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Abstract

The location of groups of similar observations (clusters) in data is a well-studied problem,

and has many practical applications. There are a wide range of approaches to clustering,

which rely on different definitions of similarity, and are appropriate for datasets with dif-

ferent characteristics. Despite a rich literature, there exist a number of open problems in

clustering, and limitations to existing algorithms.

This thesis develops methodology for clustering high-dimensional, mixed datasets with

complex clustering structures, using low-density cluster separators that bi-partition datasets

using cluster boundaries that pass through regions of minimal density, separating regions of

high probability density, associated with clusters. The bi-partitions arising from a succession

of minimum density cluster separators are combined using divisive hierarchical and parti-

tional algorithms, to locate a complete clustering, while estimating the number of clusters.

The proposed algorithms locate cluster separators using one-dimensional arbitrarily ori-

ented subspaces, circumventing the challenges associated with clustering in high-dimensional

spaces. This requires continuous observations; thus, to extend the applicability of the pro-

posed algorithms to mixed datasets, methods for producing an appropriate continuous

representation of datasets containing non-continuous features are investigated. The exact

evaluation of the density intersected by a cluster boundary is restricted to linear separators.

This limitation is lifted by a non-linear mapping of the original observations into a feature
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space, in which a linear separator permits the correct identification of non-linearly separable

clusters in the original dataset.

In large, high-dimensional datasets, searching for one-dimensional subspaces, which re-

sult in a minimum density separator is computationally expensive. Therefore, a computa-

tionally efficient approach to low-density cluster separation using approximately optimal

projection directions is proposed, which searches over a collection of one-dimensional ran-

dom projections for an appropriate subspace for cluster identification. The proposed ap-

proaches produce high-quality partitions, that are competitive with well-established and

state-of-the-art algorithms.
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1
Introduction

The task of locating groups of related objects in data is a well studied problem in machine

learning, statistics, data mining and pattern recognition. This has a number of practical ap-

plications including:

• Business and marketing : In market research, it is useful to partition the population
of customers into groups with similar buying habits to infer relationships between
them, assess strategic opportunities and identify competitive threats (Hruschka,
1986). In marketing and advertising, recommender systems require groups of simi-
lar products and customers allowing targeted marketing strategies where similar items
are recommended to similar customers (Hameed et al., 2012).

• Computer science : Image segmentation can be used to divide a digital image into
smaller segments which can be used for object recognition and border detection
(Zhang, 1996). Web searching relies on grouping web pages with similar content to
help locate the most relevant results as quickly as possible (Beeferman and Berger,
2000).

• Security : Learning groups of individuals with similar behaviour, for example spend-
ing patterns, allows the detection of network intrusions and potentially malicious
behaviour (Portnoy et al., 2001).

• Biology and medicine : Monitoring the level of expression of groups of genes over
time allows the understanding of the roles of different genes (Zhao and Karypis,
2005). In medical imaging, identifying regions of different tissue types is used to
identify different tumours and assess the effect of treatments (Masulli and Schenone,
1999).

• Physical sciences : In astrophysics, grouping objects allows the detection of regions of
interest such as galaxies and gas clouds (Zentner et al., 2005).

The type of learning problem is defined by the amount of information available to train

the categorisation process. In supervised learning or classification, a training set of observa-
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tions with associated class labels is used to construct the predictive model for the subsequent

grouping of unlabelled observations (Theodoridis and Koutroumbas, 2008). In many ap-

plications, knowledge of the true class labels may be expensive or impossible to obtain. In

the absence of such information, the problem becomes one of unsupervised learning or clus-

tering, which is considered in this thesis. Clustering requires a user specified definition of

similarity, which will determine the groups or clusters. The objective of clustering is to parti-

tion the set of observationsX = {xi}n
i=1 where xi ∈ Rd into k disjoint subsets (clusters),

C = {C1, ..., Ck} (1.1)

such that

Ci ∩ Cj = ∅ ∀ i, j ∈ 1, ..., k i ̸= j (1.2)

C1 ∪ ...∪ Ck = X (1.3)

so as to maximise similarity between observations within the same cluster, while minimis-

ing similarity between observations in different clusters. There exist a variety of ways to

define similarity, thus there is no universally adopted definition of what constitutes a cluster

(Berkhin, 2006). Different specifications of similarity give rise to numerous approaches to

clustering, some of which are discussed in Chapter 2.

The remainder of this chapter outlines the structure of the main body of this thesis and

summarises the contributions made, while Chapter 2 provides an overview of the main clus-

tering literature and current challenges that are considered in this work.
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1.1 Thesis Aims and Structure

1.1.1 Aims

The aim of this thesis is to address the challenges of identifying clusters in datasets with large

numbers of diverse features and complex clustering structures, while estimating their num-

ber. The approaches proposed are methodological ideas, which may be applied in a variety

of application areas, but are not designed for any specific clustering task. These approaches

do not attempt to completely solve all of the problems discussed in Section 2.2, associated

with clustering complex datasets, but offer potential techniques to allow cluster identifi-

cation in datasets where current methodology is limited. With the exception of Chapter 7,

the methodology presented in this thesis relies on locating low-density cluster boundaries,

which separate clusters corresponding to regions of high probability density, as defined in

the density-based approach to clustering. The relevant definitions which underpin the algo-

rithms proposed in this thesis are presented in Section 2.3.

1.1.2 Structure and Contributions

The body of this thesis consists of five chapters. Chapter 3 investigates the production of

continuous representations of mixed datasets. This evaluates the performance of a variety of

clustering algorithms over three different continuous representations of simulated and real-

world mixed datasets. The production of a suitable continuous representation then permits

the application of any clustering algorithm that makes the assumption of continuous ob-

servations, including the projective density-based clustering algorithms that are proposed

in this thesis. To our knowledge, a comparative study into continuous representations of

mixed data for clustering has not been undertaken in the literature.

In Chapter 4, we propose divisive hierarchical and a partitional clustering algorithms,
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which are able to identify arbitrary numbers of high-density clusters in high-dimensional

datasets by combining hyperplane separators that intersect regions of minimal probabil-

ity density. These hyperplanes are located using the minimum density hyperplane (MDH),

proposed by Pavlidis et al. (2016) for binary partitions, and are computed using one-dimensional

projections of the data only, avoiding the problems associated with density estimation on

high dimensions. The algorithms proposed extend the MDH approach to clustering by al-

lowing the identification of multiple clusters, and estimating their number. Through an

appropriate continuous representation of datasets with mixed attributes, we further extend

the applicability of the proposed approaches to mixed datasets, upon which density-based

clustering would ordinarily not be possible. The proposed algorithms extend the current

literature by permitting the application of the density-based approach to clustering to large,

high-dimensional and mixed datasets. Our algorithms locate very high-quality clustering

results, often outperforming alternative well-established and sate-of-the-art clustering algo-

rithms across a variety of datasets.

In Chapter 5, we further extend the applicability of the proposed projective density-based

approach to clustering by removing the restriction of linear cluster separators, imposed by

the MDH methodology. This is done by considering a non-linear mapping of the original

observations into a feature space. This non-linear mapping results in a linear separator of

the feature vectors permitting a non-linear separator of the original observations. It is not

possible to directly compute the feature vectors, however, we present a formulation of the

MDH in the feature space, which operates on the kernel matrix of pairwise inner products

between the feature vectors. Applying the MDH approach to clustering is a new research

area, and significantly extends the methodology in Chapter 4 by permitting the location of

clusters of arbitrary shape whose convex hulls may overlap (provided an appropriate feature
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mapping exists).

The dimensionality of the optimisation problem to locate the MDH in the feature space

is determined by the number of observations, and for large datasets the location of the

MDH in the feature space is computationally expensive. Therefore, we consider reducing

the search space using an appropriate subspace of the feature space, in which an approxi-

mate minimum density separator of the feature vectors may be computed. We also include

an equivalent approach to locate minimum density hyperplane separators of the feature vec-

tors using their projections onto an orthonormal basis of the space spanned by them, that is

more straightforward to implement than the formulation of the MDH using the kernel ma-

trix. The bi-partitions of the feature vectors located by the MDH are combined in a divisive

algorithm to allow the identification of multiple clusters that are not correctly identifiable

by hyperplane separators in the data space, and automatically estimate their number.

Chapter 6 introduces an approach for the computationally efficient location of low-

density cluster separators of datasets with large numbers of high-dimensional observations

(or mapped feature vectors) through random projection (RP). This approach locates low-

density separators using the one-dimensional projections of the data onto an appropriate

random vector. This avoids the computational cost of locating a minimum density separa-

tor, which involves searching over a large number of dimensions for an optimal projection

vector for cluster separation, and instead searches over a finite collection of random projec-

tion directions to approximate the optimal cluster boundary. We consider different opti-

mality criteria to quantify the suitability of a set of univariate random projections for cluster

separation, and investigate the quality of the partitions located when searching over varying

numbers of random projections for a projection direction which permits a low-density clus-

ter separator. The bi-partitions induced by the low-density cluster separators are combined
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in a divisive algorithm, that automatically estimates the number of clusters. The use of RP

to locate approximate minimum density cluster boundaries in one-dimensional subspaces is

a novel idea. This approach permits the application of minimum density cluster separation

in large, high-dimensional datasets, where the optimisation techniques proposed in Chap-

ters 4 and 5 are practically infeasible.

Finally, Chapter 7 considers how univariate random projections may be applied to locate

cluster separators in one-dimensional subspaces that are related to the objectives of alterna-

tive approaches to clustering, which do not rely on low-density separation, such as k-means

and spectral clustering.
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2
Literature Review

This chapter, provides a overview of common cluster definitions and associated algorithms.

It is worth noting that some formulations of the clustering problem are NP-hard, making

this a non-trivial problem. This is not an exhaustive review of the wide variety of the clus-

tering literature, however, the relevant concepts for the remainder of the thesis are discussed.

In addition, Section 2.2 presents the challenges in clustering, which this work aims to ad-

dress. Finally, Section 2.3 presents the relevant definitions of the clusters and cluster separa-

tors which are located by the algorithms proposed in this thesis.

2.1 Clustering

In this section, existing approaches to clustering are discussed. These are categorised by the

cluster definition assumed in each case. In addition, clustering algorithms can be divided

into two approaches, hierarchical and flat (partitional). Hierarchical clustering locates a

nested structure of partitions, defined as follows. Given two partitions B = {B1, ..., Bk}

and C = {C1, ..., Cm} as defined in Eqs. (1.1)-(1.3), B is nested into C if every component

of B, Bi ⊂ Cj for one of the components of C . This hierarchy of nested partitions is sum-

marised in a cluster tree or dendrogram, showing the clustering structure evident at different

levels of similarity (Johnson, 1967). Meanwhile, partitional methods produce an overall clus-

tering C = {C1, ..., Ck} as defined in Eqs. (1.1)-(1.3) on a single level. Hierarchical clustering

can be more computationally expensive than partitional clustering, however, the nested
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structure generally allows superior detection of clusters on different scales. The majority of

the algorithms outlined in this section are partitional, and are discussed separately to some

well established methods for hierarchical clustering. It is worth noting that there exist hi-

erarchical adaptations of a number of the partitional approaches discussed, but these are

omitted for brevity and will be included, where relevant, in later chapters.

Despite the multitude of similarity measures, it is natural to assume that information

about similarity exists in the spatial proximity between the observations. The evaluation

of this spatial proximity is a non-trivial problem, and there exist multiple distance metrics

that may be applied in practice. A complete discussion of the wide variety of proximity mea-

sures, which are appropriate for different data types and clustering applications is beyond

the scope of this introduction, however, a comprehensive overview of these methods is pro-

vided by Gan et al. (2007).

For continuous data, the most common distance metrics are special cases of the Minkowski

distance,

Dij =

(
d

∑
l=1
|xi,l − xj,l|r

)1/r

; r ⩾ 1

where xi,l is the lth dimension of datum xi ∈ X = {xi}n
i=1, where xi ∈ Rd. Tak-

ing r = 1, 2, ∞, gives the Manhattan, Euclidean and maximum distance metrics respec-

tively. The most widely used of these metrics is the Euclidean distance, hence this is assumed

throughout this section.

2.1.1 Hierarchical Clustering

For some applications of clustering, the nested structure located by hierarchical clustering

is intuitive and occurs naturally. For example, in the biological application of clustering or-

ganisms into species and sub-species. The location of these cluster hierarchies may take two
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distinct approaches. The divisive approach begins with all observations in a single cluster

and sequentially divides this into smaller groups. By contrast, the agglomerative approach

begins with all observations belonging to individual clusters, and merges the most similar

groups at each level of the hierarchy.

Agglomerative

The agglomerative hierarchical approach requires the specification of distances between

groups of observations, to quantify the most similar groups at each level of the hierarchy.

The two most popular methods for this are single-link (nearest neighbour) (Sneath et al.,

1973) and complete-link (furthest neighbour) (King, 1967) clustering, upon which the ma-

jority of agglomerative algorithms are based (Jain et al., 1999).

In single-link clustering, the distance between two clusters Cl and Cm is defined as the

minimum pairwise distance between any xi ∈ Cl and xj ∈ Cm,

d(Cl, Cm) = min
xi∈Cl ,xj∈Cm

Dij

where Dij is the pairwise distance between observations xi and xj. In complete-link clus-

tering, the distance between two clusters Cl , Cm is defined as the the maximum pairwise

distance between any two observations xi ∈ Cl , xj ∈ Cm,

d(Cl, Cm) = max
xi∈Cl ,xj∈Cm

Dij.

At each level of the hierarchy, the two clusters which solve

min
l,m∈{1,...,k}

l ̸=m

d(Cl, Cm)
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are merged. Single-link clustering requires only a single short path between two clusters

for them to be merged, resulting in a tendency to locate elongated (chain-like) clusters. By

contrast, complete-link clustering requires all points within the two merged clusters to be

connected by short paths. This gives rise to the location of compact clusters.

A complete agglomerative clustering can be computationally expensive, and the stor-

age of the distances between all the clusters at each level of the hierarchy may be infeasi-

ble for large datasets. Algorithms such as balanced iterative reducing and clustering using

hierarchies (BIRCH) (Zhang et al., 1996) aim to address the problem of high memory us-

age. BIRCH reduces the memory required to locate a complete hierarchy by storing only

summary information of the clusters, not the original observations. Another problem as-

sociated with single link and complete link clustering is a sensitivity to outliers. To alleviate

this problem, Guha et al. (1998) proposed the clustering using representatives (CURE) al-

gorithm, which calculates similarity using representative points of a cluster, avoiding the

issues associated with outliers. Similarly, robust clustering using links (ROCK) (Guha et al.,

1999) defines similarity between individual observations (or clusters) based on the number

of common neighbours (links) within a specified neighbourhood between them.

Divisive

In divisive clustering, it is necessary to define appropriate rules for the selection and subse-

quent splitting of clusters. There exist many algorithms which apply different selection and

splitting rules, but the fundamental idea behind divisive clustering remains unchanged so

we omit a complete discussion of these here. One of the most well established divisive algo-

rithms is divisive analysis (DIANA) (Kaufman and Rousseeuw, 1990) which is based on the

work of Macnaughton-Smith et al. (1964). At a given level with k clusters Ci for i = 1, ..., k,
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the cluster with maximal diameter (distance between the two furthest points in the cluster),

max
l∈{1,...,k}

max
xi,xj∈Cl

Dij

is split. To define the split of the cluster, the observation with maximal average dissimilar-

ity to all other points in the cluster is selected as the seed. This seed initialises a new clus-

ter, which is built up iteratively by selecting the closest point (which has not already been

considered) to its centroid, and reassigning this point to the new cluster if it is closer to its

centroid than the centroid of the observations which are still allocated to the old cluster. Al-

ternative splitting criteria include using the two furthest points in the cluster as seeds and

assigning observations to the closest of these (Hubert, 1973). This idea was extended to con-

sider the partition created by all possible pairs of seeds in the cluster and retaining the result

that optimises a pre-specified criterion (Roux, 1991, 1995).

Although a complete hierarchy can be useful, it is often necessary to extract a single, final

clustering from the hierarchy, with a fixed number of clusters. Potential approaches for this

are discussed in Section 2.2.3.

2.1.2 Partitional Clustering

The alternative approach of partitional clustering aims to locate all the clusters on a single

level, producing a clustering in a single step. This tends to be less computationally expensive

than hierarchical clustering, and may be more appropriate for application areas where the

nested structure of a cluster hierarchy is not intuitive. For example, in some medical applica-

tions where the clustering task may be to identify patients who either have a disease or not,

and therefore fall into two distinct categories.
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Centroid-Based Clustering

Perhaps the most intuitive clustering objective is to minimise the sum of squared distances

between the observations {xi}n
i=1 and a representative point in their assigned cluster Cj

such as the centroid {cj}k
j=1. Stated formally, the objective of such methods are to solve the

following optimisation problem

min
k

∑
j=1

∑
xi∈Cj

∥xi − cj∥2.

This is the objective of the most widely used clustering algorithm, k-means (Forgy, 1965;

MacQueen, 1967; Lloyd, 1957). This algorithm begins by selecting k points as initial cen-

troids. Then, each observation is assigned to its closest centroid. Based on these assign-

ments, the centroids are updated and the procedure iterates until convergence.

Although widely used, k-means has a number of limitations which have been further

studied in the literature. Firstly, k-means requires the pre-specification of the number of

clusters, which is likely to be unknown in practice. The problem of estimating the num-

ber of clusters is discussed in Secion 2.2.3. Secondly, k-means is only guaranteed to converge

locally, so can produce poor results when initialised badly. Initialisation may be done ran-

domly, or alternative techniques for this are given in Forgy (1965); MacQueen (1967). Ini-

tialisations have also been proposed that aim to overcome the problem of convergence to

the local optima (Krishna and Murty, 1999; Patané and Russo, 2001). More recently, Arthur

and Vassilvitskii (2007) proposed the k-means++ algorithm that, through appropriate ini-

tialisation, is guaranteed to give an approximation ratio between the obtained and the glob-

ally optimal solutions ofO(log k) in expectation (over the randomness of the algorithm).

Additional limitations of k-means clustering include a sensitivity to outliers and noise
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as well as problems when the centroids cannot be calculated, for instance in non-numerical

data. An alternative centroid-based algorithm which overcomes the latter limitation is k-

medoids, also known as partitioning around medoids (PAM) (Estivill-Castro and Yang,

2000; Kaufman and Rousseeuw, 1990). This approach uses actual observations with min-

imal dissimilarity to the other observations (medoids) to represent the clusters. Despite

the above limitations, centroid-based algorithms are widely used in practice due to their

straightforward implementation and intuitive interpretation, as well as relatively low com-

putational cost.

Graph Theoretic Clustering

In graph theoretic clustering, each data point is seen as a node of an undirected graph with

edge weights proportional to the similarity between the observations. Hence, subsets of the

graph with maximal edge weights correspond to observations with the greatest similarity

and may be interpreted as clusters. Single-link and complete-link clustering as described

above may be viewed as locating maximally connected and maximally complete subgraphs

respectively (Jain and Dubes, 1988). The best known divisive graph partitioning algorithm is

Zahn’s algorithm (Zahn, 1971), which constructs the minimum spanning tree (MST), then

removes the edges of the MST with the largest lengths. In this case, the resulting clusters

remain as connected subgraphs with maximal distance between them.

In partitional clustering, the problem is locating cuts of the graph which partition nodes

with minimal edge weights between them. This is known as the minimum graph cut prob-

lem. Assume a graph G = (X , E) whose vertices correspond to the observationsX =

{xi}n
i=1 with undirected weighted edges E defined by the adjacency matrix W ∈ Rn×n

whose elements Wij are the similarities between pairs of vertices xi and xj. There exist mul-

tiple approaches to define the edge weights in W , but the three most common are,
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1. The ϵ-neighbourhood graph, where Wij = 1 if xj is in the ϵ-neighbourhood of xi

and Wij = 0 otherwise.

2. The k-nearest neighbour (KNN) graph, where Wij = 1 if xj is one of the k-nearest
neighbours of xi and Wij = 0 otherwise. Symmetry can be imposed on this graph
by connecting observations which are mutual nearest neighbours, or alternatively,
observations which belong to one of each other’s k-nearest neighbours.

3. The fully connected graph, constructed using any valid kernel function. The most

widely applied kernel is the Gaussian kernel where Wij = exp
{
− ∥xi−xj∥2

σ2

}
where

σ is a tuning parameter.

All of these adjacency matrices rely on the selection of appropriate values of tuning pa-

rameters. These choices critically affect the clusters produced, and the development of ro-

bust selection rules for these remains an open problem. Once an appropriate graph is con-

structed, the degree matrix, DG is defined as the diagonal matrix of the degrees, dGi , of the

vertices xi in G ,

DG = diag(dGi ) = diag
(

n

∑
j=1

Wij

)
∀i = 1, . . . , n.

Further for a subset of vertices S ⊂ X with complement S c = X \ S , define

Ω(S ,S c) = ∑
xi∈S ,xj∈S c

Wij.

The minimum graph cut problem then seeks to cut G into subsets S1, ...,Sk so as to parti-

tion its verticesX while cutting the edges with smallest weight,

mincut(S1, ...,Sk) =
1
2

k

∑
i=1

Ω(Si,S c
i )

where the factor of 1
2 avoids counting the edges cut twice. In the majority of cases, simply
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minimising this problem results in the separation of a few outlying vertices, which is not de-

sirable for clustering. It is therefore necessary to penalise cuts into small groups. The most

common objectives for this are RatioCut (Hagen and Kahng, 1992) and Ncut (Shi and Ma-

lik, 2000),

RatioCut(S1, ...,Sk) =
1
2

k

∑
i=1

Ω(Si,S c
i )

|Si|

Ncut(S1, ...,Sk) =
1
2

k

∑
i=1

Ω(Si,S c
i )

vol(Si)

where |Si| is the number of vertices in Si and vol(Si) = ∑xj∈Si
dGj . These penalties for the

location of unbalanced clusters render the solution of RatioCut and Ncut NP-hard (Wagner

and Wagner, 1993). However, a relaxed solution may be found, resulting in the well known

spectral clustering algorithms (von Luxburg, 2007).

Define the matrix H to be the n × k matrix of cluster assignments, such that Hij =

1/
√
|Sj| or Hij = 1/

√
vol(Sj) if xi ∈ Sj, and Hij = 0 otherwise for RatioCut and

Ncut respectively. Given this, it is possible to show (von Luxburg, 2007) that both Ratio-

Cut and Ncut are equivalent to trace minimisation problems of the form

min Tr(H⊤LH) (2.1)

where L is a graph Laplacian of G(X , E), defined below and H is defined as above. von

Luxburg (2007) shows that relaxing H to be any real matrix allows the solution of a stan-

dard trace minimisation problem (Lutkepohl, 1997), solved by taking the first k eigenvectors

of L. For the solution of RatioCut, the unnormalised graph Laplacian,

Lun = DG −W
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is required, while for Ncut, it is necessary to use the symmetric normalised graph Laplacian,

Lsym =
(

DG
)−1/2

Lun

(
DG
)−1/2

.

In the ideal case, where the components of the graph (clusters) are disconnected from each

other, the graph Laplacian can be trivially ordered into a block diagonal matrix. Defining

V ∈ Rn×k to be the matrix of the first k eigenvectors of the appropriate graph Laplacian as

columns, therefore results in V having a single non-zero entry in each row. The position of

this non-zero entry corresponds to the cluster to which the ith observation belongs. In the

event that the components of the graph have some connectivity between them, V will have

more than one non-zero entry per row, and the largest entry indicates the appropriate clus-

ter assignment for each observation. Hence V is a relaxed version of the cluster assignment

matrix H. To locate a partition of the graph, it is necessary to transform V into a discrete

indicator vector, which is typically done using k-means to cluster the rows of V.

Model-Based Clustering

In model-based clustering, the set of observationsX = {xi}n
i=1 are assumed to be gener-

ated from a finite mixture model, whose k components are parametric probability distribu-

tions. This mixture distribution is denoted p and has the general form,

p(x|Θ) =
k

∑
i=1

ζi pi(x|θi),

where ζ = (ζ1, . . . , ζk) is a vector of mixing proportions such that ∑k
i=1 ζi = 1, ζi >

0, ∀i = 1, ..., k and pi is the probability density function for the ith mixture compo-

nent with associated parameter vector θi. Each component of this mixture model is asso-
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ciated with a single cluster. Given the possibility to estimate the parameter vector Θ =

(ζ1, ..., ζk, θ1, ..., θk), observations are assigned to the mixture component (cluster) with

the highest probability of generating them. Thus, elements of the cluster assignment vector

π are given by

πi = arg max
j∈{1,...,k}

ζ j pj(xi|θj).

Although any probability distribution may be assumed for the mixture components, it is

common in practice to assume a Gaussian mixture model (Zhuang et al., 1996; Everitt et al.,

2011). In this case, estimation of the model parameters may be done by maximum likelihood

estimation using the expectation-maximisation (EM) algorithm (Dempster et al., 1977).

This uses augmented missing data in the form of the missing cluster labels, and iterates

between taking the expected value of the cluster labels, given the current estimates of the

parameters in the mixture model, and then maximising the likelihood for the parameters,

given the estimated cluster labels. This process continues until convergence, returning the

estimated parameters, Θ and the cluster assignment vector π.

In the case of spherical Gaussian components, this approach is equivalent to k-means

clustering (Celeux and Govaert, 1992). Perhaps the most attractive feature of model-based

clustering is the ability to estimate the number of clusters in a rigorous statistical framework,

using well established model selection techniques such as the Bayesian information criterion

(BIC) (Schwarz et al., 1978). This is discussed further in Section 2.2.3.

Non-Parametric Density-Based Clustering

In non-parametric statistical, known as density-based, clustering it is again assumed that an

underlying probability distribution has given rise to the observationsX . However, unlike

model-based clustering, this probability density p has an unknown form. Clusters are de-

23



fined as subsets of observations in contiguous regions of high density, concentrated around

the domains of attraction of the modes of p (which are separated by low-density regions).

Hartigan (1975) define these regions of high density based on the level sets of p,

L(c, p) = {x ∈ Rd|p(x) ⩾ c}. (2.2)

This approach can locate clusters of arbitrary shape and has a natural estimate for the

number of clusters present. Practically, the true density p is unknown and must be es-

timated by a non-parametric density estimate p̂. A consistent approach to approximate

L(c; p) is through a union of spheres around points whose estimated density, p̂ exceeds

c (Walther, 1997; Cuevas et al., 2000, 2001; Rinaldo and Wasserman, 2010). All of the mod-

ern density-based clustering algorithms (of which we are aware) locate the approximate level

sets of p by seeking the modes of the estimated density p̂ (Azzalini and Torelli, 2007; Stuet-

zle and Nugent, 2010; Chacón et al., 2015).

Locating the levels sets of p using an estimated density is closely related to the influen-

tial density-based spatial clustering of applications with noise (DBSCAN) algorithm (Es-

ter et al., 1996), where points are considered to be in dense regions if the ϵ-neighbourhood

around them contains sufficiently many points. If two points may be connected by a path

that does not go through a point whose ϵ-neighbourhood is not sufficiently dense, then the

two points are assigned to the same cluster. This may be equivalently thought of as locat-

ing the level sets of an estimated density which is constructed from uniform kernels with

bandwidth ϵ.

In practice, selecting an appropriate level parameter c, to define the level sets is difficult.

However, it is possible to vary c, producing a hierarchical structure of clusterings, which

are summarised in a cluster tree, whose leaves correspond to the modes of the estimated
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density p̂. Another practical limitation of density-based clustering is that the construction

of an estimated density becomes inaccurate in even moderate dimensions, fundamentally

restricting the applicability of this approach to low-dimensional datasets.

Kernel-Based Clustering

A potential limitation of some approaches to clustering, is the inability to correctly identify

clusters which are not linearly separable. This is relevant for the well-established centroid-

based approaches, such as k-means as well as approaches which locate clusters using or-

thogonal one-dimensional projections of the data, which are discussed later in Section 2.2.1.

Kernel-based learning (Muller et al., 2001) allows this restriction to be lifted, by mapping the

original observations into a feature space, in which the clusters are linearly separable.

Given the set of observationsX = {xi}n
i=1 where xi ∈ Rd, let

Φ :Rd → F

xi 7→ ϕ(xi)

be a non-linear feature mapping ofX to a potentially much higher dimensional spaceF .

