot be taken as evidence supporting the null. First, the dancing p-values phenomenon arises quite 
commonly. Second, the sampling and bootstrapped distributions of p-values can still allow for 
large p-values giving rise to the dancing p-values. Both phenomena are due to low power, and 
75% is low in what we described in this section. 
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Figure 9. Dance of p-values when n=10 and σ=1. 
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Figure 10. Sampling and bootstrap density of p-values when n=10 and σ=1. 
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Table 7. The actual p-values for Figure 9 

0.043521 0.012516 0.032072 0.042491 0.008104 
0.000835 0.025236 0.006302 0.045610 0.140445 
0.090976 0.121967 0.032085 0.003787 0.011040 
0.009092 0.024772 0.002497 0.044316 0.001395 

 



19 

 

Finally, for the same experiment in Table 7, we report the Bayes factors in favor of the null 
hypothesis (Table 8). Our interest is to see to see whether the Bayes factor will reveal any non-
significant outcome when the null is false.  From the results, we can see that the Bayes factor is less 

sensitive and does not fluctuate as much as much as the p-value. For instance, we can see that the Bayes 
factor is never supporting the null, while the p-value does so, in many instances. Such results are 
in line with Dienes (2014), and of course, we are not claiming that the Bayes factor never 
produce inconsistent estimates, but at least it is less sensitive to this error than the p-value.   

Table 8. p-values vs. Bayes Factor 

p-value Bayes Factor 

0.043521 0.271805 
0.012516 0.304833 
0.032072 0.183034 
0.042491 0.262004 
0.008104 0.177460 
0.000835 0.141651 
0.025236 0.254825 
0.006302 0.186759 
0.045610 0.267727 
0.140445 0.267324 
0.090976 0.271406 
0.121967 0.294731 
0.032085 0.345209 
0.003787 0.129610 
0.011040 0.165317 
0.009092 0.246224 
0.024772 0.241461 
0.002497 0.150977 
0.044316 0.300740 
0.001395 0.130336 

 
 
 
 
 
 

7. An Illustration with a real dataset 

Finally, we compare between the Bayes factor and p-value using a real application on the impact 
advertising spending on firm value. We use data on US hotels and restaurants covering an 
unbalanced sample of 31 publicly traded companies8 from 2001 to 2012 (314 observations). In 
our estimation we also control for advertising spending, firm size and financial leverage (Assaf et 
al. 2017). We used the COMPUSTAT database to collect advertising spending and performance 
data. Following previous research (Luo and De Jong, 2012), we measured advertising spending as 
the reported firm advertising expenditure in the COMPUSTAT database. For CSR data, we used 

                                                           
8 We focus here on publicly traded firms as we have firm value as one of our performance measures. 
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the KLD Research and Analytics’ KLD STAT, one of the most frequently used databases in the 
strategy and management literature (Kang et al. 2010). In line with Assaf et al. (2017), we 
measured firm value using the Market Value Added (MVA), calculated as: MVA= market value-
capital , where market value reflects the equity market valuation of the firm and capital reflects 
the debt and equity invested in the firm.  

Hence, in our model we have four variables: advertising spending, CSR, firm size and financial 
leverage. We report in Figure 11 the sample densities of the Bayes factor and p-value for the 
coefficients associated with advertising spending (β2) and financial leverage (β5), because this is 
where we observe interesting differences9. Τhe sampling distribution of p-value for β2=0 has a 
peak at zero indicating that this parameter can be significant but on average the p-value is 
exceeds 0.1. The Bayes factor (lower panel) is approximately exp(7)=1096 on the average 
suggesting that the parameter is definitely not zero. For β5 the sampling distribution of p-values 
suggests a similar thing and has a long right tail implying that in most samples the parameter will 
be non-significant. The Bayes factor (lower panel) in favor of β5=0 is less than unity reaching the 
same conclusion but its sampling distribution has considerable probability to the right of zero 
suggesting that in many samples the conclusion will be reversed. 

