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Abstract  
 

 

 

  The theoretical work carried out in this thesis presents the electrical properties of 

two different types of two terminal nanojunctions: one dealing with gold electrodes 

which form gold|molecule|gold structures and the other has carbon nanotube (CNT) 

electrodes forming  CNT|molecule|CNT junctions. The theoretical tools employed are 

firstly, density functional theory (DFT). Chapter 2 presents an introduction to the 

theoretical concept of DFT and in this work the implemented version used, namely the 

SIESTA code. The second tool is the quantum transport code GOLLUM. To introduce 

this technique in Chapter 3, I present solutions of Green’s functions for infinite and 

semi-infinite chains and the transmission coefficient equation which forms the 

theoretical basis of this code. 

 

The first topic I investigate is quantum interference based connectivity dependence in 

a series of molecular wires. Two isomeric series have been obtained with 4-

ethynylpyridine units linked to the core either at para-para positions or meta-meta 

positions. A combined experimental and computational study is described, in which my 

work provides the theoretical understanding of the experiment. The conductance of 

these molecules is measured using a mechanically controlled break junction and density 

functional theory calculations, demonstrates consistently higher conductance in the 

para series compared to the meta series: this is in agreement with increased conjugation 

of the 𝜋–system in the para series. Within the para series conductance increases in the 

order of decreasing heteroaromaticity (dibenzothiophene < carbazole < dibenzofuran). 

However, the sequence is very different in the meta series, where dibenzothiophene ≈ 

dibenzofuran < carbazole. Excellent agreement between theoretical and experimental 

conductance values is obtained. This study is presented in chapter 4 and establishes that 
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both quantum interference and heteroaromaticity in the molecular core units play 

important and inter-related roles in determining the conductance of single molecular 

junction.  

Secondly, the electrical properties (band structure, open channel and transmission 

coefficient) was studied for different types of carbon nanotubes which act as electrodes, 

and two asymmetric molecules attached to the carbon nanotubes to form a 

nanojunction. There are two strategies used in this study: first the established DFT 

method and the second a parametrized tight binding approach. A four-orbital tight 

binding model (sp3) is used to construct the Hamiltonian and using Gollum to calculate 

transmission coefficients I find very good agreement with the transmission coefficient 

calculated by a DFT Hamiltonian. However, the tight binding approach is limited to 

carbon atoms only, at least in this work but it offers a more efficient calculation method 

and opens up the possibility to study the how different orbitals control transport and 

quantum interference. Also in chapter 5 using the DFT method, I compute the 

transmission coefficient and then IV curves to investigate rectification. 

 

In the chapter 6, I present a theoretical study of the conductance perpendicular to the 

plane of a series of polycyclic aromatic hydrocarbons. The smaller members of the 

oligoacenes up to and including anthracene are found to be insulators or semi-

conductors but those with eighteen carbon atoms (tetracene) and over are found to be 

conductors which is in stark contrast to previous calculation of in- plane conductance 

and experiment which generally predict them to be insulators or semiconductors. The 

number of open conductance channels increases as the number of aromatic rings 

increases for the variants studied and these trends are found to persist for more complex 

geometries. Features in the electrical conductance around the Fermi energy suggest 

possible candidates for future thermoelectric devices. 



 

5 

 

Acknowledgements 
 

 

I would like to express the deepest appreciation to my supervisor, Professor Colin J. 

Lambert, who has the attitude and the substance of a genius he continually and 

convincingly adds a special flavor and spirit of adventure in regard to research by 

intensive fruitful discussion and excitement in regard to teaching over these years. I 

would like to thank my co-supervisor Dr. Iain Grace and Dr. Steve Bailey, Dr. Hatef 

Sadeghi, Dr. Sara and Dr. David  for their encouraged me and continues support. 

I would like also to thank my sponsor, the Ministry of Higher Education of Iraq and 

my University in Iraq Anbar University, for given me this great opportunity to study a 

Ph.D. in the United Kingdom. 

I would like to thank the collaborating experimental groups of Department of 

Chemistry, Markus Gantenbein, Professor Martin R. Bryce in the Durham University, 

for their successful experiments. I would like to thank all my friends and colleagues in 

Colin’s group, especially Ali, Zain, Mohammed and Mohsin.  

Last but not the least, I would like to thank my family: my father, my brothers and 

sisters and not forget to thank my wife and my kids. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

6 

 

 

List of publication during my PhD study 
 

 

1- Ismael, A. K., Al-Jobory, A., Grace, I., & Lambert, C. J. (2017). Discriminating 

single-molecule sensing by crown-ether-based molecular junctions. The Journal 

of Chemical Physics, 146(6), 064704. 

2-  Gantenbein, M., Wang, L., Al-jobory, A. A., Ismael, A. K., Lambert, C. J., Hong, 

W., & Bryce, M. R. (2017). Quantum interference and heteroaromaticity of para-

and meta-linked bridged biphenyl units in single molecular conductance 

measurements. Scientific Reports, 7. 

3- Modelling crown Ether molecular wires from experiment (to be submitted) 

4- Carbon Nanotube based single molecule devices (to be submitted) 

5- A comprehensive study of the electrical conductivity through flat stacked 

polycyclic aromatic hydrocarbons. (to be submitted) 

6- Thermopower in endohedral fullerenes - Sc3C2@C82 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

7 

 

Contents 

 

Introduction ............................................................................................... 10 

1.1. Molecular electronics ..................................................................... 10 

1.2 Thesis Outline ..................................................................................... 12 

Reference .................................................................................................. 13 

Chapter 2 ................................................................................................... 18 

2. Density Functional Theory ................................................................... 18 

2.1 Introduction ..................................................................................... 18 

2.2 The Schrödinger Equation and Variational Principle ..................... 19 

2.3 The Hohenberg-Kohn Theorems ..................................................... 22 

2.4 The Kohn-Sham Theorems ............................................................. 24 

2.5 The Exchange Correlation Functionals ........................................... 25 

2.5.1 Local Density Approximation ................................................... 26 

2.5.2 Generalized Gradient Approximation ....................................... 26 

2.6 Pseudopotentials .............................................................................. 27 

2.7 Basis Sets ......................................................................................... 28 

References ................................................................................................. 31 

Chapter 3 ................................................................................................... 35 

3. Single Particle Transport ...................................................................... 35 

3.1 The Landauer Formula .................................................................... 36 

3.2 One-Dimension ................................................................................ 39 

3.2.1 Perfect One-Dimensional Lattice .............................................. 39 

3.2.2 One-Dimensional Scattering ..................................................... 42 

3.3 Generalization of the Scattering Formalism .................................... 47 

3.3.1 Hamiltonian and Green's Function of the Leads ....................... 47 

Reference .................................................................................................. 57 

Chapter 4 ................................................................................................... 59 



 

8 

 

4.1 Quantum interference and heteroaromaticity of para- and meta-linked 

bridged biphenyl units in single molecular conductance measurements . 59 

4.2 Introduction ......................................................................................... 59 

4.3 Results ............................................................................................. 64 

4.4 Theory and Simulations. .................................................................. 73 

4.5 Binding Energy. ............................................................................... 74 

4.6 Discussion ........................................................................................ 88 

4.7 Analytical formula G of fluorene core ............................................... 89 

4.9 Conclusion .......................................................................................... 93 

References ................................................................................................. 94 

Chapter 5 ................................................................................................... 99 

Carbon Nanotube based single molecule devices ................................. 99 

5.1 introduction ...................................................................................... 99 

5.2 Carbon Nanotube ................................................................................ 99 

5.2.1 Chirality a concept to describe nanotubes .................................. 100 

5.2.2 The CNT lattice .......................................................................... 101 

5.2.3 The Tight Binding Model. .......................................................... 104 

5.3 Numerical simulations ...................................................................... 107 

5.3.1 Four orbital tight binding calculation ......................................... 107 

5.3.2  DFT calculations ....................................................................... 113 

5.4 Calculation of Electronic Properties ................................................. 114 

5.4.1 CNT (n, m) ................................................................................. 114 

5.4.2 Binding Energy ........................................................................... 116 

5.4.3 Transmission coefficient ............................................................ 121 

5.4.4 Current rectification .................................................................... 124 

5.4.6 Conclusions ................................................................................ 132 

References ........................................................................................... 133 

Chapter 6 ................................................................................................. 136 



 

9 

 

A comprehensive study of the electrical conductivity through flat stacked 

polycyclic aromatic hydrocarbons. ......................................................... 136 

6.1 Introduction ................................................................................... 136 

6.2 Computational Details ................................................................... 138 

6.3 Result ................................................................................................ 140 

6.3.1 Number of open transmission channels ..................................... 140 

6.3.2 Band Structure ............................................................................ 145 

6.3.3 Eigenvalues ................................................................................. 148 

6.4 Analytical formula ............................................................................ 153 

Conclusion .............................................................................................. 154 

References ............................................................................................... 155 

Chapter 7 ................................................................................................. 157 

7.1 Conclusion ........................................................................................ 157 

7.2 Future Work ...................................................................................... 159 

References ............................................................................................... 160 

 

 



Chapter 1                                                                                   introduction 
 

10 

 

  

 

 

 

 

 

 

Chapter 1 
 

Introduction  
 

1.1. Molecular electronics 

 
The idea of using single molecules as building blocks to design and fabricate 

molecular electronic components has been around for more than 40 years [1], but only 

recently it has attracted huge scientific interest to explore their unique properties and 

opportunities. Molecular electronics including self-assembled monolayers [2] and 

single-molecule junctions [3] are of interest not only for their potential to deliver logic 

gates [4-5], sensors[6-7], and memories [8] with ultralow power requirements and sub-

10-nm device footprints, but also for their ability to probe room-temperature quantum 

properties at a molecular scale such as quantum interference [9] and thermoelectricity 

[10,11]. Single molecular electronics has gained intensive attention since the first 

molecular rectifier was proposed by Aviram and Ratner in 1974.[12] By manipulating 

their chemical structure, a diverse range of molecules have been investigated, which 

function as basic electronic elementary devices, such as rectifiers,[13–16] conducting 

wires,[17–21] and negative differential resistance devices,[22–24]. The ability to use 

specific intermolecular interactions to assemble molecular devices appropriately is 

another critical challenge for molecular electronics. [25] Therefore, a quantitative 
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understanding of the electron transport between adjacent molecules is an essential pre-

requisite.  

Most studies - both theoretical and experimental - focus on simple electrode molecule- 

electrode systems, which will be discussed in this thesis. Experimentally, the systems 

can be studied using Scanning Tunneling Microscopy Break Junctions (STM-BJ) [26-

28] and Mechanically Controllable Break Junctions MCBJ [29,30]. Recently, more 

scalable techniques for contacting single molecules have been developed, including 

graphene-based junctions [31-34], silicene-based junctions [35] and CMOS-compatible 

electrodes, such as Pt and Pd [36]. However as anticipated many years ago [37] 

structural defects in 2d hexagonal materials [38] mean that their use as electrodes is still 

in its infancy and for the moment gold break junctions remain the contacting method of 

choice. Within such constraints, several methods of controlling electron transport have 

been developed, including mechanical gating [39, 40] and electrochemical gating 

[41,42]. In this thesis, I shall investigate an alternative method of control, based on 

utilising heteroaromaticity within molecular cores. 

The realization of single-molecule electronic devices is challenging in several ways. 

First, the typical length of molecules used in the research field is in the order of 1–2 

nm. In addition, electrodes, typically made of noble metals, separated by 1–2 nm is 

beyond the limits of classical top-down lithographic techniques. Second, due to the tiny 

dimensions of the molecule, it is typically impractical to place the molecule in the 

nanogap by direct manipulation. Instead, chemical interaction between the molecule 

and the electrode is needed for positioning of a molecule in the gap between the 

electrodes. Third, since the electrodes are typically much larger than the molecules, it 

is an additional challenge to make sure that only a single molecule is placed in each 
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functional device. In addition to these three basic challenges, other challenges such as 

device stability, uniformity, yield, and scalability are equally important. [44]. 

1.2 Thesis Outline 

My aim in this thesis is to review the theoretical techniques to treat electron transport 

in molecular scale junctions. The theoretical approach includes two main techniques, 

Density Functional Theory (Ch. 2), which is implemented in the SIESTA code [43] and 

the non- equilibrium Greens function formalism of transport theory (Ch. 3). Both of 

these methods are used to extensively study a family of molecules, where the 

heteroaromaticity in the molecular core units is modified. In this case the molecules are 

attached to gold leads and the connectivity is also studied by investigating para- para 

and meta-meta coupling. Furthermore. An analytical formula to explain the behaviour 

of these molecules is also presented in chapter 4.  

The electrical conductance, IV characteristics and rectification ratio for asymmetric 

molecules attached to carbon nanotubes are presented in chapter 5. These calculations 

were performed using two different methods; the first is a four orbital tight binding 

molecule and the second the DFT quantum transport approach. To show the nature of 

the transport remains quantum tunnelling in this strongly bound system the beta factor 

was calculated for different length phenyl based molecules. Finally, Chapter 6 presents 

a theoretical study of the conductance perpendicular to the plane (z-direction) of a series 

of polycyclic aromatic hydrocarbons of different size and shape. Again, using a simple 

tight binding method and DFT the suitability to use these structures as molecular wires 

is investigated. 
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Chapter 2 

2. Density Functional Theory 
 

2.1 Introduction 

In order to understand the behavior of molecular electronic devices it is necessary to 

possess a reliable source of structural and electronic information. In this chapter I will 

give a brief summary of density functional theory (DFT) and the SIESTA (Spanish 

Initiative for Electronic Simulations with Thousands of Atoms) code [1], which I have 

used extensively throughout my PhD studies as a theoretical tool to investigate the 

structures of molecules, charge densities and band structures both qualitatively and 

quantitatively. SIESTA is a set of methods and a complete software package that can be 

used to perform DFT calculations on a considerable number of atoms (~1000) within 

hours, days or weeks. 

The fundamental assertion of density functional theory is that any physical property 

of a complex system, consisting of many interacting particles, can be expressed as a 

functional of the ground-state density of the system. The proof of the existence of such 

a functional was first presented by Hohenberg and Kohn [2] in 1964. The proof is 
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surprisingly simple, but it does not provide us with any hint of the actual form of the 

functional. Despite this, an ansatz proposed by Kohn and Sham [3] opened the door to 

applications for realistic physical systems. Density functional theory has since become 

a standard tool in theoretical physics and molecular chemistry. 

This chapter is going to present a short overview of the foundations and numerical 

applications of DFT. The literature is quite broad and deals with the subject with 

considerably more detail [4-7]. I will begin by posing the general many body problem 

and the possible solution to it via the Hartree-Fock method and then I'll show the 

Hohenberg-Kohn theorems and the Kohn-Sham ansatz. Secondly, I sum up the most 

widely used functionals of the exchange and correlation energy, which are of paramount 

importance in practical numerical calculations. Finally, I will deal with localized basis 

sets and pseudo-atomic orbitals which define the Hilbert space of the numerical 

calculations presented in this thesis. 

 

2.2 The Schrödinger Equation and Variational 

Principle 
 

       Any given non-relativistic many particles system can be described by the time 

independent, non-relativistic Schrödinger equation: 

 

𝐻𝛹𝑖(𝑟1, 𝑟2. . 𝑟𝑁 , �⃗⃗�1, �⃗⃗�2. . �⃗⃗�𝑀) =  𝐸𝑖𝛹𝑖(𝑟1, 𝑟2. . 𝑟𝑁 , �⃗⃗�1, �⃗⃗�2. . �⃗⃗�𝑀)                                         2.1 

 

 

      Here H represents the Hamiltonian operator of a system consisting of N-electrons 

and M-nuclei which describes the interaction of particles with each other, where Ψi is 

the wavefunction of the ith state of the system and Ei is the numerical value of the energy 

of the state described by Ψi. The Hamiltonian operator of such a system can be written 

as a sum of five terms given by [2, 3, 8-12]: 
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                                                                         2.2 

Here i and j denote the N-electrons while n and �́� run over the M-nuclei in the system, 

me and mn are the mass of electron and nucleus respectively, e and Zn are the electron 

and nuclear charge respectively. The position of the electrons and nuclei are denoted as 

𝑟𝑖 𝑎𝑛𝑑 �⃗⃗�𝑛 respectively, and ∇2  is the Laplacian operator, in Cartesian coordinates is 

defined as: 

∇𝑖
2=

𝜕2

𝜕𝑥𝑖
2 +

𝜕2

𝜕𝑦𝑖
2 +

𝜕2

𝜕𝑧𝑖
2                                                                                                           2.3 

 

In the equation (2.2), the first and second terms, Te and Tn represent the kinetic energy 

of electrons and nuclei respectively. The last three terms represent the potential part of 

the Hamiltonian; where Uen defines the attractive electrostatic interaction between 

electrons and nuclei. The electron-electron,Uee and nuclear-nuclear, Unn describe the 

repulsive part of the potential respectively [1, 3, 6, 9, 13]. 

 

We can separate the Hamiltonian (Eq. 2.2) into two parts. The first part contains the 

kinetic terms of the nuclei and the repulsive electrostatic potential between the nuclei 

and the attractive potential felt by the electrons due to the positively charged nuclei. 

This part is system specific and will determine the geometric properties of the physical 

problem. The second part of the Hamiltonian contains terms which only depend on the 
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electrons. This part is universal in all problems. Hence we can rewrite the Hamiltonian 

for the electronic degrees of freedom as: 

 

 

𝐻 = ∑𝑉𝑒𝑥𝑡(𝑟𝑖)

𝑖

⏞      
nuclei−electron interaction 

−
ћ2

2𝑚𝑒
∑∇𝑖

2

𝑖⏟      
kinetic term

+
1

8𝜋𝜀𝑜
∑

𝑒2

|𝑟𝑖 − 𝑟𝑗|𝑖≠𝑗

⏞          
electron−electron interaction

                   2.4 

 

Where Vext contains the system-specific nuclei terms of Eq. 2.2.  

It is convenient to work with Hartree atomic units. This means that in the following 

we adopt the convention that the length scale is set by the Bohr radius of the hydrogen 

atom, ao, the energy scale is set by the ground state of the hydrogen atom, the mass 

scale is set by the electron mass, me, the charge scale is set by the elementary charge of 

the electron, e, the angular momentum scale is set by the reduced Planck's constant, ћ, 

and the electric force scale is set by 1/4𝜋𝜀𝑜.  

Once we have solved the Schrödinger equation (Eq. 2.1) and we know the 

wavefunction, Ψ, we can calculate all physical quantities we are interested in. However, 

even for modest system sizes - even a couple of atoms - the diagonalization of the 

general problem is practically impossible even on a modern supercomputer. 