Any linear algorithm can then be applied inF , corresponding to a non-linear separation of

X . SinceF has the potential to be infinite-dimensional, it may not be possible to compute

the mapped observations ϕ(xi), however, a kernel function,

κ(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩F ,

may be used to compute scalar products inF without explicitly defining the feature vectors

{ϕ(xi)}n
i=1. Therefore, using kernels, any (linear) algorithm which uses scalar products can
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be implicitly computed inF (Schölkopf et al., 1998).

Clustering the feature vectors into k clusters C1, ..., Ck should optimise a cluster quality

function, such as that defined by Shawe-Taylor and Cristianini (2004),

k

∑
j=1

∑
xl ,xm∈Cj

||ϕ(xl)− ϕ(xm)||2F . (2.3)

Here the subscriptF is used to denote the distance in the feature space. It is possible to

show (Shawe-Taylor and Cristianini, 2004, Proposition 8.18) that Eq. (2.3) may be solved by

identifying clusters which minimise distances between the observations and the centres of

their assigned cluster. Therefore, in kernel k-means (Dhillon et al., 2004), the clustering of

X is the solution to the following non-convex optimisation problem

min
k

∑
j=1

∑
xi∈Cj

||ϕ(xi)− cj||2F (2.4)

where the cj’s are the cluster centroids inF ,

cj =
∑xl∈Cj

ϕ(xl)

|Cj|
.

These centroids cannot be computed explicitly, but we can evaluate the Euclidean distance

from each ϕ(xi) to centroid cj inF by,

||ϕ(xi)− cj||2F = ⟨ϕ(xi), ϕ(xi)⟩F − 2⟨ϕ(xi), cj⟩F + ⟨cj, cj⟩F

= ⟨ϕ(xi), ϕ(xi)⟩F − 2 ∑
xl∈Cj

⟨ϕ(xi), ϕ(xl)⟩F
|Cj|

+ ∑
xl ,xm∈Cj

⟨ϕ(xl), ϕ(xm)⟩F
|Cj|2

= κ(xi, xi)− 2 ∑
xl∈Cj

κ(xi, xl)

|Cj|
+ ∑

xl ,xm∈Cj

κ(xl, xm)

|Cj|2
.
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Therefore, the objective function in Eq (2.4) may be evaluated using the kernel function,

avoiding the computation of the feature vectors. Despite its popularity, the non-convexity

of this optimisation problem renders kernel k-means susceptible to convergence to local

minima.

If the optimisation is relaxed, allowing a non-binary cluster assignment matrix, Shawe-

Taylor and Cristianini (2004) show that the solution to the now convex optimisation prob-

lem of minimising Eq. (2.3) is given by the trace minimisation problem of spectral clus-

tering, defined in Eq. (2.1). In this case, the adjacency matrix, W of the graph G(X , E)

is equivalent to a kernel matrix K whose elements are the pairwise scalar products of the

mapped feature vectors Kij ∈ Rn×n = κ(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩F .

2.2 Open Problems in Clustering

This section outlines current challenges in clustering, which are considered in this thesis.

Firstly, Section 2.2.1 introduces the challenges of clustering data which contain a large num-

ber of features for each observation (high-dimensional observations). Then, Section 2.2.2

discusses the limitations of current clustering methodology when observations have at-

tributes which are discrete or categorical. Finally, Section 2.2.3 considers the problem of

estimating the number of clusters.

2.2.1 High Dimensionality

Modern computing capabilities are allowing the generation and storage of increasingly large

datasets. As a result, it is common that real-world datasets contain observations with many

attributes (dimensions). This is a well-documented problem (Hinneburg and Keim, 1999;

Agrawal et al., 1998; Kriegel et al., 2009), and is commonly referred to as “the curse of di-

mensionality”. The problems associated with clustering this type of data go beyond the
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computational complexity associated with analysing large datasets, impeding the funda-

mental assumptions required for cluster detection. Steinbach et al. (2004) present this prob-

lem intuitively by considering a fixed number of uniformly distributed points contained in

grids of fixed size as dimensionality increases. The number of grids contained in the space

grows exponentially with dimensionality, hence, unless the number of observations in-

creases at the same rate, the proportion of cells which will be empty increases also. Thus,

high-dimensional datasets are very sparse.

Further, it is likely that some features are strongly correlated with others, or do not con-

tain relevant information for clustering. Along these irrelevant dimensions, the data appear

uniform, and i.i.d, which is not appropriate for accurate cluster identification. Practically,

in sparse high-dimensional datasets with large numbers of irrelevant dimensions, measures

of spatial proximity and probability density, commonly used to define similarity between

observations are not meaningful. This is due to the pairwise distances between observations

that should belong to the same cluster not being significantly smaller than the pairwise dis-

tances between observations that should belong to different clusters, when computed over

all dimensions. Further, clustering algorithms which rely on the specification or estimation

of a probability density function cannot be applied, as the density is approximately zero ev-

erywhere. Therefore, discarding irrelevant features through dimensionality reduction is a

necessity to make cluster detection possible. This may be done as a pre-processing step or

locally, as part of the partitioning procedure. The latter approach is more common since

it is often the case that different features are relevant for the detection of different clusters,

making a global dimensionality reduction inappropriate.

Subspace clustering (Parsons et al., 2004) typically refers to methods which assume a sub-

set (or subsets) of features are relevant for cluster detection. This restricts attention to axis-
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parallel subspaces in which clusters are sought. Across the different approaches to subspace

clustering, it is generally assumed that dimensions which allow the location of compact clus-

ters should be retained. A k-medoid approach to this problem is adopted by the PROCLUS

algorithm (Aggarwal et al., 1999). In this algorithm, the subspaces are built to have minim-

imal standard deviation in the distances between the points and their closest medoid along

each dimension. Distances are only calculated in the relevant subspace for each cluster. This

approach tends to produce equally sized clusters with a spherical shape in their subspaces.

This underlying idea of building up subspaces in which clusters are identifiable may also

be applied to alternative cluster definitions. Since non-parametric density based clustering is

fundamentally limited to low-dimensional spaces, but has advantages such as being capable

of locating clusters of diverse shapes, subspace clustering algorithms relying on this cluster

definition are attractive. There exist a number of algorithms for this that locate subspaces

in which the clusters are sufficiently dense. This definition of sufficient density to indicate

an appropriate clustering, and the subsequent construction of the subspaces are the main

differences between the algorithms that apply this approach.

PreDeCon (Böhm et al., 2004b) is a subspace variant of DBSCAN, which applies a mod-

ified distance measure, capturing the subspace of each cluster. This distance measure in-

corporates the subspace preference of each cluster at each point xi. A given dimension

is considered relevant in the subspace of xi if the variance of points in the Euclidean ϵ-

neighbourhood of xi is below a pre-determined threshold. The subspace modified distance

measure is then a weighted Euclidean distance along the dimensions in the relevant sub-

space.

SubClu (Kailing et al., 2004) determines dense clusters in the same way as DBSCAN, by

setting a lower threshold on the number of points in the ϵ-neighbourhood of each datum.
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This definition of dense clusters is similar to that applied in PreDeCon, however, in Sub-

Clu, the relevant subspaces for each cluster are built iteratively. This process begins with all

one-dimensional dense clusters. The dimensionality of the subspaces for each cluster are

determined such that if a δ + 1-dimensional subspace (where δ is an arbitrary dimension)

contains a δ-dimensional subspace that is not dense, the δ + 1-dimensional subspace cannot

be considered dense, hence the dimensionality of the subspace is not increased further. Like-

wise, the CLIQUE algorithm (Agrawal et al., 1998) constructs dense subspaces for clusters

using the same iterative procedure. However, this algorithm relies on an alternative defi-

nition of regions of high density, which uses an equally spaced axis parallel grid over the

observations. Any grid unit containing at least τ points is considered dense. This grid-based

approach reduces the computational cost compared to SubClu, but is often less accurate.

All of these density-based approaches have attractive properties, such as the ability locate

clusters of diverse shapes, and estimate their number. However, the input parameters are

not intuitive to set.

In practice, axis-parallel subspaces may be too restrictive for some datasets. There exist a

variety of algorithms that extend the concepts adopted by the aforementioned subspace al-

gorithms, which do not adopt this constraint, and instead permit the detection of clusters

in arbitrarily oriented subspaces. We refer to such approaches as projective clustering algo-

rithms. This is a convention in this thesis but in the literature both projective and subspace

clustering are used interchangeably.

The most common dimensionality reduction technique for projective clustering is prin-

cipal component analysis (PCA), which projects the data,X = {xi}n
i=1 such that maximal

variability is retained, and reconstruction error is minimised (Tipping and Bishop, 1999).
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This is done using the covariance matrix,

Σ =
1
n

n

∑
i=1

(xi − µ)(xi − µ)⊤

where µ ∈ Rd is the mean vector. The eigen-decomposition of Σ,

Σ = VΛV⊤,

gives an orthonormal basis, V whose columns correspond to directions of decreasing vari-

ance inX . Since Λ is a diagonal matrix, any correlation structure is removed in the pro-

jected data, X · V where X is the n × d data matrix. The majority of projective clustering

algorithms rely on PCA, either on subsets of points or on the whole dataset. The ORCLUS

algorithm (Aggarwal and Yu, 2000) is a k-medoid approach to projective clustering, and is

an extension of PROCLUS to arbitrarily oriented subspaces. This clusters objects by min-

imising the distances between each data point and its closest medoid along the directions of

low variability for each cluster.

Likewise, the density-based subspace approach may be extended to arbitrarily oriented

subspaces by algorithms such as 4C (Böhm et al., 2004a), which extends the approach of

PreDeCon. In this algorithm, the similarity between two points is determined by the simi-

larity of the eigen-system of their ϵ-neighbourhoods. If two points are connected by a sim-

ilar correlation of attributes, they are assumed to belong in each other’s correlation neigh-

bourhoods.

In this thesis, we focus on projective methods which rely on one-dimensional subspaces

for clustering. The principal direction divisive partitioning algorithm (PDDP) (Boley, 1998)

is a divisive algorithm, which recursively projects the data onto the first principal compo-
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nent (direction of maximal variability), and then bi-partitionsX at the mean of these pro-

jections. This continues until the maximum scatter value in each of the clusters does not ex-

ceed the scatter value of the centroids of all the clusters found so far. Two extensions of this

algorithm are proposed by Tasoulis et al. (2010) to incorporate a more explicit cluster def-

inition. Both algorithms project the data onto the first principal component as in PDDP.

However, interval PDDP (iPDDP) splits at the point of maximal distance between two

consecutive projections and density enhanced PDDP (dePDDP) constructs a kernel den-

sity estimate over the projections and splits at the global minimiser of this estimated density

in the range between the two outer-most modes. Both of these algorithms rely on the low-

density cluster separation assumption, and locate separating hyperplanes orthogonal to the

first principal component which result in the largest margin and lowest density separations

respectively. For datasets with compact, convex clusters, projecting onto the direction of

maximal variability enables accurate clustering results, since along this direction, the clusters

are likely to be well-separated (Boley, 1998). PDDP and its extensions have been shown to

produce high-quality clustering results for applications such as gene expression clustering

and text mining.

Although PCA projections can be useful for cluster detection in a number of areas, it is

trivial to construct examples where directions of high variability are not suitable for cluster

detection. Projection pursuit (PP) algorithms (Friedman and Tukey, 1974; Huber, 1985) en-

compass the search for low-dimensional spaces, that are appropriate for pattern recognition

as a more general concept. PP methods aim to locate optimal linear projections of high-

dimensional datasets, based on some measure of “interestingness” (known as the projection

index) of a projection direction for the specified learning task (Jones and Sibson, 1987). This

approach has been applied to locate low-dimensional subspaces for clustering (Friedman
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and Tukey, 1974), regression (Friedman and Stuetzle, 1981b), classification (Friedman and

Stuetzle, 1981a) and density estimation (Friedman et al., 1984). The definition of an inter-

esting projection direction is not universally accepted, and therefore the majority of classi-

cal dimensionality reduction techniques may be thought of within the projection pursuit

framework. For example, PCA is equivalent to PP, where the projection index is defined as

the variance along the selected projection direction.

More recently, Pavlidis et al. (2016) proposed a PP algorithm called the minimum density

hyperplane (MDH), which defines the projection index based on the minimum of the es-

timated density of the projections of the data along a univariate projection direction. This

method aims to locate projection directions which are optimal for the separation of clusters,

following the density-based approach to clustering, by locating minimum density bound-

aries between high-density regions associated with clusters. We discuss this in detail in later

chapters.

2.2.2 Mixed Data

Although there are a variety of different definitions of a cluster, it is common to assume that

dissimilarity between observations is related to a measure of spatial separation, usually Eu-

clidean distance. However, in real-world applications, it is often the case that observations

have attributes of diverse types (mixed data). In datasets with ordinal and nominal vari-

ables, discrete features can make standard continuous distance metrics, such as Euclidean

distance inappropriate to define dissimilarity between observations.

This poses a significant challenge for the majority of approaches to clustering. In centroid-

based clustering, non-numeric attributes make it impossible to compute the cluster cen-

troids for the k-means algorithm, and even for discrete numeric data, the evaluation of spa-

tial distances between observations and their assigned cluster centroid is not an interpretable
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in the same way as for continuous data. Likewise, the notion of nearest neighbours or ϵ-

neighbourhoods, used to construct the adjacency matrix of the graph in spectral clustering

becomes invalid when considering spatial separation alone. Similarly, the definition of clus-

ters as regions of high probability density requires an appropriate, continuous measure of

spatial separation between the observations to construct the estimated density p̂. Therefore,

clustering non-continuous data using algorithms that rely on spatial proximity between ob-

servations is inappropriate.

One naive approach is to discard any non-continuous features, making the assumption

that the clustering structure is evident in the continuous dimensions. However, this risks

removing information which is necessary for cluster detection. Another naive approach is

to treat all features as if they were continuous and proceed with a conventional clustering

technique. This is also problematic, as any observations with the same combination of pos-

sible outcomes in the discrete dimensions will have low spatial separation, introducing an

inherent grouping structure, which may not be truly indicative of the clusters present.

In the literature, there are two main approaches to incorporating mixed data for cluster-

ing. The first of these is to use an alternative distance metric to define pairwise dissimilari-

ties between observations. The most well-known distance metric for mixed variables is the

Gower distance (Gower, 1971) where the pairwise dissimilarity between observations xi and

xj is defined as,

Dij =
∑d

k=1 wkdij,k

∑d
k=1 wk

(2.5)

where

dij,k =
|xi,k − xj,k|

max(x,k)−min(x,k)
(2.6)
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for continuous and ordinal attributes and

dij,k =


1 , xi,k ̸= xj,k

0 , xi,k = xj,k

(2.7)

for binary and categorical attributes. Also, xi,k is the kth dimension of the ith observation,

x,k = (x1,k, . . . , xn,k) and wk is the user-defined weight for each variable in x, which is

typically set to wk = 1 ∀k. Using this metric, it is possible to apply any clustering algo-

rithm which relies only on pairwise distances between observations, such as the hierarchical

clustering algorithms discussed in Section 2.1.1, PAM or spectral clustering.

A similar approach has also been proposed for k-means clustering with categorical vari-

ables in Huang (1997, 1998). In this paper, the distance between an observation xi with con-

tinuous and discrete features (xC
i , xD

i ) and a cluster centroid cj = (cC
j , cD

j ) is given by,

Dij =
dC

∑
k=1

(xC
i,k − cC

j,k)
2 + wj

dD

∑
k=1

dij,k, (2.8)

where wj is the weight of the categorical data for cluster j, dC and dD are the number of

continuous and discrete variables respectively and dij,k is defined in Eq. (2.7), replacing xj

with cj. The algorithm then aims to minimise the sum of distances between the observa-

tions and their assigned centroid, as in the classical k-means algorithm.

This work was extended by Ahmad and Dey (2007) by weighting each of the distances

for the continuous attributes, based on the pairwise separations of the observations in that

attribute. This assumes that attributes showing high levels of separation are more relevant

for clustering than those with low levels of separation. In addition, the distance between

categorical attributes is not a binary outcome, instead the probability distribution of co-

occurrence of values in each attribute is considered. Ahmad and Dey (2011) also adds a local
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weight for each attribute in each cluster to the distance function. This can be thought of as

a subspace algorithm as the distances are weighted differently along different dimensions for

each cluster.

It is also possible to apply model-based clustering to mixed datasets by assuming an ap-

propriate finite mixture model over the clusters. Everitt (1988) take this approach, assuming

a parametric model for a set of realisations of a mixed variable x with dC continuous and dD

discrete components, denoted xC and xD respectively. The parametric model is given by,

p(x) =
k

∑
i=1

ζi MVNdC+dD(µi, Σi)

where ζ = (ζi, . . . , ζk) is the vector of mixing proportions such that ∑k
i=1 ζi = 1 and

MVNdC+dD(µi, Σi) denotes a dC + dD-dimensional multivariate normal distribution

with mean µi and covariance Σi. However, the dD-dimensional, multivariate normal ran-

dom variables associated with the discrete attributes cannot be observed directly. Instead,

the discrete observation vector is modelled as a threshold discretised form of a multivariate

normal random variable. This discretisation requires multiple integrals of multivariate nor-

mal distributions which is computationally expensive. However, thereafter parameter esti-

mation to fit the model and locate the clusters is a standard maximum likelihood estimation

problem.

2.2.3 Estimating the Number of Clusters

In unsupervised learning, it is very unlikely that the true number of clusters that should be

identified is known in advance. Therefore, it is necessary to estimate this as part of the learn-

ing process. This is an open problem in the literature , and different approaches to cluster-

ing offer different approaches to determining the number of clusters, such that the resulting
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groups remain consistent with the specified cluster definition.

Hierarchical Clustering

A complete hierarchical clustering, which returns a nested clustering structure completely

avoids this problem by providing a clustering result for all possible numbers of clusters from

1, ..., n. However, this is computationally expensive, and often, the user must still extract

a final clustering from the hierarchy, and determine an appropriate number of clusters for

the problem of interest. It may be desirable to define an appropriate stopping rule, to au-

tomatically terminate the recursive splitting (or merging) of clusters in the hierarchy, such

that the level of the hierarchy at which this stopping rule is satisfied allows determination of

the number of clusters. For some applications, a stopping rule may be intuitive to specify,

although this is not always the case, making this a non-trivial problem.

Given a complete hierarchy, with a single cluster at the root of the cluster tree (dendro-

gram), and n leaves for each of the individual observations, the most common approach to

extract a final, flat clustering is to set a horizontal threshold across the dendrogram to locate

the clusters which result from a single level of similarity (Jain and Dubes, 1988). However, it

is well documented that this approach is unable to detect clusters on multiple scales (Stuet-

zle, 2003; Kriegel et al., 2011). Therefore, Campello et al. (2013) proposed the optimal extrac-

tion of clusters from hierarchies (OCE). This permits the extraction of clusters which corre-

spond to non-horizontal cuts of the dendrogram, and locates the clustering that maximises

the quality of the resulting clusters using a local measure of cluster quality. This allows the

identification of clusters on multiple scales and with different densities.
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Centroid-Based Clustering

For centroid-based clustering, it is intuitive to determine the number of clusters using the

within cluster sum of squared distances (or within cluster variance), since this is the func-

tion which is minimised by this cluster definition, and therefore determines the quality of

a clustering. The elbow heuristic considers the reduction in the within cluster variability

for increasing numbers of clusters, and estimates the number of clusters such that any addi-

tional clusters do not significantly reduce the within cluster variability.

The Gap statistic (Tibshirani et al., 2001) formalises this heuristic within a formal statis-

tical procedure. This compares the total within cluster variability for different numbers of

clusters to the expected value under a null reference distribution with no obvious cluster-

ing structure (often the uniform distribution). For a given number of clusters, k, the Gap

statistic is defined as,

Gapn(k) = En{log(Wk)} − log(Wk)

where Wk is the within cluster sum of squared distances when the data are partitioned into

k clusters and En(·) denotes the expectation under a sample of size n from the reference

distribution, computed by Monte-Carlo simulation. Therefore, the Gap statistic measures

the deviation of the observed within cluster sum of squared distances from its expected

value under the null reference distribution. The standard error of the Monte-Carlo simu-

lation with N null samples is defined as,

sk = σk
√

1 + 1/N
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where σk is the standard deviation of the log within sum of squared distances when the null

samples are partitioned into k clusters. Finally, the number of clusters is chosen to be the

minimum value of k for which the following holds,

Gapn(k) ⩾ Gapn(k + 1)− sk+1.

Therefore, k is chosen to be the smallest value for which the Gap statistic is within one stan-

dard deviation of the Gap statistic with k + 1 clusters.

Spectral Clustering

In spectral clustering, the number of distinct connected components within the graph in-

dicates the number of clusters present. It has been shown (Ng et al., 2002) that the largest

eigenvalue of the graph Laplacian is equal to one, and that this eigenvalue will be a repeated

with multiplicity equal to the number of groups in the graph. Therefore, it is possible to de-

termine the number of clusters by counting the number of eigenvalues of the graph Lapla-

cian which are equal to one. However, this property only holds if the clusters correspond

to completely disconnected components within the graph. If the clusters are not discon-

nected, the largest eigenvalues are not all equal to one. In this case, it may be possible to

determine the number of clusters using the heuristic proposed by Polito and Perona (2002).

This heuristic searches for the point where the eigenvalues of the graph Laplacian decrease

sharply. However, the location of this point may not be clear in datasets with high levels of

noise.

Zelnik-Manor and Perona (2004) propose to use the eigenvectors of the graph Laplacian

to estimate the number of clusters for spectral clustering. If the clusters are completely dis-

connected, the graph Laplacian may be sorted into a strictly block diagonal matrix, where
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each block corresponds to the Laplacian of a sub-graph associated with a single cluster. In

this case, the matrix of eigenvectors of the graph Laplacian, V ∈ Rn×k will have non-

zero values only in entries corresponding to a single cluster. For a graph with k clusters, if

we compute more than k eigenvectors, V will have some rows which contain more than

one non-zero entry. Similarly, if we compute fewer than k eigenvectors, V will have some

rows which contain no non-zero entries. Therefore, Zelnik-Manor and Perona (2004) pro-

pose to estimate the number of clusters to be the value which allows the minimal alignment

cost between the eigenvectors of the graph Laplacian and the canonical co-ordinate system

e1, ..., ek.

Model-Based Clustering

The model-based approach to clustering allows the estimation of the number of clusters

through standard statistical model selection techniques, provided it is possible to construct

a likelihood for the chosen clustering model. The value of the likelihood for models with

different numbers of mixture components (clusters) may be used to detect when a more

complex model does not fit the data significantly better than a model with fewer parame-

ters. The most common model selection techniques for this task are the Akaike information

criterion (AIC) and Bayesian information criterion (BIC). For a model with p fitted parame-

ters, with likelihood L, the AIC is defined as,

AIC = 2p− 2 log(L),

while the BIC is,

BIC = log(n)p− 2 log(L)
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where n is the number of observations. The number of clusters is determined at the point

where the information criterion is non-decreasing.

Density-Based Clustering

For density-based clustering, the level set definition given in Eq. (2.2) inherently estimates

the number of clusters to be the number of regions of density greater than the level param-

eter, c, which are separated by regions of density lower than c. Irrespective of the choice

of density estimate applied by different density-based algorithms, the number of clusters

equates to the number of high-density regions, concentrated around the modes of the esti-

mated density of the data. In practice, the specification of a threshold at which the density is

considered sufficiently high to constitute a cluster is non-trivial. However, varying the level

parameter does allow the computation of a complete cluster hierarchy to avoid this prob-

lem.

2.3 Definitions

In this section, we define the high-density clusters and low-density separators, that we aim

to locate throughout the main body of this thesis. We define high-density clusters based on

the estimated density overX , p̂x by adapting the definition in Hartigan (1975) as follows:

Definition 1. [High-density clusters] (Hartigan, 1975) LetX = {xi}n
i=1 where xi ∈ Rd be

a set of realisations of a random variable X with estimated probability density function p̂x.

High-density clusters are defined as maximally connected subsets of the level sets of p̂x,

L(c; p̂x) =
{

x ∈ Rd| p̂x(x) ⩾ c
}

; c ⩾ 0.

When p̂x is unimodal, L(c; p̂x) is connected for all values of c, and hence no cluster
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structure exists. If p̂x is multi-modal, L(c; p̂x)may be connected or not depending on the

value of c. If it is disconnected, it is formed by two or more connected components, which

correspond to regions surrounding the modes of p̂x (Menardi and Azzalini, 2014). A di-

rect consequence of defining clusters as observations that lie in contiguous regions of high

density in p̂x is that cluster boundaries pass through regions of low density. Therefore, we

define a low-density separator according to Definition 2.

Definition 2. [Low-density separator] For a connected set S ⊂ Rd, the surface of S, ∂S, is

a low-density separator if ∃c ⩾ 0 for which the following hold:

1. there exist distinct components C1, C2 of L(c; p̂x) s.t. C1 ⊂ S, C2 ∩ S = ∅;

2. maxx∈∂S p̂x(x) ⩽ c.

IfX contains a family of high-density clusters, then a collection of low-density separators

can identify all of these clusters. However, the evaluation of the density along a cluster sep-

arator is computationally intractable for separators of arbitrary shape. Therefore, we must

restrict attention to linear separators (hyperplanes) that partition dense, linearly separable

sets as defined in Definition 3,

Definition 3. [Dense linearly separable sets] LetX = {xi}n
i=1 be a set of realisations of a

random variable X with estimated probability density function p̂x. A family C1, . . . , Ck of

mutually disjoint subsets ofX is dense and linearly separable if there exists c > 0, such that

for any xi, xj ∈ Cm, m ∈ {1, . . . , k},

min
t∈[0,1]

p̂x
(
txi + (1− t)xj

)
> c. (2.9)
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Moreover, there exists I such that ∅ ̸= I ⫋ {1, . . . , k}, such that,

conv (∪i∈ICi) ∩ conv
(
∪j∈IC Cj

)
= ∅, (2.10)

and for any xi ∈ conv (∪i∈ICi) and xj ∈ conv
(
∪j∈IC Cj

)
,

max
t∈[0,1]

p̂x
(
txi + (1− t)xj

)
< c, (2.11)

where IC = {1, . . . , k} \ I is the complement of I, and conv (·) denotes the convex hull.

As a consequence of applying Definition 3, the family of clusters inX is linearly separable

if there exists a hyperplane along which the maximum value of p̂x is at most c, and which

also separates at least one cluster from the rest of the data. This definition results in the sets

C1, . . . , Ck corresponding to dense clusters, as defined in Definition 1 with the additional

constraint of convexity. We further define the setX to be dense and linearly clusterable

(with respect to the density estimator p̂x) if it contains a family of convex dense clusters,

C1, . . . , Ck such that any (non-trivial) subset of this family is linearly separable.

Definition 4. [Dense linearly clusterable sets] LetX = {xi}n
i=1 be a set of realisations of

the random variable X with estimated probability density function p̂x. A family C1, . . . , Ck

of mutually disjoint subsets ofX is dense and linearly clusterable if for any subset I ⫋

{1, . . . , k} satisfying |I| > 1, the family {Ci}i∈I is dense and linearly separable.
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3
Continuous Representations of Mixed Data

Abstract

We consider the problem of locating clusters in datasets with diverse (mixed) attributes. A

number of approaches to clustering, including density-based algorithms require a set of contin-

uous observations to correctly identify the clustering structure present. Therefore, we consider

the production of a continuous representation of mixed datasets, upon which clustering may

be performed. We apply three continuous representations across simulated and real-world

datasets with varying characteristics, and evaluate the clustering performance of projective

density-based and other well-established clustering algorithms over these representations. We

find that locating an appropriate continuous representation can be challenging but in general,

the most consistently high-quality results were located using the continuous representation

from constant shift embedding (Roth et al., 2003).
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3.1 Introduction

Although there is no single, universally adopted definition of a cluster, the vast major-

ity of approaches to clustering rely on spatial separation in some way to define the clus-

ters present. Consequently, many clustering algorithms rely on the set of observations

X = {xi}n
i=1 having continuous attributes. However, many datasets contain observa-

tions with diverse types of features (mixed data). In this case, defining similarity solely on

spatial separation induces maximal similarity between observations with the same set of out-

comes in discrete dimensions. This is not meaningful for the detection of the true clustering

structure, since each possible combination of outcomes in the discrete dimensions ofX ap-

pears as an individual cluster. There exist general distance metrics, for example the Gower

distance metric (Gower, 1971), which may be used in place of metrics such as Euclidean dis-

tance. These allow the construction of a more meaningful dissimilarity matrix for mixed

data. Thus, the application of clustering algorithms that can operate on pairwise dissimilar-

ities alone is still possible. However, this is not sufficient for the density-based approach to

clustering, which requires a set of continuous observations in order to define a continuous

estimated probability density function, in which subsets of observations in contiguous re-

gions of high probability density are associated with clusters. Another, related, challenge as-

sociated with density-based clustering is that density estimation becomes unreliable in even

moderate dimensions by modern standards (Rinaldo and Wasserman, 2010). This means

that for the practical application of density-based clustering techniques, dimensionality re-

duction becomes a necessity. However, it is not clear how to specify appropriate projections

for clustering in the case of non-continuous observations.