Figure 11. Sample density of the Bayes factor and p-value for selected coefficients  
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9
 Results for other variables can be obtained from the authors upon request. 
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8. Concluding Remarks 
 

The aim of this paper was to highlight some of the misconceptions about p-value and 
illustrate its performance using some simulated experiments. Importantly, the paper also 
discussed the concept of Bayes factor and illustrated how it can serve as an attractive 
alternative to p-value in the tourism literature.  
 
The paper is not necessarily advising against abandoning the p-value approach from the 
tourism literature. However, we suggest the following strategies moving forward, echoing the 
recommendations of other researchers in related fields (Stern, 2016): 
 
1. As tourism researchers, we need to be more careful in how we interpret the p-value and 

highlight its limitations. Along with the p-value we should also provide more reflection 
on the effect size, and the distribution of data (Khalilzadeh and Tasci, 2017). We need 
also to start reporting the exact p-values and not write them as inequalities. However, the 
p-value has important drawbacks as we have discussed.  
 

2. We need to start transitioning more quickly toward the use of the Bayesian approach for 
hypothesis testing. This is happening at a faster pace in other fields such as management 
and psychology (Zyphur and Oswald, 2013). We discussed some of the strengths of the 
Bayesian approach. It is simply more suitable and provides a more objective 
interpretation for hypothesis testing. More importantly, it is not based on the idea of 
repeating sampling like the p-value approach10.  

 

3. The Bayes factor discussed in this study is one counterpart to p-value offered by the 
Bayesian approach. In fact the Bayesian approach provides the exact probability that a 
given hypothesis H is true given the data Y, viz. P(H|Y). We discussed above some of 
the main advantages of the Bayes factor. Deriving these Bayes factors can be somehow 
challenging. However, some well-known software such as SPSS now provides extension 
commands for the derivation of Bayes factors11. To simplify the process, we also provide 
in Appendix B, WinGauss code for the derivation of Bayes factors in a regression model, 
where the parameters have a normal prior and σ has an inverted gamma prior. As the 
prior of β is non-conjugate (that is, it does not depend on σ) results are not available 
analytically and we use a Gibbs sampler to perform MCMC. The Bayes factor, in turn, is 
computed using the Verdinelli and Wasserman (1995) approach known as Savage – 
Dickey ratio. 
 

4. The Bayesian approach also provides other nice tools for hypothesis that can be used in 
tourism literature, and have better properties than the p-value. For example, one can use 

                                                           
10 It is encouraging that most statistical software packages now provide some Bayesian estimation for 
regression models. 
11 See for example: (https://developer.ibm.com/predictiveanalytics/2015/10/07/new-bayesian-
extension-commands-for-spss-statistics/ ) 
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the 95% higher posterior density (HPD) to reflect on the significance of a certain effect12.  
Like the confidence interval, the HPD can also inform us about the magnitude of 
uncertainty about a parameter. However, the HPD has nicer properties than the 
confidence interval.  We elaborate mote on this issue in Appendix C, and for more 
details refer to Congdon (2001).  
 

5. Finally, we note that “scientific studies involve much more than the statistical analysis 
stage. There are numerous other points in the research process as well” (Stern, 2016, 
p.8). The above should not distract us from designing carefully each stage of the research 
process. Both the p-value and the Bayes factor will not produce reliable results if errors 
exist in the research process. 
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Appendix A 
 

More Technical Details about the Bayes Factor 
 
 
Bayes factor in the linear regression model 
 
Undoubtedly, the linear regression model is the workhorse of applied tourism research. The 
model we consider is  
 2

1 1 ... ,  ~ (0, ), 1,..., .i i k ik i iy x x u u iidN i n         

In familiar notation, we have: 
 2,  ~ (0, ).ny X u u N I     

The vector notation facilitates the calculations. Here, y  is the 1n  vector of observations on 
the dependent variable, X  is the n k  matrix of data on the explanatory variables and   is the 

1k   vector of parameters. It is convenient to set 2h   , a quantity known as “precision”. 
From frequentist analysis we know that the LS estimator is 1( )b X X X y  . We also define 

   2s y Xb y Xb     and n k   . 
 