The virtue of density functional theory is that it expresses the physical quantities in 

terms of the ground-state density. The electronic density of a general many body state, 

characterized by a wave function,𝛹(𝑟1, 𝑟2… . . 𝑟𝑛), is defined as: 

 

𝜌(𝑟) = ∫𝑑𝑟1 𝑑𝑟2…𝑑𝑟𝑖|𝛹(𝑟1, 𝑟2, … . 𝑟𝑖)|
2                                                     2.5                                                                    
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2.3 The Hohenberg-Kohn Theorems 
 

 

P. Hohenberg and W. Kohn, in 1964 [2], showed that there is tight, unequivocal 

relation between the ground state energy and the density, ρ(r), of an interacting electron 

system. The Hohenberg-Kohn theorems are two very simple yet powerful statements: 

 

1. The external potential, Vext, is a unique functional of the density, ρ(r). Since 

Vext fixes the Hamiltonian of the system, H, it is clear that the full many-body 

ground-state is a unique functional of ρ(r). 

2. The ground state energy, EHK, is a functional of the ground-state density, ρ(r). 

 

       Proving the validity of the first theorem shown above is a simple matter of                                                    

reduction ad absurdum. Let us assume we have two external potentials, 𝑉𝑒𝑥𝑡
1  and𝑉𝑒𝑥𝑡

2 , 

which differ by more than a constant. Let us also assume that the two external potentials 

yield the same ground-state density, ρ(r). 

     The Hamiltonians for each system are denoted H(1) and H(2) and, since they are 

different, they will have different ground-state wavefunctions, 𝛹(1)  and 𝛹(2) . Since 

𝛹(2) is not a ground state of H(1), we have: 

 

𝐸(1) = 〈𝛹(1)|𝐻(1)|𝛹(1)〉  <  〈𝛹(2)|𝐻(1)|𝛹(2)〉                                                                  2.6 

 

And, similarly: 

 

𝐸(2) = 〈𝛹(2)|𝐻(2)|𝛹(2)〉  <  〈𝛹(1)|𝐻(2)|𝛹(1)〉                                                                  2.7 
 

       For simplicity, we assume that we have non-degenerate ground states. The 

problem has been formulated to incorporate degeneracies in the literature [11,15]. We 

can rewrite Eq. 2.6: 
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〈𝛹(2)|𝐻(1)|𝛹(2)〉 = 〈𝛹(2)|𝐻(2)|𝛹(2)〉 + 〈𝛹(2)|𝐻(1) − 𝐻(2)|𝛹(2)〉  

                                               = 𝐸(2) + ∫𝑑𝑟 (𝑉𝑒𝑥𝑡
(1)(𝑟) − 𝑉𝑒𝑥𝑡

(2)(𝑟)) 𝜌𝑜(𝑟)              2.8                 

                                                             

And Eq. 2.7: 

 

               〈𝛹(1)|𝐻(2)|𝛹(1)〉 = 𝐸(1) + ∫𝑑𝑟 (𝑉𝑒𝑥𝑡
(2)(𝑟) − 𝑉𝑒𝑥𝑡

(1)(𝑟)) 𝜌𝑜(𝑟)                    2.9 

 

 

         Adding Eq. 2.6 and Eq. 2.7, we find the contradiction: E(1) + E(2) < E(1) + E(2). 

Hence, there cannot be two external potentials that differ by more than a constant and 

give the same ground-state density. 

         The second theorem is proven just as simply as the first. Consider the expression 

for the total energy, E, of the system with density ρ: 

 

𝐸(𝜌) = 𝑇(𝜌) + 𝐸𝑖𝑛𝑡(𝜌) + ∫𝑑𝑟 𝑉𝑒𝑥𝑡(𝑟)𝜌(𝑟)                                                                2.10 

 

        The kinetic term, T, and internal interaction of the electrons, Eint, are, by 

definition, universal. 

         Consider a system with the ground-state density ρo and corresponding external 

potential, Vext, and wavefunction, Ψo. The first theorem tells us that ρo will determine 

the Hamiltonian, H, so for any density, ρ and wavefunction, Ψ, other than the ground-

state, we find: 

 

𝐸𝑜 = 〈𝛹𝑜|𝐻|𝛹𝑜〉  <  〈𝛹|𝐻|𝛹〉 =  𝐸                                                                                    2.11 
 

          Thus the ground-state density, ρo, minimizes the functional (Eq. 2.10). It 

follows that if we know the functional: 𝑇(𝜌) + 𝐸𝑖𝑛𝑡(𝜌) , then by minimizing Eq. 2.10 

we get the ground-state of the system and can calculate all ground-state properties we 

are interested in. 
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2.4 The Kohn-Sham Theorems 
 

 

So far, we have seen that, by obtaining the ground-state density, one can in principle 

calculate the ground-state energy and more. However, the exact form of the functional 

shown in Eq. 2.10 is not known. The kinetic term and internal energies of the interacting 

particles cannot generally be expressed as functional of the density. The solution was 

introduced by Kohn and Sham in 1965 [3].  

        According to Kohn and Sham we can replace the original Hamiltonian of the 

system by an effective Hamiltonian of non-interacting particles in an effective external 

potential, which has the same ground-state density as the original system. Since there 

is no clear recipe for doing this, this step is simply an ansatz, but it is considerably 

easier to solve a non-interacting problem. The energy functional of the Kohn-Sham 

ansatz, in contrast to Eq. 2.10, will have the form: 

 

𝐸𝐾𝑆(𝜌) = 𝑇𝐾𝑆(𝜌) + ∫𝑑𝑟 𝑉𝑒𝑥𝑡(𝑟)𝜌(𝑟) + 𝐸𝐻(𝜌) + 𝐸𝑥𝑐(𝜌)                                       2.12 

 

         

 Here, TKS is the kinetic energy of the non-interacting system. In Eq. 2.10, we used 

the kinetic energy for the interacting system: T. the difference is referred to the 

exchange correlation functional, Exc (Eq. 2.14). 

 EH is the Hartree functional, which describes the electron-electron interaction using 

the Hatree-Fock method and it is take the form: 

 

𝐸𝐻(𝜌) =  
1

2
 ∫
𝜌(𝑟)𝜌(�́�)

|𝑟 − �́�|
 𝑑𝑟𝑑�́�                                                                                      2.13 
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         This is an approximate version of Eint, as defined previously. Again, the 

difference is referred to Exc. so the exchange correlation functional, Exc, represents the 

differences between the exact and approximated solutions to both the kinetic energy 

term and the electron-electron interaction term. Its definition follows: 

 

𝐸𝑥𝑐(𝜌) = (𝐸𝑖𝑛𝑡(𝜌) − 𝐸𝐻(𝜌)) + (𝑇(𝜌) − 𝑇𝐾𝑆(𝜌))                                                        2.14 

 

The first three functionals of Eq. 2.12 are trivially defined in practice and account for 

most of the contribution to the ground-state energy. By comparison, the contribution of 

the exchange correlation functional is small. However, despite decades of research, it 

does not have an exact solution. Some very good approximations have been developed, 

which are discussed in the next section. 

 

 

2.5 The Exchange Correlation Functionals 
 

 

There are numerous proposed forms for the exchange and correlation energy in the 

literature. The first successful - and yet simple - form was the Local Density 

Approximation (LDA) [17, 18], which depends only on the density and is therefore a 

local functional. Then the next step was the Generalized Gradient Approximation 

(GGA) [19-22], including the derivative of the density it also contains information 

about the neighborhood and therefore is semi-local. 

     LDA and GGA are the two most commonly used approximations to the exchange 

and correlation energies in density functional theory. There are also several other 

functionals, which go beyond LDA and GGA. Some of these functionals are tailored to 
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fit specific needs of basis sets used in solving the Kohn-Sham equations (Eq. 2.12) and 

a large category are the so called hybrid functionals (eg. B3LYP [16], HSE [23] and 

Meta hybrid GGA [24, 25]), which combine the LDA and GGA forms.  

       One of the latest and most universal functionals, the Van der Waals density 

functional (vdW-DF) [26], contains non-local terms and has proven to be very accurate 

in systems where dispersion forces are important [27,28]. 

The following sections will briefly describe the Local Density Approximation and the 

Generalized Gradient Approximation. 

 

2.5.1 Local Density Approximation 
 

 

In LDA, the exchange correlation functional depends only on the local density so we 

can expect this approximation to give good results for systems where the density is 

relatively smooth locally.  

The LDA is in some sense the simplest form one could imagine for the exchange and 

correlation energies. It is a simple yet powerful functional and it is known to be accurate 

for graphene and carbon nanotubes or where the electron density is not rapidly 

changing. For example, a larger error is expected for atoms with d- and f-type orbitals. 

However LDA also has many pitfalls: the band gap in semiconductors and insulators is 

usually underestimated with a considerable error (≈ 10 - 30%), for example. It is 

therefore advisable to seek a better functional. 

 

2.5.2 Generalized Gradient Approximation 
 

GGA extends LDA by including the derivatives of the density into the functional form 

of the exchange and correlation energies. In this case there exists no closed form for the 
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exchange part of the functional, hence it has to be calculated along with the correlation 

contributions using numerical methods. Just as in the case of the LDA there exist many 

parameterizations for the exchange and correlation energies in GGA [19-22].  

LDA and GGA are the two most commonly used approximations for the 

approximation of exchange-correlation energies in the DFT. Also, there are several 

other functionals, which go beyond LDA and GGA. In general, there is no robust theory 

of the validity of these functionals. It is determined via testing the functional for various 

materials over a wide range of systems and comparing results with reliable 

experimental data. 

 

2.6 Pseudopotentials 
 

 

I have shown that by defining an exchange-correlation functional within the Kohn-

Sham formalism it is possible to split a large interacting problem into a large effective 

non-interacting problem. From a physical viewpoint this vastly simplifies the problem. 

However in typical systems of molecules which contain many atoms, the calculation is 

still very large and has the potential to be computationally expensive. In order to reduce 

the number of electrons, one can introduce pseudopotentials which effectively remove 

the core electrons from an atom. Pseudopotentials were first introduced by Fermi in 

1934 [32, 33] and since then methods have evolved from creating not so realistic 

empirical pseudopotentials [34,35] to more realistic ab-initio pseudopotentials [36-39]. 

       The electrons in an atom can be split into two types: core and valence, where core 

electrons lie within filled atomic shells and the valence electrons lie in partially filled 
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shells. Together with the fact that core electrons are spatially localized about the 

nucleus, only valence electron states overlap when atoms are brought together so that 

in most systems only valence electrons contribute to the formation of molecular 

orbitals. This allows the core electrons to be removed and replaced by a pseudopotential 

such that the valence electrons still feel the same screened nucleon charge as if the core 

electrons were still present. This reduces the number of electrons in a system 

dramatically and in turn reduces the time and memory required to calculate properties 

of molecules that contain a large number of electrons. 

 

2.7 Basis Sets 
 

 

It is clear that in order to find the wavefunctions, the Hamiltonian has to be 

diagonalised. This process involves the inversion of a large matrix whose computation 

time scales with the number of non-zero elements. Therefore, for efficient calculations 

the Hamiltonian is required to be sparse with many zeros. SIESTA utilizes a Linear 

Combination of Atomic Orbital (LCAO) basis set which are constrained to be zero after 

some defined cut-off radius, and are constructed from the orbitals of the atoms. The 

former produces the required sparse form of the Hamiltonian as the overlap between 

basis functions is reduced, and the latter allows even a minimal size basis set to produce 

properties close to that of the studied system.  

         The simplest basis set for an atom is called a single ζ basis, which corresponds 

to a single basis function, 𝛹𝑛𝑙𝑚(𝑟) per electron orbital (i.e. 1 for an s-orbital, 3 for a p- 

orbital, etc.). In this case each basis function consists of a product of one radial 

wavefunction, ∅𝑛𝑙
1  and one spherical harmonic Ylm: 
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𝛹𝑛𝑙𝑚(𝑟) = ∅𝑛𝑙
1 (𝑟)𝑌𝑙𝑚(𝜃, ∅)                                                                                              2.15 

     

   The radial part of the wavefunction is found by using the method proposed by 

Sankey [40,41], where the Schrodinger equation is solved for the atom placed inside a 

spherical box. It is under the constraint to vanish at a cut-off radius rc. This constraint 

produces an energy shift δE within the Schrödinger equation such that the eigen 

functions first node occurs at rc: 

[−
𝑑2

𝑑𝑟2
+
𝑙(𝑙 + 1)

2𝑟2
+ 𝑉𝑛𝑙

𝑖𝑜𝑛(𝑟)] ∅𝑛𝑙
1 (𝑟) = (𝜀𝑛𝑙 + 𝛿𝐸)∅𝑛𝑙

1 (𝑟)                                        2.16 

        For higher accuracy basis sets (multiple-ζ), additional radial wavefunctions can 

be included for each electron orbital. The additional radial wavefunctions, 𝑝ℎ𝑖𝑛𝑙
𝑖   for i 

> 1, are calculated using a split-valence method. This involves defining a split valence 

cut off for each additional wavefunction, 𝑟𝑠
𝑖 , so it is split into two piecewise functions: 

a polynomial below the cut-off and the previous basis wasvefunction above it: 

 

∅𝑛𝑙
𝑖 (𝑟) = {

𝑟𝑙(𝑎𝑛𝑙 − 𝑏𝑛𝑙𝑟
2)                𝑟 < 𝑟𝑠

𝑖

∅𝑛𝑙
𝑖−1                          𝑟𝑠

𝑖 < 𝑟 < 𝑟𝑠
𝑖−1 

                                                            2.17   

        

The additional parameters are found at the point 𝑟𝑠
𝑖 where the wavefunction and its 

derivative are assumed continuous. 

          Further accuracy (multiple-ζ polarized) can be obtained by including 

wavefunctions with different angular momenta corresponding to orbitals which are 

unoccupied in the atom. This is done by solving Eq. 2.16 in an electric field such that 

the orbital is polarized or deformed due to the field (see [1] for details) so a different 

radial function is obtained. This is now combined with the appropriate angular 

dependent spherical harmonic which increases the size of the basis. Table 2.1 shows the 



Chapter 2                                                                                    Density function theory 
 

30 

 

number of basis orbitals for a selected number of atoms for single-ζ, single- ζ polarized, 

double- ζ and double- ζ polarized. 

 

Table 2.1: Table showing the number of radial basis functions per atom as used within the 

SIESTA for different degrees of precision. For clarity the specific orbitals are listed below each 

number, with ~ representing the polarization of that orbital. 

 

Basis Set H C Au 

SZ 1 = 

(1 × 1𝑠) 

4 = 

(1 × 2𝑠 + 3 × 2𝑝) 

6 = 

(1 × 6𝑠 + 5 × 5𝑑) 

SZP 4 = 

(1 × 1𝑠 + 3 × 2𝑝) 

9 = 

(1 × 2𝑠 + 3 × 2𝑝 + 5 × 3�̃�) 

9 = 

(1 × 6𝑠 + 5 × 5𝑑 + 3 × 6𝑝) 

DZ 2 = 

(2 × 1𝑠) 

8 = 

(2 × 2𝑠 + 6 × 2𝑝) 

12 = 

(2 × 6𝑠 + 10 × 5𝑑) 

DZP 5 = 

(2 × 1𝑠 + 3 × 2𝑝) 

13 = 

(2 × 2𝑠 + 6 × 2𝑝 + 5 × 3�̃�) 

15 = 

(2 × 6𝑠 + 10 × 5𝑑 + 3 × 6𝑝) 
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Chapter 3 
 

3. Single Particle Transport 
 

In molecular electronics, the goal is to understand electrical properties of molecular 

junctions; where a molecule (or sufficiently small structure) is bound to bulk electrodes 

so that ballistic transport can occur through its energy levels. The coupling strength 

between the leads and the molecule is usually small compared to the intra-electrode or 

intra-molecule bond strengths, which introduces a scattering process from the electrode 

to the molecule and from the molecule to the electrode. Since this system is not periodic, 

the electronic properties are no longer well described by the band structure, as calculated 

by the DFT method in Chapter 2. For this reason, a general approach is needed to 

understand the scattering process in the electrode junction and the molecular bridge. This 

can be achieved through the Green's function formalism. 

       In this chapter, I will begin with a brief overview of the Landauer formula. 

Following this, I will introduce the simplest form of a retarded Green's function for a 

one-dimensional tight binding chain. Next, I will break the periodicity of this lattice at a 

single connection and show that the Green's function is related directly to the 

transmission coefficient across the scattering region. The methods used on these simple 

systems will then be used to derive the transmission coefficient of mesoscopic conductors 
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of arbitrarily complex geometry The method presented here assumes negligible 

interaction between carriers, the absence of inelastic processes and zero temperature. 

 

3.1 The Landauer Formula 
 

The Landauer formula [1,2, 3] is the standard way to describe transport phenomena in 

ballistic mesoscopic systems and is applicable for phase coherent systems, where a single 

wave function is sufficient to describe the electronic flow. It relates the conductance of a 

mesoscopic sample to the transmission properties of electrons passing through it. The 

method used to calculate the transmission properties will be discussed later in this 

chapter. 

 

Left 

contact 

µL 

Left Lead 

I 

r 

 

Scattering 

region 

Right 

Lead 

t 

Right 

Contact 

µR 

 

Figure 3.1 A mesoscopic scattering region connected to contacts by ballistic leads. The chemical 

potential in the contacts is µL and µR respectively. If an incident wave packet hits the scattering 

region from the left, it will be transmitted with probability T = tt* and reflected with probability 

R = rr*. Charge conservation requires T + R = 1. 

 

         To start, we consider a mesoscopic scatter connected to two contacts, which 

behave as electron reservoirs, by means of two ideal ballistic leads (Fig. 3.1). All inelastic 

relaxation processes are limited to the reservoirs [4]. The reservoirs have slightly 

different chemical potentials 𝜇𝐿 − 𝜇𝑅 > 0, which will drive electrons from the left to the 
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right reservoir. Initially, I will discuss the solution for one open channel (i.e. where only 

one electron is allowed to travel in a given direction). 

        To calculate the current in such a system we start by analyzing the incident electric 

current, 𝛿𝐼, generated by the chemical potential gradient: 

𝛿𝐼 = 𝑒𝑣
𝜕𝑛

𝜕𝐸
(𝜇𝐿 − 𝜇𝑅)                                                                                               3.1 

      Where e is the electronic charge, v in the group velocity and 
𝜕𝑛

𝜕𝐸  
 is the density of 

states per unit length in the lead in the energy window defined by the chemical potentials 

of the contacts: 

𝜕𝑛

𝜕𝐸
= 
𝜕𝑛

𝜕𝑘
 
𝜕𝑘

𝜕𝐸
=  
𝜕𝑛

𝜕𝑘
 
1

𝑣ℏ
                                                                                            3.2 

            In one dimension, after including a factor of 2 for spin dependency, 
𝜕𝑛

𝜕𝑘
=

1

𝜋
 

 Substituting this into Eq. 3.2, we find that
𝜕𝑛

𝜕𝐸
=

1

𝑣ℎ
. This simplifies Eq. 3.1 to: 

 

𝛿𝐼 =
2𝑒

ℎ
(𝜇𝐿 − 𝜇𝑅) =

2𝑒2

ℎ
 𝛿𝑉                                                                                 3.3 

        Where 𝛿𝑉 is the voltage generated by the chemical potential mismatch. From Eq. 