These two limitations mean that to apply density-based clustering to mixed datasets, it

is necessary to transform the original observations to obtain a continuous representation,
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upon which clustering can be performed. In this chapter, we investigate different continu-

ous representations of mixed datasets, and their appropriateness for cluster detection. We

quantify the quality of the continuous representations by the clustering performance of

projective density-based algorithms (which are the focus of this thesis) and alternative algo-

rithms, which also require a set of continuous observations.

The only work we are aware of that discusses the problem of finding an appropriate con-

tinuous representation of mixed data for density-based clustering is Azzalini and Menardi

(2016). This employs multi-dimensional scaling (MDS) (Borg and Groenen, 2005) and

then locates clusters by constructing an estimated density over all dimensions of the trans-

formed data. For this reason, this work is limited to using a small number of dimensions in

the continuous representation. Since we focus on projective density-based methods, which

remain applicable for high-dimensional applications, we remove this restriction and allow

the continuous representations used to have higher dimensionality. We further extend this

work by also investigating the continuous representations produced by mixed probabilistic

principal component analysis (mPPCA) (Khan et al., 2010), and constant shift embedding

(CSE) (Roth et al., 2003).

Like standard probabilistic principal components analysis (PPCA) (Tipping and Bishop,

1999), mPPCA assumes that observations originate from a Gaussian latent variable model.

Each categorical variable is assumed to be sampled from a multinomial distribution, with

probabilities given by a multinomial logistic regression function applied on the latent vari-

able. Both CSE, and MDS, make no assumptions about the data generating process, and

rely exclusively on pairwise dissimilarities, defined by a metric which is appropriate for non-

continuous data. In all our work, we use the Gower distance metric. MDS aims to produce

a continuous representation which retains the pairwise distances. Meanwhile, CSE seeks a
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continuous representation, upon which k-means clustering is guaranteed to assign all obser-

vations to the same clusters as pairwise clustering on the dissimilarity matrix.

The remainder of this chapter is organised as follows: Sections 3.2, 3.3 and 3.4 present the

processes of locating continuous representations by MDS, mPPCA and CSE respectively.

Section 3.5 discusses our choice of dimensionality for each of the continuous representa-

tions. Section 3.6 presents experimental results for the clustering performance of projective

density-based and well-established clustering algorithms across the continuous represen-

tations of simulated and real-world benchmark datasets. Finally, the work is concluded in

Section 3.7.

3.2 Multi-Dimensional Scaling

MDS is a well established method for dimensionality reduction, which seeks a low-dimensional

continuous representation of the data that will minimise a measure of distortion of pairwise

distances. In metric MDS (Borg and Groenen, 2005), the associated cost function to be min-

imised is

J1 =
n

∑
i=1

n

∑
j=1

(
D2

ij − d2
ij

)2

where Dij denotes the original distance between observations i and j and dij = ∥x̃i − x̃j∥2

is the distance between the continuous representations of the two observations, xi and xj

respectively. The solution to this minimisation is given by Λ1/2V⊤ where Λ is the diagonal

matrix of eigenvalues of D = [Dij] and V is the matrix containing the eigenvectors of D.

Non-metric MDS (Borg and Groenen, 2005) allows a non-linear, monotonic transfor-

mation of the pairwise distances. In this case, the cost function is given by the SSTRESS

criterion,

J2 =
n

∑
i=1

n

∑
j=1

(
f (Dij)

2 − d2
ij

)2
,
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where f (·) is the monotonic transformation of the input pairwise distances, which is op-

timised as part of an iterative procedure. In all our experiments, we use non-metric MDS

to produce our continuous representation. Non-metric MDS does not offer a criterion to

select the appropriate dimensionality for clustering. The only information provided is the

value of the objective function for different dimensions, but this information is not related

to clustering. The selection if this dimensionality is discussed in Section 3.5.

3.3 Mixed Probabilistic Principal Components Analysis

Let the d-dimensional mixed observation vector xi = (xC
i , xD

i ), have continuous and

discrete dimensions xC
i ∈ RdC and xD

i ∈ NdD respectively. PPCA (Tipping and Bishop,

1999) reformulates standard PCA within a latent variable model. A latent representation

of the observation vector is provided by the distribution of the latent variables zi ∈ RdL

conditional on the observations, p(zi|xi). For the continuous dimensions of xi, a Gaussian

latent variable model is assumed,

zi ∼ N (0, σ2
z I)

xC
i |zi ∼ N (WCzi + µC, σ2

xC I),

where WC ∈ RdC×dL is the factor loading matrix, µC is the offset parameter and σ2
xC I is

the covariance matrix. In the limiting case when σ2
xC tends to zero, the columns of WC are

the singular vectors of XC = [xC
1 , . . . , xC

n ], thus standard PCA is recovered. This conjugate

model results in the maximum likelihood estimates of WC and σ2
xC having an analytical

solution. The underlying probabilistic model enables PPCA to handle missing values, and

extensions including mixtures of Gaussian latent variables. However, for these problems an

analytical solution is not admissible, and instead parameter estimation is performed through
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the expectation maximisation (EM) algorithm.

A natural extension of PPCA to accommodate categorical variables is through the specifi-

cation of a link function, which maps continuous variables in the latent space to categorical

variables in the observation space. In particular, for each of the dD discrete variables, mP-

PCA uses a one-of-Mj encoding, where Mj is the number of possible values of the j-th dis-

crete variable. Let xD
ij denote the j-th discrete variable of the i-th observation. In mPPCA,

xD
ij is assumed to follow a multinomial distribution, with probabilities conditional on zi,

ηij = WD
j zi + µD

j ,

S(ηij) =

 exp(ηij,1)

∑
Mj
m=1 exp(ηij,m)

, . . . ,
exp(ηij,Mj)

∑
Mj
m=1 exp(ηij,m)

 ,

xD
ij |zi ∼ M(S(ηij)),

where WD
j ∈ RMj×dL and µD

j ∈ RMj , are the factor loading matrix and the offset for the

j-th discrete variable respectively and S(·) is the multinomial logistic regression (also known

as softmax) link function.

The model for incorporating the discrete variables prevents a closed form solution for

p(zi|xi)meaning a standard EM algorithm is not applicable for the estimation of the model

parameters. Instead, a variational EM algorithm is proposed in Khan et al. (2010). This al-

gorithm is computationally expensive for large datasets and, as with any EM algorithm,

is not guaranteed to converge to the global maximum of the likelihood. Hence, different

representations can result depending on initialisation. A further challenge for clustering

after applying mPPCA is that the maximum dimensionality of the continuous represen-

tation increases linearly with the number of possible values of each categorical variable,

max dL = dC + ∑dD
j=1 Mj. This renders the problem of high-dimensionality increasingly
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problematic.

3.4 Constant Shift Embedding

CSE (Roth et al., 2003) aims to embed the data into a continuous vector space so that the

relative quality of a clustering in the continuous space is the same as in the original space, in

which pairwise distances were computed. CSE measures the quality of a clustering in terms

of the pairwise clustering cost function (Puzicha et al., 1999),

Hpc(M; D) =
1
2

k

∑
m=1

∑n
i=1 ∑n

j=1 MimMjmDij

∑n
l=1 Mlm

, (3.1)

where D is the matrix of pairwise dissimilarities with diag(D) = 0, and M ∈ {0, 1}n×k

is the cluster assignment matrix, with Mjm = 1 if observation j is assigned to cluster m

and ∑k
m=1 Mjm = 1. The minimisation of Hpc is equivalent to minimising the k-means

clustering criterion, if Dij = ∥xi − xj∥2
2 for each xi, xj.

The central idea behind CSE is that if D can be decomposed in the form, Dij = Sii +

Sjj − 2Sij, where S is a positive semidefinite matrix, then S can be viewed as the matrix of

inner products, S = XX⊤ in some space X, and therefore Dij = ∥xi − xj∥2
2. Thus, X

is the natural candidate for the representation (embedding) of the data into a continuous

vector space. For any D, there is a class of matrices S that satisfy the above property so Roth

et al. (2003) restrict attention to the centralised matrix, Sc which is uniquely defined for

each D,

Sc = −1
2

(
I− 1

n
11⊤

)
D
(

I− 1
n

11⊤
)

,

where 1 is the n-dimensional vector of ones. Let us define S̃c = Sc − λnI, where λn is

equal to the smallest eigenvalue of Sc. Then S̃c is by construction positive semidefinite, and
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can be shown to be the centralised matrix associated with D̃ = D − 2λn(
1
n 11⊤ − I).

Since Hpc(M; D̃) = Hpc(M; D)− λn(n− k) the relative quality of different clusterings,

M, is unaffected by the addition of the constant−2λn to the non-diagonal elements of

D. We can therefore equivalently consider S̃c as the inner product matrix, and obtain the

continuous representation X = VΛ1/2 through the eigen-decomposition S̃c = VΛV⊤.

3.5 Dimensionality of Continuous Representation

None of the aforementioned methods provide a definitive criterion to select the dimen-

sionality of the continuous representation. To ensure that no information is lost mPPCA

requires min{n, dC + ∑dD
j=1 Mj} dimensions, where dC is the number of continuous di-

mensions in the data, dD is the number of categorical variables, and Mj is the number of

discrete values the j-th categorical variable can take. For MDS a lossless continuous embed-

ding requires min{n, dC + dD} dimensions, while for CSE the dimensionality would have

to equal the number of observations, n.

In practice, using the maximum possible number of dimensions for the continuous rep-

resentation is not necessary to obtain the best possible clustering result. For CSE it is pos-

sible to use the eigenvalues of S̃c to select the number of dimensions by setting a threshold

on the total variance captured, thus excluding dimensions that contribute very little to the

overall variance. Although there is no guarantee that directions of maximum variance are

appropriate for clustering (Kriegel et al., 2011), it is arguably unlikely that directions along

which the data exhibits almost no variability are relevant for cluster detection. This choice

will always be smaller than the number of dimensions required for a lossless representation.

We set this threshold such that 90% of the variability is retained. In our experiments this sig-

nificantly reduced the number of dimensions while having negligible affect on the clustering
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results compared to the lossless representations.

In the case of MDS, Azzalini and Menardi (2016) recommend using no more than five

dimensions, since for the datasets used in their work, additional dimensions do not signifi-

cantly improve the reconstruction error and the quality of the clustering result. However,

the datasets used by Azzalini and Menardi (2016) contain very few clusters which is not nec-

essarily the case for the datasets in our study. We instead use the eigenvalues of D resulting

from metric MDS to select the dimensionality, and using the same procedure as for CSE,

exclude dimensions which do not contribute significantly to the overall variance. We then

use the representation from metric MDS to initialise non-metric MDS to produce the final

embedding.

For mPPCA, the dimensionality of the continuous representation (latent variable) must

be specified as a parameter of the model. Without prior information on the appropriate

number of dimensions for clustering, we used the maximum number to produce a lossless

representation. This resulted in the representations from mPPCA having a much higher

dimensionality than the representations from CSE and MDS in some examples. None of

these selection criteria led to a choice of dimensionality greater than the number of obser-

vations for the datasets considered in this work. For some datasets, this is a possibility, in

which case, it would be more appropriate to select the dimensionality equal to the number

of observations.

3.6 Experimental Results

In this section, the quality of the continuous representations produced by MDS, mPPCA

and CSE are investigated through a comparison of the clustering results produced from each

representation of simulated and real-world benchmarks datasets. For this comparison, we
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used projective density-based clustering algorithms and well-established algorithms that

cannot be applied using the pairwise dissimilarities alone:

1. Hierarchical Minimum Density Hyperplane (MDHhier). This is the algorithm pro-
posed in Chapter 4 where data are recursively bi-partitioned by the hyperplane that
intersects a region of minimal density. Splitting terminates when the minimum den-
sity hyperplane (MDH) for each cluster is not appropriate to separate modes of the
estimated density associated with clusters.

2. Ensemble Minimum Density Hyperplane (MDHens). This is the partitional algo-
rithm, also proposed in Chapter 4 where multiple bi-partitions from locally optimal
minimum density hyperplanes are combined by the model-based ensemble clustering
approach of Topchy et al. (2005). The number of clusters is estimated using BIC.

3. Density-enhanced principal direction divisive partitioning (dePDDP) (Tasoulis et al.,
2010). This is a divisive algorithm in which data are recursively projected onto the
first principal component and then partitioned at the global minimiser, in the range
between the outer-most modes, in the estimated density of the projections. This is re-
lated to MDHhier since the resulting separating hyperplane passes through a region of
minimal density with the constraint of its normal vector being equal to the first prin-
cipal component. This algorithm terminates when the estimated projected density is
unimodal for all clusters.

4. k-means++ (Arthur and Vassilvitskii, 2007) which is a recent variant of the classical
k-means algorithm that, under appropriate initialisation, results in a clustering guar-
anteed beO(log k) competitive with the true k-means clustering. We used the Gap
statistic (Tibshirani et al., 2001) to estimate the number of clusters.

5. Gaussian mixture model-based (GMM) clustering using BIC to estimate the number
of clusters (Fraley and Raftery, 2002). This is related to density-based clustering in the
sense that the clusters obtained are individual unimodal components of a Gaussian
mixture density.

We also considered density-based algorithms that seek to locate dense regions by estimat-

ing the density over all the dimensions of the continuous representations, such as pdfClus-

ter (Menardi and Azzalini, 2014) and DBSCAN (Ester et al., 1996). However, the dimen-

sionality of the continuous representations made these algorithms unreliable so the results

are omitted. For all algorithms, the parameter settings were the same as in Section 4.4.1.

Clustering performance is evaluated by normalised mutual information (NMI) (Strehl and
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Ghosh, 2002), which takes values in the range [0, 1], with higher values indicating better

performance. Other performance measures were considered but these did not alter the rela-

tive quality of the partitions on the different continuous representations.

3.6.1 Simulation Study

Here we evaluate the clustering results produced by the different continuous representa-

tions of simulated mixed data with varying numbers of dimensions and numbers of clusters.

These simulations allow us to control the level of difficulty of the clustering problem. We

consider two generative models to assess the continuous representations produced under

different modelling assumptions. This is particularly relevant for mPPCA, where a specific

generative model is assumed.

For the first generative model, we adopt the same model as mPPCA where the clustering

structure is induced by generating the latent variables {zi}n
i=1 ⊂ R2 from a Gaussian

mixture model whose k components represent clusters. The means in each dimension were

drawn uniformly from the range [−5, 5] and covariance matrices were generated to have

eigenvalues in the range [10−3, 10−2]. This produced a very clear clustering structure in the

latent variables, so noise was introduced in the generation of the mixed observation vectors.

This was done by filling the factor loading matrices WC and WD
j for j = 1, ..., dD with

Uniform(0, 1) random variables. All offset terms were set to zero, and to avoid increasing

dimensionality substantially in the continuous representations, only two possible outcomes

were permitted for all discrete dimensions. We denote this generation process MixGen1.

In the second generative model, the distribution of the observations is a mixture model in

which each of the k components constitutes a cluster. For each dataset, the mixing propor-

tions were generated as ζi = ui/ ∑k
j=1 uj, where ui ∼ Uniform[1, 2], and the parameters
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for each of the components were generated randomly as follows,

µµµC ∼ Uniform(0, k/3)dC ;

µD
j ∼ Bern(0.5), j = 1, . . . , dD;

σ = u2, u ∼ Uniform(0.1, 1.1).

From each component ⌈100kζi⌉ data were generated according to,

xC ∼ N(µµµC, σI),

P(xD
j = B) =


1− σ/4, B = µD

j

σ/4, B = 1− µD
j

.

The model for the continuous attributes of the data tends to induce greater separability

between clusters in datasets with higher numbers of clusters and higher dimensionality. We

denote this data generating process as MixGen2.

Typical examples of the structure within the mixed data are given in Figures 3.1 and 3.2.

These provide the two-dimensional representations from MDS, CSE and mPPCA of datasets

generated by MixGen1 and MixGen2 respectively, each with different numbers of dimen-

sions and five clusters. It is worth noting that these low-dimensional representations do

not necessarily capture all of the structure in the higher-dimensional representations used

for clustering. In particular, the data will be much more sparse in more dimensions, and

this can make cluster detection more challenging. For the data generated by MixGen1, all

three continuous representations appear similar and seem to provide appropriate struc-

tures for clustering. For the lower-dimensional examples, there tend to be multiple dense re-

gions within each of the clusters and the clusters are less separable. However, in the higher-
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Figure 3.1: Example structure in continuous representation of simulated mixed data gener-
ated by MixGen1.

dimensional datasets this is not the case and the clustering structure is very clear, so we

would expect good clustering performance by any algorithm considered on these representa-

tions.

The continuous representations produced by MixGen2 are more varied, with a clear dif-

ference between the approaches using the dissimilarity matrix and mPPCA. Since the mod-

elling assumptions made by mPPCA are violated in these examples, the resulting continu-

ous representation is much less appropriate for clustering than for the previous generative

model. For the lower-dimensional examples, the continuous representations from MDS

and CSE have very dense regions around the atoms of the distribution of xD relative to

the variability in xC. Thus, these continuous representations have multiple dense regions,

which do not contain observations originating from a single true cluster. Hence, we expect

clustering results produced from MDS and CSE representations to overestimate the number
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Figure 3.2: Example structure in continuous representation of simulated mixed data gener-
ated by MixGen2.

of clusters in the 10-dimensional datasets. Increasing the dimensionality permits a contin-

uous representation in which the clusters are more clearly separable, so we expect all the

clustering algorithms considered to perform well on the CSE and MDS representations of

the 40-dimensional datasets.

Tables 3.6.1 and 3.6.1 show the clustering performance of the five algorithms consid-

ered when applied to the continuous representations of data simulated by MixGen1 and

MixGen2 from MDS, CSE and mPPCA with respect to NMI and the number of clusters

located. The top row of each cell gives the mean NMI over 30 replications of each scenario

with results from MDS, CSE and mPPCA respectively, separated by a comma. The bot-

tom row of each cell has the same format but for the average number of clusters located. For

each algorithm and each scenario, the best continuous representation is highlighted. For the

data generated by MixGen1, all the continuous representations are competitive. In the 10-
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Table 3.1: Mean clustering performance with respect to NMI and estimated number of
clusters from MDS,CSE,mPPCA representations of data generated by MixGen1. The best
continuous representation for each scenario and choice of clustering algorithm is high-
lighted in red.

k = 5 k = 10 k=20

MDHhier
NMI 0.816,0.810,0.451 0.846,0.824,0.314 0.768,0.781,0.331

k 12.7,11.5,6.4 23.7,23.8,7.1 45.6,54.0,13.9

MDHens
NMI 0.736,0.752,0.402 0.710,0.722,0.410 0.667,0.644,0.276

k 8.9,8.5,5.3 14.2,14.8,8.2 22.3,21.8,9.5
dC/dD dePDDP NMI 0.732,0.360,0.544 0.732,0.535,0.473 0.696,0.402,0.358

5/5 k 27.7,16.3,16.8 47.0,44.9,24.4 93.3, 63.1,26.8
k-means++ NMI 0.841,0.825,0.589 0.869,0.873,0.606 0.788,0.847,0.450

(Gap) k 9.8,9.8,7.1 19.4,19.2,15.3 39.3,39.1,24.1

GMM NMI 0.592,0.581,0.570 0.716,0.644,0.604 0.609,0.531,0.433
k 8.9,9.0,4.9 9.0,9.0,6.2 8.9,9.0,5.5

MDHhier
NMI 0.785,0.809,0.661 0.864,0.877,0.563 0.886,0.881,0.718

k 13.0,12.9,9.3 24.4,21.4,14.4 48.8,47.7,32.8

MDHens
NMI 0.760,0.763,0.532 0.792,0.831,0.373 0.735,0.778,0.424

k 8.0,8.3,6.8 13.6,13.3,6.7 21.1,21.0,13.3
dC/dD dePDDP NMI 0.464,0.373,0.718 0.806,0.540,0.563 0.779,0.448,0.604
10/10 k 12.5,13.7,15.7 50.9,34.4,27.3 95.2, 55.3,53.3

k-means++ NMI 0.778,0.798,0.768 0.904,0.905,0.620 0.920,0.922,0.731
(Gap) k 9.7,9.6,8.3 19.1,19.1,13.3 39.0,39.1,31.3

GMM NMI 0.749,0.636,0.766 0.873,0.781,0.642 0.681,0.668,0.626
k 7.5,8.7,4.2 8.9,9.0,6.1 9.0,8.9,7.1

MDHhier
NMI 0.299,0.806,0.816 0.842,0.879,0.706 0.903,0.930,0.540

k 5.2,13.4,10.6 22.8,22.3,17.5 42.4,36.0,21.5

MDHens
NMI 0.797,0.802,0.630 0.804,0.862,0.517 0.791,0.853,0.402

k 7.8,8.5,7.9 12.0,13.4,10.3 20.7,21.2,9.9
dC/dD dePDDP NMI 0.125,0.546,0.789 0.335,0.608,0.729 0.331,0.759,0.559
20/20 k 2.9,11.8,17.3 16.1,25.3,26.8 30.2,71.1,30.3

k-means++ NMI 0.655,0.834,0.839 0.868,0.904,0.749 0.924,0.928,0.609
(Gap) k 9.7,9.6,9.2 19.4,19.6,15.7 38.8,38.7,25.3

GMM NMI 0.725,0.865,0.879 0.810,0.819,0.768 0.701,0.695,0.430
k 6.7,8.1,3.9 7.5,8.9,6.7 8.5,9.0,3.6

dimensional datasets with 5 or 10 clusters, MDS tends to produce the most appropriate rep-

resentation for clustering. In the datasets with 20 clusters, both MDS and CSE perform well

with similar results for all algorithms except dePDDP, where MDS seems to allow better

performance for the 10 and 20-dimensional datasets, while the CSE representation is better

for the 40-dimensional datasets. In the 40-dimensional datasets, mPPCA also performs well,
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Table 3.2: Mean clustering performance with respect to NMI and estimated number of
clusters from MDS,CSE,mPPCA representations of data generated by MixGen2. The best
continuous representation for each scenario and choice of clustering algorithm is high-
lighted in red.

k = 5 k = 10 k=20

MDHhier
NMI 0.546,0.586,0.137 0.680,0.621,0.305 0.761,0.639,0.282

k 5.7,10.8,1.5 11.2,20.7,3.2 31.1,38.3,5.7

MDHens
NMI 0.643,0.629,0.348 0.627,0.635,0.355 0.633,0.634,0.288

k 8.7,8.0,5.1 13.6,14.9,6.7 24.5,24.8,6.8
dC/dD dePDDP NMI 0.531,0.639,0.242 0.648,0.698,0.317 0.729,0.748,0.295

5/5 k 15.4,34.2,5.0 35.7,64.8,8.8 79.6,142.9,12.7
k-means++ NMI 0.631,0.621,0.312 0.757,0.641,0.374 0.826,0.649,0.314

(Gap) k 9.6,9.8,4.5 19.8,19.5,9.4 38.8,39.2,13.1

GMM NMI 0.619,0.613,0.490 0.680,0.674,0.432 0.603,0.603,0.278
k 6.7,7.2,2.9 8.9,9.0,4.6 9.0,9.0,3.9

MDHhier
NMI 0.488,0.806,0.220 0.826,0.739,0.111 0.948,0.699,0.213

k 3.5,5.9,1.8 9.4,13.6,1.9 22.7,26.9,5.1

MDHens
NMI 0.677,0.680,0.240 0.629,0.619,0.146 0.596,0.598,0.189

k 8.5,7.9,3.4 12.3,12.7,3.0 21.4,21.6,5.2
dC/dD dePDDP NMI 0.700,0.729,0.199 0.706,0.704,0.143 0.729,0.656,0.166
10/10 k 15.3,35.4,3.5 28.7,71.3,3.5 61.5,118.3,7.8

k-means++ NMI 0.676,0.811,0.245 0.840,0.816,0.135 0.918,0.830,0.211
(Gap) k 9.7,9.0,3.7 19.7,19.4,3.8 39.1,39.4,9.3

GMM NMI 0.691,0.632,0.311 0.758,0.675,0.162 0.560,0.555,0.177
k 6.2,5.0,2.2 8.4,8.7,2.2 9.0,9.0,2.9

MDHhier
NMI 0.217,0.949,0.049 0.629,0.964,0.033 0.976,0.935,0.033

k 2.0,4.8,1.2 7.4,10.0,1.3 20.9,20.6,1.6

MDHens
NMI 0.692,0.657,0.086 0.662,0.657,0.023 0.609,0.609,0.013

k 8.0,7.5,1.9 19.7,11.8,1.3 19.7,19.3,1.9
dC/dD dePDDP NMI 0.644,0.811,0.049 0.817,0.818,0.030 0.790,0.752,0.032
20/20 k 10.2,35.8,1.5 22.3,70.6,1.6 44.9,41.2,1.7

k-means++ NMI 0.601,0.889,0.075 0.858,0.925,0.031 0.926,0.928,0.031
(Gap) k 9.0,7.5,1.8 18.9,17.3,1.5 38.6,38.3,2.1

GMM NMI 0.677,0.629,0.124 0.787,0.660,0.025 0.542,0.475,0.024
k 6.9,6.9,1.5 9.0,7.4,1.1 8.9,8.5,1.3

outperforming the other two approaches in some instances. With the exception of GMM,

all the clustering algorithms considered, tend to overestimate the number of clusters in the

continuous representations from CSE and MDS. However, the continuous representations

from mPPCA seem less susceptible to this.

The results from the data generated by MixGen2 indicate that when the modelling as-
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sumptions of mPPCA are not satisfied, MDS and CSE produce much more appropriate

continuous representations for clustering. Both MDS and CSE are capable of producing

appropriate representations, and neither representation consistently permits better clus-

tering performance than the other. For the 10-dimensional datasets, both CSE and MDS

perform similarly, although CSE generally allows the best clustering performance for de-

PDDP and MDHens, while MDS produces a slightly better representation for clustering

with MDHhier , k-means++ and GMM. For the 20-dimensional datasets, CSE is generally

the most appropriate continuous representation when there are only five clusters, however,

the MDS representations are more appropriate with 10 or 20 clusters. This is similar for the

40-dimensional datasets, although the difference in performance between CSE and MDS

is less significant in the datasets with 10 or 12 clusters. k-means++ and dePDDP tend to

overestimate the number of clusters in the MDS and CSE representations, while MDHhier,

MDHens and GMM more accurately estimate this, except for the datasets with 20 clusters

where GMM only locates about nine clusters. All algorithms underestimate the number of

clusters in the mPPCA representations, indicating the clusters are not clearly separable in

these representations.

3.6.2 Real Data

In this section, we consider the quality of the partitions produced by the different cluster-

ing algorithms considered on the continuous representations of real-world benchmark

datasets produced by MDS, CSE and mPPCA. All of these datasets are available from the

UCI repository (Lichman, 2013). Table 3.6.2 provides a summary of the datasets used with

respect to the number of observations, n, number of continuous dimensions dC, number of

discrete dimensions dD and number of clusters k.
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Table 3.3: Summary of mixed benchmark datasets.
Dataset n dC dD k

Autodata 392 5 3 5
Credit Approval 690 5 10 2
Dermatology 366 - 34 6
Heart Disease 294 5 8 2

Soybean 682 - 35 19
Voters 435 - 16 2

The two-dimensional continuous representations of each of the datasets resulting from

MDS, CSE and mPPCA are given in Figure 3.3. With the exception of Autodata, these

datasets appear much more challenging than the simulated data, with a much less clear clus-

tering structure in the continuous representations, so it is expected that the clustering per-

formance will be poor in most cases. The representations from mPPCA are generally the

least appropriate for the identification of the true clusters.