Case A. The Natural Conjugate Prior 
 
Suppose we adopt the following prior for the parameters, known as natural conjugate:    
 

   1 2| ~ , ,  ~ , .h N h V h Gamma s    

 
Here,   is the prior mean of β and 1h V is its prior covariance matrix. Since we wish to 

compare models, it convenient to write 2
( ) ( ) ( ) ( ) ( ) ( ),  ~ (0, ),m m m m m n my X u u N I    where 

1 2,m M M  denotes the models. The models can be nested or non-nested.  
 
For this model we define: 

   11 ,V V X X
     

  1 ,V V X Xb      

 ,n     

  
112 2 2 ( ) ( ).s s s b V X X b    

           

The marginal likelihood is available in closed form: 
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It is reasonable to set 1 2 0    so that we are non-informative on 2 . In this case we have 

1 2c c . Additionally, we may set 

 1
1 2, , ,

mm m kV C I m M M     

in which case we have   
 .mk

mV C   

The Bayes factor is: 

 1
1:2

2

( | )
.

( | )

p y M
BF

p y M
   

Although these expressions are somewhat complicated they can be easily programmed in 
standard software. Regarding prior selection, one would, perhaps, like to set mC  to a small value 

(we use 0.1). By assumption, we have: 0.m   Μoreover, we also set 0m  .  
 
From simple inspection of the marginal likelihood, it is clear that it accounts for model fit, 
parsimony (in terms of number of parameters) and “agreement” between the prior and the 
posterior. 
 
 
 
B. Other Bayes factors 
 
Besides using the Natural Conjugate priors, there are other alternatives and, therefore, different 
Bayes factors that we can consider. In the Natural Conjugate case, one has to specify different 
parameters. A prominent alternative is Zellner’s (1996) g-prior which requires specifying a single 
parameter, g.  
 
We continue to assume 0  . The prior covariance matrix is now specified as: 

   11 .V h gX X
    

In this expression,   1
X X

  is used because it appears in the usual LS analysis of the linear 

model. The marginal likelihood of the model is: 
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 where   1

nP I X X X X
   , 1

1

n

ii
y n y


   and  1,...,1n

  is a vector of ones.  

 
The value of g can be chosen so that is relatively low, for example between 0 and 1. It is also 

known that setting 
 3

1

ln
g

n
  then the log Bayes factor mimics the Hannan-Quinn criterion. 

To reduce arbitrariness, one can specify a prior for g, say ( )p g , compute  ( | ) ( )p Y g p g  and 
select the value that maximizes this quantity, given the data. 
 
C. Intrinsic Bayes factors 
 
The general idea behind Intrinsic Bayes Factors (IBS) is due to Berger and Pericchi (1996). A 
portion of the data set (as training set) is set aside and posterior analysis is performed using a 
non—informative prior. In turn, the posterior is used as a prior in the remaining data set. As 
they mention the IBF: “is fully automatic in the sense of requiring only standard noninformative priors for its 
computation and yet seems to correspond to very reasonable actual Bayes factors. The criterion can be used for 
nested or nonnested models and for multiple model comparison and prediction. From another perspective, the 
development suggests a general definition of a "reference prior" for model comparison” (Berger and Pericchi, 
1996, p.109). 
 
The size of the training sample is an important choice. One solution is to use a minimal training 
sample whose size is 1k  . Unfortunately, Berger and Pericchi (1996) do not consider a linear 
regression model. This is taken up in Berger and Pericchi (1994). We consider the normal linear 
regression model: 
 2: , ~ (0, ).m m m m m mM y X u u iidN     

The prior is of the form: 
   ( 1), , 1.mq

m m m mp q         

Common choices are 0mq   or m mq k (the Jerffreys prior). Suppose that the training sample 

has length T and the corresponding data is  ( ) ( ),T T
m my X . Suppose we wish to compare models i 

and j.  Berger and Pericchi (1994) show that the IBF is given by: 
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( )/2

( )/2

2 .
2

2

i j

j i

i i
k k

ij q q
j j

T k q

C
T k q

 



   
 

  
 
 

  



28 

 

Here    ( ) ( ) ( ) ( )T T T T
i i i i iRSS y X b y X b

     is the residual sum of squares. 