3.3 it is clear that in the absence of a scattering region, the conductance of a quantum 

wire with one open channel is 
2𝑒2

ℎ
, which is approximately 77.5𝜇S (or in other words, a 

resistance of 12.9 kΩ). This is an everyday quantity; it typically appears on the circuit 

boards of everyday electrical appliances.  If now we consider a scattering region, the 

current collected in the right contacts will be: 

𝛿𝐼 =
2𝑒2

ℎ
𝑇𝛿𝑉 ⟹ 

𝛿𝐼

𝛿𝑉
= 𝐺 =

2𝑒2

ℎ
𝑇                                                                    3.4 

 



 
Chapter 3                                                                      Single Particle Transport 

38 

 

    This is the well-known Landauer formula, relating the conductance, G, of a 

mesoscopic scatterer to the transmission probability, T , of the electrons traveling through 

it. It describes the linear response conductance, hence it only holds for small bias 

voltages, 𝛿𝑉 ≈ 0. 

       The Landauer formula has been generalized for the case of more than one open 

channel by Buttiker [4]. In this case the transmission coefficient is replaced by the sum 

of all the transmission amplitudes describing electrons incoming from the left contact 

and arriving to the right contact. The Landauer formula Eq. 3.3 for many open channels 

hence becomes: 

𝛿𝐼

𝛿𝑉
= 𝐺 =

2𝑒2

ℎ
∑|𝑡𝑖,𝑗|

2 =
2𝑒2

ℎ
𝑇𝑟(𝑡𝑡†)                                                              3.5

𝑖,𝑗

 

            Where ti,j is the transmission amplitude describing scattering from the jth 

channel of the left lead to the ith channel of the right lead. With the definition of 

transmission amplitudes, one can introduce similarly reflection amplitudes ri,j which 

describe scattering processes where the particle is scattered from the jth channel of the 

left lead to the ith channel of the same lead. Combining reflection and transmission 

amplitudes one can define an object called the S matrix, which connects states coming 

from the left lead to the right lead and vice versa: 

𝑆 = (𝑟 �́�
𝑡 �́�

)                                                                                                                 3.6 

Here r and t describe electrons coming of the left and �́� and �́� describe electrons coming 

from the right. Eq. 3.6 suggests that r, t, �́� and �́� are matrices for more than one channel, 

and could be complex (in the presence of a magnetic field for example). On the other 

hand charge conservation demands the S matrix be unitary: SS† = I. The S matrix is a 
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central object of scattering theory. It is useful not just in describing transport in the linear 

response regime, but also in other problems, such as adiabatic pumping [4]. 

 

3.2 One-Dimension 
 

 

Before presenting the generalized methodology, it is useful to calculate the scattering 

matrix for a simple one-dimensional system. This will give a clear outline of the 

methodology used. Green's functions will be used in the derivation, so I will first discuss 

the form of the Greens function for a simple one dimensional discretized lattice (Ch. 

3.2.1) and then move on to calculating the scattering matrix of a one-dimensional 

scattered (Ch. 3.2.2). 

 

3.2.1 Perfect One-Dimensional Lattice 
 

In this section I will discuss the form of the Greens function for a simple one 

dimensional lattice with on-site energies 𝜀𝑜  and real hopping parameters as shown in 

Figure 3.2. 

 

         

 

 

     

 

 

 

 

 

 

 

 

Figure 3.2 Tight-binding approximation of a one-dimensional periodic lattice with one site 

energies 𝜺𝒐 and coupling 𝜸 
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The matrix form of the Hamiltonian can be simply written:   

 

𝐻 = (

⋱ −𝛾   

−𝛾 𝜀𝑜 −𝛾  
 
 

−𝛾
 

𝜀𝑜
−𝛾

−𝛾
⋱

  )                                                                      3.7 

 

      Within the tight-binding approximation, the Schrödinger equation (Eq. 3.8) can be 

expanded at a lattice site z in terms of the energy and wavefunction Ψz (Eq. 3.9). 

 

(𝐸 − 𝐻)𝜓 = 0                                                                                                            3.8 
 

𝜀𝑜𝜓𝑧 − 𝛾𝜓𝑧+1 − 𝛾𝜓𝑧−1 = 𝐸𝜓𝑧                                                                              3.9 

 

 

The wavefunction for this perfect lattice takes the form of a propagating Bloch state 

(Eq. 3.10), normalized by its group velocity 𝑣 in order for it to carry unit current flux. 

When this is substituted into Eq 3.9, it leads to the well-known one-dimensional 

dispersion relation (Eq. 3.11). 

 

𝜓𝑧 =
1

√𝑣
𝑒𝑖𝑘𝑧                                                                                                               3.10 

 

𝐸 = 𝜀𝑜 − 2𝛾 cos 𝑘                                                                                                     3.11 
 

     

  Where we introduced the quantum number, k, commonly referred to as the 

wavenumber. 

     The retarded Greens function 𝑔(𝑧, �́�) is closely related to the wavefunction and is in 

fact the solution to an equation very similar to that of the Schrödinger equation: 

 

(𝐸 − 𝐻)𝑔(𝑧, �́�) = 𝛿𝑧,�́�                                                                                             3.12 
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Physically, the retarded Greens function,𝑔(𝑧, �́�), describes the response of a system at 

a point z due to a source at a point �́�. Intuitively, we expect such an excitation to give rise 

to two waves, traveling outwards from the point of excitation, with amplitudes A+ and A- 

as shown in figure 3.3 

 

 

Figure 3.3 Retarded Green's Function of an infinite one-dimensional lattice. The Excitation at 

𝑙 = 𝑗 causes wave to propagate left and right with amplitudes A- and A+ Respectively 

 

These waves can be expressed simply as: 

 

𝑔(�́�, 𝑧) = 𝐴 +𝑒𝑖𝑘𝑧      𝑧 > �́�

𝑔(�́�, 𝑧) = 𝐴 −𝑒−𝑖𝑘𝑧       𝑧 < �́�
                                                                                               3.13 

 

 

This solution satisfies Eq. 3.12 at every point but 𝑧 = �́�. To overcome this, the Green's 

function must be continuous (Eq. 3.14), so we equate the two at 𝑧 = �́� 

 

𝐴 +𝑒𝑖𝑘�́� = 𝐴 −𝑒−𝑖𝑘�́�                                                                                                             3.14 

𝐴 − = 𝐴 +𝑒2𝑖𝑘�́�                                                                                                                      3.15 
 

 

Substituting Eq. 3.15 into the Green's functions (Eq. 3.13) yields: 
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𝑔(�́�, 𝑧) =  𝐴 +𝑒𝑖𝑘�́�𝑒𝑖𝑘(𝑧−�́�)               �́� > 𝑧

𝑔(�́�, 𝑧) =  𝐴 +𝑒𝑖𝑘�́�𝑒𝑖𝑘(�́�−𝑧)               �́� < 𝑧
                                                                         3.16 

 

With a little thought, it is clear that this can be written simply as: 

 

𝑔(𝑧, �́�) =  𝐴 +𝑒𝑖𝑘�́�𝑒𝑖𝑘|𝑧−�́�|                                                                                                  3.17 

 

 

Where  

 

𝐴 + =
𝑒−𝑖𝑘�́�

𝑖ℏ𝑣
                                                                                                                           3.18 

Hence      𝑔(𝑧, �́�) =  
𝑒𝑖𝑘|𝑧−�́�|

𝑖ℏ𝑣
                                                                                              3.19 

 
Where the group velocity, found from the dispersion relation, is: 
 

𝑣 =  
𝑑𝐸(𝑘)

ℏ 𝑑𝑘
=
2𝛾𝑠𝑖𝑛(𝑘)

ℏ
                                                                                                    3.20 

 

A more thorough derivation can be found in the literature [5, 8, 9].  

 

3.2.2 One-Dimensional Scattering 
 

 

In this section I will deal with two pieces of one dimensional tight binding semi-infinite 

leads connected by a coupling element α. Both leads have equal on-site potentials, εo, 

and hopping elements, -ɣ (see Figure 3.4). The analytical solutions for the transmission 

and reflection coefficients can be calculated easily. 
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Firstly, we need to define a Hamiltonian, which takes the form of an infinite matrix. 

 

𝐻 =

(

  
 

⋱ −𝛾  
−𝛾 𝜀𝑜 −𝛾
 −𝛾 𝜀𝑜

   
   

𝛼          

             𝛼
   
   

𝜀𝑜 −𝛾  
−𝛾 𝜀𝑜 −𝛾
 −𝛾 ⋱ )

  
 

                                         3.21 

 

 
 For real ɣ, the dispersion relation corresponding to the leads introduced above 

was given in Eq. 3.11 and the group velocity was given in Eq. 3.20: 

𝐸(𝑘) = 𝜀𝑜 − 2𝛾 cos 𝑘                                                                                                          3.22  

𝑣 =
1

ℏ
 
𝑑𝐸

 𝑑𝑘
                                                                                                                              3.23

   
 

                                                  
       

  In order to obtain the scattering amplitudes we need to calculate the Green's function 

of the system. The formal solution to Eq. 3.12 can be written as: 

 

𝐺 = (𝐸 − 𝐻)−1                                                                                                                       3.24 
 
         Eq. 3. 24 is singular if the energy E is equal to an eigenvalues of the Hamiltonian 

H. To circumvent this problem, it is practical to consider the limit: 

 

Figure 3.4 Simple tight-binding model of a one dimensional scattered attached to one dimensional leads. 
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𝐺± = lim
𝜂→0
(𝐸 − 𝐻 ± 𝑖𝜂)−1                                                                                                     3.25 

 
Here 𝜂 is a positive number and G+, G- is the retarded (advanced) Green's function. In 

this thesis I will only use retarded Green's functions and hence choose the + sign.  

The retarded Green's function for an infinite, one dimensional chain with the same 

parameters is defined in Eq. 3.19: 

 

𝑔∞(𝑗, 𝑙) =  
𝑒𝑖𝑘|𝑗−𝑙|

𝑖ℏ𝑣
                                                                                                                 3.26 

 

 Where 𝑗, 𝑙 are the labels of the sites in the chain. In order to obtain the Green's 

function of a semi-infinite lead we need to introduce the appropriate boundary conditions. 

In this case, the lattice is semi-infinite, so the chain must terminate at a given point,  𝑖0, 

so that all points for which 𝑖 ≥  𝑖0  are missing. This is achieved by adding a wave 

function to the Green's function to mathematically represent this condition. The 

wavefunction in this case is: 

 

𝜓𝑗𝑙
𝑖𝑜 = − 

𝑒𝑖𝑘(2𝑖𝑜−𝑙−𝑗)

𝑖ℏ𝑣
                                                                                                              3.27 

        The Green's function 𝑔(𝑗, 𝑙) = 𝑔𝑗,𝑙
∞ + 𝜓𝑗,𝑙

𝑖𝑜  will have the following simple form at 

the 

Boundary 𝑗 =  𝑙 =  𝑖0 −  1: 

 

𝑔(𝑖𝑜 − 1, 𝑖𝑜 − 1) = −
𝑒𝑖𝑘

𝛾
                                                                                                      3.28 
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  If we consider the case of decoupled leads, 𝛼 =  0, the total Green's function of the 

system will simply be given by the decoupled Green's function: 

𝑔 =

(

 
 
−
𝑒𝑖𝑘

𝛾
0

0 −
𝑒𝑖𝑘

𝛾 )

 
 
= (

𝑔𝐿 0
0 𝑔𝑅

)                                                                                   3.29 

If we now switch on the interaction, then in order to get the Green's function 

of the coupled system, G, we need to use Dyson's equation: 

 

𝐺−1 = (𝑔−1 − 𝑉)                                                                                                                    3.30 

      Here the operator V describing the interaction connecting the two leads will have 

the form: 

𝑉 = (
0 𝑉𝑐

𝑉𝑐
† 0

) = (
0 𝛼
𝛼∗ 0

)                                                                                                    3.31 

 

The solution to Dyson's equation, Eq. 3.30 reads: 

 

𝐺 =
1

|𝛼|2 − 𝛾2𝑒−2𝑖𝑘
(
𝛾𝑒−𝑖𝑘 𝛼

𝛼∗ 𝛾𝑒−𝑖𝑘
)                                                                               3.32 

 

    The only remaining step is to calculate the transmission, t, and reflection, r, 

amplitudes from the Green's function Eq. 3.32. This is done by making use of the Fisher-

Lee relation [5, 7] which relates the scattering amplitudes of a scattering problem to the 

Green's function of the problem. The Fisher-Lee relations in this case reads: 

 

𝑟 =  𝑖ℏ𝑣𝐿𝐺00 −  1  ;                 𝑡 =  𝑖ℏ√𝑣𝑅𝑣𝐿𝐺10                                                              3.33 
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and the transmission coefficient will be: 

𝑇 =  ℏ2𝑣𝑅|𝐺10|
2  𝑣𝐿                                                                                                               3.34 

     

Figure 3.5 Transmission coefficient versus energy for carbon chain N=4 as in (figure 3.4) for α 

vary from 0 to -1 and εo=0 

 

  These amplitudes correspond to particles incident from the left. If one would consider 

particles coming from the right than similar expressions could be recovered for the 

transmission, �́�, and reflection, �́�, amplitudes.  

        Since we are now in the possession of the full scattering matrix we can use the 

Landauer formula Eq. 3.4 to calculate the zero bias conductance.  

        The procedure by which this analytical solution for the conductance of a one-

dimensional scatterer was found can be generalized for more complex geometries. So to 

briefly summarize the steps: 
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1. The first step was to calculate the Green's function describing the surface sites of the 

leads. 

2. The total Green's function in the presence of a scatterer is obtained by Dyson's 

equation. 

3. The Fisher-Lee relation gives us the scattering matrix from the Green's function 

4. Using the Landauer formula, we can then find the zero-bias conductance 

 

3.3 Generalization of the Scattering Formalism 
 

In this section I will show a generalized approach to transport calculations following 

the derivation of Lambert, presented in [2, 10, 11]. This is similar to the previous 

approach. First the surface Green's function of crystalline leads is computed, and the 

scattering amplitudes are recovered by means of a generalization of the Fisher-Lee 

relation. 

3.3.1 Hamiltonian and Green's Function of the Leads 
 

Firstly, we study a general semi-infinite crystalline electrode of arbitrary complexity. 

Because the leads are crystalline, the structure of the Hamiltonian is a generalization of 

the one-dimensional electrode Hamiltonian in Eq. 3.7. Figure 3.5 shows the general 

system topology. Instead of site energies, we have Hamiltonians for each repeating layer 

of the bulk electrode, H0, and a coupling matrix to describe the hopping parameters 

between these layers, H1.  
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The Hamiltonian for such a system has the form: 

 

𝐻 =

(

 
 

⋱ 𝐻1

𝐻1
† 𝐻𝑜

  
𝐻1    

    𝐻1
†

  

𝐻𝑜 𝐻1

𝐻1
† ⋱ )

 
 
                                                                                                3.35 

 

Where H0 and H1 are in general complex matrices and the only restriction is that the full 

Hamiltonian, H, should be Hermitian. Our first goal in this section is to calculate the 

Green's function of such a lead for general H1 and H0.  

       In order to calculate the Green's function one has to calculate the spectrum of the 

Hamiltonian by solving the Schrödinger equation of the lead. 

 

𝐻0𝜓𝑧 + 𝐻1𝜓𝑧+1 + 𝐻1
†𝜓𝑧−1 = 𝐸𝜓𝑧                                                                                 3.36 

      

  Here 𝜓𝑧 is the wave function describing layer 𝑧, where z is an integer measured in 

units of inter-layer distance. We assume the system is infinitely periodic in the 𝑧 direction 

only, so the on-site wavefunction, 𝜓𝑧, can be represented in Bloch form; consisting of a 

Figure 3.5 Schematic representation of a semi-infinite generalized lead. States described by the 

Hamiltonian H0 are connected via generalized hopping H1. The direction z is defined to be parallel 

to the axis of the chain. One can assign for each slice an individual z value. 
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product of a propagating plane wave and a wavefunction, 𝜙𝑘, which is perpendicular to 

the transport direction, z. If the layer Hamiltonian, H0, has dimensions 𝑀 ×𝑀  (or in 

other words consists of M site energies and their respective hopping elements), then the 

perpendicular wavefunction, 𝜙𝑘, will have M degrees of freedom and take the form of a 

1 ×  𝑀 dimensional v ector. So the wave function, 𝜓𝑧, takes the form: 

 

𝜓𝑧 = √𝑛𝑘   𝑒
𝑖𝑘𝑧𝜙𝑘                                                                                                                 3.37 

 

Where, 𝑛𝑘 is an arbitrary normalization parameter. Substituting this into the 

Schrödinger equation (Eq. 3.36) gives: 

 

(𝐻𝑜 + 𝑒
𝑖𝑘𝐻1 + 𝑒

−𝑖𝑘𝐻1
† − 𝐸)𝜙𝑘 = 0                                                                                 3.38 

        

       

Typically, to find the band structure for such a problem, one would select values of k 

and calculate the eigenvalues at that point, 𝐸 =  𝐸𝑙(𝑘) , where 𝑙 =  1……𝑀 . Here, 𝑙 

denotes the band index. For each value of 𝑘 , there will be 𝑀  solutions to the Eigen 

problem, and so 𝑀 energy values. In this way, by selecting multiple values for k, it is 

relatively simple to build up a band structure. In a scattering problem, the problem is 

approached from the opposite direction; instead of finding the values of E at a given k, 

we find the values of k at a given E. In order to accomplish this, a root-finding might 

have been used, but this would have required an enormous numerical effort since the 

wave numbers are in general complex. Instead, we can write down an alternative 
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eigenvalue problem in which the energy is the input and the wave numbers are the result 

by introducing the function: 

 

𝑣𝑘 = 𝑒
−𝑖𝑘𝑧𝜙𝑘                                                                                                                     3.39 

And combining it with Eq. 3.38: 

 

(−𝐻1
−1(𝐻𝑜 − 𝐸) −𝐻1

−1𝐻1
†

𝐼 0
) (
𝜙𝑘
𝑣𝑘
) = 𝑒𝑖𝑘𝑧 (

𝜙𝑘
𝑣𝑘
)                                                        3.40 

 

       For a layer Hamiltonian, H0, of size 𝑀 × 𝑀, Eq 3.40 will yield 2M eigenvalues, 

𝑒𝑖𝑘𝑙𝑧  and eigenvectors, 𝜙𝑘 , of size M. We can sort these states into four categories 

according to whether they are propagating or decaying and whether they are left going 

or right going. A state is propagating if it has a real wave number, 𝑘𝑙, and is decaying if 

it has an imaginary part. If the imaginary part of the wave number is positive then we say 

it is a left decaying state, if it has a negative imaginary part it is a right decaying state. 

The propagating states are sorted according to the group velocity of the state defined by 

𝑣𝑘𝑙 =
1

ℏ

𝜕𝐸𝑘,𝑙
𝜕𝑘

                                                                                                                        3.41 

    

     If the group velocity, 𝑣𝑘𝑙 , of the state is positive than it is a right propagating state 

if it is negative than it is a left propagating state. 
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Table 3.1: Sorting the eigenstates into left and right propagating or decaying states according to 

the wave number and group velocity. 