Table 3.4 provides the performance of the five clustering algorithms considered when ap-

plied to the continuous representations resulting from MDS, CSE and mPPCA. The CSE

representations tend to result in the best clustering performance, followed by the MDS rep-

resentations. For all datasets except Heart Disease, mPPCA provides very poor clustering

performance. For k-means++, CSE produces the most appropriate continuous representa-

tion for all datasets except Heart Disease. This is expected since this representation explicitly

considers the k-means objective. CSE also provides the best representations for dePDDP

(except for the Heart Disease dataset) and MDHens. For MDHhier CSE produces the best

representations for the Dermatology, SoyBean and Voters datasets, while the clustering per-

formance of this algorithm is marginally better on the MDS representations of the Autodata

and Credit Approval datasets. For GMM, the CSE representations allow the most accurate

clustering results, except for the Credit Approval and SoyBean datasets, where the MDS rep-

resentation is more appropriate. The performance of all clustering algorithms is poor when
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Figure 3.3: Two-dimensional continuous representations of real datasets from MDS, CSE
and mPPCA.
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Table 3.4: Clustering performance with respect to NMI across real benchmark datasets.
The representation which resulted in the best performance for each clustering algorithm is
highlighted in red.

Auto Credit Derm Heart Soybean Voters

MDS

MDHhier
NMI 0.799 0.297 0.000 0.622 0.000 0.296

k 4.0 5.0 1.0 15.0 1.0 2.0

MDHens
NMI 0.642 0.163 0.522 0.253 0.431 0.445

k 8 4 10 4 11 4

dePDDP NMI 0.516 0.020 0.000 0.549 0.000 0.000
k 4.0 2.0 1.0 22.0 1.0 1.0

k-means++ NMI 0.632 0.000 0.710 0.765 0.203 0.260
(Gap) k 10.0 1.0 11.0 37.0 1.0 1.0

GMM NMI 0.590 0.069 0.697 0.358 0.204 0.315
k 9.0 7.0 4.0 4.0 6.0 3.0

CSE

MDHhier
NMI 0.778 0.241 0.909 0.239 0.705 0.337

k 5.0 9.0 5.0 6.0 21.0 5.0

MDHens
NMI 0.908 0.287 0.843 0.263 0.658 0.492

k 3.0 9.0 5.0 7.0 8.0 3.0

dePDDP NMI 0.674 0.258 0.860 0.225 0.727 0.395
k 8.0 22.0 8.0 12.0 45.0 3.0

k-means++ NMI 0.635 0.245 0.772 0.267 0.781 0.433
(Gap) k 10.0 4.0 10.0 4.0 38.0 4.0

GMM NMI 0.631 0.015 0.700 0.539 0.000 0.353
k 9.0 2.0 3.0 6.0 2.0 8.0

mPPCA

MDHhier
NMI 0.000 0.000 0.000 0.639 0.000 0.294

k 1.2 1.0 1.0 16.8 1.0 7.3

MDHens
NMI 0.401 0.069 0.122 0.049 0.418 0.237

k 8.3 3.5 6.5 4.0 11.4 4.0

dePDDP NMI 0.000 0.000 0.339 0.000 0.000 0.000
k 2.1 1.0 9.3 1.0 1.0 1.0

k-means++ NMI 0.000 0.000 0.552 0.738 0.000 0.356
(Gap) k 7.4 1.3 11.6 36.5 1.0 3.8

GMM NMI 0.348 0.055 0.000 0.528 0.076 0.309
k 5.1 4.3 1.3 4.3 6.5 4.0

applied on the mPPCA representations of the Autodata, Credit Approval, Dematology and

SoyBean Datasets. However, the mPPCA representations of the Heart Disease and Voters

datasets are competitive when using some of the clustering algorithms considered. For the

mPPCA representation of the Voters dataset, the clustering performance of all algorithms is

comparable to the MDS representation. The mPPCA representation of the Heart Disease

dataset produces the best performance for MDHhier and is also competitive for k-means++
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and GMM.

To assess the relative performance of each of the continuous representations for the five

clustering algorithms considered, Figure 3.4 provides boxplots of the regret associated with

using each representation. For each clustering algorithm on each dataset, the regret associ-

ated with a representation is defined as the difference between the performance (based on

NMI) on the representation of interest and the best performing representation for that algo-

rithm on that dataset,

Regret(R) = NMI(πR⋆ , π⋆)−NMI(πR, π⋆)

whereR is the continuous representation in question, πR is the partition produced on this

representation and πR⋆ is the partition produced on the best performing continuous repre-

sentation. These regret values are grouped according to the different algorithms applied. A

regret close to zero indicates the best relative performance of a continuous representation. It

is important to note that this solely compares the quality of the continuous representation

for clustering by each algorithm and not the relative performance of each of the algorithms

on a given continuous representation. For all algorithms, CSE minimises the regret, indicat-

ing that this representation is the most appropriate for clustering with these algorithms. For

GMM, MDS also achieves a low regret, indicating that for GMM, the choice of continuous

representation is not as critical as for the the other algorithms.

3.7 Conclusions

In this chapter, we investigated three methods for producing continuous representations

of mixed datasets, and their appropriateness for clustering with projective density-based

and well-established algorithms. The methods investigated were MDS, mPPCA and CSE.
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Figure 3.4: Boxplot of regret based on NMI for continuous representations produced by
MDS, CSE and mPPCA.

Through a systematic simulation study, we have shown that if the generative model as-

sumed by mPPCA is satisfied, all three continuous representations can produce an appro-

priate representation for effective cluster detection. However, for different generative mod-

els, the representation from mPPCA is much less competitive than CSE and MDS, which

make no assumptions about the data generating processes. Over real benchmark datasets

with varying characteristics, CSE produced the most appropriate continuous representation,

while MDS and mPPCA had a more varied performance. In general, the real datasets were

challenging, so consistently high-quality results were not possible for any of the continuous

representations, instead the ability to locate meaningful clusters was dependant on both the

continuous representation and the choice of clustering algorithm.
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4
Combining Hyperplane Separators for

Clustering

Abstract

We propose approaches to perform density-based clustering of high-dimensional datasets that

may contain diverse (mixed) attributes, which are able to identify clusters in arbitrarily ori-

ented subspaces and estimate their number. For mixed datasets, we obtain an appropriate

continuous representation. Thereafter, we perform projection pursuit on the continuous data

or continuous representation of the mixed data, to locate low-density linear separators that

partition high-density regions associated with clusters. By combining binary partitions from

multiple separators we obtain a divisive and a partitional clustering algorithm to produce

a complete clustering. The resulting clusters concentrate around the modes of the estimated

density of the data (or its continuous representation where necessary). Through empirical

evaluation across simulated and real-world benchmark datasets with varying characteristics,

we show that the proposed algorithms produce consistently high-quality results, and that their

performance is competitive with alternative density-based and other state-of-the-art clustering

algorithms.
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4.1 Introduction

Given a set of observationsX = {xi}n
i=1, the objective of clustering is to partitionX into

a number of homogeneous subsets, or clusters, so that observations allocated to the same

cluster are more similar to each other, than observations allocated to different clusters. As

there is no unique and universally accepted definition of a cluster, there are a number of

approaches to clustering, each relying on a different definition.

The non-parametric statistical approach to clustering, commonly referred to as density-

based clustering, assumes thatX is a sample of realisations of a continuous random vari-

able X with unknown probability density function. Clusters are then defined as regions of

high probability density surrounding the modes of the density function (Hartigan, 1975;

Menardi, 2016).

Since the true density function is unlikely to be known in practice, its modes must be lo-

cated using an non-parametric density estimate. This imposes limitations on the applicabil-

ity of density-based clustering in a number of practical applications. Firstly, density estima-

tion is unreliable in even moderate dimensions. This problem, commonly referred to as the

curse of dimensionality, makes the detection of dense regions associated with clusters chal-

lenging, unless the clusters are very well separated (Rinaldo and Wasserman, 2010). In addi-

tion, if the observations contain any non-continuous attributes, which is common in many

applications, the construction of a continuous density estimate is inappropriate. If one were

to construct a continuous estimator over such data, subsequent cluster detection would triv-

ially separate observations with the same combinations of outcomes in the discrete dimen-

sions. We propose an approach to overcome these restrictions. We consider an alternative

formulation of density-based clustering, which remains applicable in high dimensions, as

well as applying continuous representations of mixed data to allow this methodology to be
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applied to datasets with large numbers of diverse attributes.

A direct consequence of defining clusters around the modes of a probability density func-

tion is that cluster boundaries pass through contiguous regions of low probability density,

that separate the modes. This alternative formulation, known as the low-density separa-

tion assumption, underpins well-established algorithms such as maximum margin clustering

(MMC) (Xu et al., 2004) and semi-supervised support vector machines (Joachims, 1999).

These methods extend the maximum margin hyperplane approach, and have proved very

successful in clustering and semi-supervised classification respectively. The justification for

using the maximum margin hyperplane to partition unlabelled data is that it approximates

the hyperplane that goes through the most sparse regions of the empirical density (Chapelle

and Zien, 2005; Chapelle et al., 2006).

Ben-David et al. (2009) were the first to consider the learning problem associated with

estimating the hyperplane which intersects the region of lowest probability density, un-

der the minimal set of assumptions thatX is an iid sample from an unknown probability

distribution over Rd with continuous density. The authors quantify the density on a hy-

perplane as the integral of the probability density function along the hyperplane, and study

the existence of universally consistent algorithms to estimate the hyperplane with minimum

density. They find that the maximum hard margin classifier is a consistent estimator of the

hyperplane with minimum density only in one-dimensional problems, while in higher di-

mensions only a soft-margin algorithm is consistent. Pavlidis et al. (2016) propose a method

to compute the hyperplane with minimum density for a finite high-dimensional sample

using one-dimensional projections of the data, and establish an asymptotic connection be-

tween this hyperplane and the maximum hard margin hyperplane.

The only work which we are aware of that applies density-based clustering to mixed data
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is Azzalini and Menardi (2016). This work first applies multi-dimensional scaling (MDS) (Borg

and Groenen, 2005) to produce a low-dimensional continuous representation before using

the pdfCluster algorithm (Menardi and Azzalini, 2014). We also consider continuous repre-

sentations produced by mixed probabilistic principal component analysis (mPPCA) (Khan

et al., 2010) and constant shift embedding (CSE) (Roth et al., 2003). Due to our alternative

formulation of density-based clustering, we also remove the restriction to a low-dimensional

continuous embedding, which is more appropriate for datasets with larger numbers of clus-

ters.

In this chapter, we address the aforementioned limitations of density-based clustering as-

sociated with high-dimensional and mixed data. We develop a divisive hierarchical clustering

algorithm and a partitional ensemble clustering algorithm, which use low-density separators

to identify dense clusters associated with the modes of the estimated continuous probabil-

ity density function. These are obtained through one-dimensional projections of the data,

making this applicable in high-dimensional applications, where the construction of an es-

timated density over all dimensions is infeasible. In the case of mixed observations, we first

locate a continuous representation before attempting to identify clusters. Our algorithms

can identify clusters in different arbitrarily orientated subspaces, as well as estimate their

number.

The remainder of this chapter is organised as follows: Section 4.2 presents the method-

ology for the proposed algorithms. First, we formulate the problem of projective density-

based clustering for bi-partitioning, and then present our approaches for producing a full

clustering based on these binary partitions. Next, Section 4.3 considers the production of

a continuous representation of mixed data, allowing our algorithms to be applied in such

datasets. Section 4.4 provides a comparative evaluation of the proposed algorithms against
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alternative density-based and state-of-the-art clustering algorithms on simulated and real-

world datasets. The chapter ends with conclusions in Section 4.5.

4.2 Methodology

It is assumed throughout that the set of observations,X = {xi}n
i=1 where xi ∈ Rd, consti-

tutes a sample of realisations of a continuous random variable, or continuous representation

of a mixed random variable X on Rd with unknown continuous probability density func-

tion, approximated by p̂x : Rd → R+. The proposed approach aims to identify hyper-

planes that traverse regions of low density, and separate dense regions around the modes of

p̂x that are associated with clusters. We define high-density clusters based on the estimated

density p̂x as in Section 2.3, Definition 1.

To identify high-density clusters in high-dimensional datasets, we apply the low-density

separation assumption to define cluster boundaries, rather than locating the level sets of p̂x

directly. We define a low-density separator, that identifies high-density clusters inX accord-

ing to Definition 2 in Section 2.3. An important parameter in both Definitions 1 and 2 is the

level parameter c, that sets a threshold on the maximum value of the density intersected by a

cluster boundary, such that contiguous regions of density greater than c are separated. The

proposed algorithms do not require the determination of this parameter in advance, but in-

stead attempt to identify the separator with minimal density. This results in the separator

that corresponds to the smallest value of c for which Definition 2 holds. These separators

produce a a succession of bi-partitions, which are combined to produce an overall cluster-

ing. The location of these minimum density separators is computationally intractable for

arbitrary separators, so we restrict or attention to linear separators (hyperplanes). These

minimum density linear separators located by the approaches proposed in this chapter bi-
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partition dense linearly separable sets, as defined in Section 2.3, Definition 3. This definition

posits that convex, contiguous regions of density greater than c are linearly separable if there

exists a hyperplane along which the maximum value of p̂x is at most c. This definition re-

sults in the subsets ofX identified by a minimum density linear separator corresponding

to high-density clusters, as defined in Definition 1, with the constraint of convexity in the

clusters.

4.2.1 Minimum Density Hyperplanes

A hyperplane can be defined by a unit-length vector v ∈ Sd−1 = {x ∈ Rd | ∥x∥ = 1}

and a displacement from the origin b ∈ R, as H(v, b) = {x ∈ Rd | v⊤x = b}. To

quantify the density of the region intersected by a hyperplane with respect to p̂x we adapt

the density on a hyperplane criterion proposed by Ben-David et al. (2009),

Î(v, b) =
∫

x∈H(v,b)
p̂x(x)dx. (4.1)

The hyperplane that minimises Î(v, b) is called theminimum density hyperplane (MDH).

Î(v, b) cannot be evaluated analytically for all types of density estimators, but when p̂x is

constructed from an isotropic Gaussian kernel density estimate Eq. (4.1) simplifies greatly,

Î(v, b) =
∫

x∈H(v,b)

1
n(2πh2)d/2

n

∑
i=1

exp
{
−∥x− xi∥2

2h2

}
dx,

=
1

n
√

2πh2

n

∑
i=1

exp

{
− (b− v⊤xi)

2

2h2

}
, (4.2)

= p̂vTx(b),
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where p̂vTx denotes a one-dimensional kernel density estimator constructed from the pro-

jection ofX onto v, and using the same bandwidth, h, as p̂x. Eq. (4.2) states that Î(v, b)

can be computed exactly by projecting the data onto v; constructing a one-dimensional den-

sity estimator from these projections that uses Gaussian kernels with bandwidth h; and eval-

uating it at b. Since projections can only contract pairwise distances, it can be shown that

Î(v, b) imposes an upper bound on the estimated density at any point on the hyperplane

H(v, b) (Pavlidis et al., 2016),

max
x∈H(v,b)

p̂x(x) ⩽ (2πh2)
(1−d)

2 Î(v, b).

This bound is tight if only one-dimensional projections ofX are used. Therefore, the MDH

imposes the lowest upper bound (that can be achieved using one-dimensional projections

only) on the maximum value of p̂x along a hyperplane separator.

Assuming without loss of generality thatX is centred at zero, the MDH is the solution

to the optimisation problem,

min
v,b

Î(v, b), s.t. b ∈ [−ασv, ασv], (4.3)

where σv denotes the standard deviation of the projected data onto v, and α > 0 is a user

defined parameter controlling the width of the search interval for b, discussed in detail be-

low. It is necessary to constrain the displacement of the separating hyperplane from the

origin, |b|, as for any v ∈ Sd−1, a hyperplane of arbitrarily low density can be found for suf-

ficiently large |b|, that is lim|b|→∞ Î(v, b) = 0. Such hyperplanes are clearly not meaning-

ful for clustering as they assign all observations to one cluster. The constrained optimisation

problem in Eq. (4.3) exhibits multiple local minima, as demonstrated in Figure 4.1, which
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(a) Î(v, b) (b) Hyperlane separators from SQP

Figure 4.1: Illustration of local minima Î(v, b) and the resulting hyperplane separators from
constrained optimisation with 50 random initialisations for the S4 dataset.

shows the value of Î(v, b) with changes in the projection angle and displacement from the

origin, as well as the resulting hyperplane separators obtained through sequential quadratic

programming (SQP) (with 50 random initialisations) over the S4 dataset (Fränti and Virma-

joki, 2006).

To alleviate the problem of convergence to poor local minima, the following projection

pursuit formulation has been proposed (Pavlidis et al., 2016),

ϕ(v) = min
b∈R

f (v, b), (4.4)

f (v, b) = Î(v, b) +
L
ηε

max{0,−ασv − b, b− ασv}1+ε, (4.5)

where L = (e1/2h22π)−1 ⩾ supb∈R | p̂′vTx(b)| and ε, η ∈ (0, 1). We call f the pe-

nalised density integral, and ϕ the projection index, as it quantifies the suitability of of pro-

jection vectors for low-density cluster separation. The choice of L ensures that for fixed v

the global minimiser of f (v, b) will be within η of the minimiser of Î(v, b) in the interval

[−ασv, ασv] (Pavlidis et al., 2016). The parameter ε is introduced to ensure that the penalty
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Figure 4.2: Separating hyperplane H(v, b), estimated density of the projections ofX
onto v (black line), Î(v, ·), and penalised objective function, f (v, ·), for η = 0.01 and
ε = {0.1, 0.3, 0.9} (burgundy,orange and green lines respectively).

function is continuously differentiable everywhere, while resembling the hinge loss func-

tion. For η and ε, values close to zero and one are recommended respectively. Fig. 4.2 illus-

trates the two dimensional A1 dataset (Kärkkäinen and Fränti, 2002), along with a candidate

separating hyperplane (black line). The observations projected onto the vector perpendic-

ular to the separating hyperplane are illustrated with red dots. The one-dimensional kernel

density estimator constructed from these projections, p̂v⊤x, is also illustrated along with the

penalised density integral, f (v, ·), for three choices of (η, ε). The figure illustrates the effect

of the penalty function, which is to ensure that all minimisers of f (v, ·) are identical to the

minimisers of Î(v, ·) in [−ασv, ασv] and differ by at most η at the boundaries. The figure

also shows that the precise choices of η and ε are not critical, but sensible values are required

to avoid numerical instability.

The parameter α determines the range over which minimisers of Î(v, ·) are sought. If

α is constant, then its value critically affects the quality of the estimated MDH. Setting α

close to zero favours hyperplanes that induce a balanced bi-partition ofX , but there is no

guarantee that clusters can be separated by a hyperplane that goes through the mean of the

data. If instead a large value of α is used there is a risk that the MDH will separate the tail
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Figure 4.3: Illustration of the resulting hyperplane separators from the projection pursuit
formulation with 50 random initialisations for the S4 dataset.

of p̂x rather than separating high-density regions. Instead of selecting a fixed value, it has

been recommended in Pavlidis et al. (2016) to estimate the MDH for a sequence of increas-

ing values of α, starting from zero, and using the previously identified MDH as the initial

projection direction each time α is increased. Setting α to zero initially forces the algorithm

to seek low-density hyperplanes that induce a balanced bi-partition of high-density clusters,

while increasing α in subsequent steps fine tunes the location of the MDH. The maximum

value of α is not critical in this approach as it is straightforward to detect when the MDH is

no longer a local minimiser of Î(v, ·) but instead intersects the tail of p̂x. Such solutions are

discarded.

The formulation in Eqs. (4.4) - (4.5) can accommodate discontinuous changes of the min-

imiser, b⋆ = arg minb∈[−ασv,ασv]
Î(v, b), as a result of changes in v. It is thus less suscep-

tible to convergence to local minima than a simple constrained optimisation formulation,

as seen in Figure 4.3, which shows the hyperplane separators on the S4 dataset arising from

this projection pursuit formulation with 50 random initialisations. By contrast to the con-

strained optimisation approach, projection pursuit converges to only a few solutions, all of

which correspond to very high-quality cluster separators.

The projection index, ϕ(v), is a non-smooth non-convex locally Lipschitz continuous
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function. Lewis and Overton (2013) have strongly advocated that a Broyden–Fletcher–

Goldfarb–Shanno (BFGS) method using inexact line searches is very efficient for the min-

imisation of such functions, while being much less computationally demanding than non-

smooth optimisation methods like gradient sampling (Burke et al., 2005). We call the projec-

tion pursuit algorithm that minimises the projection index ϕ(v), minimum density projec-

tion pursuit (MDP2).

4.2.2 Divisive Hierarchical Clustering With Minimum Density Hyperplanes

To obtain a divisive hierarchical clustering algorithm capable of estimating the number of

clusters, we need to specify when to terminate the successive bi-partitioning of subsets ofX

with MDP2 (stopping rule). LetXC ⊂ X denote the observations assigned to cluster C,

and H(vC, bC) be the MDH associated with this cluster. Furthermore, let p̂v⊤C x denote

the density estimator constructed by projectingXC onto vC. The relative depth criterion,

defined in Eq. (4.6), measures the extent to which H(vC, bC) is a low-density separator of

high-density clusters inXC. The relative depth is defined as the smaller of the relative dif-

ferences in the density on the MDH, p̂v⊤C x(bC), and the density of the two largest adjacent

modes of the projected density,

RelativeDepth(vC, bC;XC) =
min

{
p̂v⊤C x(ml), p̂v⊤C x(mr)

}
− p̂v⊤C x(bC)

p̂v⊤C x(bC)
, (4.6)

where ml and mr are the locations of the two largest modes of p̂v⊤C x to the left and right

of bC respectively. By convention, if there is no mode either to the left or the right the rela-

tive depth is zero. This criterion is equivalent to the inverse of a measure of cluster overlap

for clustering with Gaussian mixtures (Aitnouri et al., 2000). The relative depth cannot be

used directly as a stopping criterion because MDP2 actively seeks projections for which the
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Algorithm 1 Test of validity of MDH.
Require: Observations in cluster C,XC ⊂ X , number of null samples of reference distribution m, critical

quantile q, bandwidth multiplier b
n← |XC|
X T

C = sample(XC, ⌈n/2⌉)
X H

C = XC \ X T
C

Apply MDP2 onX T
C to estimate MDH: H(vC, bC)

d← RelativeDepth(vC, bC;X H
C )

c← 0
for i = 1 : m, do

u← {u1, ..., u|X H
C |
}, uj ∼ Uniform(0, 1)

d′ ← maxb{RelativeDepth(1, b; u)}
if d′ < d then

c← c + 1
end if

end for
if c/m > q then

return True
end if

density estimator p̂v⊤C x is multimodal. Thus, low-density hyperplanes that achieve non-zero

relative depth can exist even if there are no high-density clusters to separate with respect to

the true density. Moreover, the probability of identifying such hyperplanes increases as the

sample size becomes smaller relative to the number of dimensions, which occurs as we move

down the cluster hierarchy induced by a divisive algorithm.

We propose the following procedure to test the appropriateness of an MDH to separate

high-density clusters. For a cluster C, we randomly split the data assigned to it,XC, into a

training and a hold-out sample. We compute the MDH, H(vC, bC), using data from the

training sample, while the relative depth of H(vC, bC) is estimated using data from the

hold-out sample only. This estimate of the relative depth is then compared with a quantile

of the distribution of the relative depth of a sample of equal size (to the hold-out sample)

from a one-dimensional unimodal reference distribution. In our experiments we choose the

uniform distribution as a reference as this is the standard choice in modality testing (Harti-

gan and Hartigan, 1985; Hartigan, 1977). If the relative depth of H(vC, bC) exceeds the cho-

sen quantile of the relative depth of the reference distribution, we conclude that the MDH
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Algorithm 2 Hierarchical Minimum Density Hyperplanes (MDHhier)
Require: ObservationsX = {xi}n

i=1
Initialise with estimated number of clusters k̂ = 1 and vector of cluster assignments π with πi = 1∀i.
repeat

For all current subsets ofX assigned to clustersXCj = {xi|πi = j}, j = 1, ..., k̂, locate the MDH and
associated estimated projected density;
Test for multimodality in the estimated projected density of allXCj for j = 1, . . . , k̂;
Split all clusters for which the estimated projected density is multimodal resulting in new clustersXCj ;
Update current vector of cluster assignments πi = j iff xi ∈ XCj and k̂ = max π;

until The estimated projected density is not multimodal for all clusters.
return π, k̂

is a valid separator and C is split. This procedure is summarised in Algorithm 1.

To improve the accuracy of the separating hyperplane, the location of the split along the

projection vector, bC, is computed using the entire sample,XC. The steps for the our com-

plete divisive algorithm, which we call MDHhier, are summarised in Algorithm 2.

4.2.3 Ensemble Partitional Clustering With Minimum Density Hyperplanes

In Section 4.2.1 we compared the quality of MDHs obtained by optimising the constrained

problem in Eq. (4.3), against the projection pursuit formulation, Eqs. (4.4) - (4.5). As Fig-

ure 4.1 illustrates, the former approach frequently converges to sub-optimal local min-

ima. Nonetheless, using SQP to estimate MDHs is computationally less expensive be-

cause it doesn’t involve the minimisation of f (v, b), at each function evaluation. If we

consider MDHs obtained through SQP as weak partitions (Topchy et al., 2005) it is possi-

ble to combine them through ensemble clustering to obtain a complete clustering. We call

this partitional algorithm MDHens. To produce a complete clustering into k clusters using

an ensemble clustering of binary partitions, we use the probabilistic mixture model pro-

posed in Topchy et al. (2005). This is done using a model-based clustering such that clusters

correspond to components of a finite mixture model. The model for the vector of labels

yi ∈ {0, 1}H assigned to the i-th observation by each of the H hyperplanes is a finite mix-
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Algorithm 3 Ensemble Minimum Density Hyperplanes (MDHens)
Require: ObservationsX = {xi}n

i=1, number of input hyperplanes H
Initialise n× H matrix of input partitions Y = [yij] for i = 1, . . . , n and j = 1, . . . , H.
for j = 1 : H, do

Sample initial projection vector v uniformly on the unit sphere v ∈ Sd−1, and initialise displacement
from the origin b = 0;
Locate the local minimum density hyperplane H(v⋆, b⋆) using SQP formulation given in Eq. (4.3);
Store bi-partition from H(v⋆, b⋆) such that yij = 0 if x⊤i v⋆ ⩽ b⋆, yij = 1 if x⊤i v⋆ > b⋆;

end for
Combine the rowwise partitions in Y using the ensemble method of Topchy et al. (2005) with BIC to
determine the final partition π and estimated number of clusters k̂.
return π, k̂

ture of Bernoulli distributions in the space of clusterings,

P(yi|Θ) =
k

∑
l=1

ζl

H

∏
j=1

(θ
(j)
l )yij(1− θ

(j)
l )1−yij , (4.7)

where θ
(j)
l is the probability that yij = 1 if yi is sampled from the l-th mixture component

and ζ = (ζ1, ..., ζk) is the vector of mixing parameters such that ∑k
l=1 ζl = 1. The param-

eter vector Θ =
(

ζ1, . . . , ζk, θ
(1)
1 , . . . , θ

(H)
k

)
can be estimated through the expectation-

maximisation (EM) algorithm assuming there exists an unobserved matrix of true cluster

labels Z ∈ {0, 1}n×k whose expected value can be calculated from Θ. The row-wise max-

ima of E(Z) provide the clustering result. In this formulation, the number of clusters can

be estimated by optimising a model selection criterion (McLachlan and Peel, 2000). We em-

ploy the Bayesian Information Criterion (BIC) (Fraley and Raftery, 2002). Although each of

the individual separating hyperplanes used as input partitions can only separate convex clus-

ters, after the ensemble clustering, MDHens can locate non-convex clusters. This algorithm

is summarised in Algorithm 3.

4.2.4 Visualisation of Proposed Methods

To visualise the clusters obtained by MDHhier and MDHens, two-dimensional toy datasets

were generated from three component Gaussian mixtures. Figures 4.4 and 4.5 show the

79



(a) (b)

Figure 4.4: Clusters identified by divisive algorithm MDHhier.

(a) Hyperplane separators for
MDHens

(b) Cluster assignment

(c) Hyperplane separators for
MDHens

(d) Cluster assignment

Figure 4.5: Clusters identified by partitional algorithm MDHens.

results of MDHhier and MDHens respectively, applied to two of these datasets. The first

dataset, Figures 4.4(a), 4.5(a) and 4.5(b), is characterised by high cluster overlap, while the

second, Figures 4.4(b), 4.5(c) and 4.5(d), has very low cluster overlap. The low-density hy-

perplanes used to generate the clustering results are shown in red. Both methods correctly

separate the high-density regions of the estimated density and achieve very low clustering

error, even in the more difficult problem. Furthermore, the clusters identified are associated

with the modes of the estimated density. Notice that MDHens identifies clusters effectively
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despite the fact that a few hyperplane separators intersect regions of relatively high density

(due to the local convergence problem).