 
With time series data it is reasonable to consider the first T observations. With cross-sectional 
data there is some ambiguity so Berger and Pericchi (1994) propose to use the arithmetic mean. 

Suppose we consider various training samples  ( ) ( ), , 1,...,m my X m L  consisting of T 

observations. Then, using a Jeffreys prior, we have: 

 

1/2
1/2 ( ) ( ) /2/2 ( )

1
: ( )1 ( ) ( )

.

m m Tn mi iLj j jA i
i j mm m m

i i i jj j

X XX X RSS RSS
IBF L

X X RSS RSSX X





                         

   

Instead of the arithmetic mean, one can take the geometric mean as well. 
 
D. Nonlinear models 
 
For nonlinear models with a general likelihood  ;L Y  and a prior ( )p   the marginal 
likelihood is: 
  ( ) ( ; ) ,M Y L Y p d  


    

and the posterior is:    | ( ; ) .p Y L Y p    We assume that the dimensionality of the 
parameter vector is k . Computation of the multivariate integral is, in general, impossible using 
analytical techniques. Therefore we have to resort to Markov Chain Monte Carlo (MCMC) 
methods. These methods produce a sample  ( ) , 1,...,s s S   which converges to the 

distribution whose density is  |p Y . Since 

    
 

 ( ; ) ( ; )
| .

( )( ; )

L Y p L Y p
p Y

M YL Y p d

   


  


 


  

 
Therefore, we have the following remarkable identity: 

 
 

 
( ; )

( ) , .
|

L Y p
M Y

p Y

 



     

 
Since this is an identity in   we have: 

 
 

 
( ; )

( ) ,
|

L Y p
M Y

p Y

 


   

where   is, for example, the posterior mean. The numerator can be computed easily. Following 
DiCiccio et al. (1997). The denominator is unknown but we can use a normal approximation to 
obtain: 
 

     1/2/2
| 2 ,

k
p Y V  

   
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where13   1 ( ) ( )

1

S s s

s
V S    



    is an estimate of the posterior covariance matrix of  . 

In turn, the log marginal likelihood can be approximated as follows: 
 
     1

2 2log ln ( ; ) ln ln(2 ) ln .kM Y L Y p V        

The approximation is very easy to use in practice. 
 
 
 
 
 
 
 
 

Appendix B 

Gauss Code 

/ this program computes log Bayes factors for testing that each 
// regression coefficient is zero in a linear regression/ 
// We use a Verdinelli-Wassernan (1994) approach/ 
// The prior is: 
// beta~N(beta_underbar, h_underbar*I), 
// q_underbar/sigmasq ~chisquare(nu_underbar). 
// There are default values for beta_underbar, h_underbar and  
// nu_underbar 
//  
  
new; cls; library pgraph; 
rndseed 11; 
  
// define or load the data 
n = 20;                          // number of observations 
k = 5;                           // number of regressors 
X = ones(n,1)~rndN(n,k-1); 
y = X*ones(k,1)+rndN(n,1);       
  
h_underbar    = 1e4; 
beta_underbar = zeros(k,1);     // prior info and Gibbs specifications 
q_underbar    = 1e-4; 
nu_underbar   = 0; 
npass         = 6000;          // Gibbs sampling passes 
nburn         = 1000;          // length of Gibbs sampling burn-in 
  
  
  

                                                           

13 The remaining term  11

2
exp ( ) ( )V       vanishes at   .  
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// ************* USER INPUT ENDS HERE *************** 
Draws            = zeros(npass,k+1); 
Log_BayesFactors = zeros(k,1); 
V_underbar       = h_underbar*eye(k); 
V_underbar_inv   = (1/h_underbar)*eye(k); 
  