 

 

 Left Right 

decaying 𝐼𝑚(𝑘𝑙) > 0 𝐼𝑚(𝑘𝑟) < 0 

Propagation 𝐼𝑚(𝑘𝑙) = 0, 𝑣𝑔
𝑘𝑙 < 0 𝐼𝑚(𝑘𝑟) = 0, 𝑣𝑔

𝑘𝑟 > 0 

 

        For convenience, from now on I will denote the 𝑘𝑙 wave numbers which belong 

to the left propagating decaying set of wave numbers by 𝑘𝑙 and the right propagating 

decaying wave numbers will remain plainly 𝑘𝑟. Thus, 𝜙𝑘𝑟  is a wave function associated 

to a right state and 𝜙𝑘𝑙   is associated to a left state. If H1 is invertible, there must be 

exactly the same number, M, of left and right going states. It is clear that if H1 is singular, 

the matrix in Eq. 3.40 cannot be constructed, since it relies of the inversion of H1. 

However, any one of several methods can be used to overcome this problem. The first 

[9-12] uses the decimation technique to create an effective, non-singular H1. Another 

solution might be to populate a singular H1 with small random numbers, hence 

introducing an explicit numerical error. This method is reasonable as the introduced 

numerical error can be as small as the numerical error introduced by decimation. Another 

solution is to re-write Eq 3.40 such that H1 need not be inverted: 

 

(−(𝐻𝑜 − 𝐸) −𝐻1
†

𝐼 0
) (
𝜙𝑘
𝑣𝑘
) = 𝑒𝑖𝑘𝑧 (

𝐻1 0
0 𝐼

) (
𝜙𝑘
𝑣𝑘
)                                                          3.42 

          

 However, solving this generalized Eigen-problem is more computationally expensive. 

Any of the aforementioned methods work reasonably in tackling the problem of a 
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singular H1 matrix, and so can the condition that there must be exactly the same number, 

M, of left and right going states, whether H1 is singular or not [13-19].  

The solutions to the eigenvalue equation (3.38) at a given wave number (𝑘) will form an 

orthogonal basis set, however, the eigenstates (𝜙(𝑘𝑙) ) obtained by solving the Eigen-

problem equation (3.42) at a given energy (𝐸) will not generally form an orthogonal set 

of states. This is crucial, since we will have to deal with the non-orthogonality when 

constructing the Green's function. It is, therefore, necessary to introduce the duals to 𝜙(𝑘𝑙) 

and 𝜙(�̅�𝑙) in such a way that they obey: 

 

�̃�(𝑘𝑖)
† 𝜙(𝑘𝑗) = �̃�(�̅�𝑖)

† 𝜙(�̅�𝑗) = 𝛿𝑖𝑗                                                                                     3.43 

                                                 

 

This yields the generalized completeness relation: 

 

∑ �̃�(𝑘𝑙)
† 𝜙(𝑘𝑙) = ∑ �̃�(�̅�𝑙)

† 𝜙(�̅�𝑙) = 𝐼                                                                    3.44
𝑀
𝑙=1

𝑀
𝑙=1                                                  

 

Once we are in possession of the whole set of eigenstates at a given energy we can 

calculate the Green's function first for the infinite system and then, by satisfying the 

appropriate boundary conditions, for the semi-infinite leads at their surface. Since the 

Green's function satisfies the Schrödinger equation when 𝑧 ≠ 𝑧′, we can build up the 

Green's function from the mixture of the eigenstates 𝜙(𝑘𝑙) and 𝜙(�̅�𝑙): 

 

𝑔(𝑧, 𝑧′) =
∑  𝜙(𝑘𝑙)𝑒

𝑖𝑘𝑙(𝑧−𝑧
′) 𝜔𝑘𝑙

†𝑀
𝑙=1 , 𝑧 ≥ 𝑧′

∑ 𝜙(�̅�𝑙)𝑒
𝑖�̅�𝑙(𝑧−𝑧

′) 𝜔�̅�𝑙
†𝑀

𝑙=1 , 𝑧 ≤ 𝑧′
                                                            3.45                                                
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where the 𝑀-component vectors 𝜔𝑘𝑙 and 𝜔�̅�𝑙 are to be determined. It is important to 

note the structural similarities between this equation and equation (3.13) and also that all 

the degrees of freedom in the transverse direction are contained in the vectors 𝜙(𝑘) and 

𝜔𝑘.  

 

The task now is to obtain the 𝜔 vectors. As in section 3.2.1, we know that equation 

(3.45) must be continuous at 𝑧 = 𝑧′ and should fulfill the Green's equation (equation 

(3.12)). The first condition is expressed as: 

     

∑ 𝜙(𝑘𝑙)𝜔𝑘𝑙
† = ∑ 𝜙(�̅�𝑙)𝜔�̅�𝑙

†
𝑙=1

𝑀
𝑙=1                                                                                       3.46                                                                          

 

and the second: 

 

∑[(𝐸 − 𝐻𝑜)ϕ(𝑘𝑙)𝜔𝑘𝑙
† + 𝐻1ϕ(𝑘𝑙)𝑒

𝑖𝑘𝑙𝜔𝑘𝑙
† + 𝐻1

†ϕ(�̅�𝑙)𝑒
−𝑖�̅�𝑙𝜔�̅�𝑙

† ]

𝑀

𝑙=1

= 𝐼 

 

∑[(𝐸 − 𝐻𝑜)ϕ(𝑘𝑙)𝜔𝑘𝑙
† + 𝐻1ϕ(𝑘𝑙)𝑒

𝑖𝑘𝑙𝜔𝑘𝑙
† + 𝐻1

†ϕ(�̅�𝑙)𝑒
−𝑖�̅�𝑙𝜔�̅�𝑙

† + 𝐻1
†ϕ(𝑘𝑙)𝑒

−𝑖𝑘𝑙𝜔𝑘𝑙
†

𝑀

𝑙=1

− 𝐻1
†ϕ(𝑘𝑙)𝑒

−𝑖𝑘𝑙𝜔𝑘𝑙
† ] = 𝐼 

 

∑[𝐻1
†ϕ(�̅�𝑙)𝑒

𝑖�̅�𝑙𝜔�̅�𝑙
† − 𝐻1

†ϕ(𝑘𝑙)𝑒
−𝑖𝑘𝑙𝜔𝑘𝑙

† ]

𝑁

𝑙=1

+∑[(𝐸 − 𝐻𝑜) + 𝐻1𝑒
𝑖𝑘𝑙 +𝐻1

†𝑒−𝑖𝑘𝑙]

𝑀

𝑙=1

ϕ(𝑘𝑙)𝜔𝑘𝑙
† = 𝐼 
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and since, from the Schrödinger equation (equation (3.38)), we know that: 

 

∑ [(𝐸 − 𝐻𝑜) + 𝐻1𝑒
𝑖𝑘𝑙 + 𝐻1

†𝑒−𝑖𝑘𝑙]𝑀
𝑙=1 ϕ(𝑘𝑙) = 0                                                        3.47                                             

 

This yields to: 

 

 ∑ 𝐻1
† [ϕ(�̅�𝑙)𝑒

𝑖�̅�𝑙𝜔�̅�𝑙
† − ϕ(𝑘𝑙)𝑒

−𝑖𝑘𝑙𝜔𝑘𝑙
† ]𝑁

𝑙=1 = 𝐼                                                               3.48                                                

 

Now let us make use of the dual vectors defined in equation (3.43). Multiplying 

equation (3.46) by ϕ̃(𝑘𝑝) we get: 

 

∑ ϕ̃(𝑘𝑝)
†𝑀

𝑙=1 ϕ(�̅�𝑙)ω�̅�𝑙
† = ω𝑘𝑝

†                                                                                                3.49                                                                              

and similarly multiplying by ϕ̃(�̅�𝑝)
†

 gives: 

∑ ϕ̃(�̅�𝑝)
†𝑀

𝑙=1 ϕ(𝑘𝑙)ω𝑘𝑙
† = ω�̅�𝑝

†                                                                                               3.50                                                                              

 

Using the continuity equation (3.46) and equations (3.49) and (3.50), the Green's 

equation (equation (3.48)) becomes: 

 

∑ ∑ 𝐻1
† (ϕ(�̅�𝑙)𝑒

−𝑖�̅�𝑙ϕ̃(�̅�𝑙)
† − ϕ(𝑘𝑙)𝑒

−𝑖𝑘𝑙ϕ̃(𝑘𝑙)
† )𝑀

𝑝=1
𝑀
𝑙=1 ϕ(�̅�𝑝)𝜔�̅�𝑝

† = 𝐼                         3.51                 

 

From which it follow: 
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∑[𝐻1
† (ϕ(�̅�𝑙)𝑒

−𝑖�̅�𝑙ϕ̃(�̅�𝑙)
† − ϕ(𝑘𝑙)𝑒

−𝑖𝑘𝑙ϕ̃(𝑘𝑙)
† )]

−1
𝑀

𝑙=1

=∑ϕ(�̅�𝑝)𝜔�̅�𝑝
† =∑ϕ(𝑘𝑝)ω𝑘𝑝

†

𝑀

𝑝=1

𝑀

𝑝=1

                                                     3.52 

                                                                   

 

This immediately gives us an expressions for ω𝑘
†
: 

 

ω𝑘
† = ϕ̃(𝑘)

† 𝜈−1                                                                                                              3.53 

                                                                           

 

where  𝜈 is defined as: 

 

𝜈 = ∑ 𝐻1
† (ϕ(�̅�𝑙)𝑒

−𝑖�̅�𝑙ϕ̃(�̅�𝑙)
† − ϕ(𝑘𝑙)𝑒

−𝑖𝑘𝑙ϕ̃(𝑘𝑙)
† )                                                 3.54𝑀

𝑙=1                                           

 

The wave number (𝑘) in equation (3.53) refers to both left and right type of states. 

Substituting equation (3.53) into equation (3.45) we get the Green’s function of an 

infinite system: 

 

𝑔𝑧,𝑧′
∞ = {

∑ ϕ(𝑘𝑙)𝑒
𝑖𝑘𝑙(𝑧−𝑧

′)ϕ̃(𝑘𝑙)
† 𝜈−1𝑀

𝑙=1 , 𝑧 ≥ 𝑧′

∑ ϕ(�̅�𝑙)𝑒
𝑖�̅�𝑙(𝑧−𝑧

′)ϕ̃(�̅�𝑙)
† 𝜈−1𝑀

𝑙=1 , 𝑧 ≤ 𝑧′
                                                      3.55                                              

 

In order to get the Green's function for a semi-infinite lead we have to add a wave 

function to the Green's function in order to satisfy the boundary conditions at the edge of 

the lead, as with the one dimensional case. The boundary condition here is that the 
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Green's function must vanish at a given place ( 𝑧 = 𝑧𝑜). In order to achieve this we simply 

add: 

 

△= −∑ ϕ�̅�𝑙𝑒
𝑖�̅�𝑙(𝑧−𝑧𝑜)ϕ̃(�̅�𝑙)

†  ϕ(𝑘𝑝)𝑒
𝑖𝑘𝑝(𝑧𝑜−𝑧)ϕ̃

(𝑘𝑝)
†𝑀

𝑙,𝑝=1 𝜈−1                                          3.56                             

 

To the Green's function, equation (3.55), 𝑔 = 𝑔∞ +△. This yields the surface Green's 

function for a semi-infinite lead going left: 

𝑔𝐿 = (𝐼 − ∑ ϕ(�̅�𝑙)𝑒
−𝑖�̅�𝑙  ϕ̃(�̅�𝑙)

†  ϕ(𝑘𝑝)𝑒
𝑖𝑘𝑝  ϕ̃(𝑘𝑝)

†𝑀
𝑙,𝑝=1 ) 𝜈−1                                            3.57                               

 

and going right: 

 

𝑔𝑅 = (𝐼 − ∑ ϕ(𝑘𝑙)𝑒
𝑖𝑘𝑙  ϕ̃(𝑘𝑙)

†  ϕ(�̅�𝑝)𝑒
−𝑖�̅�𝑝  ϕ̃(�̅�𝑝)

†𝑀
𝑙,𝑝=1 ) 𝜈−1                                           3.58                              

 

All that remains is to obtain the hamiltonian of the scattering region using DFT and 

combine this with the surface Green's functions via Dyson's equation, to obtain the total 

Green's function and transmission amplitude 𝑡𝑘𝑙[20] 

 

𝐺𝑡𝑜𝑡 = [(
𝑔𝐿 𝑜
𝑜 𝑔𝑅

)
−1

− 𝐻𝑠𝑐𝑎𝑡𝑡]
−1

                                                                                3.59                                                   

𝑡𝑘𝑙 = ϕ̃(𝑘𝑙)
† 𝐺𝑡𝑜𝑡𝑣ϕ(𝑘𝑙)√

𝑣𝑘
𝑣𝑙
𝑒𝑖𝑘𝑙                                                                                          3.60 
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Chapter 4 
 

4.1 Quantum interference and heteroaromaticity of 

para- and meta-linked bridged biphenyl units in single 

molecular conductance measurements  
 

4.2 Introduction  
 

This study aims to understand the effect of the heteroatom which is the bridge atom 

linking two benzene rings and the role it plays in the quantum interference through these 

structures. We study how this quantum interference combined with connectivity alters 

the conductance by changing the anchor groups between para-para linked and meta-

meta linked. Generally, meta-linked electron donor−acceptor molecules have weaker 

electronic coupling in the ground state compared to those that are para-linked, whereas 

the excited-state electronic coupling of meta-linked molecules is comparable to or larger 

than that of para-linked molecules. More generally, the meta effect is one manifestation 

of a broader class of quantum interference effects that are readily observed in both 

conjugated and cross-conjugated systems [1]. Quantum interference (QI) effects have 

attracted much attention through theoretical and experimental approaches. Both 
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constructive and destructive QI are found in the different systems. For example, a 

molecule with two parallel electron transmission paths with no phase shift can lead to 

constructive interference with a larger conductance, while the conductance of molecular 

junction with meta-substituted benzene ring is lower than that with para-substituted 

benzene ring by several orders of magnitude, due to destructive QI [2].  

The measurement and understanding of charge transport in single molecules is of 

fundamental interest and is relevant to the proposed future applications such as diode, 

transistor, sensor and solar cell of molecules in electronic devices [3–8]. Many studies 

have addressed correlations between molecular structure and transport properties of 

molecules wired into gold–molecule–gold nanoscale junctions [9,10]. Several 

experimental approaches are well established for measuring transport through single (or 

a few) molecules, notably the mechanically controlled break junction (MCBJ) [11] and 

scanning tunneling microscopy-break junction (STM-BJ) techniques [12]. Combined 

experimental and theoretical studies [13] have established that charge transport through 

molecular junctions is controlled by the intrinsic properties of the molecular backbone, 

the terminal anchoring group, and the metal leads. Key features are the molecular length, 

the molecular conformation, the gap between the highest occupied and the lowest 

unoccupied molecular orbitals (the HOMO-LUMO gap), the alignment of this gap to the 

Fermi level of the metal electrodes, and the coordination geometry at the metal-molecule 

contacts. Oligo (arylene-ethynylene) (OAE)-type molecular wires have been widely 

explored in single molecular junctions [14–18]. They are π–conjugated, rod-like 

molecules and their functional properties can be systematically tuned over a wide range 

of parameters by chemical synthesis [19]. 
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In the present work we investigate a series of ten OAE molecules 1–10 whose structures 

are shown in Figure 4.1. The molecular design combines three key structural features: (i) 

all of the molecules have terminal pyridyl anchoring units at both ends; (ii) each molecule 

has one of five different core units and (iii) there is either para-para or meta-meta 

conjugation through the core unit, providing two isomeric series. The dibenzothiophene 

(1-Sp, 6-Sm), N-ethylcarbazole (2-Np, 7-Nm), dibenzofuran (3-Op, 8-Om) and 9,9-

dimethylfluorene cores (4-Cp, 9-Cm) are rigid and planar. Heteroaromaticity, i.e., the 

resonance energy (is a way of describing delocalized electrons within certain molecules 

[48]), will decrease in the sequence dibenzothiophene > carbazole > dibenzofuran, 

reflecting the extent of delocalization of a lone pair from the heteroatom into the π–

system of the central ring (S > N > O) [20]. Fluorene, with no heteroatom and a bridging 

sp3 carbon atom instead, has a non-aromatic central ring. In contrast to the other 

molecules in Figure 4.1, biphenyl derivatives 5 and 10 possess a flexible and twisted 

core. It is well known that increasing the torsion angle within a biphenyl unit leads to 

reduced single-molecule conductance (The orbital overlap of 𝜋 systems decrease with 

increase𝜑) [21–25], therefore, 5 and 10 are studied here as model compounds.  
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Figure 4.1 Structures of the molecules discussed in this work and their nomenclature. The 

structures represent the para-linked series 1–5 (top) and meta-linked series 6–10(bottom) 

 

We are aware of only two related reports on the effect of heteroaromaticity on single-

molecule conductance. Venkataraman, Breslow and co-workers studied three amine-

terminated molecules comprising thiophene, furan and dimethylcyclopentadiene cores 

(11–13, Figure 4.2). Based on STM–BJ measurements the authors concluded that 

aromaticity in the core leads to a decrease in the single-molecule conductance, i.e. the 

non-aromatic cyclopentadiene derivative 13 has the highest conductance, while the most 

aromatic thiophene derivative 11 has the lowest conductance [26]. This work did not 

consider the linkage of the anchor units to different positions on the core. 
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Figure 4.2 Molecules studied in reference [26]. Amine-terminated molecules 11–13 measured by 

STM-BJ. 

 

A second study concerns multiple pathways through a molecular wire based on 

fluorene-like molecules [27]. Several studies have established that para (conjugated) 

connectivity through a core unit results in enhanced conductance compared to the 

isomeric meta (reduced conjugation) connectivity. This is ascribed to quantum 

interference and has been observed experimentally and theoretically in aromatic rings 

such as benzene [28–31], naphthalene [16], anthracene [16], pyrene [32] and 

anthanthrene [33]. 