4.3 Continuous Representations of Mixed Data

With the exception of DBSCAN (Ester et al., 1996) and its variants, which can identify high-

density regions using only pairwise distances, all density-based clustering methods require

continuous data to construct p̂x and identify high-density clusters. To apply these methods

to data containing mixed feature types, it is therefore necessary to transform the data to ob-

tain a continuous representation. We consider the application of three approaches for this,

MDS (Borg and Groenen, 2005), mPPCA (Khan et al., 2010) and CSE (Roth et al., 2003). In

this section, we briefly discuss these three methods, leaving a complete description, and an

empirical evaluation of their appropriateness for density-based clustering to Chapter 3.

Both MDS and CSE require a matrix of pairwise distances, calculated using an appropri-

ate distance metric for mixed data, such as the Gower distance (Gower, 1971). MDS aims to

locate a continuous embedding which minimises the distortion between the original pair-

wise distances and the pairwise distances of the continuous representation. Following Az-

zalini and Menardi (2016) we apply non-metric MDS which minimises the SSTRESS crite-

rion,
n

∑
i=1

n

∑
j=1

( f (Dij)
2 − d2

ij)
2,

where Dij and dij are the pairwise distances between observations i and j in the original data

and continuous representation respectively, and f (·) is a monotonic transformation of the

input distances, which is optimised during the iterative procedure. In all our experiments

we use the default choice of f (·) in the MASS package for R. This is intuitive, although this

objective is not directly related to clustering. CSE (Roth et al., 2003) explicitly considers the

81



ability to identify clusters in the continuous representation using the k-means algorithm. In

this approach, k-means clustering on the continuous representation is guaranteed to pro-

duce the same partition as minimising the sum of within cluster pairwise distances using the

original dissimilarity matrix.

mPPCA takes a different approach, assuming a Gaussian latent variable, z, has given rise

to the mixed variable x. For the continuous dimensions of x, this model takes the standard

conjugate Gaussian form. For the discrete dimensions of x, a multinomial distribution is

assumed, whose input vector of probabilities is related to z via the softmax (multinomial

logistic regression) link function. The distribution of z conditional on x then gives the con-

tinuous representation. The model for the discrete dimensions of x prevents a closed form

solution for this conditional distribution. To solve this, Khan et al. (2010) propose a varia-

tional EM algorithm. Through extensive experimentation, we found that this is sensitive to

initialisation, and convergence to local solutions can critically affect the continuous repre-

sentation produced.

In Chapter 3 we investigate the clustering performance of MDHhier, MDHens, dePDDP,

k-means++ and Gaussian mixture model-based (GMM) clustering on the continuous rep-

resentations produced by MDS, mPPCA and CSE. We conclude that for data simulated

via the model used in the simulation study of this chapter, and the real datasets considered,

CSE produced the most appropriate continuous representation. Therefore, where a con-

tinuous representation is required, the results based on this representation are reported in

Sections 4.4.3 and 4.4.4.
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4.4 Experimental Results

In this section, we evaluate the performance of the density-based clustering methods we pro-

pose, MDHhier and MDHens across simulated and real datasets containing both continuous

and mixed attributes, with varying characteristics. The proposed approaches are compared

to well-established and state-of-the art clustering methods. The methods considered are:

1. Normalised spectral clustering (Ng et al., 2002) using the local bandwidth selection
rule and cluster estimation method of Zelnik-Manor and Perona (2004).

2. k-means++ (Arthur and Vassilvitskii, 2007), a recent variant of the classical k-means
algorithm that through appropriate initialisation is guaranteed to beO(log k) com-
petitive with the optimal k-means clustering. We use the Gap statistic (Tibshirani
et al., 2001) to estimate the number of clusters. This approach to estimate the num-
ber of clusters is computationally expensive, and therefore significantly increases the
computational time required compared to k-means with a pre-specified number of
clusters.

3. DBSCAN (Ester et al., 1996) and its subspace clustering extension SubClu (Kailing
et al., 2004). DBSCAN is arguably the most widely used density-based clustering al-
gorithm. We use the implementation in the R package dbscan. DBSCAN has been
documented to perform poorly in high-dimensional applications (Agrawal et al.,
1998), and so we also considered the SubClu algorithm as a subspace variant (imple-
mented in the R package subspace). This algorithm failed to produce meaningful
partitions in any of the datasets considered due to very poor estimation of the num-
ber of clusters, and so its performance is not reported.

4. pdfCluster (Menardi and Azzalini, 2014), and its extension for mixed data (Azzalini
and Menardi, 2016). This is a recently proposed density-based clustering algorithm
that employs a Gaussian kernel density estimator to identify high-density clusters in
the full-dimensional space. pdfCluster is limited to datasets with small numbers of
observations and low dimensionality due to the computational cost and numerical
instability of constructing the estimated density. For mixed datasets Azzalini and
Menardi (2016) recommend using non-metric MDS to obtain a low-dimensional
continuous representation, before applying pdfCluster. We use the implementation
given in the R package pdfCluster.

5. Density-enhanced Principal Direction Divisive Clustering (dePDDP) (Tasoulis et al.,
2010). dePDDP is a divisive projective clustering algorithm that is related to MDHhier.
It recursively bi-partitions the data by projecting onto the first principal component;
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constructing a one-dimensional kernel density estimator from the projections; and
splitting at the point that minimises this estimator within the interval between the
first and last mode. If the projected density is unimodal the current cluster is not fur-
ther subdivided. At each level of the hierarchy dePDDP bi-partitions the data accord-
ing to hyperplane that achieves the lowest possible density out of the hyperplanes
with normal vector equal to the first principal component. Comparing against this
algorithm therefore highlights the impact of optimising the orientation of the sepa-
rating hyperplane in MDHhier.

6. Gaussian mixture model (GMM) using BIC (Fraley and Raftery, 2002) to estimate
the number of clusters. We use the implementation in the R Package MClust.

4.4.1 Details of Implementation

For all algorithms, we use parameter settings recommended in the literature. For DBSCAN

and SubClu, we apply the approach proposed by Ester et al. (1996) to determine ϵ and

MinPts which define the neighbourhood radius, and the minimum number of points re-

quired for a point to be considered a high-density (core) point respectively. The only tuning

parameter in pdfCluster is the covariance matrix employed by the kernel density estimator.

The recommendation in Azzalini and Menardi (2014) is to use a diagonal covariance matrix,

with Σii = 0.75σ̂i[4/(n(d + 2))]1/(d+4), where σ̂i is the estimated standard deviation

along the i-th dimension.

For spectral clustering, we use the normalised graph cut algorithm of Ng et al. (2002),

which employs a fully connected graph. The adjacency matrix W is computed through

the Gaussian kernel, Wij = exp
(
−Dij/sisj

)
, where Dij is the distance between the i-

th and j-th observation, and si (sj) denotes the distance of the i-th (j-th) observation to

its seventh nearest neighbour. This local scaling approach has been proposed by Zelnik-

Manor and Perona (2004) to handle multi-scale data, and in our experience is very effective.

The choice of the seventh nearest neighbour is arbitrary, but this the value recommended
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by Zelnik-Manor and Perona (2004). This seems to work well in practice but the choice

of this value is considered further in Section 8.2.1. To set the bandwidth of the kernel den-

sity estimator employed by dePDDP, Tasoulis et al. (2010) recommend the standard rule,

h = σ̂pc1
(4/(3n))1/5, where σ̂pc1

, is the estimated standard deviation of the projections

on the first principal component.

The two most important parameters for the MDH-based algorithms are the initial pro-

jection direction, and α, the parameter that determines the range of the interval over which

the density is being minimised. Following Pavlidis et al. (2016) we initialise each stage in

MDHhier using both the first and second principal components. We then select the hyper-

plane which leads to the larger relative depth in the test sample. This relative depth is then

compared with the 0.975 estimated quantile of the relative depth of a sample from the uni-

form distribution for our stopping rule proposed in Section 4.2.2. Our experience with the

method has shown that data containing multiple density separable clusters tend to show

strong multimodal signal along the optimal projection, whereas if this is not the case then

the conservatism of the uniform reference distribution is effective in mitigating against sub-

stantial over partitioning. We found that all quantiles above 0.9 yield similar results in most

cases. The parameter α is initialised close to zero and progressively increased to αmax = 1.

As discussed in Pavlidis et al. (2016), using initially a small α steers the algorithm towards

projection directions that exhibit a strong bi-modal structure and induce a balanced data

partition. Increasing α subsequently enables the method to converge to the minimiser of

the projected density. For the partitional algorithm, MDHens, a diverse set of separating

hyperplanes is necessary to obtain a high-quality clustering. To this end, both the initial pro-

jection direction and α are initialised uniformly at random. In total 30 binary partitions are

provided as inputs to the consensus clustering algorithm. In all MDH-based algorithms we
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use h = 0.9σ̂n−1/5, which (Silverman, 1986) recommend for bandwidth selection when

the univariate density being estimated is assumed to be multimodal. To maintain a fixed

bandwidth regardless of the choice of projection vector, we take σ̂ = σ̂pc1
.

For mixed datasets, pairwise distances are computed using the Gower distance (Gower,

1971). For DBSCAN and spectral clustering, the dissimilarity matrix is sufficient while for

the MDH variants, dePDDP, k-means++, pdfCluster and GMM, a continuous representa-

tion is necessary. Since Azzalini and Menardi (2016) have already proposed the use of non-

metric MDS to produce a continuous representation of no more than five dimensions, we

employ this for pdfCluster. For MDHhier, MDHens, k-means++ and GMM, we use the

continuous representation from CSE, since this produced the most consistently competitive

clustering performance for the datasets considered. For a comprehensive evaluation of the

continuous representations considered, see Chapter 3.

4.4.2 Measuring Clustering Performance

We evaluated the performance of all competing algorithms using different performance

measures that are appropriate for comparing clusterings with potentially different numbers

of clusters, such as normalised mutual information (NMI) (Strehl and Ghosh, 2002), Rand

Index (Rand, 1971), Adjusted Rand Index (Hubert and Arabie, 1985) and V-measure (Rosen-

berg and Hirschberg, 2007). The choice of performance measure did not alter the relative

performance of the different algorithms, and we thus report performance with respect to

NMI only. NMI is an information theoretic measure that quantifies the statistical infor-

mation shared between two distributions. Given a clustering π of n observations into k

assigned clusters and the true cluster assignment π⋆ with k⋆ true clusters, let nπ
i be the

number of observations in assigned cluster i, and nπ⋆

j be the number of observations in

true cluster j. Further, let ni,j be the number of observations from true cluster j in assigned
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cluster i. NMI is defined as,

NMI(π, π⋆) =

k
∑

i=1

k⋆

∑
j=1

ni,j log
(

ni,jn
nπ

i nπ⋆
j

)
√√√√( k

∑
i=1

nπ
i log nπ

i
n

)(
k⋆

∑
j=1

nπ⋆

j log
nπ⋆

j
n

) .

The value of NMI is in the range [0, 1] with higher values indicating better performance.

4.4.3 Simulated Data

Here we evaluate the performance of MDHhier and MDHens across simulated continuous

and mixed data with varying numbers of dimensions and clusters. These simulations allow

us to control the level of difficulty of the clustering problem. In all cases the distribution

represents a mixture in which each of the k components constitutes a cluster. For each di-

mensionality and number of clusters, 30 data sets were generated, each originating from a

probability distribution with randomly selected parameters. The mixing proportions were

generated as

ζi =
ui

∑k
j=1 uj,

where

ui ∼ Uniform[1, 2], i = 1, . . . , k

and the parameters for each of the components were generated randomly as follows,

µµµC ∼ Uniform[0, k/3]dC ;

µD
j ∼ Bern(0.5), j = 1, . . . , dD;

σ = u2, u ∼ Uniform[0.1, 1.1].
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Figure 4.6: Example structure in continuous simulated data produced by projecting onto
the first two principal components

From each component ⌈100kζi⌉ data were generated according to,

xC ∼ N(µµµC, σI),

P(xD
j = B) =


1− σ/4, B = µD

j

σ/4, B = 1− µD
j

.

The model for the continuous data tends to induce greater separability between clusters in

datasets with higher numbers of clusters and higher dimensionality. Figure 4.6 shows two-

dimensional principal component projections of typical examples of the two most extreme

cases for the numbers of clusters and dimensionality of the continuous datasets generated in

our experiments. For datasets like the one depicted in Figure 4.6(a), the high degree of over-

lap in the true clusters means that the density-based definition may not be appropriate for

distinguishing all clusters. Hence, we expect methods relying on this approach to find these

data challenging. In contrast, the density-based cluster definition is appropriate for datasets

like the one in Figure 4.6(b). The dimensionality of these datasets can pose a challenge for

pdfCluster and DBSCAN, but the projective density algorithms are expected to perform

well.
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(a) dC/dD = 5/5
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(b) dC/dD = 20/20

Figure 4.7: Example structure in continuous representation of simulated mixed data pro-
duced using CSE

The Gower distance function, used for computing the pairwise distances of the mixed

data, is given by the sum of the normalised dissimilarities in each dimension. Therefore each

entry in the dissimilarity matrix, D, can be thought of as a convolution of a discrete random

variable with a continuous one. Our understanding of these convolutions is informed by

kernel density estimation, where the number of atoms in the discrete distribution and their

separation relative to the variability in the continuous dimensions are the main determining

factors in the cluster structure of the convolution. For density-based clustering, we require

the continuous representation to exhibit a unimodal structure for each cluster. We expect

this to be possible with a higher number of discrete dimensions, inducing more atoms in

the distribution of xD, and moderate variability in the continuous component of each clus-

ter. Typical examples of the structure within the mixed data are given in Figure 4.7, which

provides the two-dimensional CSE representation of datasets generated with different num-

bers of dimensions, each with five clusters. In cases like the one depicted in Figure 4.7(a),

there are insufficient discrete dimensions, resulting in very high probability density around

the atoms of the distribution of xD relative to the variability in xC. Thus, the continuous

representation has multiple dense regions for each cluster. Further, these dense regions
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Table 4.1: Clustering performance on simulated continuous datasets. The top row of each
cell of the table reports NMI and the second the estimated number of clusters. Each cell
reports mean performance over 30 experiments.

k = 5 k = 10 k = 20
d 10 20 40 10 20 40 10 20 40

MDHhier NMI 0.353 0.645 0.869 0.870 0.973 0.997 0.985 0.999 1.000
k 3.1 3.5 4.6 8.6 9.9 10 20 20 20

MDHens NMI 0.663 0.776 0.919 0.875 0.975 0.998 0.973 0.997 1.000
k 6.7 6.0 5.7 10.5 10.0 10.0 19.8 19.8 19.2

dePDDP NMI 0.620 0.774 0.921 0.821 0.937 0.974 0.961 0.981 0.985
k 17.5 13.8 9.7 26.5 20.2 15.1 40.2 31.2 27.7

k-means++ (Gap) NMI 0.705 0.784 0.859 0.868 0.916 0.914 0.929 0.930 0.925
k 8.3 8.6 8.1 16.8 16.9 15.5 31.9 32.7 31.2

Spectralauto NMI 0.832 0.812 0.804 0.713 0.710 0.699 0.661 0.635 0.656
k 3.6 3.6 6.5 4.8 4.9 4.9 8.1 7.5 7.7

DBSCAN NMI 0.301 0.374 0.349 0.659 0.692 0.658 0.787 0.770 0.767
k 2.2 2.5 2.3 7.1 7.1 6.5 16 14 13

pdfCluster NMI 0.414 0.407 0.368 0.661 0.619 0.631 0.677 0.648 0.805
k 2.2 2.1 1.8 5.0 4.6 4.5 11.1 10.7 11.9

GMM NMI 0.891 0.958 0.876 0.951 0.970 0.970 0.733 0.724 0.719
k 4.8 4.9 3.9 9.0 9.0 9.0 9.0 9.0 9.0

do not contain observations originating from a single true cluster. Hence, we expect algo-

rithms which rely on this representation to perform poorly and to drastically overestimate

the number of clusters. Increasing the dimensionality (Figure 4.7(b)) permits a continuous

representation where associating the modes of the estimated density with a single true clus-

ter is more appropriate. Here, projective density-based methods should perform well.

The clustering results for the continuous and mixed data are summarised in Tables 4.1

and 4.2, respectively. The tables report average performance with respect to NMI, as well

as the average number of clusters found. The best performing algorithm in each case is in-

dicated in red. Our experience indicates that the variability in performance arising from

randomness in the sampling distribution giving rise to the data, completely dominates the

randomness induced by the non-deterministic nature of MDHhier. We therefore only run

MDHhier once for each of the 30 replications of each scenario. For the higher-dimensional

continuous data with more clusters, MDHhier and MDHens perform the best since the clus-
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ters located are associated with the modes of the estimated density. For these datasets, de-

PDDP and k-means++ also perform competitively while spectral clustering, DBSCAN and

pdfCluster produce lower quality partitions. GMM also performs well for the datasets with

5 and 10 clusters but not for the datasets with 20 clusters, where BIC penalises too heavily

for fitting a more complex model, leading to an underestimation of the number of clus-

ters. For the lower-dimensional continuous data with fewer clusters, the non-parametric

density-based definition is not appropriate due to high cluster overlap so the MDH vari-

ants, dePDDP, pdfCluster and DBSCAN find these datasets challenging. In these situa-

tions, GMM tends to produce the highest quality partitions. Increasing the dimensional-

ity induces greater separation between the true clusters so the projective density-based ap-

proaches such as dePDDP, MDHhier and MDHens perform well (better than k-means++,

GMM and spectral clustering) for the 40-dimensional datasets. However, DBSCAN and

pdfCluster still perform poorly as the estimated density is unreliable in dimensions as high

as this.

For the higher-dimensional mixed data, the clusters are associated with unimodal high-

density regions in the continuous representation. In these examples, MDHhier and MDHens

produce high-quality partitions. Similarly, dePDDP and k-means++ perform well on these

datasets. When the dimensionality is lower, the discrete attributes induce modes in the es-

timated density of the continuous representation around the atoms of the distribution of

xD. This inhibits the accurate estimation of the number of clusters, and causes relatively

poor performance by all algorithms. dePDDP provides the best NMI scores for the low-

dimensional data although it locates substantially more clusters than the other algorithms.
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Table 4.2: Clustering performance on simulated mixed datasets. The top row of each cell of
the table reports NMI and the second the estimated number of clusters. Each cell reports
mean performance over 30 experiments.

k = 5 k = 10 k = 20
dC/dD 5/5 10/10 20/20 5/5 10/10 20/20 5/5 10/10 20/20

MDHhier NMI 0.586 0.806 0.949 0.621 0.739 0.964 0.639 0.699 0.935
k 10.8 5.9 4.8 20.7 13.6 10.0 38.3 26.9 20.6

MDHens NMI 0.570 0.835 0.936 0.517 0.720 0.911 0.413 0.576 0.777
k 8.6 5.7 5.0 15.4 10.9 9.5 24.6 20.7 17.8

dePDDP NMI 0.639 0.729 0.811 0.698 0.704 0.818 0.748 0.656 0.752
k 34.2 35.4 35.8 64.8 71.3 70.6 142.9 118.3 141.2

k-means++ (Gap) NMI 0.621 0.811 0.889 0.641 0.816 0.925 0.649 0.830 0.928
k 9.8 9.0 7.5 19.5 19.4 17.3 39.2 39.4 38.3

Spectralauto NMI 0.489 0.611 0.637 0.490 0.399 0.479 0.484 0.431 0.365
k 3.1 2.6 2.6 3.4 2.5 2.9 5.5 4.7 3.7

DBSCAN NMI 0.493 0.498 0.513 0.613 0.626 0.667 0.736 0.733 0.767
k 12.4 5.7 3.6 23.1 15.5 7.8 56.6 33.5 16.5

pdfCluster NMI 0.550 0.711 0.867 0.413 0.457 0.622 0.425 0.208 0.371
k 4.7 4.3 4.6 6.9 5.6 6.9 8.3 6.4 8.4

GMM NMI 0.613 0.632 0.629 0.674 0.675 0.660 0.603 0.555 0.475
k 7.2 5.0 6.9 9.0 8.7 7.4 9.0 9.0 8.5

4.4.4 Real Data

We now consider the performance of our proposed methods on benchmark datasets from

the UCI machine learning repository (Lichman, 2013). The main properties of the datasets

are summarised in Table 4.3.

Table 4.3: Main characteristics of UCI datasets considered.
Dataset n dC dD k
Image Segmentation 2309 19 - 7
Isolet 7797 617 - 26
Multi. Digits 2000 216 - 10
Opt. Digits 5620 64 - 10
Pen Digits 10992 16 - 10
Satellite 6435 36 - 6
Smartphone 10929 561 - 12
Autodata 392 5 2 5
Credit Approval 690 6 9 2
Dermatology 366 1 33 6
Heart Disease 294 5 8 5
Soy Bean 682 7 28 19
Voters 435 - 16 2
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Table 4.4: Clustering performance on continuous real datasets. The top row of each cell of
the table reports NMI and the second the estimated number of clusters (when applicable).
For the non-deterministic MDHhierthe mean performance over 30 runs is given.

O. Dig. P. Dig. Isolet Smart. Im. Seg. Sat. M. Dig.

MDHhier
NMI 0.753 0.792 0.746 0.701 0.620 0.638 0.739
k 12.0 18.2 25.5 3.0 11.1 4.1 11.1

MDHens
NMI 0.708 0.660 0.650 0.565 0.641 0.568 0.583
k 20 20 10 3 7 7 7

dePDDP NMI 0.000 0.625 0.402 0.565 0.593 0.606 0.610
k 3 41 4 6 38 46 10

k-means (gap) NMI 0.719 0.735 0.698 0.545 0.568 0.589 0.703
k 19 20 50 24 14 11 20

Spectralauto
NMI 0.728 0.378 0.637 0.574 0.415 0.393 0.724
k 9 2 15 2 3 2 9

DBSCAN NMI 0.509 0.018 0.000 0.117 0.122 0 0.017
k 10 3 1 10 8 1 2

GMM NMI 0.627 0.727 0.395 0.000 0.617 0.546 0.000
k 9 9 2 1 8 9 1

We first discuss performance on the continuous datasets. Table 4.4 reports the perfor-

mance of all the algorithms considered except pdfCluster, which was not able to run suc-

cessfully due to the number of observation in these datasets. As before, we report the values

of NMI and the estimated number of clusters for each algorithm with the best NMI for

each dataset indicated in red. All of these values originate from a single run of each algo-

rithm, except for the non-deterministic algorithm MDHhier where the mean performance

over 30 runs is reported. Although both MDHhier and MDHens have an element of ran-

domness in the determination of the final clustering, the variability in performance was very

low for both algorithms. Further, the NMI computed between partitions resulting from

different runs of these algorithms was very high (approximately 0.95 for MDHhier and 0.9

for MDHens). In all cases the best performance is exhibited by one of the MDH-based al-

gorithms. It is also clear that the divisive algorithm, MDHhier, performs better than the

partitional algorithm, MDHens on these datasets. This is not unexpected as partitions us-

ing MDP2 aim to identify hyperplanes that do not split any clusters and separate at least

one cluster from the rest of the data in successive subsets ofX . Clusters which are difficult

(or impossible) to separate effectively when all the data are considered, can become easier
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Figure 4.8: Box plot of regret based on the NMI over continuous real datasets

to separate when observations from other clusters are removed from the dataset. A divi-

sive procedure can exploit this fact. Nonetheless MDHens always outperforms DBSCAN

while outperforming dePDDP, GMM and spectral clustering in the majority of cases. Of

the alternative density-based clustering methods dePDDP and GMM perform best, while

DBSCAN exhibits relatively poor performance on all datasets. This poor performance is

attributable to the difficulty of identifying high-density clusters in high dimensions. In gen-

eral, the MDH variants determine the number of clusters relatively accurately, with large

over or underestimation being rare. This is not the case for the other algorithms, with de-

PDDP often dramatically overestimating due to the separation of outliers in the tails of

the estimated projected density, or underestimating due to the lack of multimodality in the

projected density along the first principal component. The Gap statistic overestimates the

number of clusters in all cases, while self-tuning spectral clustering, GMM and DBSCAN

tend to underestimate this in general.

To assess the relative performance of each algorithm across all the continuous datasets,

Figure 4.8 provides boxplots of regret with respect to NMI. The regret of an algorithm for a

given dataset is defined as the difference between the performance of the best algorithm for
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(a) Credit Approval
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(b) Voters
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(c) Heart Disease
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(d) Autodata
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(e) Dermatology
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(f) Soy Bean

Figure 4.9: Two-dimensional visualisation of mixed real datasets after the application of
CSE

this dataset and the performance of the algorithm in question,

Regret(A) = NMI(πA⋆ , π⋆)−NMI(πA, π⋆) (4.8)

whereA is the algorithm in question, πA is the partition induced by this algorithm and

πA⋆ is the partition induced by the highest performing algorithm. Therefore, a regret of

zero indicates that the algorithm performs best on a dataset, while higher values indicate

worse relative performance. As the figure shows MDHhier achieves a median regret very

close to zero, so has the best relative performance, followed by k-means++. Both MDH-

based methods outperform the other density-based clustering methods, and dePDDP per-

forms similarly to spectral clustering and GMM, all of which outperform DBSCAN.

We next discuss the clustering of the mixed real datasets. Figure 4.9 provides a 2-dimensional

CSE visualisation of these datasets, which indicates that most of these datasets have clus-

tering structures that are challenging for all algorithms considered. Table 4.5 reports the
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Table 4.5: Clustering performance on mixed real datasets. In each cell of the table the first
row reports NMI and the second the estimated number of clusters (when applicable). For
the non-deterministic MDHhierthe mean performance over 30 runs is given.

Credit Voters Heart Auto Derm Soybean

MDHhier
NMI 0.241 0.337 0.239 0.778 0.909 0.705
k 17.6 4.7 5.7 5.1 4.9 15.3

MDHens
NMI 0.287 0.492 0.263 0.908 0.843 0.658
k 9 3 7 3 5 8

dePDDP NMI 0.258 0.395 0.225 0.674 0.860 0.727
k 22 3 12 8 8 45

k-means++ (gap) NMI 0.349 0.433 0.243 0.637 0.734 0.742
k 4 4 4 10 12 38

Spectralauto
NMI 0.258 0.103 0.250 0.902 0.734 0.451
k 9 3 3 3 3 5

DBSCAN NMI 0.012 0.000 0.000 0.739 0.000 0.749
k 2 1 1 3 1 19

pdfCluster NMI 0.222 0.385 0.265 0.896 0.835 0.536
k 13 3 3 5 4 5

GMM NMI 0.015 0.353 0.539 0.631 0.700 0.000
k 2 8 6 9 3 2

performance of the competing clustering algorithms on the mixed datasets. On the mixed

datasets, no algorithm has consistently superior performance. All algorithms appear to per-

form poorly on the credit approval dataset. An explanation for the low NMI scores is that

although the dataset contains only two true clusters, Figure 4.9(a) indicates that in the CSE

representation the number of dense compact regions is much larger, causing the number

of clusters to be overestimated. Note that this structure does not appear to be an artefact

of the continuous representation as the self-tuning spectral clustering algorithm (which

uses the original pairwise distances) also overestimates the number of clusters to be nine. If

the penalty for overestimation of the number of clusters is removed, the performance of all

the algorithms improves significantly for this dataset, with clustering accuracy (purity) of

around 0.8 in almost all cases.

On the Voters dataset MDHens performs best followed by k-means++, while spectral

clustering and and DBSCAN perform poorly on this dataset. On the Heart Disease dataset
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Figure 4.10: Box plot of regret with respect to NMI over mixed real datasets

GMM performs best, significantly outperforming the other algorithms. On this dataset, all

other algorithms which use the CSE representation perform similarly, while spectral cluster-

ing and DBSCAN produce lower quality partitions. MDHens has the best performance on

Autodata, followed by spectral clustering and pdfCluster. An inspection of Figure 4.9(d) re-

veals why MDHens is very effective on this dataset, with the three main clusters being separa-

ble by low-density regions. In contrast the divisive algorithm MDHhier is more suitable for

the Dermatology dataset. As Figure 4.9(e) shows in this dataset it is possible to effectively

separate two clusters from the rest of the data, but the remaining clusters are much less sep-

arable from one another when the entire dataset is considered. This structure is apparent

along the directions of high variability, also explaining the good performance of dePDDP

on this dataset. Once these groups are removed, the projection of the remaining points can

reveal the additional clusters, highlighting the potential advantages of the divisive approach.