  
XtX      = X'X; 
Xty      = X'y; 
beta     = invpd(XtX)*Xty; 
u        = y-X*beta; 
sigmasq  = u'u/(n-k); 
  
  
// Gibbs sampler  
ISIM=1; do while ISIM<=npass; 
sigma = sqrt(sigmasq); 
A=invpd(XtX+sigmasq*V_underbar_inv); 
b = A*(Xty+sigmasq*V_underbar_inv*beta_underbar); 
beta = b+sigma*chol(A)'rndN(k,1); 
sigmasq = (u'u+q_underbar)/rndchisq(1, n-k+nu_underbar); 
Draws[ISIM,.] = beta'~sigma; 
ISIM=ISIM+1; endo; 
  
Draws = trimr(Draws,nburn,0); 
beta  = Draws[.,1:k]; 
sigma = Draws[.,k+1]; 
  
  
_output = 0; 
// Bayes factors 
i=1; do while i<=k; 
  screen OFF; {x1,f1} = dens(beta[.,i]); screen ON; 
   // compute log posterior at zero by interpolation 
   lf0 = polyint(x1,ln(1e-12+f1),0);  
   // compute log prior at zero 
   lpri =  
   -0.5*ln(2*pi*h_underbar)-(0.5/h_underbar)*beta_underbar[i]^2; 
   // compute log Bayes factor 
   lbf = lf0-lpri; 
   Log_BayesFactors[i] = lbf; 
i=i+1; endo; 
  
  
call OLS("", y, X); 
  
""; 
"posterior statistics"; ""; 
"regression parameters"; 
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"";"post. mean             post. s.d.       95% Bayes prob. interval      log Bayes factor        Bayes 
factor"; 
meanc(beta)~stdc(beta)~Bayes_Interval(beta)~Log_BayesFactors~exp(Log_BayesFactors); 
""; "sigma "; 
meanc(sigma)~stdc(sigma)~Bayes_Interval(sigma); 
  
  
proc rndchisq(n, nu); 
/* 
draws n random numbers from a chi-square with nu degrees of freedom 
*/ 
retp(2*rndgam(n, 1, nu/2)); 
endp; 
  
  
proc Bayes_Interval(x); 
local n,k,BI,i,x1,a,b; 
n=rows(x); k=cols(x); 
BI = zeros(k,2); 
i=1; do while i<=k; 
  x1 = sortc(x[.,i],1); 
  a = x1[0.025*n]; 
  b  = x1[0.975*n]; 
  BI[i,.] = a~b; 
i=i+1; endo; 
retp(BI); endp; 
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Appendix C 
 

The Bayesian Higher Posterior Density (HPD) 
 

FIGURE 12.  HPD vs. Confidence Intervals 

 

 

Suppose a parameter θ has the sampling density shown in the Figure above. Suppose also we identify 
correctly the global maximum through ML estimation but we resort to an asymptotic normal 
approximation14 around the global maximum. Is the p-value OK in this context? 

Of course not, because we miss the second mode. Therefore, what is needed, really, in the sampling-
theory context is a small-sample investigation of the problem at hand. However, most of the time, if not always, 
the researcher uses asymptotic normal approximations. If the density above is also the marginal posterior 
of θ—or something fairly close to it, plotting the posterior cannot miss the important information 
conveyed from the second mode. 

Also in this instance, the 95% sampling-theory confidence interval and the 95% highest posterior density 
interval, are not the same. The HPD consists of two intervals which excludes the zero probability area between the two 

modes. The 95% sampling-theory confidence interval includes this area which is, apparently, wrong. 

For the Bayesian, the testing problem is really simple. Suppose we need to evaluate :H   . All the 

Bayesian has to do is examine the relation between   and the density. Does it belong to the extreme 

tails or is it relatively likely? In essence, Bayesian do not test hypotheses; they evaluate hypotheses. This is precisely 
the purpose of a Bayes factor, viz. to compare the probability of a given model relative to another. 

                                                           
14 We are justified to do this, from the sampling-theory perspective, as all inferences rely on the global 
optimum, which is defined as the ML estimate. 