The motivation for the present work is to study for the first time the combined effects 

of two important molecular parameters on the single-molecule conductance of molecular 

wires: (i) heteroaromaticity in the core of the wire, and (ii) para versus meta conjugation 

through the core unit.  
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4.3 Results 
 

Single-molecule Conductance Measurements. Single-molecule conductance 

measurements of 1–10 in molecular junctions were performed by collaborators in the 

group of Wenjing Hong using a home-built mechanically controllable break junction (the 

conductance measurement in single-molecule junctions were studied using MCBJ, in 

nonconductive solution and at room temperature. The MCBJ experiments are based on 

the opening/closing of nanogaps formed by notching a freely suspended, horizontally 

supported gold wire) (MCBJ) setup at a bias Vbias = 0.1 V. Figure 4.3a shows typical 

individual conductance G (in units of quantum point conductance G0=2e2/h, 

corresponding to perfect transmission of electrons from left to the right electrode, through 

the point contact. Therefore, the conductance of a molecule given in units of G0 tells us 

how conductive the molecule is in comparison with a metal atom [4]) versus distance 

(z) stretching traces in the measurement of Np. The conductance in the molecule-free 

traces (black line) reveals exponential decrease characteristics upon the stretching 

process. When molecule Np is present a pronounced conductance plateau around 10-5 G0 

could be detected (green line) after the Au–Au contact breaks, which is assigned to the 

gold–molecule–gold junction. Since the break junction method can create a large number 

of molecular junctions with different molecule–electrode contact geometries, more than 

1000 curves were recorded for statistical analysis to determine the most probable 

conductance of the molecular junctions. We further introduced a relative distance (z) 

and defined z = 0 at 0.5 G0 to align all the traces. This procedure leads to an accurate 

alignment of the conductance−distance traces because of the sharp drop in conductance 

at G < G0. The electrode separation zexp is then estimated by zexp = z + zcorr, where zcorr 
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= 0.5 ± 0.1 nm corresponds to the “snap-back” nanogap which forms immediately upon 

breaking of the gold-gold atomic contact [34]. The all–data two–dimensional (2D) 

histogram (Figure 4.3b) exhibits features of gold–gold contacts  around G ≥ 1 G0，

followed by another well-defined conductance scatter group in the range of 10-4 G0 ~ 10-

6 G0 which is attributed to the formation of single–molecule junctions. Figures 4.3c-d 

demonstrate the comparison between molecules with different heteroatoms and 

anchoring positions. For the compounds 1–3 with the para–para connectivity, the 

conductance clearly increases in the sequence Sp < Np < Op. However, for the isomers 

6–8 where the anchoring groups are attached at meta–meta positions, the conductance 

reveals a different trend, Sm ≈ Om < Nm. Control experiments using analogues with a 

carbon bridge (4-Cp and 9-Cm) and without any bridging atom (5-2Hp and 10-2Hm) 

were also conducted. The conductance of 2Hm could not be measured within the 

detection range (≥ 10−7 ) of our setup. This can be explained by the meta coupling 

combined with a non-planar biphenyl core giving a conductance value below the direct 

tunneling conductance [31]. Furthermore, some of the measured conductance histograms 

have more than one peak, this feature usually appears with the bipyridine anchor groups, 

with low and high conductance values. The low and high conductance is usually 

attributed to the different binding geometries these types of contacts form [42].  
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Figure 4.3 Single-molecule conductance results from MCBJ experiments. (a) Typical individual 

conductance–distance traces (horizontally offset for clarity) of Np (green) and pure tunneling 

traces (black). (b) All-data-point 2D conductance versus relative distance (Δz) of Np. In 2D 

histogram, statistically averaged conductance−distance traces (hollow circles) with variations 

indicated by the standard deviations (bars) are shown, along with the linear fit (line). The solid 

circle represents the last data point in the linear fit before junction rupture. Inset: Stretching 

distance distribution obtained between 10-0.30 G0 and 10-6.25 G0. (c) and (d) All-data-point 1D 

conductance histograms constructed from more than 1,000 MCBJ traces of molecules with 

anchoring groups on (c) para-para and (d) meta–meta position. The gray area represents the 

detection limit of the MCBJ set up at 10-7 G0. 
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As the junction configuration is known to have a significant effect on the single–

molecule conductance, we further explored the master curves composed of the fitted 

conductance with standard variation at each cross-sectional distance point [35]. After a 

linear fitting, the Np junction conductance with a fully stretched molecular conformation 

before the junction rupture can be deduced as 10-5.74 ± 0.17 G0, which should be closer to 

the theoretical predicted configurations.  

 

 

Table 4.1 Most Probable Conductance Values as Obtained from MCBJ Experiments and 

Computations DFT. 
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 GGaussian Gstretched G MCBJ    

1-Sp –5.79±0.30 –5.93±0.16 –5.50 0.72 69 2.04 ± 0.45 2.04 

2-Np –5.22±0.40 –5.74±0.17 –5.15 0.67 83 2.01 ± 0.23 2.02 

3-Op –5.04±0.47 –5.47±0.22 –5.10 1.37 99 1.92 ± 0.26 2.03 

4-Cp –5.55±0.44 –5.81±0.12 –5.44 0.09 70 1.84 ± 0.22 2.03 

5-2Hp –5.4 ± 0.36 –5.68±0.11 –5.30 >1.32 83 2.11 ± 0.23 2.08 

6-Sm –6.34±0.47 –6.65±0.35 –6.34  100 1.64 ± 0.29 1.51 

7-Nm –5.76±0.48 –6.41±0.25 –6.06  71 1.66 ± 0.14 1.56 

8-Om –6.32±0.38 –6.84±0.24 –6.40  100 1.65 ± 0.19 1.55 

9-Cm –5.26±0.82 –5.90±0.39 –5.74  100 1.46 ± 0.29 1.51 

10-2Hm < –7 < –7 –7.38  – – 1.41 
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It is found that there is some difference in the conductance comparison among different 

molecules: Om shows lower conductance than Sm for the conductance of the fully-

stretched configurations, while Om shows a slightly higher conductance for the most 

probable conductance extracted from conductance histogram.  

The key results of the MCBJ measurements are summarized in Table 4.1 and the 

corresponding original results are presented in the (Figures 4.4-4.5). No multiple features 

were observed in the experiments, including 3-Op and 8-Om. The lower peaks covered 

by the grey area below 10-7 G0 is the noise level of the MCBJ experiments (Figure 4.3(c 

and d)). All the curves were used for the statistical analysis without any data selection. 

Junction formation probability (JFP) is the proportion of molecular stretching traces with 

a pronounced plateau relative to the total number of traces (Table 4.1). It is judged by 

area ratio of the peak in the plateau length distribution. Direct tunneling traces have no 

plateau and decay faster to the noise level, corresponding to the smaller stretching peak 

alongside the molecular peak in the plateau length histogram. (Figures 4.4-4.5). 
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 Figure 5.4. (a) 1D conductance histogram, (b) 2D histogram and (c) characteristic 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. (a) 1D conductance histogram, (b) 2D histogram and (c) characteristic 
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Figure 5.5. (a) 1D conductance histogram, (b) 2D histogram and (c) characteristic 

 

 

 

 

 



 
Chapter 4                 Quantum interference and heteroaromaticity of para- and meta-linked 

71 

 

Several interesting conclusions can be drawn from the comparative conductance values 

of these molecules. First, in all cases, molecules with para connectivity 1–5 present larger 

conductance values than their meta isomers, regardless of the bridging unit. This can be 

attributed to the partial de Broglie waves traversing in different paths through the core 

being in phase in the para isomers, giving rise to a constructive quantum interference 

(QI) effect. On the contrary, in the meta-anchored isomers the waves are out of phase 

leading to destructive quantum interference. The conductance relationship of the para 

and meta molecules is consistent with that of molecules with a central single benzene 

ring [29–31,36], indicating the quantum interference effect can still operate in polycyclic 

compounds. Secondly, the structure of the central core plays an important role in the 

conductance of QI molecules. It is noted that the largest difference between the para– and 

meta–anchored molecules (ΔG) is for the dibenzofuran pair 3-Op and 8-Om, 1.37 

log(G/G0). However, as we reported previously, the differences between para and meta 

linked molecules are nearly 1.50 log(G/G0) in benzene-cored analogs[31]. The lower 

experimental differences in the present study demonstrate that the quantum interference 

effect has not been amplified, and is even slightly reduced, by bridging the two benzene 

rings with a five-membered ring. Additionally, differences of the conductance in fully-

stretched conformations between para– and meta–anchored molecules follow the 

increasing order of ΔGC < ΔGN < ΔGS < ΔGO, illustrating that the heteroatom can also 

contribute to the expression of the quantum interference. The electrode separations (zexp 

in Table 4.1) are in good agreement with the theoretical molecular lengths. This indicates 

that in the fully stretched configuration, the molecular junctions are primarily linked by 

the gold–nitrogen bonds. 
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Moreover, there is no distinct correlation between the plateau length (or JFP) and the 

nature of the bridging atoms (S, N, O or C), demonstrating that these atoms have no 

significant influence on the conformation of the molecular junction. Furthermore, I did 

not observe any additional conductance group during the experiments for the ten 

molecules. I attributed this fact to three reasons. Firstly, pyridyl-terminated compounds 

have been reported to show well-defined peaks in the conductance histograms resulting 

from the high directionality of the donor-acceptor binding between N lone pair and Au 

[17,37,38]. Secondly, the alkyl groups connected to the bridged atom (N and C) sterically 

hinder the interaction between the electrode and the core of the molecule as well as 

restricting any π-π interaction of two molecules. Thirdly, molecules with similar core 

structures have been reported [21,24,25] to exhibit only one conductance statistical peak, 

suggesting that the junction formed by the core of the molecule is not robust enough 

during the elongation process. In the control experiments with 5-2Hp and 10-2Hm, 

however, we observed such an obvious difference that the conductance of 5-2Hp is higher 

than that of 10-2Hm by almost two orders of magnitude. 
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4.4 Theory and Simulations. 
 

The density of state (DOS) represents the number of electronics states in a band per 

unit energy, the density of states could be calculated from 𝐷(𝐸) = ∑ 𝛿(𝐸 − 𝜀𝑖)𝑖  where 

𝜀𝑖 is the eigenvalues of a system and 𝛿 is Kronecker delta. The DFT calculated of DOS 

spectra for the isolated molecule versus energy, present in figure 4.6, the gap ‘’the value 

of gap in DOS, which is the gap in between first onset of electron density from the right 

and left side’’ between HOMO LUMO peaks about 3.5 eV for both meta and para linked. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 density of state versus energy for para end meta calculated by DFT, in the 

gas phase. 
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4.5 Binding Energy. 
 

   To calculate the optimum binding distance for a 1-Sp molecule between two gold 

(111) surfaces we used the SIESTA implementation of DFT and the counterpoise method, 

which removes basis set superposition errors (BSSE). The binding distance z is defined 

as the distance between the gold surface and the molecule (1-Sp) at the closest point. 1-

Sp is defined as monomer A and the gold electrodes as monomer B.  

The ground state energy of the total system is calculated using SIESTA and is denoted 

𝐸𝐴𝐵
𝐴𝐵, with the parameters defined as those in the “Theory and Simulation” section of the 

main text. The gold leads consist of 6 layers each containing 25 atoms. The energy of 

each monomer is then calculated in a fixed basis, which is achieved by the use of ghost 

atoms in SIESTA. Hence the energy of the individual molecule 1-Sp in the presence of 

the fixed basis is defined as 𝐸𝐴
𝐴𝐵  and for the gold is 𝐸𝐵

𝐴𝐵. The binding energy is then 

calculated using the following equation: 

 

Binding Energy = 𝐸𝐴𝐵
𝐴𝐵 − 𝐸𝐴

𝐴𝐵 − 𝐸𝐵
𝐴𝐵                                                                               4.1 
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Figure 4.7. Binding energies as a function of the distance (Å) of the nitrogen from the electrode 

surface (lower). Examples of binding geometries on a flat electrode and an electrode containing 

an adatom (above). 
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 To understand the effect of pendant groups on quantum interference in the molecules 

of Figure 4.1, I first consider their two tight-binding representations shown in Figure 4.8, 

connected to 1-dimensional external leads. 

 

Figure 4.8 Tight-binding (i.e. Hückel) models of para-(a) and meta-connected (b) molecules. 

Within the core of each, all site energies are zero except the pendant site energy ɛb and all nearest 

neighbour bonds are equal to –1, except for those denoted as α. The weaker couplings between 

the molecule and left leads are -γL = -0.08 at atom number i and right leads -γR = -0.08 at atom 

number j. 
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The tight binding model is introduced to illustrate the underlying trends in the 

transmission function and to allow us to obtain an analytic formula  as described in 

section 4.8. Figure 4.9 shows results for various values of alpha, to reveal the evolution 

of the transmission curves with increasing coupling to the pendant groups. In Figure 

4.11a, to use the simplest possible description, the same value of alpha = 1 is used for all 

molecules (for more information Table 4.2). When  = 0, the pendant orbital is decoupled 

from the central core. Since the latter is a bipartite lattice, in the meta case, destructive 

interference should occur at the centre of the HOMO–LUMO gap (i.e. E = 0) [13,32,33]. 

The black curves in Figure 4.9 show the resulting transmission coefficients T (E), when 

b = 0. The other curves in Figure 4.10 show how the transmission coefficient evolves as 

the coupling α to the pendant orbital is increased from zero (black curves) to unity (red 

curves). 
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Table 4.2. Comparison between experimental conductances (column 2) and theoretical values. 

Columns 3-6 show DFT-GOLLUM results obtained at different Fermi energies (relative to the 

DFT-predicted Fermi energy). Column 7 shows the conductance obtained from the tight binding 

model by choosing values of b, which yield closest agreement with experiment. Where = –1, 

L = R = –0.08 
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1-Sp –5.79 –5.06 –1.8 6.04 2.58 

2-Np –5.22 –5.04 –2.0 4.50 3.04 

3-Op –5.04 –5.02 –2.2 5.73 3.44 

4-Cp –5.55 –5.08 –1.6 3.83 2.55 

5-2Hp –5.40 –4.99  = 0 

6-Sm –6.34 –5.71 –1.8 6.04 2.58 

7-Nm –5.76 –5.79 –2.0 4.50 3.04 

8-Om –6.32 –5.85 –2.2 5.72 3.44 

9-Cm –5.66 –5.63 –1.6 3.83 2.55 

10-2Hm < –7 –  = 0 
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Figure 4.9  T (E) vs. E for different values of α at εb = 0. Transmission coefficients T (E) for para-

connection (a) , meta-connection (b), when εb = 0 left panel and εb = 0.5 right panel  
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Figure 4.10  T (E) vs. E for different values of α at εb = 0. Transmission coefficients T (E) for 

para-connection (a) , meta-connection (b), when εb = 0.0 
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Fano resonances occur when a bound state is coupled to a continuum of states. For a 

single molecule connected to metallic electrodes, the continuum of states is supplied by 

the metal [13]. The appearance of Fano resonances in electron transport through single 

molecules was recognised in a series of studies of a family of rigid molecules which 

contained pendant groups [43-45], Ismael and co-worker give specific detail to examine 

how Fano resonances can be distinguished from other quantum interference (QI) effects 

in molecules [46]. The above results show that in the absence of pendant groups (i.e. 

when α = 0) the meta case shows a sharp transmission dip due to destructive interference 

at the gap centre, which is absent in the para case. In the presence of pendant groups (i.e. 

when α is non-zero) this destructive interference is alleviated in the meta case. In the para 

case, the non-zero coupling to the pendant group introduces a new conductance pathway, 

which can cause destructive interference within the gap, signaled by the Fano lineshape 

just below E = 0. Further examples of this evolution for different choices of εb are 

presented figure 4.9b. For the values of εb shown in Table 4.2, Figure 4.11a, shows the 

resulting tight-binding transmission coefficients. Clearly the tight-binding model 

captures the qualitative features of the full density-functional calculation of transmission 

curves shown in Figure 4.11b. In particular the tight-binding result for 2-Hm, which does 

not possess a pendant orbital, shows a pronounced transmission dip near E = 0, which is 

reflected in the low transmission coefficient predicted by DFT. (In the latter case, the 

presence of non-pi orbitals provides a parallel conductance path, which prevents the 

transmission coefficient completely vanishing.) 
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Figure 4.11 Transmission coefficients. Results for the tight-binding (Hückel-model) transmission 

coefficients (a) obtained using the parameters in Table 4.2. The transmission coefficients (b) 

obtained for electrodes with adatoms (see figure 4.10b) using density functional theory combined 

with Gollum.  
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The electronic interference structure calculations leading to transmission curves 

(Figure 4.11b) were performed using the DFT code SIESTA [39]. The optimum geometry 

of the isolated molecules was obtained by relaxing the molecules until all forces on the 

atoms were <0.05 V/Å. The SIESTA calculations employed a double-zeta plus 

polarization orbital basis set, norm-conserving pseudopotentials, an energy cutoff of 200 

Rydbergs defined the real space grid and the exchange correlation functional was Local 

Density Approximation (LDA) [40]. 

 

 

Figure 4.12 Geometry of the molecular junction containing a 1-S wire (a) on flat electrodes (b) 

on electrodes containing adatoms. 
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To calculate the conductance through these two groups of molecules, para and meta 

shown in Figure 4.1, they were attached to gold leads via the pyridyl anchor groups. The 

leads were constructed of 6 layers of (111) gold each containing 25 gold atoms. Transport 

calculations were carried out both for flat electrodes and for electrodes containing 

adatoms, as shown in Figure 4.12.  According to DFT, the molecule binds most 

favourably to a top site, with a binding energy of about -0.8 eV at a distance of 2.3 Å 

(Figure 4.7 ) between the terminal nitrogen atoms and a ‘top’ gold atom. This most-

favourable binding geometry has been used in all simulations. A Hamiltonian describing 

this structure was produced using SIESTA and the zero-bias transmission coefficients 

T(E) were calculated using the Gollum code [41]. An excellent agreement between 

theoretical and experimental conductance values has been obtained (Figure 4.15), by 

choosing a Fermi energy of EF = –0.5 eV relative to the DFT-predicted value. Figure 

4.11 shows that the transmission coefficients of meta-connected molecules are all lower 

than those of para connected molecules over a wide energy range within their HOMO–

LUMO gaps, in agreement with a tight-binding model of pi-orbital transport. In the latter 

case, in the absence of bridging atoms (5-2Hp and 10-2Hm) there appear sharp 

transmission dips due to destructive interference in the meta case, which are alleviated 

by the presence of pendant groups. In contrast, in the para case, constructive interference 

in the pi-channel is preserved in the presence of bridging atoms. Furthermore σ channel 

shows there are no dips in the transmission for both meta and para linked as shown in 

figure 4.10. On the other hand, in the DFT-based transmission curves perfect destructive 

interference is masked by the presence of sigma orbitals, which provide a parallel path 

for conductance. 
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 Figure 4.13. Total energy versus angle rotation of anchoring groups with respect to the central 

unit of para-linked molecules 
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Figure 4.14. Total energy versus angle rotation of anchoring groups with respect to the central 

unit of meta-linked molecules. 
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Figure 5.13 and 5.14 are shown the total energy with respect to the angle of anchored 

group for isolated system this is predicting the angle between anchored and backbone of 

each molecule in both case para and meta, the different between 0o and 90o are less than 

0.025 eV (energy at room temperature) for all molecules. In this work I used 90o to find 

transmission coefficient T(E). 