The worst performance on Dermatology is exhibited by DBSCAN. Finally, on the SoyBean

dataset DBSCAN achieves the highest NMI closely followed by k-means++, dePDDP and

MDHhier. MDHens is also competitive on this dataset while spectral clustering and GMM

perform poorly.
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It is important to note that on the majority of datasets the best performing methods used

a continuous representation of the data rather than the original pairwise distances. The

performance of MDHhier and MDHens are, in most cases, competitive with the best per-

forming methods. This is clearly seen in Figure 4.10 which depicts boxplots of regret with

respect to the NMI measure on the mixed datasets. Overall the cluster structures in these

datasets are more favourable to the partitional algorithm MDHens than the divisive algo-

rithm, MDHhier. MDHens achieves the lowest median regret and its regret exhibits very

little variability.

4.4.5 Image Segmentation

Finally, we assess the performance of MDHhier and MDHens for the task of image segmen-

tation. Fig. 4.11 shows the segmentation of six images by the considered algorithms. Each

image contains approximately 40,000 pixels, and segmentation was performed by clustering

the R,G,B values representing each pixel. In the reconstructed images of Fig. 4.11 the colour

of each pixel is determined by the average R,G,B values of the pixels assigned to the same

cluster.

The size of these datasets was too large for spectral clustering, DBSCAN and pdfCluster,

so we used a pre-processing step in which each dataset was summarised with 5000 micro-

clusters (obtained through k-means++). For all algorithms, the number of segments was

determined automatically, however, DBSCAN failed to segment any of the images so the

results are omitted. MDHhier produces very high-quality segmentations, with an accurate

representation of the true colours, a sensible identification of boundaries, and relatively

few segments. MDHens also produced good results, although this approach locates more

clusters than MDHhier, with the exception of the second and sixth images.

pdfCluster and spectral clustering also produce high quality segmentations (with the ex-
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Figure 4.11: Image segmentation from MDHhier, MDHens and competing algorithms

ception of the third and sixth images in the case of spectral clustering). The segmentations

from dePDDP and k-means++ with the Gap statistic appear almost identical to the origi-

nal image, but this is because they locate approximately 30 clusters in each image compared

to approximately five by MDHhier. GMM produces a less accurate representation of the

images with colours being mixed at the boundaries of segments.
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4.5 Conclusions

We introduced an approach for density-based clustering for large, high-dimensional datasets

containing diverse (mixed) types of attributes, and multiple clusters. High dimensionality

and mixed data types are two typical properties of many real-world datasets that severely re-

strict the applicability of density-based clustering algorithms. To overcome the difficulties

associated with high dimensionality we seek subspaces in which the data are optimally sepa-

rable, in the sense that the induced linear cluster boundary does not intersect regions of high

density, associated with clusters. This is achieved by either globally or locally minimising

the density on a hyperplane criterion, so that the vector normal to the optimal hyperplane is

the optimal one-dimensional projection to bi-partition the data. In contrast to established

density-based clustering algorithms that attempt to identify regions of high estimated prob-

ability density in the full dimensional space, this approach requires only one-dimensional

projections, mitigating the limitation to low-dimensional problems.

To extend the applicability of the proposed approaches to non-continuous observations,

we investigate the location of an appropriate continuous representation of the mixed data,

upon which low-density hyperplane separators may be computed. The choice of contin-

uous representation critically affects the performance of all clustering algorithms. Of the

three approaches we considered for this task we recommend using the constant shift embed-

ding algorithm since this algorithm consistently enabled superior clustering performance by

all the clustering methods, compared to alternative approaches.

We proposed a partitional and a divisive hierarchical algorithm based on a collection of

minimum density hyperplanes to obtain the complete clustering and estimate the number

of clusters.

A systematic simulation study across continuous and mixed data showed that if the true
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clusters are associated with the modes of the continuous estimated density, the proposed ap-

proaches outperform competing density-based clustering algorithms, as well as k-means++,

spectral clustering and GMM. Further, experiments across mixed and continuous real-world

benchmark datasets with varying characteristics indicate that our approaches are highly

competitive. Of the two clustering algorithms proposed, the most consistently completive

performance was exhibited by the divisive hierarchical algorithm, MDHhier so we advocate

the use of this approach in practice.
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5
Non-Linear Minimum Density Separators

in Kernel Defined Feature Spaces

abstract

We introduce a kernel formulation of the minimum density hyperplane approach to cluster-

ing. This enables the identification of clusters that are not correctly identifiable using linear

cluster separators in the input space, by non-linearly mapping the original observations into

a, potentially high-dimensional, feature space. The location of the minimum density hyper-

plane in the feature space requires the solution of an n-dimensional, non-smooth, non-convex

optimisation problem (where n is the number of observations). This is computationally ex-

pensive for large datasets, so we also propose an approximation technique using a subspace of

the feature space to locate an approximate minimum density hyperplane. Using these hyper-

planes to recursively bi-partition the mapped feature vectors in a divisive algorithm, allows

the location of non-linearly separable clusters in arbitrarily oriented subspaces of the feature

space, while estimating their number. An empirical analysis across benchmark datasets with

varying characteristics suggests that the proposed approach is capable of locating high-quality

partitions, which are highly competitive with alternative kernel-based clustering algorithms.
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5.1 Introduction

In the density-based approach to clustering, clusters are defined as subsets of observations

belonging to contiguous regions of high probability density, concentrated around the modes

of some unknown probability density function px, which may be estimated by a non-

parametric estimated density p̂x. As discussed in Chapter 4, the inaccuracy of density esti-

mation in even moderate dimensions, restricts the direct location of clusters associated with

high-density regions of p̂x to low-dimensional problems (Rinaldo and Wasserman, 2010).

However, it is possible to apply the alternative formulation of locating low-density cluster

boundaries that separate these high-density regions. This is known as the low-density separa-

tion assumption. These low-density cluster separators may be located using one-dimensional

orthogonal projections of the data, making this alternative formulation applicable in high-

dimensional datasets. However, the evaluation of the density intersected by a cluster bound-

ary is computationally intractable for boundaries of arbitrary shapes, and therefore, the re-

sulting separator is restricted to be a linear cluster boundary (hyperplane).

In Chapter 4, we proposed approaches to locate high-density clusters using a collection of

minimum density hyperplane separators that identify linear cluster boundaries that inter-

sect regions of minimal density while separating the regions of contiguous high probability

density around the modes of p̂x, since the subsets of observations in these regions are associ-

ated with clusters. This approach is capable of locating high-quality partitions in arbitrarily

oriented subspaces. However, the ability to correctly identify clusters that are not linearly

separable is an attractive property of density-based clustering generally, and the restriction

to linear cluster boundaries imposed by the minimum density hyperplane (MDH) is an im-

portant limitation.

In this chapter, we propose the kernel MDH (KMDH) to overcome this limitation, al-
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lowing the application of our approaches to low-density cluster separation to high-dimensional

datasets whose clusters cannot be correctly identified by a collection of hyperplane separa-

tors in the space of the original observations. We first map the data non-linearly into a fea-

ture space, and a MDH is sought in the new feature space, where the hyperplane separator

corresponds to a non-linear separator in the input space. The potentially infinite dimen-

sionality of the feature space means it is not feasible to calculate the mapped observations

(feature vectors) explicitly. However, we provide a formulation that permits the location

of the KMDH in the feature space using the kernel matrix of pairwise inner products be-

tween the feature vectors, that is computed directly by the kernel function on the original

observations. This also permits the KMDH to be computed for any dataset that permits the

construction of a kernel matrix, including data with discrete or non-numeric attributes.

The location of the KMDH involves a non-smooth, non-convex optimisation problem

over n variables, where n is the number of observations. In many applications of interest n

can be very large, in which case an exhaustive search over all n dimensions for the KMDH is

infeasible, and unlikely to be necessary to locate a high-quality separator. To overcome this

we propose an approximation method, which we call the subspace KMDH (S-KMDH),

that seeks hyperplanes in a subspace of the feature space. This reduces the search space for

a low-density separator, and avoids searching over dimensions of the feature space that are

unlikely to be meaningful for cluster separation.

Since any projection vectors that permit a meaningful cluster separator will lie in the n-

dimensional space spanned by the feature vectors, the KMDH may be equivalently located

using the projections of the feature vectors onto an n-dimensional orthonormal basis of the

feature space, that spans the same space as the feature vectors. For the practical location of

the KMDH we take this approach, using the orthonormal basis defined by kernel principal
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component analysis (KPCA) (Schölkopf et al., 1998). This also permits an intuitive specifi-

cation of an appropriate subspace for S-KMDH, which is located using the projections of

the feature vectors onto the first n′ ≪ n kernel principal components.

The remainder of this chapter is organised as follows: Section 5.2 presents the formula-

tion of the MDH in feature space (KMDH), and the approximation of this using a smaller

subspace of the feature space (S-KMDH) using the kernel matrix directly. Section 5.3 then

describes how we locate the KMDH and S-KMDH practically, using the projections of the

feature vectors onto the kernel principal components. Next, in Section 5.4 we discuss how

we combine bi-partitions resulting from hyperplane separators of the feature vectors in a

divisive algorithm, producing a complete clustering. Section 5.5 provides an empirical eval-

uation of the clustering results from the proposed divisive algorithm using bi-partitions

from the KMDH and S-KMDH at each level of the hierarchy. The proposed approaches

are compared to alternative kernel-based clustering algorithms across benchmark datasets

with varying characteristics. Conclusions are given in Section 5.6.

5.2 Minimum Density Hyperplanes in the Feature Space

We assume a finite set of observations,X = {xi}n
i=1 and a non-linear feature mapping

xi 7→ ϕ(xi) ofX into the feature spaceF , where ϕ(·) is an arbitrary non-linear function.

Let κ(·, ·) be the associated kernel function satisfying κ(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩F . In

order to define the density on the hyperplane with normal vector v ∈ F and displacement

from the origin b ∈ R, as defined in Eq. (4.2) in the feature space, it is necessary to define

the projections of the feature vectors onto v. Depending on the choice of feature mapping

and kernel function,F has the potential to be infinite-dimensional, making it infeasible to

compute vectors in this space explicitly. Therefore, we cannot define the {ϕ(xi)}n
i=1 or an
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arbitrary vector v ∈ F directly.

However, any meaningful projection directions for clustering must lie within

span(ϕ(x1), ..., ϕ(xn)). To prove this, consider the alternative case that v is orthogonal

to span(ϕ(x1), ..., ϕ(xn)). In this case, the orthogonal projections of any ϕ(xj) onto v is

⟨ϕ(xj), v⟩F = 0 ∀j. Further consider the case that v has a component v1 in

span(ϕ(x1), ..., ϕ(xn)) and a component v2 orthogonal to span(ϕ(x1), ..., ϕ(xn)). By

definition, v1 may be expressed as a linear combination of the feature vectors,

v1 = ∑n
i=1 αiϕ(xi). Then, v may be decomposed into these two orthogonal compo-

nents v = v1 + v2 = ∑n
i=1 αiϕ(xi) + v2. In this case, the orthogonal projections

of any ϕ(xj) onto v are given by ⟨ϕ(xj), v⟩F = ⟨ϕ(xj), ∑n
i=1 αiϕ(xi) + v2⟩F =

⟨ϕ(xj), ∑n
i=1 αiϕ(xi)⟩F since ⟨ϕ(xj), v2⟩F = 0 ∀j. Therefore, the projections of the

feature vectors onto any vector v ∈ F are independent of any component of v which lies

outside span(ϕ(x1), ..., ϕ(xn)).

Defining the kernel matrix K ∈ Rn×n of pairwise inner products between {ϕ(xi)}n
i=1

such that Kij = κ(xi, xj) and the dual representation α ∈ Rn = (α1, ..., αn) of any vector

v in span(ϕ(x1), ..., ϕ(xn)), such that v = ∑n
i=1 αiϕ(xi), ∥v∥ = (α⊤Kα)1/2 = 1,

the projection of a feature vector, ϕ(xj) onto v is given by (Shawe-Taylor and Cristianini,

2004),

⟨ϕ(xj), v⟩F =
n

∑
i=1

αiKij. (5.1)

The integral of the estimated density along a hyperplane with unit normal v ∈ F and
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displacement from the origin b ∈ R in the feature space is therefore,

Î(α, b) =
1

nh
√

2π

n

∑
j=1

exp

{
−
(
b− ⟨ϕ(xj), v⟩F

)2

2h2

}
, (5.2)

where use use the notation Î(α, b) to stress the fact that we rely on the dual representa-

tion of v. This permits the location of the kernel minimum density hyperplane (KMDH)

H(α⋆, b⋆) with normal vector whose dual representation is α⋆ and displacement from the

origin b⋆, that intersects a region of minimal density in the feature space. This is subject to

sensible constraints on b, as discussed in Section 4.2.1, to ensure that the resulting hyper-

plane separates high-density regions in the feature space, and does not lie in low-density

regions outside the range of {ϕ(xi)}n
i=1. The KMDH is the hyperplane that minimises the

following projection pursuit optimisation problem,

θ(α) = min
b∈R

f (α, b), (5.3)

f (α, b) = Î(α, b) +
L
ηε

max{0,−γσα − b, b− γσα}1+ε (5.4)

where L = (e1/2h22π)−1, ε, η ∈ (0, 1), σα is the standard deviation of the projections

of the feature vectors onto the vector whose dual vector is α and γ is a user-defined param-

eter controlling the width of the search interval for b. This optimisation problem is closely

related to the formulation of the MDH in the original data space in Section 4.2.1, where

the properties and parameters of f (·) are discussed in more detail. We optimise θ(α) using

BFGS with inexact line searches as advocated by Lewis and Overton (2013).
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5.2.1 Minimum Density Hyperplanes in Subspaces of the Feature Space

The search space for the KMDH in the feature space is n-dimensional. However, when n is

large, the global optimisation of θ(α) over all n dimensions is computationally expensive,

and it is likely that a number of these dimensions are not necessary to locate a low-density

separator of the feature vectors. Hence, in this section we consider using only a subspace

ofF to search for an approximate minimum density hyperplane. Our specific choice of

subspace is discussed in Section 5.3, however, the methodology in this section is applicable to

any subspace ofF . We denote the subspace of interestF ′ ⊆ Rn′ where n′ ≪ n.

Let U ∈ Rn×n′ = [u(1), ..., u(n′)] be the matrix of the dual vectors of the n′ orthogonal

basis vectors ofF ′ as columns. InF ′, the matrix of pairwise inner products of the feature

vectors is K′ = U⊤KU ∈ Rn′×n′ . Then, the projection of the feature vector ϕ(xj) onto

the unit vector v ∈ span(ϕ(x1), ..., ϕ(xn)) whose dual vector is β = ∑n′
i=1 α′iui ∈ Rn is,

⟨ϕ(xj), v⟩F ′ =
n′

∑
i=1

α′iK
′
ij. (5.5)

We then seek the α′⋆ and b⋆ which minimise

θ(α′) = min
b∈R

f (α′, b), (5.6)

f (α′, b) = Î(α′, b) +
L
ηε

max{0,−γσα′ − b, b− γσα′}1+ε, (5.7)

Î(α′, b) =
1

nh
√

2π

n

∑
j=1

exp

{
−
(
b− ⟨ϕ(xj), v⟩F ′

)2

2h2

}
(5.8)

where σα′ is the standard deviation of the projections defined by Eq. 5.5. The subspace kernel

minimum density hyperplane (S-KMDH) is then the hyperplane H(α′⋆, b⋆) that solves

the optimisation problem in Eqs.(5.6) - (5.8). The smaller dimensionality ofF ′ reduces
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the computational cost of locating a low-density separator in the feature space, and avoids

searching over dimensions which are unlikely to be useful for cluster detection.

5.3 Locating the KMDH using Kernel Principal Component Analysis

Since the search space for the KMDH is practically limited to the n-dimensional space spanned

by the feature vectors, the formulation for locating the dual vector α above is equivalent to

locating the KMDH using the projections of the feature vectors onto an n-dimensional or-

thonormal basis of span(ϕ(x1), ..., ϕ(xn)). These n-dimensional projections of the feature

vectors may be treated as a mapped set of observations, and clustered by the same proce-

dure as the original observations, therefore avoiding the explicit formulation of the MDH

in the feature space. To construct this basis we use kernel principal component analysis

(KPCA) (Schölkopf et al., 1998), which is an extension of standard (linear) PCA to feature

spaces. KPCA operates directly on the kernel matrix, and locates an orthonormal basis of

the space spanned by the feature vectors with decreasing variability along its axes.

Given a kernel matrix K = [Kij] such that Kij = κ(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩F , that has

been centred such that ∑n
i=1 ϕ(xi) = 0, the covariance matrix associated with {ϕ(xi)}n

i=1

is,

C =
1
n

n

∑
i=1

ϕ(xi)ϕ(xi)
⊤.

In KPCA, we require the eigenvalues λ(1), ..., λ(n) and eigenvectors v(1), ..., v(n) of C

which satisfy λ(k)v(k) = Cv(k) for k = 1, . . . , n. Since all the eigenvectors v(k) must

lie in span(ϕ(x1), ..., ϕ(xn)), we may consider the equivalent system,

λ(k)⟨ϕ(xi), v(k)⟩F = ⟨ϕ(xi), Cv(k)⟩F (5.9)
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for all i, k = 1, ..., n. If we let u(k) be the dual vector of v(k) such that v(k) = ∑n
j=1 u(k)

j ϕ(xj)

where u(k)
j denotes the jth element of the kth dual vector u(k), then

⟨ϕ(xi), v(k)⟩F = ⟨ϕ(xi),
n

∑
j=1

u(k)
j ϕ(xj)⟩F =

n

∑
j=1

u(k)
j ⟨ϕ(xi), ϕ(xj)⟩F = Ki,:u(k)

(5.10)

where Ki,: denotes the ith row of K. Therefore, considering all i = 1, ..., n, ⟨Φ, v(k)⟩F =

Ku(k) where Φ is the matrix associated with the set of feature vectors {ϕ(xi)}n
i=1. Also, by

definition of K, C = 1
n K, so the eigen-system in Eq. (5.9) becomes,

nλ(k)Ku(k) = K2u(k)

nλ(k)u(k) = Ku(k)

for k = 1, . . . , n. To ensure that the corresponding principal component vector v(k), is

normalised, it is necessary to set the constraint,

⟨v(k), v(k)⟩F = u(k)⊤Ku(k) = 1.

By Eq. (5.10), the projection of the mapped feature vector ϕ(xi) onto the kernel principal

component vector v(k) is given by

⟨ϕ(xi), v(k)⟩F =
n

∑
j=1

u(k)
j Kij =

n

∑
j=1

u(k)
j Kji = Ki,:u(k)

For the practical implementation of the KMDH, we use the projections of each of the fea-
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ture vectors onto the orthonormal basis ofF defined by the kernel principal components,

X F = {xFi }n
i=1 = {Ki,:U}n

i=1 ⊂ Rn, (5.11)

where U = [u(1), . . . , u(n)] is the matrix of column-wise dual kernel principal compo-

nents. Then, the MDH may be located usingX F in the same way as for any datasetX , the

formulation for which is given in Chapter 4.

This approach to locating the KMDH is also convenient for the consideration of a smaller

subspace ofF , in which to search for an approximate minimum density separator, as dis-

cussed in Section 5.2.1. To construct an appropriate, lower-dimensional subspace ofF ,

which we denoteF ′, in which to search for a low-density separator of the mapped feature

vectors, we use the eigenvalues from KPCA to exclude directions that contribute very lit-

tle to the overall variability in {ϕ(xi)}n
i=1. Although there is no guarantee that directions

of high variability will be meaningful for cluster detection (Kriegel et al., 2009), it is ar-

guably unlikely that directions which exhibit almost no variability are relevant for cluster-

ing. Hence, we consider the subspaceF ′ spanned by the first n′ ≪ n kernel principal com-

ponents, which capture a pre-specified percentage of the variability in {ϕ(xi)}n
i=1. Then,

we locate the S-KMDH using the projections of the feature vectors onto the orthonormal

basis defined by the first n′ kernel principal components,

X F ′ = {xF ′i }n
i=1 = {Ki,:U :,1:n′}n

i=1 ⊂ Rn′ , (5.12)

where U :,1:n′ denotes the first n′ columns of U .
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5.4 Divisive Clustering with Kernel Minimum Density Hyperplanes

To obtain a complete clustering, we recursively bi-partition successive subsets of the fea-

ture vectors using the KMDH (or the S-KMDH). To allow the estimation of the number

of clusters, we require a stopping rule to determine when a subset of {ϕ(xi)}n
i=1 should

not be separated further. For this, we take the same approach as MDHhier, proposed in

Section 4.2.2, where instead of the set of observationsX , we have the set of projections of

the feature vectors onto the kernel principal componentsX F = {xFi }n
i=1, as defined in

Eq. (5.11). Given the set of projections assigned to the cluster of interest,X FC ⊆ X F and the

corresponding KMDH with unit normal vC, the relative depth along vC is

RelativeDepth(vC, bC;X FC ) =
min

{
p̂v⊤C xF (ml), p̂v⊤C xF (mr)

}
− p̂v⊤C xF (bC)

p̂v⊤C xF (bC)
, (5.13)

where p̂v⊤C xF is the one-dimensional estimated density of the projections ofX FC onto vC

and ml and mr are the locations of the two largest modes of p̂v⊤C xF to the left and right

of bC respectively.

At lower levels of the hierarchy, the increased sparsity of the pointsX FC spanning n di-

mensions allows the KMDH to locate projection vectors along which p̂v⊤C xF is multimodal,

even if a true low-density separator of dense regions inX FC does not exist. Therefore, we

test the appropriateness of the KMDH to separateX FC by randomly splittingX FC into

a training and a hold-out sample. We compute the KMDH on the training sample, and

then evaluate the relative depth of this hyperplane on the hold-out sample. This relative

depth is compared to the Monte-Carlo estimates of the relative depth in a null unimodal

sample, to assess if the multimodality in p̂v⊤C xF is sufficient to indicate an appropriate sep-

arator ofX FC . We use the uniform distribution to generate our null samples, as this is the
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standard choice in modality testing (Hartigan and Hartigan, 1985; Hartigan, 1977). If the

relative depth of the KMDH on the hold-out sample exceeds a specified percentile of the

relative depth in the null samples, we accept the partition and locate the final KMDH on

the entire setX FC . This same procedure is applied for S-KMDH, using the projections of

the feature vectors into an orthonormal basis ofF ′,X F ′ as defined in Eq. (5.12). We refer to

the divisive clustering algorithms which bi-partition the feature vectors using KMDH and

S-KMDH at each level of the hierarchy as KMDHhier and S-KMDHhier respectively. These

two divisive algorithms are summarised in Algorithms 4 and 5 respectively.

Algorithm 4 Hierarchical Kernel Minimum Density Hyperplanes (KMDHhier)
Require: Kernel matrix K

Compute the dual vectors U of the kernel principal components of the mapped feature vectors {ϕ(xi)}n
i=1

whose inner products are contained in K.
Project {ϕ(xi)}n

i=1 onto the kernel principal componentsX F = {Ki,:U}n
i=1.

ClusterX F using MDHhier as described in Algorithm 2 to give the vector of cluster labels π and estimated
number of clusters k̂ = max π.
return π, k̂

Algorithm 5 Hierarchical Subspace Kernel Minimum Density Hyperplanes (S-KMDHhier)
Require: Kernel matrix K

Compute the first n′ dual vectors U :,1:n of the kernel principal components of the mapped feature vectors
{ϕ(xi)}n

i=1 whose inner products are contained in K.
Project {ϕ(xi})n

i=1 onto the first n′ kernel principal componentsX F ′ = {Ki,:U :,1:n′}n
i=1.

Cluster ofX F ′ using MDHhier as described in Algorithm 2 to give the vector of cluster labels π and
estimated number of clusters k̂ = max π.
return π, k̂

5.4.1 Computational Complexity

In this subsection, we discuss the computational complexity of KMDHhier and S-KMDHhier.

First, the construction of the kernel matrix had computational costO(n2d) where n and d

are the number of observations and dimensions in the original dataset respectively. This

cost may be reduced by constructing an approximate kernel matrix by techniques such as

the Nyström approximation (Fowlkes et al., 2004). For both KMDHhier and S-KMDHhier,
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it is necessary to compute the eigenvalues and eigenvectors of K for KPCA and the projec-

tions of {ϕ(xi)}n
i=1 onto the kernel principal components of interest. Both these opera-

tions have costO(n3) for KMDHhier andO(n2n′) for S-KMDHhier. This is computa-

tionally expensive for large n but are only performed once, and not at each level of the hi-

erarchy. Once the projections onto the kernel principal components have been computed,

the KMDH and S-KMDH are located at each level of the divisive procedure, by iteratively

optimising the normal vector to the separating hyperplane v and its displacement from the

origin b in the feature space.

At each iteration, KMDHhier projectsX F onto v, at a cost ofO(n(n + 1)). Then, to

obtain the projection index θ(α), it is necessary to minimise the penalised objective f (α, b)

with respect to b. This minimisation is possible by evaluating f (α, b) on a grid of m points,

involving m evaluations of a density estimate with n components. The cost of this may be

reduced fromO(mn) toO(n + m) using the improved fast Gauss transform (Morariu

et al., 2009). To compute the minimiser(s) to within the desired accuracy, ϵ, bisection may

be used which requiresO(− log2 ϵ) iterations. The subsequent minimisation of θ(α) is

done using BFGS as advocated by Lewis and Overton (2013). This can be done at a cost of

O(n2) per iteration (Nocedal and Wright, 2006, Pg. 140) plus the cost of function evalu-

ations of f (α, b) and gradient evaluations with costO(n(n + 1)). For S-KMDHhier, the

computational cost of computing the projections ofX F ′ onto v and the gradient evalua-

tions is reduced toO(n′(n′ + 1)). Therefore, given that the set of mapped feature vectors

and their projections onto an orthonormal basis have been computed, the overall compu-

tational complexity of locating the KMDH and S-KMDH at each level of the hierarchy are

O(n2 + n) and O(n′2 + n′) per iteration respectively. On a representative dataset for our

experiments, KMDHhier took about 30 minutes to produce a complete clustering, while
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S-KMDHhier took approximately 20 minutes using R code which was not particularly opti-

mised. These results were comparable to other competing algorithms and were significantly

faster than k-means++ with the gap statistic.

5.5 Experimental Results

In this section, we conduct an empirical evaluation of the proposed approaches, KMDHhier and

S-KMDHhier. We compare the quality of the partitions produced by these algorithms to al-

ternative kernel-based approaches. The methods considered are:

1. Kernel k-means (Dhillon et al., 2004; Zhang and Rudnicky, 2002) which is a kernel
variant of the classical k-means algorithm, where the clustering solution minimises
the sum of squared distances between the feature vectors and their assigned clus-
ter centroid in the feature space. The particulars of this algorithm are given in Sec-
tion 2.1.2. We are not aware of a procedure to estimate the number of clusters for this
algorithm so we provide the true number of clusters as an input parameter.

2. Spectral clustering (von Luxburg, 2007) where the kernel matrix is equivalent to the
adjacency matrix of the graph G(X , E). In our experiments we use normalised spec-
tral clustering (Ng et al., 2002).

3. dePDDP (Tasoulis et al., 2010) extended to the feature space by projecting the data
onto the first kernel principal component, and splitting at the minimiser of the esti-
mated density of the projections between the two outer-most modes. As in the orig-
inal dePDDP algorithm, we terminate the divisive splitting procedure when the esti-
mated density of the projections is unimodal. This is equivalent to applying the stan-
dard dePDDP algorithm onX F as defined in Eq. (5.11). We refer to this extension to
feature spaces as K-dePDDP. Comparing KMDH to this algorithm highlights the ad-
vantage of optimising the projection direction to locate a minimum density separator
of the feature vectors.

5.5.1 Details of Implementation

For all algorithms we rely on the same kernel matrix, so differences in performance relate to

the different clustering objectives, and not a different feature mapping. We use the Gaussian
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(radial basis) kernel,

κ(xi, xj) = exp

{
−
∥xi − xj∥2

σ2

}

since this is the most widely used in the literature. The performance of any kernel-based

algorithm is sensitive to the selection and tuning of an appropriate kernel function. This

is an open problem, and a detailed investigation into this is beyond the scope of this work.