 

 

Figure 4.15 Comparison between theoretical and experimental data for most probable 

conductance values. DFT results are shown for both flat electrodes (solid red lines) and with 

electrodes containing adatoms (dashed red lines). The dotted lines show the average of the ‘flat’ 

and ‘adatom’ DFT conductances. Although there are differences, we conclude that the same 

qualitative trends are obtained using both geometries, with the exception of CMe2, which in the 

presence of adatoms, no longer has an anomalously high conductance observed experimentally 

in the meta case 9-Cm. 
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4.6 Discussion 
 

I conclude, therefore, from our experimental and theoretical data for the para series 1–

4 and the meta series 6–9, that there is a clear correlation between aromaticity of the 

central ring when heteroatoms are present and the single-molecule conductance value in 

the para series. Aromaticity follows the sequence: S > NEt > O > CMe2. Our 

conductance trend for the heterocyclic para series, i.e. O > NEt > S is in agreement with 

a previous experimental study by Venkataraman, Breslow, et al[24] on monocyclic core 

units (furan > thiophene) (Figure 4.2). However, the fluorene derivative 4-Cp (which 

does not have a heteroatom in the core) shows a lower conductance than 2-Np and 3-Op 

although it exhibits a non-aromatic core. The reason for this exceptional behaviour of 4-

Cp is not clear. However, I note that other workers [23–25] have observed that the single-

molecule conductance of fluorene-based cores do not follow expected trends. 

These results demonstrates that a non-aromatic core unit does not necessarily lead to 

higher conductance since the polycyclic series 1–5 exhibits a clear difference in 

comparison to the monocyclic series shown in  figure 4.2. However, our data show that 

the sequence is very different in the meta series where dibenzothiophene ≈ dibenzofuran 

< carbazole. Multiple factors (such as quantum interference, aromaticity and 

electronegativity) and their composite effects should be taken into consideration in 

explaining the trends in the conductance. Our results show that bridging heteroatoms 

alleviate destructive quantum interference in the meta-connected molecules. The 

contribution of electronegativity of the bridging atoms should not be ignored. For the 

meta series dibenzothiophene 6-Sm and dibenzofuran 8-Om represent both extremes. 

Dibenzothiophene Sm is the most aromatic and therefore it lowers the conductance. As 
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was mentioned above, dibenzofuran 8-Om is the least aromatic core unit. Therefore, 

based on the conclusions of the series shown in Figure 4.1, 8-Om should be the most 

conductive molecule. However, the lone pair of oxygen is tightly bonded due to oxygen’s 

high electronegativity, which hinders the delocalization of electrons and decreases the 

electron density of the conjugated π system in 8-Om. The carbazole derivative 7-Nm is 

the most conductive in this meta series because it is less aromatic than dibenzothiophene, 

but also bears a lone pair which allows transmission through the molecule. The 

conductance of model non-bridged compound 5-2Hp is reduced because of the dihedral 

angle between the two phenyl units. Model compound 10-2Hm shows no conductance 

within the detection limit of the MCBJ setup. This is consistent with the bridging atom 

of 6-9 planarizing the core, which is essential for raising the conductance in the meta-

series. 

 

4.7 Analytical formula G of fluorene core 
 

To obtain the core Green’s function G for the isolated core of figure 4.17, I first consider 

the case where  =  = 0. Figure 4.16 . In this case, apart from the isolated site b, the 

structure consists of two isolated 6-membered rings labelled A and B with Green’s 

functions (equation 4.5). 
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                                   Figure 4.16 An abstraction of the isolated core  

 

𝑡 = 2𝑖𝑠𝑖𝑛(𝑘)𝑒2𝑖𝑘
𝛾𝐿 𝛾𝑅
𝛾

𝐺𝑖𝑗

∆
                                                                                                 4.5 

 As noted in ref [11], the Green’s function of the 6-membered rings are given by  

(𝑔𝐴)𝑖𝑥 = 𝐶 cos(𝑘(|𝑖 − 𝑥| − 3)) 

(𝑔𝐵)𝑦𝑗 = 𝐶 cos(𝑘(|𝑦 − 𝑗| − 3)) 

where 𝑖, 𝑥 are sites belonging to the left ring A and 𝑗, 𝑦 belong to the right ring B and 

𝐶 = 
1

2𝛾 sin(𝑘) sin(𝑘𝑁/2)
 

When L and R are non-zero, it is convenient to view the above lattice as an example of 

the more general structure shown in figure 4.16, in which two subsystems labelled A 
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and B are coupled to each other via sites 𝑥, 𝑦 by a single matrix element – and to a 

pendant site by –. 

 

 

 

 

 

Figure 4.17 The geometry of fluorene core 

Then after solving Dyson’s equation we obtain, 

𝐺𝑖𝑗 = (ĝ𝐴𝐵)𝑗𝑖 +
𝛼2

𝐸 − 𝜀𝑏 − 𝛴 
[(ĝ𝐴𝐴)𝑖 𝑎 + (ĝ𝐴𝐵)𝑖 𝑏][(ĝ𝐴𝐵)𝑎𝑗 + (ĝ𝐵𝐵) 𝑏𝑗]                    4.6 

Where 

Σ = 𝛼2[(ĝ𝐴𝐴)𝑎𝑎 + (ĝ𝐴𝐵)𝑎𝑏 + (ĝ𝐵𝐴)𝑏𝑎 + (ĝ𝐵𝐵)𝑏𝑏] 

(ĝ𝐴𝐴)𝑖𝑎 = (𝑔𝐴)𝑖𝑎 +
𝛽2 (𝑔𝐴)𝑖𝑥(𝑔𝐵)𝑦𝑦(𝑔𝐴)𝑥𝑎 

1 − 𝑥𝐴
 

(ĝ𝐴𝐵)𝑖𝑏 =
−𝛽 (𝑔𝐴)𝑖𝑥(𝑔𝐵)𝑦𝑏 

1 − 𝑥𝐴
 

(ĝ𝐴𝐵)𝑎𝑗 =
−𝛽 (𝑔𝐴)𝑎𝑥(𝑔𝐵)𝑦𝑗 

1 − 𝑥𝐴
 

(ĝ𝐵𝐵)𝑏𝑗 = (𝑔𝐵)𝑏𝑗 +
𝛽2 (𝑔𝐴)𝑏𝑦(𝑔𝐵)𝑥𝑥(𝑔𝐴)𝑦𝑎 

1 − 𝑥𝐴
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(ĝ𝐴𝐵)𝑖𝑗 =
−𝛽 (𝑔𝐴)𝑖𝑥(𝑔𝐵)𝑦𝑗 

1 − 𝑥𝐴
 

𝑥𝐴 = (𝑔𝐴)𝑥𝑥(𝑔𝐵)𝑦𝑦 𝛽
2
 
 

An interesting prediction from equation 4.6 is that when E = b the transmission 

coefficient is independent of . For = 1 and b = 0. Figure 4.9 shows examples of T (E) 

versus E for different values of when b = 0  while figure 4.10 shows the corresponding 

results when b = 0.5. As expected, these curves coincide when E = b. as is clear in figure 

4.18  

 

 

 

 

 

 

 

 

 

 

Figure 4.18 shows the zoom in of figure 4.7 and 4.8 the upper panel for b = 0 and the lower 

for b = 0.5 with left side para-para linked and right side meta-meta linked. 
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4.9 Conclusion 
 

Overall, I find that constructive quantum interference in the para-connected molecules 

persists in the presence of bridging atoms and is partly masked by the presence of sigma 

channels, whereas bridging atoms alleviate destructive quantum interference in the meta-

connected molecules. My comprehensive study establishes that both quantum 

interference and heteroaromaticity in the molecular core units play important and inter-

related roles in determining the conductance of single molecular junctions. These results 

should assist in future research in the development of new molecules for incorporation 

into nanoscale molecular circuits. 
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Chapter 5 
 

Carbon Nanotube based single molecule devices 
 

5.1 introduction 
 

The molecular electronics is at the heart of nanoscience, because it hinges on the 

fundamental idea that novel devices can be created by using ingredients so small that 

new properties emerge. Molecules bring in their intrinsically quantum mechanical nature 

and hence molecular devices can exhibit characteristics that, even at ambient 

temperature, cannot be achieved otherwise. In fact, by making functional molecules, such 

as switches, synthetic chemists add a unique ingredient of variability and structural 

control that cannot be achieved with equivalent solid-state devices. The use of carbon-

based nanoelectrodes, in particular, has emerged as a promising approach because of the 

intrinsic nanoscale size of CNTs and graphene and the reduced electronic mismatch 

granted by having molecules and electrodes of the same material (carbon atoms)[1-4]. 

5.2 Carbon Nanotube 
 

The carbon nanotube (CNT) was discovered accidentally by Sumio Iijima in 1991.[5] 

There are two families of CNTs, namely single-wall CNTs and multi-wall CNTs 

(MWCNT). A single-wall CNT is a hollow cylindrical structure of carbon atoms with a 
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diameter that ranges from about 0.5 to 5 nm and lengths of the order of micrometres to 

centimeters. An MWCNT is similar in structure to a single-wall CNT but has multiple 

nested or concentric cylindrical walls with the spacing between walls comparable to the 

interlayer spacing in graphite, approximately 0.34 nm. Carbon nanotubes are considered 

1D nanomaterials owing to their very small diameter that confines electrons to move 

along their length.[1] 

 

5.2.1 Chirality a concept to describe nanotubes 
 

Chirality is the key concept used to identify and describe the different configurations of 

CNTs and their resulting electronic band structure. Since the concept of chirality is of 

fundamental importance I will introduce the concept before discussing how it is applied 

to describe CNT structure. The term chirality is derived from the Greek term for hand, 

and it is used to describe the reflection symmetry between an object and its mirror image. 

Formally, a chiral object is an object that is not superimposable on its mirror image; and 

conversely, an achiral object is an object that is superimposable on its mirror image.  
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                              Armchair                       Zigzag                    Chiral 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
     Fig. 5.1 The three types of single-wall CNT: (a) A chiral CNT, (b) an armchair CNT, and (c) a 

zigzag CNT. The cross-sections of the latter two illustrations have been highlighted by the bold 

lines showing the armchair and zigzag character respectively. 

 

 

 

5.2.2 The CNT lattice 
     

     I introduced the concept of chirality to classify the different types of CNT in the previous 

section, but it was not at all clear why CNTs arrange to form a chiral or an achiral 

geometry. Fortunately, it is actually fairly easy to understand the origin of the different 

types of CNT by considering that a CNT results from folding or wrapping of a graphene 

sheet. To see how the folding operation works, I start from the direct lattice of graphene 

and then define a mathematical construction which folds graphene’s lattice into a CNT. 

Moreover, this mathematical folding construction directly leads to a precise 

determination of the primitive lattice of carbon nanotubes, which is required information 

in order to derive the CNT band structure. It is very important to keep in mind that the 

folding of graphene to form a CNT is simply a convenient conceptual idea to study the 
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basic properties of CNTs. In actuality, CNTs naturally grow as a cylindrical structure, 

often with the aid of a catalyst, which does not involve folding of graphene in any 

physical sense. 

    Figure 5.2 shows the honeycomb lattice of graphene and the primitive lattice vectors a1 

and a2, defined on a plane with unit vectors ˆx and ˆy: 

 

𝑎1 = (
√3 𝑎

2
,
𝑎

2
) ,              𝑎2 = (

√3 𝑎

2
,−
𝑎

2
)                                                    5.5 

 

 

 
      Figure 5.2 An illustration to describe the conceptual construction of a CNT from graphene. 

(a)Wrapping or folding the dashed line containing points A and C to the dashed line containing 

points B and D results in the (3, 3) armchair carbon nanotube in (b) with θ = 30◦. The CNT 

primitive unit cell is the cylinder formed by wrapping line AC onto BD and is also highlighted 

in (b). 

 

     where a is the underlying Bravais lattice constant, 𝑎 = √3𝑎𝐶−𝐶  =  2.46 Å, and 𝑎𝐶−𝐶 is 

the carbon–carbon bond length (∼1.42 Å). Also, 𝑎 1 ·  𝑎1  =  𝑎2  · 𝑎2  = 𝑎 
2, 𝑎1  ·  𝑎2  =

 𝑎2/2, and the angle between a1 and a2 is 60◦. With reference to Figure 5.2a, a single-
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wall CNT can be conceptually conceived by considering folding the dashed line 

containing primitive lattice points A and C with the dashed line containing primitive 

lattice points B and D such that point A coincides with B, and C with D to form the 

nanotube shown in Figure 5.2b. The CNT is characterized by three geometrical 

parameters, the chiral vector Ch, the translation vector T, and the chiral angle θ, as shown 

in Figure 5.2a. The chiral vector is the geometrical parameter that uniquely defines a 

CNT, and |Ch| = Ch is the CNT circumference. Ch is defined as the vector connecting any 

two primitive lattice points of graphene such that when folded into a nanotube these two 

points are coincidental or indistinguishable. For the particular exercise of Figure 5.2, the 

chiral vector is the vector from point A to B, Ch = 3a1 + 3a2 = (3, 3). In general: 

 

𝐶ℎ  =  𝑛𝑎1  +  𝑚𝑎2  =  (𝑛,𝑚)   𝑤ℎ𝑒𝑟𝑒  0 ≤ 𝑚 ≤ 𝑛                                       5.6 

 

And the resulting carbon nanotube is described as an (n, m) CNT. The main parameters 

defining CNTs are shown in Table 5.1.  
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Table 5.1. Table of parameters and associated equations for CNTs [1,4] 

Symbol Name CCNT ACNT ZCNT 

Ch chiral vector 
𝑪ℎ  =  𝑛𝑎1  +  𝑚𝑎2  =  (𝑛,𝑚) 𝑪ℎ  = (𝑛, 𝑛) 𝑪ℎ  = (𝑛, 0) 

Ch length of chiral vector 
𝐶ℎ  =  𝑎√𝑛

2
  +  𝑛𝑚 + 𝑛𝑚

2 𝐶ℎ  =  𝑎𝑛√3   𝐶ℎ  =  𝑎𝑛 

dt diameter 
𝑑𝑡  =  

𝑎

𝜋
√𝑛2  +  𝑛𝑚 +𝑚

2 𝐶ℎ  =  
𝑎𝑛

𝜋
√3   𝐶ℎ  =  

𝑎𝑛

𝜋
 

θ chiral angle cos 𝜃  =  
2𝑛 + 𝑚

√𝑛2  +  𝑛𝑚 +𝑚
2
 𝜃 = 300 𝜃 = 00 

gd Greatest common divisor 𝑔𝑑 = gcd (2𝑚 + 𝑛, 2𝑛 +𝑚) 𝑔𝑑 = 3𝑛 𝑔𝑑 = 𝑛 

T translation vector 𝑻 =  
2𝑚 + 𝑛

𝑔𝑑
𝒂1 −

2𝑛 + 𝑚

𝑔𝑑
𝒂2 𝑇 =  𝒂1 − 𝒂2 𝑇 =  𝒂1 − 2𝒂2 

T length of translation vector 𝑇 =  
√3𝐶ℎ
𝑔𝑑

 𝑇 =  𝒂  𝑇 =  𝒂 √3 

N Number of hexagons/cell 𝑁 =  
2𝐶 ℎ

2

𝑎2𝑔𝑑
 𝑁 =  2𝑛 𝑁 =  2𝑛 

 

5.2.3 The Tight Binding Model.  
 

    The electronic properties of the carbon structures can be described using a tight 

binding model. These are numerical calculations based upon the linear combination of 

atomic orbitals (LCAO) where the local potential energy is obtained from the Slater-

Koster parameterisation. In particular for the case of the CNT we will need six Slater-

Koster parameters to describe the C - C bond for a simple two center parameterisation. 

These are chosen by fitting first-principles LDA results of energy versus nearest-

neighbour interatomic separation for diamond. Checks have been made to ensure that the 

parameters give reasonable results for the electronic band structure, elastic modulii and 

phonon frequencies in the diamond structure although these properties do not enter 

explicitly into the fitting procedure. The values are given in Table 5.2, where (𝜀𝑠 , 𝜀𝑝) are 

in the diagonal elements and (𝑉𝑠𝑠𝑠, 𝑉𝑠𝑝𝑠, 𝑉𝑝𝑝𝑠, 𝑎𝑛𝑑 𝑉𝑝𝑝𝑝  ) are in the off-diagonal elements 

that make up the tight binding Hamiltonian.  
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A crystalline solid can be viewed as an array of localised atomic orbitals, the overlap of 

which is only significant if the atoms are very close together. This is the tight binding 

model upon which the calculations are based. It does not describe the interatomic region, 

nevertheless it does provide a method to calculate accurately many physical effects 

usually outside computational capability by reducing the degrees of freedom involved.  

To gain a clearer insight into the tight binding model consider the discretisation of the 

Schrodinger equation in terms of continuous coordinate (x), 

 

Table 5.2. The (4 x 4) elements orbital of the total Hamiltonian [6] 

 S Spx Spy Spz 

S 𝑉𝑠𝑠𝑠 −𝑙 × 𝑉𝑠𝑝𝑠 −𝑚 × 𝑉𝑠𝑝𝑠 −𝑛 × 𝑉𝑠𝑝𝑠 

Spx 𝑙 × 𝑉𝑠𝑝𝑠 𝑙2 × 𝑉𝑝𝑝𝑠 + (1 − 𝑙
2)𝑉𝑝𝑝𝑝 𝑚 × 𝑙 × (𝑉𝑝𝑝𝑠 − 𝑉𝑝𝑝𝑝) 𝑛 × 𝑙 × (𝑉𝑝𝑝𝑠 − 𝑉𝑝𝑝𝑝) 

Spy 𝑚 × 𝑉𝑠𝑝𝑠 𝑚 × 𝑙 × (𝑉𝑝𝑝𝑠 − 𝑉𝑝𝑝𝑝) 𝑚2 × 𝑉𝑝𝑝𝑠 + (1 − 𝑚
2)𝑉𝑝𝑝𝑝 𝑛 × 𝑚 × (𝑉𝑝𝑝𝑠 − 𝑉𝑝𝑝𝑝) 

Spz 𝑛 × 𝑉𝑠𝑝𝑠 𝑛 × 𝑙 × (𝑉𝑝𝑝𝑠 − 𝑉𝑝𝑝𝑝) 𝑛 × 𝑚 × (𝑉𝑝𝑝𝑠 − 𝑉𝑝𝑝𝑝) 𝑛2 × 𝑉𝑝𝑝𝑠 + (1 − 𝑛
2)𝑉𝑝𝑝𝑝 

 

The tight binding parameters given in the matrix above are the full sp3 tight-binding 

values. They enable the model to take into account the curvature of the nanotube surface 

(as opposed to the simpler 𝜋 model considered in the analytical results). This is achieved 

by applying the formulas given in Table 5.3, which make up the full sp3 configuration. 

The direction cosines, (l,m,n), will describe the curvature of a given CNT from the 

position of each atomic site, which in turn will give values to all the elements of the 4 x 

4 sub-matrix. Tight-binding results which take into account the 2s electrons (as in this 

model) show that the large curvature of the small diameter CNTs (except for armchair 

CNTs) leads to hybridisation of the u and 𝜋 orbitals. This results in a small energy gap 
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(meV) in these tubes. Note when the unfolded energy bands of CNTs are seen in the 2-

D Brillouin zone of graphite, the degenerate point at the K point moves away from this 

point due to the hybridisation effect. The hopping parameters of Table 5.3 are then scaled 

with interatomic separation r as a function s(r)[7]. 