We therefore apply the local scaling approach for the Gaussian kernel proposed in Zelnik-

Manor and Perona (2004),

κ(xi, xj) = exp

{
−
∥xi − xj∥2

sisj

}

where si and sj are the distances from the ith and jth observations to their seventh nearest

neighbours respectively, as recommended by Zelnik-Manor and Perona (2004). This allows

for clusters on multiple scales, and is very effective in our experience.

For KMDHhier, S-KMDHhier and K-dePDDP, the bandwidth used to construct the es-

timated density of the projections can critically affect performance. For K-dePDDP, we use

the standard rule recommended by Tasoulis et al. (2010) of h = σ̂kpc1(4/(3n))1/5 where

σ̂kpc1 is the standard deviation of the projections of the feature vectors onto the first kernel

principal component. Since KMDHhier and S-KMDHhier actively seek projection direc-

tions with a multimodal density, we apply the rule h = 0.9σ̂n−1/5 since this is the optimal

choice for multimodal densities (Silverman, 1986). In our experiments we fix σ̂ = σ̂kpc1 to

maintain a fixed bandwidth regardless of the projection vector.

The other parameter which affects the quality of a bi-partition using KMDH and S-

KMDH is the interval width parameter γ. As described in Section 4.4.1, we follow the ap-

proach of Pavlidis et al. (2016), this is initialised close to zero, inducing a balanced partition.
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This is gradually increased to γmax = 1 to allow convergence to the minimum integrated

density. Although generally robust to local convergence, the quality of bi-partitions located

using KMDH and S-KMDH can be dependent on initialisation. We investigated using the

kernel principal components and a random initialisation. We found the most effective tech-

nique was to initialise on both the first and second kernel principal components, and retain

the hyperplane with the best relative depth. The results presented in Section 5.5.2 use this

approach. For the choice of dimensionality of the subspace n′ in S-KMDHhier, we used the

eigenvalues from KPCA to select the dimensionality that retained 90% of the variability

in the feature vectors {ϕ(xi)}n
i=1. In our experience, this significantly reduced the dimen-

sionality of the search space, without a substantial sacrifice in clustering performance. Fi-

nally, for the stopping procedure described in Section 5.4, we compare the relative depth of

the KMDH (or S-KMDH) to the 97.5th percentile of the relative depth from 10,000 null

uniform samples. In practice, we found that any threshold above the 90th percentile was

effective for the rejection of hyperplanes which were not suitable low-density separators.

For the comparison to kernel k-means and spectral clustering, we used the implementa-

tions in the kernlab package for R Karatzoglou et al. (2004) with the same kernel matrix as

for our algorithms and K-dePDDP. These implementations operate directly on the kernel

matrix.

As described in Section 4.4.2, we evaluated the performance of all competing algorithms

using different performance measures that are appropriate for comparing clusterings with

potentially different numbers of clusters. The choice of performance measure did not alter

the relative performance of the different algorithms, and we thus report performance with

respect to normalised mutual information (NMI) (Strehl and Ghosh, 2002). NMI takes

values in the range [0, 1] with higher values indicating greater levels of information shared
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between the distributions of the assigned and true cluster labels.

5.5.2 Performance Evaluation

In this section, we present the performance of KMDHhier and S-KMDHhier compared to

the competing algorithms considered over 22 real-world benchmark datasets with varying

numbers of observations, n, dimensions, d, and clusters, k. These characteristics are sum-

marised in Table 5.1.

Table 5.1: Main characteristics of real datasets considered.
Dataset n d k
Banknote3 1372 4 2
Cal101-161 2901 256 6
Cal101-281 2901 784 6
Coil202 1420 16384 20
Dermatology3 366 34 6
Heart Disease3 294 13 5
Image Segmentation3 2309 19 7
Ionosphere3 351 33 2
Iris3 150 4 3
Isolet3 7797 617 26
Multi. Digits3 2000 216 10
Opt. Digits3 5620 64 10
Pen Digits3 10992 16 10
Phoneme 4 4506 256 5
Satellite3 6435 36 6
Seeds3 210 7 3
Smartphone3 10929 561 12
Soy Bean3 682 35 19
Synth3 600 60 6
Vote3 435 16 2
Wine3 178 13 3
Yale Faces5 5850 1200 10

1UCI machine learning repository (Lichman, 2013)
2(Marlin, 2014) available from people.cs.umass.edu/~marlin/data.shtml
3(Nene et al., 1996) available from cs.columbia.edu/CAVE/software/softlib/

coil-20.php
4(Hastie et al., 1995) available from statweb.stanford.edu/tibs/ElemStatLearn/

data.html
5(Georghiades et al., 2001) available from cervisia.org/machine_learning_data.php

Table 5.2 reports the performance of KMDHhier, S-KMDHhier and the competing al-

gorithms across the 22 datasets considered. Each cell reports the NMI and the estimated

number of clusters (where applicable) for each algorithm on each dataset. For each dataset,
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Table 5.2: Clustering performance of KMDHhier, S-KMDHhier, K-dePDDP, Kernel k-
means and spectral clustering on real benchmark datasets. The top row of each cell reports
NMI and the second the estimated number of clusters (where applicable). For each dataset
the best performing algorithm is highlighted.

KMDHhier S-KMDHhier K-dePDDP K-k-means Spectral
Banknote NMI 0.193 0.225 0.364 0.032 0.566

k 10 14 194 - 4
Cal101-16 NMI 0.591 0.593 0.570 0.515 0.581

k 15 17 40 - 2
Cal101-28 NMI 0.584 0.573 0.548 0.540 0.484

k 15 17 47 - 2
Coil 20 NMI 0.779 0.780 0.677 0.488 0.573

k 22 24 172 - 5
Dermatology NMI 0.752 0.759 0.789 0.645 0.042

k 3 4 5 - 7
Heart Disease NMI 0.242 0.195 0.055 0.280 0.011

k 2 2 21 - 2
Image Seg. NMI 0.507 0.524 0.568 0.152 0.625

k 25 31 239 - 3
Ionosphere NMI 0.536 0.366 0.000 0.275 0.368

k 2 3 16 - 4
Iris NMI 0.717 0.000 0.451 0.213 0.759

k 2 1 8 - 2
Isolet NMI 0.571 0.598 0.565 0.442 0.604

k 20 22 55 - 52
Multi Features NMI 0.730 0.733 0.597 0.558 0.702

k 17 15 16 - 8
Opti. Digits NMI 0.717 0.694 0.613 0.475 0.661

k 19 27 39 - 17
Pen Digits NMI 0.707 0.702 0.338 0.403 0.375

k 56 63 27 - 2
Phonome NMI 0.777 0.732 0.635 0.735 0.655

k 6 6 17 - 3
Satellite NMI 0.550 0.545 0.000 0.372 0.393

k 22 26 1 - 2
Seeds NMI 0.589 0.602 0.525 0.485 0.588

k 2 2 15 - 6
Smartphone NMI 0.606 0.572 0.549 0.487 0.559

k 13 18 54 - 2
Soy Bean NMI 0.662 0.631 0.000 0.466 0.390

k 13 14 1 - 3
Synth NMI 0.802 0.851 0.757 0.742 0.765

k 5 5 19 - 3
Votes NMI 0.437 0.456 0.000 0.282 0.103

k 2 3 1 - 3
Wine NMI 0.000 0.741 0.779 0.892 0.393

k 1 3 7 - 6
Yale Faces NMI 0.724 0.710 0.000 0.430 0.039

k 48 63 1 - 2

the best performing algorithm is indicated in red. The uniform sample in the stopping cri-

terion for KMDHhier and S-KMDHhierinduces an element of variability in the results of
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these algorithms. However, the difference in the partitions for these methods with differ-

ent random samples in the stopping criterion induced very small differences in the overall

result, with very low standard deviation in the performances of partitions, and an NMI be-

tween partitions of approximately 0.95 in all cases. Across these datasets KMDHhier and

S-KMDHhier perform very competitively compared to the alternative algorithms, often pro-

viding the best performance. For the majority of the datasets, the MDH-based algorithms

perform better than K-dePDDP, suggesting that optimising the projection vector is worth-

while to locate a higher quality partition. The performance of S-KMDHhier is similar to,

or better than KMDHhier in all datasets except Iris. This indicates that in the majority of

cases, an exhaustive search over all n dimensions spanned by the feature vectors is not re-

quired to locate a suitable low-density separator. In fact, in some cases, for example on the

Wine dataset, failing to exclude dimensions which do not contain useful information for

clustering severely inhibits the performance of KMDHhier. Both spectral clustering and ker-

nel k-means can locate good quality partitions, in some cases performing better than the

MDH-based approaches. However, these algorithms do not perform as consistently well

as KMDHhier and S-KMDHhier for these datasets. In general, the low-density separation

approaches have a tendency to overestimate the number of clusters. This is a result of the

sparsity of the feature vectors in the high-dimensional feature space allowing the location

of low-density separators, which incorrectly split the true clusters. This is especially evident

for K-dePDDP, which does not terminate until the estimated density of the projections of

the feature vectors onto the first kernel principal component is strictly unimodal, unlike the

more pessimistic stopping rule applied for KMDHhier and S-KMDHhier. However, these

partitions achieve high cluster homogeneity (purity), indicating that the clusters located

contain observations from the same true class. By contrast, the auto-tuned spectral cluster-
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Figure 5.1: Boxplots of regret for each algorithm considered based on NMI over benchmark
datasets. Mean regret is depicted with a red dot.

ing algorithm tends to underestimate the number of clusters.

To assess the relative performance of our proposed methods and alternative algorithms,

Figure 5.1 provides boxplots of regret, with respect to NMI (defined in Eq. (4.8)), associated

with each algorithm over the benchmark datasets considered. For each dataset, the regret

of an algorithm is the difference in performance between the best performing algorithm

and the algorithm of interest. Therefore, a regret of zero indicates the best performance. In

these experiments, the value of the regret did not noticeably differ with the number of ob-

servations or dimensions in the dataset. Figure 5.1 shows that KMDHhier achieves the lowest

regret for these datasets, with a median regret very close to zero, indicating that this algo-

rithm has the best relative performance. S-KMDHhier also has a median regret very close to

zero but with slightly more variability than KMDHhier. However, for larger datasets, the

reduction in computational cost of using a subspace to approximate the minimum density

hyperplane may be beneficial for a small sacrifice in performance. The three alternative al-

gorithms have similar median regret, although spectral clustering has more variable relative

performance by comparison to K-dePDDP and kernel k-means. Both K-dePDDP and spec-

tral clustering have slightly lower median regret than kernel k-means despite this algorithm
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being provided with the correct number of clusters.

5.6 Conclusions

In this chapter, we introduced an approach to locate minimum density separators, which

are appropriate for locating high-density clusters in high-dimensional datasets, with clus-

ters that cannot be correctly identified using linear cluster boundaries. This is done by non-

linearly mapping the input observations into a feature space via a valid kernel function. Hy-

perplane separators in the feature space then correspond to non-linear separators in the in-

put space. We call the minimum density linear separator in the feature space the KMDH.

Since the density intersected by a hyperplane in the feature space can be evaluated with only

the pairwise inner products between the mapped observations and the dual representation

of the vector normal to the hyperplane, the explicit calculation of the mapped feature vec-

tors is avoided, and the kernel matrix may be used to compute the KMDH.

In practice, the search space for the KMDH is restricted to the n-dimensional space spanned

by the feature vectors. For large datasets, searching over all of these n dimensions becomes

computationally expensive. Furthermore, it is likely that some of these dimensions do not

contain useful information for cluster detection. Therefore, we propose to approximate the

KMDH using a smaller subspace of the feature space. The resulting hyperplane separator is

called the S-KMDH.

Practically, we locate the KMDH using the projections of the feature vectors onto the

n-dimensional orthonormal basis spanning the same space, defined by KPCA. This is equiv-

alent to locating the KMDH in the feature space directly, using the kernel matrix. Simi-

larly, the S-KMDH is computed using the projections of the feature vectors onto the n′-

dimensional orthonormal basis of the feature vectors spanned by the first n′ kernel principal
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components, that retain a specified proportion of the variability in the feature space.

We combine the bi-partitions from KMDH and S-KMDH in divisive algorithms, called

KMDHhier and S-KMDHhier respectively. These divisive algorithms automatically estimate

the number of clusters by assessing the suitability of a potential hyperplane for the separa-

tion of high-density regions in the feature space, associated with clusters.

Experimentation across real-world benchmark datasets with varying characteristics in-

dicate that our proposed approaches locate high-quality clustering results, which are of-

ten better than alternative kernel-based algorithms. Our results indicate that in most cases

searching over a subspace of the feature space is sufficient to locate a high-quality separator,

whose performance is competitive with, or better than the global KMDH. The advantage

of this subspace approach is particularly relevant for large datasets where a search over all n

dimensions may be computationally infeasible.
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6
Computationally Efficient Low-Density

Cluster Separation with Random Projection

Abstract

We propose an approach for the computationally efficient location low-density cluster separa-

tors of large, high-dimensional datasets using univariate random projections. We bi-partition

the data at the minimiser of the estimated density of an appropriate set of one-dimensional

random projections to locate a cluster boundary that separates high-density regions associated

with clusters. We combine these bi-partitions in a divisive algorithm to locate a complete clus-

tering, which automatically estimates the number of clusters. A systematic simulation study

and an empirical evaluation of the performance of our proposed approach across real-world

benchmark datasets indicate that random projection allows the location of high-quality low-

density cluster separators. The performance of the partitions located through random projec-

tion are competitive with the low-density separators located by univariate projections com-

puted by principal component analysis, independent component analysis and the minimum

density hyperplane, and are much less computationally expensive than these alternative pro-

jection techniques. Therefore, the proposed approach is highly attractive for clustering large,

high-dimensional datasets, where the computational cost of alternative projection techniques

makes their implementation infeasible practically.
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6.1 Introduction

For datasets with large numbers of features (dimensions), where the clustering structure

is not clear when all dimensions are considered, the search for low-dimensional subspaces

that discard irrelevant dimensions is a necessity to permit accurate cluster identification. In

Chapters 4 and 5, we have seen that optimally projecting a set of datapointsX = {xi}n
i=1,

and using these projections to identify low-density cluster separators permits high-quality

clustering results using one-dimensional projections ofX only.

The approaches proposed in Chapters 4 and 5 locate projections that result in a cluster

separator that intersects a region of minimal density, as proposed by Pavlidis et al. (2016).

This approach can accurately identify clusters in a variety of real-world datasets. However,

there are alternative projection techniques that have been applied in the literature which

optimise different criteria to locate appropriate subspaces for clustering. For example, prin-

cipal component analysis (PCA), as applied in the well-known principal direction divisive

partitioning (PDDP) algorithm (Boley, 1998), and its extensions such as interval PDDP (i-

PDDP) and density enhanced PDDP (dePDDP) (Tasoulis et al., 2010). Independent com-

ponent analysis (ICA) has also been successfully applied to projective clustering problems

in Saidi et al. (2004); Tasoulis et al. (2011). Both PCA and ICA have been shown to locate

effective projections for clustering in applications such as gene expression clustering and text

mining. Although all the projection techniques mentioned are capable of locating subspaces

that permit accurate cluster separation, their computation becomes infeasible in large, high-

dimensional datasets, even when using highly optimised linear algebra packages.

Random projection (RP) (Achlioptas, 2001; Dasgupta, 2000) has been proposed as a

computationally inexpensive way to reduce dimensionality, which has a much lower com-

putational cost than the aforementioned projection techniques. The use of RP is theoreti-
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cally justified by the following lemma, which states that any set of n points may be projected

into a space of dimension r < O(ϵ−2 log n) while preserving relative pairwise distances up

to±ϵ for 0 < ϵ < 1,

Lemma 1. [Johnson–Lindenstrauss lemma (Johnson and Lindenstrauss, 1984)] Given 0 <

ϵ < 1 and an integer n, let r be a positive integer such that r ⩾ r0 = O(ϵ−2 log n). For

every set {xi}n
i=1 of n points in Rd, there exists g : Rd → Rr such that for all xi, xj,

(1− ϵ)∥xi − xj∥2 ⩽ ∥g(xi)− g(xj)∥2 ⩽ (1 + ϵ)∥xi − xj∥2.

This bound is pessimistic, and often pairwise distances are accurately preserved in a much

lower dimensional subspace than suggested by the Johnson–Lindenstrauss lemma. Fur-

ther motivation for the application of RP is that data generated from a number of high-

dimensional distributions appears more Gaussian after being randomly projected into a

lower-dimensional subspace (Diaconis and Freedman, 1984), and irregularly shaped clusters

become more spherical (Dasgupta, 2000).

RP has been applied with success in a number of clustering applications, where high di-

mensionality and large numbers of observations are a common problem. Generally, these

approaches seek a low-dimensional random subspace ofX , in which the clusters are identi-

fiable using the chosen algorithm. For example, Avogadri and Valentini (2009) apply RP to

reduce the dimensionality of gene expression data, before clustering using the fuzzy k-means

algorithm (Bezdek, 2013). Bingham and Mannila (2001) and Goal et al. (2005) investigate

the suitability of random subspaces for the task of facial recognition and text mining respec-

tively. These two investigations show that the subspaces located through RP are capable of

locating similar results to the subspaces obtained by PCA for these tasks, while offering a

significant reduction in computational cost. Further, Tasoulis et al. (2012) have combined
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RP with PCA to significantly reduce the computational cost of locating low-density cluster

separators using univariate projections onto directions of maximal variability. This method

applies the dePDDP algorithm (Tasoulis et al., 2010) on the projections ofX into a random

subspace, which avoids locating the principal components of the original set of observa-

tions. The authors show that this can significantly reduce the computational cost of locat-

ing an effective cluster separator, while maintaining competitive performance compared

with clustering the original observations. In addition, Fern and Brodley (2003) show how

the potential diversity of clustering results from model-based clustering in different random

subspaces may be combined by ensemble clustering (Strehl and Ghosh, 2002) to improve

the accuracy and stability of RP approaches.

Since the low-density separation algorithms proposed in this thesis partition clusters in

one-dimensional subspaces ofX only, our aim is to locate univariate projections ofX , that

are approximately optimal for cluster identification, in a computationally efficient manner.

We propose to search over a finite collection of one-dimensional random subspaces, for the

univariate projections ofX that permit the highest-quality cluster separator. In later sec-

tions, we show that if the true cluster labels were known, thus permitting the definition of

the most appropriate random subspace based on the clustering accuracy of a low-density

separator computed in that space, then only a small number of random projections are re-

quired before a very high-quality bi-partition is located. However, in clustering, we can-

not determine the suitability of a set of projections based on the resulting clustering perfor-

mance. Therefore, we consider different optimality criteria to quantify the appropriateness

of a set of random projections for cluster identification using low-density separators. These

choices are discussed in later sections. The bi-partitions ofX in these approximately op-

timal subspaces are combined in a divisive algorithm to locate a complete clustering, and
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estimate the number of clusters.

Computing the projections ofX onto a collection of randomly generated vectors only

requires a single matrix multiplication, which is a very computationally efficient operation,

that has a linear computational cost with respect to both the number of observations and

dimensions inX . Further, we can search over the same random subspaces at each level of

the divisive algorithm, avoiding repeated generation of projection vectors, and subsequent

computation of projections into the subspaces defined by them. This offers a significant

computational advantage compared to the aforementioned projection techniques, that seek

the optimal projection of each successive subset ofX (with a polynomial computational

cost) at each level of a divisive algorithm. Therefore, we find that seeking approximately op-

timal projections through RP can produce a complete clustering ofX significantly faster

than locating globally optimal one-dimensional subspaces through PCA, ICA and MDH.

The proposed approach is restricted to linear cluster boundaries in the space of the original

observations, so we lift this restriction by non-linearly mapping the observations into a fea-

ture space. In this case, the search space for an appropriate projection vector is determined

by the number of observations, making the efficient computation of projections increas-

ingly relevant for datasets with large numbers of observations.

The remainder of this chapter is organised as follows, Section 6.2 provides the methodol-

ogy for the proposed approach. This begins with a formulation of linear low-density cluster

separation. We then discuss possible projection techniques for locating one-dimensional

subspaces that may be appropriate for low-density cluster separation, and consider how RP

may be applied to locate projections that approximately optimise criteria that are related to

the objectives of the alternative techniques discussed. Later, we present a divisive algorithm

to combine the resulting low-density separators to produce a complete clustering ofX . Sec-
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tion 6.3 begins by comparing the computational time required to locate bi-partitions, and

complete clusterings ofX using RP, PCA, ICA and MDH. Then we evaluate the perfor-

mance of the partitions located through RP and the alternative projection techniques across

simulated and real-world datasets with varying characteristics whenX is the set of original

observations. Section 6.4 then investigates the performance of the proposed RP approach

compared to alternative projection methods whenX is a set of feature vectors, that have

been projected onto an n-dimensional orthonormal basis, allowing the identification of

clusters which are not linearly separable in the original data space. The results of our experi-

ments are summarised in Section 6.5. Finally, this work is concluded in Section 6.6.

6.2 Methodology

In this section, the methodology for the proposed approach is outlined. We begin by formu-

lating the problem of bi-partitioning using low-density cluster separators. This formulation

requires one-dimensional projections of the set of points to be clustered,X = {xi}n
i=1,

to evaluate the integrated density along a hyperplane separator. We therefore present pos-

sible approaches for the location of one-dimensional projections, which may be appropri-

ate for cluster separation. We then consider the computationally efficient location of one-

dimensional projections for clustering using RP. Finally, we propose a divisive procedure to

combine the resulting bi-partitions to locate a complete clustering ofX .

Throughout this chapter,X may be the original observations which span d dimen-

sions in the space of the original observations, or the set of non-linearly mapped feature

vectors, which span n dimensions in the feature space that have been projected onto an or-

thonormal basis. We adopt this notation for brevity since, as discussed in Section 5.3, any

meaningful projection vectors will lie within the span of the feature vectors {ϕ(xi)}n
i=1.
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Hence, using the projections of the potentially infinite-dimensional feature vectors onto

an n-dimensional orthonormal basis, spanning the same space as {ϕ(xi)}n
i=1, permits the

location of the equivalent set of optimal univariate projections as directly computing the

optimal one-dimensional subspace in the feature space.

6.2.1 Cluster Separation using One-Dimensional Projections

It is assumed throughout thatX = {xi}n
i=1 is a set of realisations of a continuous ran-

dom variable X with continuous estimated probability density function p̂x. We adopt the

low-density separation formulation of the clustering problem, seeking low-density cluster

boundaries, which partition but do not intersect high-density regions in p̂x, associated with

clusters. The evaluation of the integrated density along a cluster boundary is computation-

ally intractable unless attention is restricted to linear separators (hyperplanes). However, in

the case thatX is a set of non-linearly mapped feature vectors, these linear separators cor-

respond to non-linear separators of the original observations. The dense, linearly separable

sets ofX , which may be separated by a low-density hyperplane are defined in Section 2.3,

Definition 3.

As a consequence of applying Definition 3, the family of clusters C1, ..., Ck inX is lin-

early separable if there exists a hyperplane along which the maximum value of p̂x is at most

c ⩾ 0, and which also separates at least one cluster from the rest of the data. This definition

results in the clusters inX , located by a low-density linear separator corresponding to dense

clusters (Section 2.3, Definition 1), provided their convex hulls do not intersect. A collection

of low-density linear separators is able to identify all the clusters C1, . . . , Ck ifX is dense

and linearly clusterable (with respect to the density estimator p̂x), as defined in Section 2.3,

Definition 4.

Following Chapters 4 and 5, we define the density intersected by a hyperplane separator
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H(v, b) with unit normal v ∈ Sd−1 = {x ∈ Rd | ∥x∥ = 1} and displacement from the

origin b ∈ R as,

Î(v, b) =
1

n
√

2πh2

n

∑
i=1

exp

{
− (b− v⊤xi)

2

2h2

}
= p̂v⊤x(b). (6.1)

where p̂v⊤x(b) is the estimated density of the univariate projections ofX onto v, evaluated

at b and h is the bandwidth of the density estimate used in both p̂x and p̂v⊤x. To locate a

low-density cluster separator, we require the determination an appropriate projection direc-

tion v, along which the clusters are identifiable. Possible projection techniques for this are

discussed in Sections 6.2.2 and 6.2.3. Thereafter, we seek to partition high-density regions in

p̂x using the projections ofX onto v to determine a suitable value for b with low values of

Î(v, b). This is considered in Section 6.2.4.

6.2.2 Optimal Projections

In this section we outline methods for locating one-dimensional projections ofX which

globally optimise criteria that may be indicative of appropriate projection directions for

cluster detection. The methods considered are principal component analysis (PCA), inde-

pendent component analysis (ICA) and the minimum density hyperplane (MDH).

Principal Component Analysis (PCA)

In PCA (formulated in Section 2.2.1), the one-dimensional projection vector located retains

the maximal variability inX and minimises the reconstruction error. This is an intuitive

approach provided the clusters inX are not heavily elongated, since it is likely that the clus-

ters will be separable along the direction that the data are most dispersed. This was extended

to allow the computation of directions of maximum variability in feature spaces by kernel
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principal component analysis (KPCA) (Schölkopf et al., 1998). The formulation of KPCA

is presented in Section 5.3, so we omit this here. IfX is the set of feature vectors, projected

onto an n-dimensional orthonormal basis, spanning the same space, then the univariate

projection of the vectors inX onto their first linear principal component is equivalent to

the univariate projection of the feature vectors, onto the first kernel principal component.

Independent Component Analysis (ICA)

ICA (Hyvärinen et al., 2004) projectsX such that the dimensions of the projected data are

independent and non-Gaussian. This originates from signal processing, allowing the sep-

aration of multivariate signals into additive subcomponents. The independence between

the components located may be specified by minimising the mutual information (Bell and

Sejnowski, 1995) or by minimising the Gaussianity (Cardoso and Souloumiac, 1993, 1996).

Throughout this chapter, we use the Joint Approximation Diagonalization of Eigen-matrices

(JADE) algorithm for ICA (Cardoso and Souloumiac, 1993, 1996), which adopts the latter

approach. This relies on the Lindeberg condition, which states that for a set of independent

random variables Xi (which are not necessarily Gaussian) with means and variances µi and

σ2
i respectively, a linear combination of these random variables tends to a normal distribu-

tion as the number of terms in the linear combination tends to infinity, conditional on none

of the σ2
i dominating the variances and sufficiently weak dependence between the variables.

Therefore, locating axes with minimal Gaussianity equates to recovering independent com-

ponents. For our purposes, we only require a one-dimensional projection and hence, we

only consider the first independent component.

Excess kurtosis, may be thought of as a measure of non-Gaussianity, with higher abso-

lute values indicating a distribution that is further from a unimodal Gaussian distribution.

Therefore, the first independent component located by the JADE algorithm is equivalent to
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locating the projection vector v with maximal absolute excess kurtosis in the projections of

X onto v (Roberts and Everson, 2001),

K(v⊤x) =

∣∣∣∣∣ 1
n ∑n

i=1(v
⊤xi − µ̂v)4

σ̂4
v

− 3

∣∣∣∣∣
where µ̂v and σ̂v are the mean and standard deviation of the projections ofX onto v re-

spectively. Peña and Prieto (2001) show that for datasets with clear clustering structures,

univariate projection directions with minimal kurtosis have maximal bi-modality in the dis-

tribution of the projections, while minimising the effect of outliers. In datasets with well

separated clusters, it is likely thatK(v⊤x) is maximised by the projection direction with

the most negative excess kurtosis. Therefore, ICA often locates a projection direction with

a bi-modal structure. However, maximising the absolute value of excess kurtosis sometimes

results in the location of projections that have a high positive excess kurtosis, and are highly

unimodal. Such directions are not suitable for low-density separation, so ICA may locate

inappropriate projections in some datasets.

Bach and Jordan (2002) extended ICA to kernel defined feature spaces where indepen-

dence is defined using contrast functions based on canonical correlations of the feature vec-

tors. This measure of independence is related to mutual information and kurtosis, but the

algorithms presented are not directly comparable to the JADE algorithm in the data space.