 

𝑠(𝑟) =
2.39

𝑟2
𝑒𝑥𝑝 {−2.0 [(

𝑟

2.18
)
6.5

 +  (
1.546

2.18
)
6.5

]}                                                 5.7 

      

     Where r is the C-C bond distance. 

Table 5.3 shows the parameter for C-C atoms, 

 

 

 

 

 

 

 

 

    The parameters in the above scaling function are again the result of fitting the 

tight­binding results to LDA calculations the full details of which are given in [7]. In my 

model the scaling function provides an accurate tailing off of the orbital interaction which 

limits the bonds to nearest-neighbour elements only i.e. there is a gradual cut off at 

approximately half way between the nearest-neighbour and next nearest­neighbour 

atomic positions in the CNT.  

 

es -3.65 

ep 3.65 

𝑉𝑠𝑠𝑠 −3.63 × 𝑠(𝑟) 

𝑉𝑠𝑝𝑠 4.2 × 𝑠(𝑟) 

𝑉𝑝𝑝𝑠 5.38× 𝑠(𝑟) 

𝑉𝑝𝑝𝑝 −2.24 × 𝑠(𝑟) 
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The material specific Hamiltonian for the Carbon nanotube can now be accurately 

constructed. To calculate the effects upon transport across the scattering region some 

clever numerical tricks need to be employed as follows. 

 

5.3 Numerical simulations  
 

5.3.1 Four orbital tight binding calculation 
 

The focus of this chapter is to develop a model of a molecular junction using CNTs as 

electrodes. In these structures, direct bonding between the molecule and the lead should 

lead to more clearly defined contact geometries and stronger binding which will enhance 

conductance. This is in comparison to metal/molecule/metal junctions where the contact 

geometry is unknown and leads to a statistical distribution of conductance values. To 

begin with a four orbital tight binding calculation is constructed to predict the 

transmission coefficient of a perfect crystalline CNTs. Figure 5.3 shows the transmission 

coefficient for three different types of CNTs, two zigzag and one armchair. The black 

line is for a CNT(8,0) and  a gap of 0.68 eV opens at 0eV, this gap decrease to 0.04 eV 

for CNT(9,0) (red line), on the other hand the blue line indicates the metallic CNT(5,5) 

where the band gap disappears. Thus this model accurately predicts the electronic 

properties of these structures, as zig-zag nanotubes are expected to be semi-conducting 

unless n is divisible by 3 and all arm-chair nanotubes are metallic. In the case of the (9,0) 

CNT the opening of a small gap is due to the curvature of the tube. 
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Figure 5.3 (Top)  Geometry of a (8,0), (9,0) and (5,5) CNT. (Bottom) Zero bias transmission 

coefficient T(E) for (8,0), (9,0) and (5,5) using a four orbital tight binding model. 
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The CNT(5,5) will form the basis of the electrodes, because it is metallic and has two 

open channels close to the Fermi energy (0eV) . The next step is to attach the molecule 

to form a junction. To test this tight binding method I am again going to investigate the 

connectivity dependence that was studied in the previous chapter.  Using a simple 

benzene ring and assuming direct carbon-carbon coupling between the edge of the 

nanotube, I calculate transmission for  the case of para-para ,meta-meta and ortho-ortho 

binding. The structures and transmission coefficients can be seen in Figure 5.4. In this 

case I ignore the role of hydrogen atoms, and the conductance of the meta-meta coupling 

is lowest in agreement with previous work in the literature[8].   
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Figure 5.4 Transmission coefficient of benzene with CNT (5,5) electrodes for para-para, meta-

meta and ortho-ortho linked. 

 

The second test I apply using this model is to investigate the length dependence of these 
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orientation. The resulting transmission curves shown in figure 5.5 show the expected 
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behaviour of a decrease in conductance in the longest molecule as is usually found in 

metal-molecule conductance measurements. The final step is to replace the central 6 

carbon ring with a 5-carbon ring (5.5c). The result of the transmission coefficient shows 

similar behaviour to 5.5b but has an extra anti-resonant feature at -1.0eV. In conclusion, 

the four-orbital tight binding model I have developed is suitable to use with carbon based 

systems and can provide qualitative understanding of transport such as quantum 

interference. However, for more complicated molecules containing atoms other than 

carbon e.g. nitrogen and oxygen the construction of tight-binding parameters is difficult. 

Therefore, to overcome this and to allow for a more quantitative model I switch to the 

DFT method.  
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Figure 5.5 Transmission coefficient of a-two benzene ring, b-three benzene ring and c-five 

atoms in mid two benzene ring with CNT (5,5) electrodes. 
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 5.3.2  DFT calculations 
 

The motivation for this work is previous experimental work[25] which using a chemical 

synthesis approach and AFM measurements has shown it is possible to measure the 

conductance of carbon nanotube molecule junctions. In this work, I focus on the 

molecules shown in Figure 5.6 which I call M1 and M2. 

Following the previously described method to calculate the electrical properties of single 

molecules, I used density function theory (DFT), SIESTA code [9] to obtain the 

Hamiltonian of the structure and relax the system shown in figure 5.6. A double-zeta 

polarized basis set was used for all atoms and the local density approximation (LDA) 

[10], for the exchange and correlation functionals. The Hamiltonian and overlap matrices 

are calculated on a real-space grid defined by a plane-wave cut-off of 200 Ry. Each 

molecule was relaxed to the optimum geometry until the forces on the atoms are smaller 

than 0.01 eV/Å and in case of the isolated molecules; a sufficiently-large unit cell was 

used to avoid inter-cell interactions.  

 

 

 

 

 

 

 

                            Figure 5.6 Optimized geometries of molecules M1 and M2 
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  5.4 Calculation of Electronic Properties 
 

In this section I will present the DFT calculated electronic properties for perfect 

crystalline CNTs  of differing chirality (n,m) . I have studied several different types of 

CNTs, such as zigzag, armchair and chiral and for each of these I calculate the band 

structure and number of open channel channels. This study is important to determine that 

this method gives the correct behaviour for the electrodes.  

 

5.4.1 CNT (n, m) 

 
The unit cell of an (8,0) nanotube has 32 atoms, with its axis lying along the z-direction 

as shown in the figure 5.7a. The calculated band structure (5.12a) shows there is a gap of 

about 0.6 (eV) between valence and conduction band and the number of open channels 

drops from a value of 2 at this gap. This is in good agreement with the previously 

calculated tight binding model. Figure 5.7b shows the results for (9,0) which has 36 

atoms in the unit cell. The band structure has a very small gap of about 0.06 eV and 

therefore the semimetal (9,0) is not a good metallic electrode. The (5,5), Figure 5.7c, is 

the best choice for the electrodes, because it does not have a gap around the fermi level 

and it has two open channels. The size of the unit cell is also small (20 atoms). The final 

nanotube I investigate is the chiral (7,4) shown in figure 5.7d which is expected to be 

metallic. The resulting band structure shows this and the behaviour is similar to the 

armchair tube. It has 124 atoms in its unit cell which makes it computationally expensive 

to use as an electrode, also the chirality makes the contact between molecule and lead 

asymmetric. Therefore, while experimental junctions may typically be formed using 

metallic chiral nanotubes the electronic properties can be modelled using the simple 

armchair nanotubes. 
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Figure 5.7 CNT(n,m) configuration, band structure of CNT(8,0) and transmission coefficient 

and open channel for a- CNT(8,0),b-  CNT(9,0), c- CNT(5,5), d- CNT(7,4), 
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5.4.2 Binding Energy  

 
The next step is to understand how the molecules M1 and M2 attach to the edge of the 

nanotube, and to do this I calculate the optimum binding geometry of each attached to 

the CNT(5,5). For these molecules the expected binding is through a direct carbon-carbon 

coupling to the terminal carbon atoms (there the hydrogen atoms shown in Fig 5.13 

attached to the end carbons are removed).  I again used the SIESTA implementation of 

DFT and the counterpoise method, which removes basis set superposition errors (BSSE). 

The binding distance 𝑑 is defined as the distance between the CNT(5,5) surface and the 

molecule (M1) at the closest point. M1 is defined as monomer A and the CNT(5,5) 

electrodes as monomer B.  

 

The ground state energy of the total system is calculated using SIESTA and is denoted 

𝐸𝐴𝐵
𝐴𝐵, with the parameters defined as those in section 5.3.2. The CNT(5,5) consists of 2 

layers containing 20 atoms. The energy of each monomer is then calculated in a fixed 

basis, which is achieved by the use of ghost atoms in SIESTA. Hence the energy of the 

individual molecule M1 in the presence of the fixed basis is defined as 𝐸𝐴
𝐴𝐵 and for the 

CNT(5,5) is 𝐸𝐵
𝐴𝐵. The binding energy is then calculated using the following equation: 

 

 

Figure 5.8 shows the optimum binding distance 𝑑 is 1.6 Å and the binding energy is 

approximately -3.4 eV. The distance is equivalent to the formation of a covalent bond 

and has a large binding energy, meaning the binding of the molecule in this structure is 

much stronger than in typical molecular junctions. 

 

 Binding Energy = 𝐸𝐴𝐵
𝐴𝐵 − 𝐸𝐴

𝐴𝐵 − 𝐸𝐵
𝐴𝐵                                                                        5.8                  
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Figure 5.8. Molecule (M1) on a CNT(5,5) surface. M1 molecule with respect to the CNT(5,5) 

leads (above panel). Binding energy of M1 molecule to CNT(5,5) as a function of molecule–

contact distance (below panel). The equilibrium distance is found to be approximately 1.6 Å from 

the minimization of the binding energy. 
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geometry relaxation in which the atoms of the electrode are fixed. The figure (5.9) 

below shows the geometry after relaxation for M1 and M2 contacted to a (5,5) and the 

carbon-carbon bonding distance decreases to 1.5 Å in M1 and 1.47 Å in M2 and also 

the bonding angle is changed. 

     

 

 

 

 

 

 

 

 

 

 

Figure 5.9. Optimized molecules M1 (top) and M2 (bottom) on a CNT(5,5) surface the distance 

for M1 =1.5 and for M2=1.47 
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Figure 5.10. DFT based orbital diagrams for compounds M1. 
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Figure 5.11. DFT based orbital diagrams for compounds M2 

 

Charge density plots of the first highest occupied molecular orbital and lowest 

unoccupied molecular orbital for M1 and M2 bound to CNT(5,5) are shown in figures 

5.10 and 5.16. By comparing the topology of the HOMO and LUMO orbitals of M1 and 

M2 I see that the charge density is evenly distributed across the length of M1 for both the 

HOMO and LUMO orbital, whereas in M2, HOMO is delocalized. But for LUMO M2 

is biased towards the left part and the LUMO+1 biased to the opposite side that is because 

of the degeneracy of the orbitals. This simple orbital analysis provides some insight into 

the mechanisms responsible for the rectification ratio. 
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5.4.3 Transmission coefficient  
    

 The electrical transport properties of the nanoscale systems M1 and M2 were calculated 

using Gollum [11] from the converged mean-field DFT Hamiltonian provided by SIESTA. 

Gollum is based upon equilibrium transport theory and is used to calculate the transmission 

coefficients T(E) for electrons of energy E. Once computed the zero-bias electrical 

conductance G is obtained from the Landauer formula. 

 

G = G0∫ dE
∞

−∞

T(E)(−
∂f(E, T)

∂E
)                                                                                      5.9 

     

    where G0 = (
2e2

h
)  is the quantum of conductance and f(E,T) is the Fermi distribution 

function defined as f(E, T) = [e(E−EF)/kBT + 1]−1  with kB is Boltzmann constant.   

 

Figure 5.10 shows the transmission coefficient of M1 and M2 molecules attached to 

CNT(5,5), from this curve we can see  that the  molecules show resonant behaviour, even 

in the case of a strongly bound system. The Fermi Energy (0eV) sits in the gap between 

the HOMO and LUMO resonances and the values of transmission are about 3.0e-7 for 

M2 and 6.5e-7 for M1 and the ratio is about 0.45 at Fermi energy. The value of M2 is 

higher due the smaller HOMO-LUMO gap. 
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 Figure 5.12Transmission coefficient T(E) against energy E(eV) for M1 and M2 attached to 

CNT (5,5) terminated by hydrogen atoms[25]. 
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Using equation 5.9 I then calculate the conductance of these molecules at room 

temperature and the results are shown in Figure 5.11. Here we can see that there is 

thermal broadening of the transmission resonances and  shows the value of the log of 

the conductance for M1 and M2 molecules, are -6.5 for M1 and  -6.2 for M2 at EF=0. 

 

                                  Figure 5.13 Conductance against energy E(eV) for M1 and M2 
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   5.4.4 Current rectification 
 

Molecular electronics aims to use molecules as active elements in nanoscale electronic 

circuits and it was born with the prediction that a single molecule could function as a 

diode [12]. Molecular rectification has been shown in many-molecule devices [13-16], 

in some cases the rectification ratios increasing from 2 to about 1500 [17-20], but often 

the current density is very low (fraction of the nano-amp). Single-molecule diodes have 

also been reported [21-23], but in all cases, they suffer from low rectification ratios (< 

10). Recently J. Trasobares and co-worker [27], studied molecular diode junctions 

composed of a gold nanoelectrode and found that the current density increased by more 

than nine orders of magnitude compared with that of micrometre-scale molecular diodes 

with the same molecule [28,29]. To achieve a single-molecule rectification effect, we 

must provide a reliable and symmetric contact between an asymmetric molecule and two 

electrodes, and be able to determine and control the orientation of the molecule relative 

to the polarity of the applied bias voltage. The threshold bias voltage applied in the 

junction is about 1.8 V which was the value used by Tao’s group [21]. 

Rectification of current is an essential parameter in fabricating any device for electronic 

purposes. Traditional MOFSET’s can rectify current with a very low forward voltage 

drop, and also have the advantage of being able to switch at very high speeds. Therefore, 

molecular equivalents of diodes must exhibit properties of switching and rectification of 

the current. 

The indication used to assess the suitability of a particular molecule for use as a diode is 

the rectification ratio (RR). This number is estimated from current-voltage 

characteristics, and is the ratio of the current at two equal but opposite voltages: 
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𝑅𝑅 = |
𝐼(+𝑉)

𝐼(−𝑉)
|                                                                                                                       5.10      

 

In the Landauer formalism, the current in this model is given by 

 

𝐼 = (
2𝑒

ℎ
)∫ 𝑑𝐸 𝑇(𝐸)[𝑓𝑙𝑒𝑓𝑡(𝐸) − 𝑓𝑟𝑖𝑔ℎ𝑡(𝐸)]                                                                5.11

∞

−∞

 

where e = |e| is the electronic charge, h is Planck’s constant and T(E) is the transmission 

coefficient for electrons passing from one lead to the other via the molecule. Clearly      I 

= 0 when fleft(E) = fright(E), because only differences in the distributions contribute to the 

net current. 

 Close to equilibrium, 𝑓𝑙𝑒𝑓𝑡(𝐸) = [𝑒
𝛽(𝐸−𝐸𝐹

𝑙𝑒𝑓𝑡
)
+ 1]

−1

and 𝑓𝑟𝑖𝑔ℎ𝑡(𝐸) = [𝑒
𝛽(𝐸−𝐸𝐹

𝑟𝑖𝑔ℎ𝑡
) + 1]

−1

 

Where 𝐸𝐹
𝑙𝑒𝑓𝑡

 and 𝐸𝐹
𝑟𝑖𝑔ℎ𝑡

 is the fermi energy of the left and the right reservoir, and 𝛽 =
1

𝑘𝐵𝑇
 where 

T is the temperature, If V is the voltage difference between the left and right reservoirs, 

then 𝐸𝐹
𝑙𝑒𝑓𝑡

= 𝐸𝐹 +
𝑉

2
 and 𝐸𝐹

𝑟𝑖𝑔ℎ𝑡
= 𝐸𝐹 −

𝑉

2
 , This means that at zero temperature, but finite 

voltage 

 

𝐼 = (
2𝑒

ℎ
)∫ 𝑑𝐸 𝑇(𝐸, 𝑉)                                                                                                 5.12

𝐸𝐹+
𝑉
2

𝐸𝐹−
𝑉
2

 

Where 𝑇(𝐸, 𝑉) is the transmission coefficient at voltage V 

In order to find IV curve of this system I applied a positive voltage on the left hand of 

the junction shown in the figure 5.14 bounded by the blue line and negative voltage on 

the right hand (yellow line). The rectification is dependent on this voltage profile, 

therefore in this study I pick two different paths for M1 as shown in 5.14(a,b), and for 

M2 just one path, figure 5.14c. 
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       Figure 5.14 the molecules are coupled to the lead a-M1path 1 b- M1 path 2 c- M2 
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         Figure 5.15 I-V characteristics acquired for a- M1 path 1 b- M1 path 2 c- M2 
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Figure 5.16 Rectification ratio as a function of applied voltage for CNT (5, 5) |molecule| 

CNT (5, 5) junctions. 

 

The observed rectification can be compared for M1 and M2 by plotting the rectification 

ratio as a function of applied bias for the three paths of two molecules (figure 5.16). It is 

clear from this figure that the RR > 0 for both molecules, for M1 voltage profile 2 the 

magnitude of RR it is about 20 at 1.8(V) but for the same molecule it is reduced to 7 with 

a different voltage profile (figure 5.16 a,b). In the case M2, the maximum value of RR is 

at 1.2 (V) and has a value of about 10. In the end both these molecules have good 

rectification in comparison with previous work 2.5 [21]. This result is related to the 

asymmetry of molecule because the current encounter a wider tunneling barrier at reverse 

bias than at forward bias. Since tunneling current decreases exponentially with increasing 

width of the barrier [30] 
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For a functional diode, not only is a high rectification ratio needed but also a large enough 

current. In Figure 5.15 (a,b,c) , I  observe that currents higher than 50 nA in the backward 

case (-V),but forward case it is about a couple of nA’s. 

Another method used to find the IV characteristics, is to apply an external electric field 

(which would be produced by an equivalent applied voltage) in the DFT calculation on 

the M1 and M2 molecule when attached to electrodes. Here, the voltage was varied 

between -1.8 to 1.8 (V) by using siesta code, as we can see from figure 5.17 the 

transmission coefficient are slightly different for both M1 and M2 with varied external 

electric field. For this reason, the forward current is almost the same as the reverse current 

(figure 5.18), therefore the rectification ratio is equal to one in both cases, and the 

magnitude of the current is about a fraction of a nano-amp. This is too low compared 

with the Gollum method. The reason for this is the voltage dropping at the contact 

between lead and molecule, on the contrary with Gollum method the dropping is on the 

path indicated by the figure 5.14. 
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   Figure 5.17Transmission coefficient T (E, V) against energy E(eV) for M1 and M2 
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Figure 5.18 I-V characteristics acquired for M1 and M2 by using external electric field across the 

molecule 
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5.4.6 Conclusions 
 

Most single molecule electronic studies are based on gold/molecule/gold junctions due 

to the wide range use of STM and break junction techniques. Here using a new 

experimental approach based on solution formed junctions as motivation, I have 

investigated the possibility of nanotube based molecular junctions. I have studied charge 

transport through asymmetric molecules attached to armchair carbon nanotubes. To do 

this I have calculated the I-V characteristics and rectification ratios. During this work I 

have investigated different types of CNT’s for use as leads and have developed a four 

orbital tight binding model to use alongside DFT calculations with the aim of producing 

a deeper understanding of the transport calculations. I have shown that using a simple 

representation of a junction using just carbon atoms can give good agreement with DFT 

calculations for a full simulation. 

The advantage of these carbon based junctions is that the molecules are strongly bound 

to the electrodes which should remove the large fluctuations in conductance present in 

molecule anchored to gold. Here I show that for these type of systems the transport is 

still determined by the nature of the energy levels of the molecule with the Fermi energy 

positioned in the HOMO-LUMO gap and the behaviour shown is similar to that produced 

on gold electrodes.  
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Chapter 6 

A comprehensive study of the electrical conductivity 

through flat stacked polycyclic aromatic 

hydrocarbons. 
 

 

6.1 Introduction 
 

Vertical devices, like the example shown in Fig 6.1a, which has a top contact deposited 

onto a self-assembled monolayer (SAM) formed on a metallic bottom contact are being 

studied experimentally with a view to developing this flat-stacked geometry as a tool to 

construct molecular electronic devices which will be scalable to industrial applications. 

An example of such a structure is a transparent top contact of graphene oxide is deposited 

onto a photo sensitive monolayer [1]. A more pertinent study [2] arranges  stacked 

aromatics within columnar coordination cages to obtain conductance measurements. In 

this work the SAM is made of polycyclic aromatic hydrocarbons (PAHs) and the 

electrical conductance is perpendicular to the plane (CPP) of the PAH attached to the 

electrodes is calculated as shown in figure 6.1a. Earlier work [3] focused upon the 

conductance in the plane (CIP), where the transport direction is from the bottom to the 

top contact, and in all cases, both experimental and theoretical the HOMO-LUMO gap 

is in the order of several electron volts. This work predicts that the through plane 

conductance is dependent upon the number of aromatic rings for the oligoacenes, where 
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anthracene is semi-conducting, but tetracene is a conductor. In the case of PAHs the 

chemical structure plays an important role as structures above nine aromatic rings are 

predicted to have a high metallic conductance. These structures that will form the basis 

of this theoretical study are illustrated in Figure 6.2. The Fujita group has applied 

columnar coordination cages to efficiently and precisely assemble stacked 𝜋 systems [4], 

and Takahashi group has measured the conductance for 𝜋 -stacked aromatics figure 6.1b, 

where the 𝜋 stack was sequentially increased from four to six stacked aromatic molecules 

and they show that the conductance decreases with the increasing number of 𝜋 systems 

[5].   

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                                                                                      

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. a- shows the orientation and model set-up for the electron transport calculations. In 

this case an infinite periodic chain of anthracene molecules are 𝜋 − 𝜋 stacked at a separation of 

0.22 nm, b- The experimental setup for the conductance measurement for pyrene 𝜋 − 𝜋 

stacked[5].  

 

 

Z 

a                                     b 
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In this work I specifically focus on the electronic properties of π-π stacked aromatic 

systems, which are mainly determined by the π-π interaction in conjunction with charge 

transfer between the layers via electron donor/acceptors. Different types and size of 

molecules are presented in this chapter with varying surface patterning and bandgap 

energy. This π-π stacked system can be used as an electrode attached to a single molecule 

to replace the typical gold electrode in the case of a metallic system.  

To calculate the electrical conductance through these stacks of molecules I assume a 

band transport model through an infinite stacked column of each PAH. For each structure, 

I evaluate the number of open channels as a function of the electron energy E passing 

through. This method is evaluated using two approaches. First, by obtaining the DFT 

Hamiltonian from SIESTA [6] and then applying equilibrium transport theory via Gollum 

[8] and secondly by constructing a tight binding nearest neighbor Hamiltonian from 

parameters for the hopping elements obtained from the band structures given by the DFT 

calculations.  

6.2 Computational Details 
 

The DFT calculations were carried out using the density functional package SIESTA [6] using 

the local density functional approximation (LDA) parameterised by the functional of Ceperley 

and Alder [7]. The systems were optimised to a force tolerance of less than 40 meV/Å using 

extended double zeta polarised basis sets of pseudo atomic orbitals with a real space grid defined 

with a plane wave cut off of 250 Ry. The electrical transport properties of the nanoscale system 

were calculated using Gollum [8] from the converged mean-field  DFT Hamiltonian provided by 

SIESTA. Gollum is based upon equilibrium transport theory and is used to calculate the 

transmission coefficients T(E) and number of open channel for electrons of energy. Gas-phase 
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optimizations were performed with the Gaussian 09 program package [9]. Using the B3LYP 

functional [10] and 6-31G**basis set. I have performed two types of DFT calculation by using 

LDA and VDW functionals and table 6.1 shows the energy gap and distance between the layer 

of dimer for both LDA and VDW methods for each molecule. As we can see the LDA energy gap 

is higher than VDW energy gap. This former is close to the experimental energy gap therefore I 

choose to use LDA functional.    

 

 

 Table 6.1 Shows the compared between LDA and VDW functional for isolated dimer system 

where Eg is the band gap, where D is the distance between two layers . 

 

 
LDA 

VDW 

 D(A) 

LDA 

  

D(A) 

VDW 

DZP 

D(A) 

VDW 

Fix 
DZP Fix 

Eg Eg Eg 

Benzene -4.61 -4.72 -4.55  3.30 3.4 3.45 

Azulene -1.92 -1.77 -1.74  3.20 3.33 3.44 

Naphthalene -3.19 -3.14 -3.05  3.25 3.33 3.44 

Anthracene -2.11 -2.0 -2.04  3.22 3.33 3.44 

Tetracene -1.44 -1.33 -1.39  3.20 3.30 3.44 

Pyrene -2.34 -2.28 -2.35  3.25 3.35 3.44 

Anthanthrene -1.62 -1.57 -1.63  3.20 3.35 3.44 

Dibenzo coronene -0.98 -1.08 -1.15  3.20 3.30 3.44 

 

 

As an example of the model oligoacene structures used in the transport calculations 

Fig. 6.1 illustrates a section of the infinite 𝜋 − 𝜋  stacked anthracene PAH chain. The 

direction of electron transport is illustrated by the arrow and is perpendicular to the plane 

of the PAH. 

An important point to highlight is that the electron transport is now mediated through 

the 𝜋 − 𝜋 interactions between the PAH layers and this results in an ordering of the size 
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of the gap with the smallest PAH having the largest gap. Table 6.2 presents the results of 

the through plane electronic properties of the PAHs studied. 

      

Figure 6.2. Shows the geometries of molecular where L and W denoted to the length and width 

of each molecule respectively.  

 

6.3 Result 
 

6.3.1 Number of open transmission channels  

The number of open transmission channels for the systems shown in figure 6.2 are 

illustrated in figures 6.3 and 6.4. As we can see from those figures there is agreement 
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between simple tight binding calculation (red line), which I will discuss later, and density 

function theory calculations (black line). 

The first thing to note from these calculation, is that the band gap is decreasing with 

increase in the size of the molecule as shown more clearly in table 6.2. To define the size 

of the molecule, I introduce two parameters L and W, to denote the length and width. In 

the case of benzene which is 1 ring, L=1 and W=1, for naphthalene L=2 and W=1 etc. 

The band gap for the benzene molecule is 3.25 eV and this value decreases to 1.51 and 

0.42 for Naphthalene (L=2,W=1) and Anthracene (L=3,W=1) respectively and the band 

gap disappears for Tetracene (L=4,W=1). While the same thing occurs for an increase in 

the width of the molecule. Anthracene (L=3, W=1) band gap = 0.42 eV, Anthanthrene 

(L=3,W=2) =0.18 eV and Dibenzocoronene (L=3, W=3) band gap = 0eV.  

 The symmetry and structure of the molecule also have a strong effect on the band gap, 

e.g. Azulene and Naphthalene have the same number of atoms (10) but there is a 

significant difference in their structure. This leads to big difference in the band gap as 

shown in the table 6.2 since the gap of Azulene is 0.39 eV this value is less than third of 

the naphthalene value.  
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Figure 6.3. Show the number of open channel of the series of molecules, Benzene, Naphthalene, 

Pyrene and Anthracene. 
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Figure 6.4 Show the number of open channel of the molecules Anthracene, Tetracene, 

Anthanthrene and Dibenzo coronene. 

 

 

 

 

 

 



Chapter 6                                                                                PAH stacked                                                              

 
 

144 

 

Table 6.2 shows the value of band gap for molecules in figure 6.2. The first two column are 

compared between T.B and DFT calculation for periodic system, and the next three column are 

compared between different ways for isolated monomer system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 Show the comparison between different way DFT calculation and Experimental 

measurement 
 

 

 

 

 
gap for periodic 

system 
Gap for Isolated system 

Molecules T.B 
DFT 

(eV) 
Exp.(eV) 

DFT- 

B3LYP(eV) 

DFT 

LDA(eV) 

Benzene 3.24 3.25 6.2[12] 6.69 5.32 

Naphthalene 1.49 1.51 4.51[12] 4.87 3.35 

Pyrene 0.78 0.78 3.56[13] 3.89 2.55 

Anthracene 0.41 0.42 3.31[12] 3.56 2.23 

Azulene 0.4 0.39 2.48[14] 3.40 2.11 

Anthanthrene 0.174 0.18 2.83[16] 2.88 1.84 

Tetracene --- --- 2.49[15] 2.50 1.42 

Dibenzocoronene --- ---  2.17 1.35 
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The last three columns of table 6.2 shows the comparison between the experimental 

and theoretical value for isolated molecules as we can see in the figure 6.5 the trend of 

band gap of the isolated molecules are same trend for periodic system but it is different 

in the value whereas the isolated system have band gap higher then periodic system. 

 

 

 

6.3.2 Band Structure 

 
Band structure calculation for transport perpendicular to the planes of the above 

columnar wires are shown in figure 6.6 and 6.7. where K is the wave vectors. 
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Figure 6.6. Show the series of molecule in the figure 6.2 Benzene, Naphthalene, Pyrene and 

Anthracene. 
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Figure 6.7 Show the band structure of the series of molecule in the figure 6.2 Azulene, 

Tetracene, Anthanthrene and Dibenzo coronene. 
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Figure 6.8 Tight binding representation of the systems in figure 6.1 . 

 

 

6.3.3 Eigenvalues  
 

In order to understand the behavior of each molecular wire in this work, I have 

constructed a tight binding model for the isolated molecules shown in figure 6.2.  As all 

molecules contain only carbon and hydrogen atoms I construct model of 𝜋 – orbitals only 

by setting all couplings between carbons equal to -1 and set the on-site energy εo=0. This 

means that from the point of view of connectivity, the molecules in figure 6.2 are 

equivalent to the lattices shown in figure 6.8. The eigenvalues of the latter are presented 

in figure 6.9, from which the energy of the HOMO (EH) and LUMO (EL) are calculated, 

along with their difference ∆= 𝐸𝐿 − 𝐸𝐻 these are presented in table 6.3. 



Chapter 6                                                                                PAH stacked                                                              

 
 

149 

 

 Table 6.3 the parameter using in tight binding calculation, where is γ coupling between C-C 

atoms in isolated molecular, τ ́ coupling between the layers and Δ Homo Lumo gap for isolated 

system. 

  

 

 

Figure 6.9 Tight binding eigenvalues of benzene (B), Naphthalene (N), Azulene(AZ), 

Anthracene(A), Pyrene(PY), Tetracene(T), Anthanthrene(AN) and Dibenzocoronene(DC). The 

tight binding Hamiltonian of each molecule was fixed with α=-1 and εo= 0. 

 

 

 

 

 

Molecule  𝛾 �́� 𝜏 = �́�/𝛾  4 × 𝜏 Δ=EH-EL 𝛥/4𝜏 

Benzene 2.3 0.34 0.14 0.60 2 3.38 

Naphthalene 2.12 0.28 0.13 0.52 1.23 2.34 

Pyrene 1.9 0.22 0.11 0.46 0.89 1.92 

Anthracene 2.23 0.36 0.16 0.64 0.82 1.28 

Anthanthrene 2.39 0.3 0.12 0.50 0.58 1.16 

Tetracene 2.45 0.61 0.24 0.99 0.59 0.59 

Dibenzo 

coronene 
2.4 0.3 0.12 0.50 0.37 0.74 
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For more clarity of these energy levels, it is useful to divide each structure in figure 6.8 

, into two parts. The outside part (a ring) and the inside core, joined together by the 

coupling α as shown in Figure 6.8. Figure 6.10 and 6.11 show the eigenvalues for 

different values of α, with all other coupling fixed at -1 and εo=0 as mentioned above.  

The evaluation of the eigenvalues can be understood by initial sitting α=0 and 

considering how they evolve toward 𝛼 = ∞.When α=0 all molecules become an isolated 

ring, where the eigenvalues can be calculated by the following equation  

ɛ(𝑛) = ɛ𝑜 − 2𝛾 cos (
2𝜋𝑛

𝑁
)      𝑤ℎ𝑒𝑟𝑒 𝑛 = 1, ∓2,∓3,… .𝑁  

Furthermore in some cases, such as pyrene, anthanthrene and dibenzocoronene, there 

are additional eigenvalues due to the isolated core. For the naphthalene molecule when α 

goes to infinity the atoms 2 and 7 are decoupled with others and for a dimer with bonding 

and  anti-bonding levels at ±∞ in these limit, the remaining two groups of atoms (3,4,5,6) 

and (8,9,10,1) become a four atom chains whose eigenvalues do not depend on the value 

of α. Furthermore, for 𝛼 = ∞ there are individual atoms for instance in the Anthracene 

(3,10) and Tetracene (2,4,11,13) and these atoms cause vanishing eigenvalues.  
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Figure 6.10 the Eigen value vs. α for Benzene, Naphthalene, Pyrene, and Anthracene 
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Figure 6.11 Eigen value vs. α for Azulene, Anthanthrene, Tetracene and Dibenzo coronene. 
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6.4 Analytical formula 
 

When the above planar molecules are stacked in a column as in figure 6.12, with inter 

molecular couplings τ, each eigenvalue  𝐸𝑛 of the isolated molecule form a band with 

dispersion relation. 

 

𝐸 = 𝐸𝑛 − 2𝜏 cos(𝑘) 

 

Hence the energy gap between the HOMO band and the LUMO band is (𝐸𝐿 − 2𝜏) −

(𝐸𝐻 + 2𝜏) = ∆ − 4𝜏 which vanish when ∆/4𝜏 ≤ 1 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12 Three dimension chain, one more layer add to the 2d dimension system with l 

labelled and τ is the coupling between the layers. 
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𝑗 
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The last column in the table 6.3 shows the values of  𝛥/4𝜏 which are less than 1 for 

tetracene and dibenzocoronene. All other molecular wires are semiconductors or 

isolators. 

Conclusion 
 

The calculations predict that by careful selection of larger pi stacked PAHs conducting 

wires could be prepared. The electrical properties of these wires would depend upon the 

details of the PAH construction where for example Pyrene would be semi-conducting but 

dibenzocoronene would be conducting. Furthermore from analytical formula can predict 

the system whether conductor or semiconductors dependent on the ratio of Δ/4τ, if it is 

less than one the system conductor otherwise semi-conductors. 
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Chapter 7 

7.1 Conclusion 
 

 

The electric properties of different molecular devices have been studied in this thesis 

using density functional theory and the Green’s function scattering formalism which are 

described in chapter 2 and 3 respectively.  

In the chapter 4 I studied the single-molecule conductance of ten oligo (arylene-

ethynylene) derivatives with five different core units (dibenzothiophene, carbazole, 

dibenzofuran, fluorene and biphenyl) attached to gold electrodes by pyridyl anchoring 

groups. Within the two series there is either para-para or meta-meta conjugation through 

the core unit. In all cases molecules with para connectivity present larger conductances 

than their meta isomers, regardless of the bridging unit. I have observed clear and distinct 

trends in the para and meta series. In the para series there is a clear correlation between 

aromaticity of the central ring and the single-molecule conductance values in the 

sequence dibenzofuran > carbazole > dibenzothiophene, in agreement with a previous 

experimental study on monocyclic core units (furan > thiophene). However, in the meta 

series the carbazole derivative is the most conductive: the sequence dibenzothiophene ≈ 

dibenzofuran < carbazole. It is concluded that the nitrogen lone pair facilitates 



Chapter 7                                                                               Conclusion 

 
 

158 

 

transmission through the molecule. Overall, I find that constructive quantum interference 

in the para-connected molecules persists in the presence of bridging atoms and is partly 

masked by the presence of sigma channels, whereas bridging atoms alleviate destructive 

quantum interference in the meta-connected molecules. Our comprehensive study 

establishes that both quantum interference and heteroaromaticity in the molecular core 

units play important and inter-related roles in determining the conductance of single 

molecular junctions. These results should assist in future research in the development of 

new molecules for incorporation into nanoscale molecular circuits. In the second part of 

this chapter I considered a set of molecules with fix bridge atoms and different side 

groups formed from, 2H, 2Me, 2OMe, 2MF3 or crown ethers. The electrical conductance 

and Seebeck coefficient were almost the same for these molecules.  

         In the chapter 5 I studied charge transport through asymmetric molecules attached 

to armchair carbon nanotube (5, 5). The goal of these studies is to calculate the I-V 

characteristic and rectification ratio. During this project I studied different types of 

CNT’s some of them metallic and others is semimetal.  

Despite the different structures of these two systems, the conductance ratio between M1 

and M2 was close to 0.45, and the calculated beta value for different lengths of phenyl 

rings almost agreed. 

Finally in chapter 6 the calculations predict that by careful selection of larger PAHs pi 

stacked conducting wires could be prepared. The electrical properties of these wires 

would depend on the size of the PAH construction, where for example wires formed from 

stacked benzene rings would be semi-conducting but tetracene would be conducting. 
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7.2 Future Work 
 
In this thesis, I have concentrated on electron and thermal transport through single 

molecules attached to either gold or carbon nanotube leads. For the future it would of 

interest to include the contribution from phonons to thermoelectricty [1,2] and examine 

more exotic forms of transport such as molecular-scale transport of quasi-particles 

associated with superconducting leads [3], spin-dependent transport in the presence of 

ferromagnetic leads or more complex metals[4,5], combinations of superconducting and 

ferromagnetic leads [6,7] and even more exotic effects such as current-induced forces 

[8]. In practice, for such complex structures, it may not be possible to obtain simple 

analytic results. Nevertheless such problems could be investigated numerically, using 

quantum transport codes such as the multiple-scattering code Gollum [9].   
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