Therefore, for consistency, when implementing ICA on the non-linearly mapped feature

vectors, we use the JADE algorithm on the n-dimensional projections of the feature vectors

onto an orthonormal basis of the feature space.
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Minimum Density Hyperplane (MDH)

The MDH (Pavlidis et al., 2016) is a projection pursuit approach that seeks the optimal one-

dimensional projection direction for low-density cluster separation. This method seeks to

partition dense, linearly separable clusters by locating linear cluster boundaries, which in-

tersect regions of minimal density in p̂x, by minimising Î(v, b) as defined in Eq. (6.1), sub-

ject to sensible constraints on b. This is discussed in detail in Section 4.2.1. This approach

was extended to feature spaces in Chapter 5 by the kernel minimum density hyperplane

(KMDH). The optimal univariate projections of the feature vectors that permit the hy-

perplane separator which minimises Î(v, b) can be computed directly using the kernel

matrix, or equivalently using the n-dimensional projections of the feature vectors onto an

n-dimensional orthonormal basis spanned by them.

6.2.3 Random Projection (RP)

As an alternative to the projection techniques discussed above, we consider RP (Achlioptas,

2001; Dasgupta, 2000) to locate approximately optimal projections for clustering. In RP,

the setX is projected into a random subspace of dimension r by a random orthogonal ma-

trix R = [rij] ∈ Rd×r. There is no universally adopted approach for the construction of

R. However, for Lemma 1 to hold, the entries of R, rij for i = 1, . . . , d, j = 1, . . . , r must

satisfy E(rij) = 0, Var(rij) = 1. Therefore, the following three examples are attractive,

1. Bernoulli random projections,

R⋆ =
1√
r
[rij] , P(rij = p) =

{
1/2 , p = −1
1/2 , p = 1
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2. Achlioptas random projections (Achlioptas, 2001),

R⋆ =
1√
r
[rij] , P(rij = p) =


1/6 , p = −

√
3

2/3 , p = 0
1/6 , p =

√
3

3. Normal random projections (Bingham and Mannila, 2001),

R⋆ =
1√
r
[rij] , rij ∼ N(0, 1).

The projections ofX into a the random subspace defined by R are given by

X r = {R⊤xi}n
i=1 ⊂ Rr.

The orthogonalisation of R is computationally expensive, however, as the dimensional-

ity ofX increases, a set of random projections become asymptotically orthogonal to each

other (Hecht-Nielsen, 1994). Therefore, if the dimensionality ofX is sufficiently high, this

additional cost may be avoided. Without this orthogonalisation, it is trivial to see that the

computation of the projections ofX into the subspace defined by R only requires a single

matrix multiplication. This efficient linear operation is highly attractive compared to the

optimisation techniques required for PCA, ICA and MDH, which have a quadratic compu-

tational cost, as discussed in Section 6.2.7.

The computational efficiency of computing projections, combined with the theoreti-

cal justification, and successful applications to clustering problems discussed in Section 6.1

make RP an attractive dimensionality reduction technique. These results motivate our con-

sideration of RP to locate projections ofX that permit low-density cluster separators, that

are related to the globally optimal projection vectors located by the techniques discussed in

Section 6.2.2.

We propose to use RP to search for approximately optimal one-dimensional subspaces for
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clustering. We search over a collection of univariate projections ofX onto multiple random

vectors, given by the columns of Xr = X · R where X is the n × d data matrix associated

withX . We then partitionX using the one-dimensional random projections which best

satisfy a specified optimality criterion, indicating the suitability of a given set of projections

for cluster identification. The partitions located through our RP approach approximate

the partitions from the projection vectors in Section 6.2.2, which globally optimise related

criteria over all possible one-dimensional subspaces ofX .

Since we consider the projections onto the random vectors independently, we do not re-

quire R to be orthogonal. However, to appropriately sample the search space, we do require

the random vectors stored columnwise in R = [rj] to be sampled uniformly from the unit

sphere, rj ∈ Sd−1 for j = 1, ..., r. In the original data space, this can be done by generat-

ing from a multivariate N(0, 1) distribution and then normalising the vector to have unit

length (Rubinstein, 1982).

However, it is not possible to guarantee this when generating vectors directly in the fea-

ture space. This results from being unable to define a vector, w in the theoretically infinite-

dimensional space, and instead relying upon the generation of n-dimensional dual vectors

α, such that w = ∑n
i=1 αiϕ(xi) where ϕ(xi) is the mapped feature vector of the ith ob-

servation. To our knowledge, there is no way to generate α such that w is uniformly sam-

pled from the unit sphere in the feature space. However, since we restrict attention to the

n-dimensional space spanned by the feature vectors, and can equivalently locate low-density

separators of the projections of the feature vectors onto an n-dimensional orthonormal ba-

sis, we do not generate vectors directly in the potentially infinite-dimensional feature space.

Instead, treating the n-dimensional projections of the feature vectors as a set of mapped ob-

servations, allows the generation of random vectors from the n-dimensional unit sphere as
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above.

6.2.4 Divisive Clustering with Low-Density Separators

To produce a complete clustering ofX , we combine low-density cluster separators located

in one-dimensional subspaces computed by the projection techniques considered above in a

divisive, hierarchical algorithm. Given a projection vector computed by any of the methods

discussed in Sections 6.2.2 - 6.2.3, the divisive procedure requires three decisions:

1. Which cluster to split at each level of the hierarchy (selection rule);

2. How to split that cluster (splitting rule);

3. When to terminate (stopping rule).

Selection Rule

At each level of the hierarchy, we select the cluster which contains the set of univariate pro-

jections that optimise (or approximately optimise) our specified criterion. LetXCj ⊂ X

for j = 1, ..., k denote the subsets ofX assigned to each of the k clusters located so far, with

associated data matrices XCj . Further, let f (·) be a function of the univariate projections

of the observations inXCj onto a vector v, computed by XCj · v, which we are seeking to

maximise (it is trivial to consider a minimisation problem instead). Our choices for f (·) are

discussed in Section 6.2.6. If we globally optimise f (·) for eachXCj , we select the cluster

which solves the following problem,

j⋆ = arg max
j∈{1,...,k}

{
max

v∈Sd−1
f (XCj · v)

}
.
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If we use RP to locate a projection vector which only approximately optimises f (·) for each

XCj , we select the cluster which solves,

j⋆ = arg max
j∈{1,...,k}

{
max

i∈{1,...,r}
f (XCj · ri)

}
(6.2)

where ri = (ri,1, . . . , ri,d) is the ith random vector stored in R and r is the total number of

random vectors over which we search for an appropriate projection direction for clustering.

We then denote the subset of observations currently assigned the selected clusterXCj⋆
by

XC.

Splitting Rule

To bi-partitionXC, we seek a separating hyperplane that intersects a region of low-density

in p̂x (quantified by the integrated density in Eq. (6.1)) while separating high-density clus-

ters. This is done using the estimated density of the univariate projections ofXC onto the

vector which optimises (or approximately optimises) our specified optimality criterion f (·).

For the projection techniques which globally optimise f (·), the selected univariate projec-

tions are given by

pC = XC · v⋆ (6.3)

v⋆ = arg max
v∈Sd−1

f (XC · v), (6.4)
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where XC is the data matrix associated withXC, whereas for our RP approach, the selected

univariate projections are given by

pC = XC · r⋆ (6.5)

r⋆ = arg max
ri ; i∈{1,...,r}

f (XC · ri). (6.6)

To ensure that the low-density separators obtained partition high-density regions asso-

ciated with clusters, we do not simply select b to minimise the estimated density of the se-

lected univariate projections p̂pC , since this result in a hyperplane that lies in the tails of p̂x.

Instead, we determine b to be the minimiser of p̂pC which maximises the relative depth cri-

terion,

b⋆ = arg max
b∈R

RelativeDepth(pC, b) (6.7)

RelativeDepth(pC, b) =
min

{
p̂pC(ml), p̂pC(mr)

}
− p̂pC(b)

p̂pC(b)
, (6.8)

where ml and mr are the locations of the two largest modes of p̂pC to the left and right of b

respectively. By convention, if there is no mode either to the left or the right of b the relative

depth is zero. This choice of b results in a hyperplane separator ofXC which intersects a

region of low density, and assigns observations in high-density regions of p̂x to different

clusters.

Stopping Rule

Our choice of cluster definition and splitting rule lends itself to an intuitive stopping rule

that terminates the divisive procedure when it is not possible to locate a sufficiently low-

density separator that partitions high-density regions in p̂x using the selected set of projec-
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tions pC. Therefore, the number of clusters may be estimated automatically. This stopping

rule considers the relative depth of the estimated density of a set of univariate projections,

pC to assess their suitability for low-density cluster separation. If p̂pC is not multimodal (or

equivalently has a sufficiently small relative depth), this indicates that it is not possible to

locate a hyperplane separator, with the normal vector selected, that intersects a region of suf-

ficiently low-density to indicate an appropriate cluster boundary that separates high-density

clusters. We propose to set a threshold on the value of the relative depth of p̂pC , which de-

termines if a suitable low-density separator is permitted using these projections.

We do not simply test for the presence of more than one mode in the estimated density of

pC, since we do not want to accept a bi-partition at a minimiser in p̂pC between two small

modes, as such separators are unlikely to partition high-density clusters. This problem is

particularly relevant for approaches that actively seek projection directions with a multi-

modal estimated projected density. We propose to test for multimodality in p̂pC by compar-

ing the relative depth of this density to the Monte-Carlo estimated quantiles of the relative

depth of the estimated density of a sample from a null unimodal reference distribution.

For this we use the uniform distribution, since this is the standard choice for modality test-

ing (Hartigan and Hartigan, 1985; Hartigan, 1977). Our specific choices for this procedure

are discussed in Section 6.4.1.

6.2.5 Combining RP Trees by Ensemble Clustering

Topchy et al. (2005) discuss the combination of multiple weak partitions located by hy-

perplane separators that arise from projecting the data into random one-dimensional sub-

spaces through ensemble (consensus) clustering (Strehl and Ghosh, 2002; Dimitriadou

et al., 2002). Empirical studies in this work indicate that combining the information from

varied input partitions by an ensemble clustering can dramatically improve the clustering
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performance compared to a single cluster separator. Therefore, we consider generating mul-

tiple clusterings ofX using hierarchies of low-density separators from the proposed RP

approaches, that search over different collections of random projections, and combine these

partitions via an ensemble clustering. This final clustering incorporates information from all

of the input partitions, and in our experiments, often produces a clustering of higher qual-

ity than the average performance from using a single hierarchy.

We apply the ensemble clustering approach of Dimitriadou et al. (2002) (implemented

in the clue package for R), which takes a collection of m input cluster assignment matri-

ces M1, . . . , Mm, and returns the fuzzy clustering assignment matrix P, such that each

entry pil is the probability that observation xi belongs to cluster l for i = 1, . . . , n and

l = 1, . . . , k. Since each partition obtained through the divisive RP methods is a hard

clustering, we have Mj
il = 1 if observation xi is assigned to cluster l in the j-th input

clustering and equal to zero otherwise. If the input partitions contain different numbers

of clusters, any input cluster assignment matrices with fewer columns than the maximum

number of clusters located in the input clusterings, are augmented with columns of ze-

ros to ensure that the input matrices have the same dimensionality. Further, the columns

of the input assignment matrices may be trivially permuted so that the input clusterings

are invariant to relabelling the clusters. Given the processed collection of input matrices,

M1, . . . , Mm, Mj ∈ {0, 1}n×k ∀j = 1, . . . , m, The fuzzy clustering assignment matrix P

is the matrix whose rows pi solve,

min
P

(
min

Π

{
1
m

m

∑
j=1

n

∑
i=1
∥pi −Πj(mj

i)∥
2
2

})

where mj
i is the ith row of the input cluster assignment matrix Mj and Πj is a function that

permutes the columns of Mj. Therefore, the fuzzy ensemble cluster assignment matrix P

141



minimises the average squared Euclidean distance to the input clusterings. To locate a final

hard clustering ofX , we take the final partition π∗ ∈ Nn such that π∗i = arg max pi for

i = 1, . . . , n.

6.2.6 Optimality Criteria to Select Random Projections

The optimality criteria which we consider for the selection of a set of univariate random

projections that may be suitable for the location of a low-density separator are:

1. Maximum relative depth in the estimated density of the univariate projections. This
optimality criterion retains projections exhibiting a strong multimodal structure in
their estimated density, with a low minimiser between two large modes. Hence, this
is consistent with the objective of locating low-density separators that assign observa-
tions in high-density regions around the modes of p̂x to different clusters. Therefore,
this optimality criterion is related to the objective of MDH.

2. Maximum dip statistic (Hartigan and Hartigan, 1985) in the estimated density of the
univariate projections. Like the relative depth, this criterion also considers the modal-
ity of the estimated projected density, and favours projections with a strongly mul-
timodal structure. This was applied by Krause and Liebscher (2005) as an objective
for projection pursuit clustering. Unlike the maximum relative depth criterion, the
dip statistic only considers the extent to which the estimated density of the univari-
ate projections is multimodal. Therefore, this criterion can permit projections that
have a strongly multimodal distribution, but do not necessarily have a low minimiser
between these modes.

3. Maximum variance in the univariate projections. Although there is no guarantee that
directions of high variability are suitable for cluster detection (Kriegel et al., 2009),
if the clusters are not heavily elongated, it is likely that projections which are highly
dispersed are separable by a region of low density (Boley, 1998; Tasoulis et al., 2010).
This optimality criterion is consistent with the objective of PCA.

4. Minimum kurtosis, which retains univariate projections with minimal Gaussianity,
so as to avoid projections with a clear unimodal Gaussian density. Peña and Prieto
(2001) show that locating univariate projections with minimal kurtosis corresponds
to maximising the bi-modality in the estimated density of the projections. As such,
this optimality criterion should permit a cluster separator that separates regions of
high-density in p̂x. This is associated with the objective of ICA. However, since ICA
maximises the absolute value of the excess kurtosis, it is possible that ICA will locate
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a projection direction with a very slender non-Gaussian distribution, while select-
ing projections with the most negative excess kurtosis will always favour projections
with a highly dispersed uniform-type or bi-modal distribution. Therefore, projections
which minimise the kurtosis are arguably more consistent with locating cluster sep-
arators than projections that maximise the absolute excess kurtosis. We expect cases
where RP with this optimality criterion and ICA locate drastically different projec-
tions to be rare in datasets with a clear clustering structure.

6.2.7 Computational Complexity

In this section, we discuss the computational complexity of locating hierarchies of low-

density separators by the proposed RP approaches, and the alternative projection tech-

niques considered. In our experiments, when extending these techniques to locate appropri-

ate projections of feature vectors, we use the n-dimensional projections of the feature vectors

onto an orthonormal basis. This requires the construction of the kernel matrix (for which

we use the Gaussian kernel), with costO(n2d). For the construction of an n-dimensional

orthonormal basis of the feature vectors, we use KPCA, with computational costO(n3).

Finally, the projections of the feature vectors onto the kernel principal components incurs

a cost ofO(n3). This is the same for all the projection techniques considered, and is only

computed once.

Hereafter, we consider the cost of locating the optimal projections ofX with n obser-

vations and d dimensions, either as the original d-dimensional set of observations or the

n-dimensional projections of the feature vectors. First we consider the computational com-

plexity of locating an optimal (or approximately optimal) univariate projection ofX . The

first principal component ofX may be located by an iterative procedure such as the power

method (Kuczyński and Woźniakowski, 1992), avoiding the computation and complete

eigen-decomposition of the covariance matrix. The power method has a cost ofO(nd2)
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per iteration. The JADE algorithm for ICA iteratively computes the projection vector with

minimal absolute excess kurtosis, with a computational cost ofO(d2 + n) per iteration.

The location of the MDH is also an iterative procedure. For each iteration,X is projected

onto v with computational costO(nd), and then p̂v⊤x is constructed at m points using

the fast Gauss transform (Morariu et al., 2009), at a cost ofO(m + n). Locating the min-

imiser of p̂v⊤x to accuracy ϵ requiresO(− log2 ϵ) iterations. The subsequent update of v

by BFGS requires a single gradient evaluation, with a cost ofO(d2 + nd). Therefore, the

overall computational complexity of locating the MDH isO(d2 + nd).

For an approximately optimal projection, located using RP, it is necessary to compute the

projections ofX onto the matrix of r random vectors, with costO(ndr). This is the most

significant cost for the proposed RP approach, so dominates the computational complexity.

It is worth noting that this is a single multiplication, and not an iterative procedure, such as

those required for the optimal projection techniques considered. For each of the r random

univariate projections, it is necessary to compute the value of the optimality criterion of

interest. For the maximum relative depth and maximum dip statistic criteria, this requires

the construction of the estimated density of the projections at m points, and this has cost

O(n + m). The maxima and minima in these densities can then be located to accuracy ϵ

with costO(− log2 ϵ). Meanwhile, the maximum variance and minimum kurtosis criteria

have a cost ofO(n).

Once the projections ofX onto the selected projection vector have been computed, the

subsequent bi-partition of the projections requires the construction and minimisation of

a single univariate density estimate with costO(n + m) andO(− log2 ϵ) respectively.

Except for the computation of the projections ofX onto the random vectors in the RP ap-

proach, all the above operations are performed at each level of the hierarchy. Locating op-
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timal projections by the iterative procedures required for PCA, ICA and MDH becomes

computationally expensive for very large and high-dimensional datasets, and re-computing

this at each level of the hierarchy increases the computational time required further, mak-

ing the proposed RP approach very attractive. We investigate the computational times to

locate bi-partitions and divisive clusterings using the projection techniques considered in

Section 6.3.2. For a representative real-world dataset, the location of a cluster hierarchy took

approximately 30, 15 and 20 minutes for MDH, PCA and ICA respectively. Meanwhile,

locating a cluster hierarchy with 1,000 random projections took approximately 5 minutes.

6.2.8 Notation for RP Approaches

In Sections 6.3.2 - 6.3.4 and 6.4.2, we use the following notation to refer to the RP approaches

using varying numbers of random projections and different optimality criteria. RP-depth-

r, RP-dip-r, RP-var-r and RP-kur-r correspond to locating a single hierarchy using a fixed

collection of r random projections and selecting the set of univariate projections with max-

imum relative depth, maximum dip statistic, maximum variance and minimum kurtosis

respectively to partitionX at each level of the hierarchy. When using multiple hierarchies,

generated from different random projections, and combining the resulting partitions with

an ensemble clustering, we use the notation RP-depth-r-E-m, RP-dip-r-E-m, RP-var-r-E-m

and RP-kur-r-E-m. These refer to combining m hierarchies, each of which use a collection

of r random projections to search for the set of univariate projections with maximum rela-

tive depth, maximum dip statistic, maximum variance and minimum kurtosis respectively

to partitionX at each level of the hierarchy.
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6.3 Experimental Results using Original Observations

In this section, we conduct an empirical analysis of the proposed divisive RP approach to

clustering, whenX is the original set of d-dimensional observations across high-dimensional

simulated and real-world datasets with varying characteristics. We consider different num-

bers of random projections to search for an approximately optimal set of univariate projec-

tions for clustering, as well as investigating the suitability of the different optimality criteria

suggested in Section 6.2.6 to quantify the appropriateness of a set of projections for clus-

ter detection. We begin with a run time analysis to assess the computational saving of using

RP with increasing numbers of observations and dimensions inX . Later, we evaluate the

clustering performance of the RP approach over simulated and real-world datasets. The run

time and performance of low-density separators located with the proposed RP approach

is compared to low-density cluster separators computed by PCA, ICA and MDH. For the

simulated datasets, we found that the randomness in the dataset dominated any randomness

in the clustering algorithms, so only a single run of each algorithm is included. For the real

datasets, the RP approach was run 30 times, each with a different set of random projection

vectors. For large numbers of random projections, the variability in clustering performance

was typically low over different sets of random projections, and the NMI between partitions

arising from different random projections was high (approximately 0.8 - 0.9).

For the performance evaluation, we also include the clustering performance of k-means++ (Arthur

and Vassilvitskii, 2007), where the number of clusters is estimated using the Gap statis-

tic (Tibshirani et al., 2001) as a standard benchmark, and to assess the performance of clus-

tering using low-density separators by comparison to an alternative approach. The com-

putational cost of evaluating the Gap statistic for large datasets meant that this method

could not run within four weeks on a high performance computing cluster, for some of the
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datasets. In this case, this method is omitted in the performance evaluation. The computa-

tional cost of the Gap statistic also made it infeasible to include k-means++ in the run time

analysis.

6.3.1 Details of Implementation

Parameter Settings

As for any density-based approach, the choice of bandwidth used to construct the kernel

density estimate of the univariate projections affects the performance of our approach. For

the computation of the estimated density of the projections located by all projection tech-

niques, except MDH, we use the standard rule of h = σ̂v(4/(3n))1/5 where σv is the

standard deviation of the projections onto v. Since when p̂x is multimodal, MDH almost

always locates projections with a multimodal estimated density, we use h = 0.9σ̂n−1/5

where σ̂ is a fixed parameter. Silverman (1986) recommend this rule as the optimal choice

for multimodal densities. We select σ̂ to be the standard deviation of the projections of the

observations in the cluster of interest along their first principal component. For all other

parameters for MDH, we take the same approach as given in Section 4.4.1.

To obtain the estimated quantiles of the relative depth from the null distribution for our

stopping rule proposed in Section 6.2.4, we use Monte-Carlo simulation with 1,000 null

samples, each with the same number of observations asX . We experimented with fixing

this relative depth threshold at the start of the divisive procedure, and re-calculating this at

each level, using null samples with the same number of observations as the cluster of inter-

est, thus accounting for fewer observations per cluster at lower levels of the hierarchy (as

applied in Chapters 4 and 5). For the experiments in this chapter, re-calculating this thresh-

old at each level did not greatly improve clustering performance in the majority of cases,
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and added extra computational cost, so we took the approach of a fixed threshold. For this

threshold, we chose the 0.975 quantile of the relative depth of the estimated density of 1,000

uniform samples, each of size n although, we found that any threshold above the 0.9 quan-

tile generally rejected poor-quality separators. This stopping rule was employed for all com-

peting projection techniques, as well as our RP approaches to ensure that any difference in

performance is due to the choice of projection vector and not different stopping rules.

Finally, for the RP approach with an ensemble clustering, we used 30 trees as input parti-

tions. In our experiments, this was sufficient to locate a diverse set of input partitions, and

offered a fair trade off between clustering performance of the ensemble and computational

time. As in Chapters 4 and 5, we evaluate clustering performance with normalised mutual

information (NMI) (Strehl and Ghosh, 2002). Alternative performance measures did not

alter the relative performance of the competing approaches.

Number of Random Projections

For the proposed RP approach, we experimented using varying numbers of random pro-

jections over which to search for an appropriate cluster separator. Figure 6.1 shows the in-

crease in clustering performance with an increasing number of random projections, for a

bi-partition of the simulated datasets and real-world datasets which we use in Sections 6.3.3

and 6.3.4. The performance measure used here is the success ratio (SR) (Pavlidis et al., 2016),

which is appropriate for assessing the quality of a bi-partition of a dataset with an arbitrary

number of clusters. SR takes values in the range [0, 1] with a value of 1 indicating that at

least one cluster has been completely separated from the rest of the data. The simulated

datasets used to produce Figure 6.1(a) were all generated from a Gaussian mixture model

with 30 components (clusters). Results for different numbers of clusters were very similar so

are omitted. The real datasets contain varying numbers of clusters and dimensions, which
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Figure 6.1: Increase in success ratio with increasing number of random projections for sim-
ulated datasets with 30 clusters in 1,000, 10,000 and 19,000 dimensions and real benchmark
datasets summarised in Section 6.3.4.

are summarised in Table 6.1.

For each successive projection vector r1, . . . , rr, the data were split (where possible) at

the minimiser b⋆ of the estimated density of the projections ofX onto rj with maximum

relative depth (as defined in Eqs. (6.7) - (6.8)), and the clustering performance of the bi-

partition was recorded. If the performance for the partition π j using the current set of

random projections was better than for any previous set of projections, this was stored as

follows,

Sj = max{SuccessRatio(π j, π⋆), Sj−1} (6.9)

π
j
i =


0 iff r⊤j X ⩽ b⋆

1 iff r⊤j X > b⋆
, i = 1, . . . , n, j = 1, . . . , r (6.10)

where π⋆ is the vector of true cluster labels and X is the data matrix associated withX . Fig-

ure 6.1 indicates the rate of convergence to a high-quality separator if it is possible to select

the most appropriate projection vector based on the quality of the resulting bi-partition.

For the datasets considered, a high-quality bi-partition was located with only a small

number of random projections, and the improvement in performance when searching
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over greater than 1,000 projections became negligible. Therefore, in Sections 6.3.3, 6.3.4

and 6.4.2, when computing complete cluster hierarchies using RP with the four optimality

criteria considered, we experimented using 100, 500 and 1,000 random projections. The per-

formance of the RP approaches using 500 random projections was always between the two

more extreme cases so these are omitted for brevity.

6.3.2 Run Time Analysis

In this section we assess the computational time to produce a bi-partition and a divisive

clustering ofX using low-density separators located using our RP approach, PCA, ICA

and MDH. All of the methods were coded using R and for computing projections with

PCA and ICA we used the optimised RSpectra and MASS packages respectively. For each

dataset, we considered using 100, 500 and 1,000 random projections, and selected the most

appropriate projection using the relative depth criterion. The choice of optimality criterion

did not noticeably affect the run time for RP, so we omit the results for alternative criteria.

For the ensemble methods, the times quoted include the computation of 30 input cluster

hierarchies and the subsequent ensemble clustering. In this section, the data were simu-

lated from a d-dimensional Gaussian mixture model, with k very well separated components

(clusters). This ensured that all the projection techniques were able to locate subspaces in

which all the clusters were clearly identifiable. Therefore, the difference in run time is due to

the cost of locating the projection vector, not as a result of different numbers of splits in the

hierarchy.

Figure 6.2 provides the median CPU time in seconds, over 30 replications, to produce

a single, bi-partition using low-density separators computed through RP, PCA, ICA and

MDH with increasing numbers of observations and dimensionality inX . Notice that we

plotted the log-time due to the very high cost of PCA, ICA and MDH in high dimensions.
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Figure 6.2: CPU time for a binary split with increasing numbers of observations and dimen-
sionality for RP, PCA, ICA and MDH.

The datasets used to produce this figure consisted of two clusters of equal size. For increas-

ing numbers of observations, dimensionality was fixed to d = 5, 000, while for increas-

ing dimensionality, the number of observations was fixed to n = 20, 000. For PCA, we

recorded the time to compute the same number of principal components as random projec-

tions, whereas the computational cost of ICA meant it was only feasible to compute the first

component.

Figure 6.2 shows that all the projection techniques have a linear computational cost in

the number of observations inX . However, all but the most computationally expensive

RP approach considered locate a bi-partition significantly faster than PCA, ICA or MDH.

The benefit of RP is more apparent when considering its computational cost whenX is

very high-dimensional. For high-dimensional datasets, applying RP instead of PCA, ICA or

MDH reduces the computational time to locate a bi-partition ofX substantially.

Figure 6.3 shows the median CPU time, in seconds, over 30 replications for a complete

divisive clustering using low-density separators located by our RP approach, PCA, ICA and

MDH. Due to the cost of repeated calculations throughout the hierarchy, the times pre-

sented here only include a single component for PCA and ICA. For all the datasets gener-
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Figure 6.3: CPU time for a full clustering hierarchy with increasing numbers of clusters and
dimensionality for RP, PCA, ICA and MDH.

ated, the number of points per cluster was 500. Increasing the number of clusters therefore

increased the number of observations, as well as the number of splits needed in the hierar-

chy to identify all the clusters. When dimensionality was increased, the number of clusters

was fixed to k = 10, and when the number of clusters was increased, dimensionality was

fixed to d = 5, 000.

For a full divisive clustering, the computational advantage of our RP approaches is more

apparent than for a single bi-partition. This is due to the repeated calculations of globally

optimal projection vectors required when applying PCA, ICA or MDH, while our RP ap-

proaches only computesX r once. For increasing numbers of clusters, locating a single hier-

archy using RP is significantly faster than using the alternative projection methods. As the

dimensionality ofX increases, the significantly lower computational cost of RP becomes

highly attractive, while repeatedly computing optimal projections through PCA, ICA and

MDH at each level of the hierarchy (at a cost which is quadratic in the dimensionality ofX )

becomes infeasible practically. Therefore, whenX is large and high-dimensional, the linear

cost of RP with respect to both the number of observations and dimensions inX , means

that multiple RP hierarchies may be computed and combined with ensemble clustering in a
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fraction of the time of locating a single hierarchy with the alternative projection techniques.

6.3.3 Performance Evaluation on Simulated Data

We now consider the clustering performance of low-density separators located using RP,

with the four optimality criteria considered in Section 6.2.6, compared to the low-density

separators located using PCA, ICA and MDH across simulated datasets. The performance

of k-means++ using the Gap statistic to estimate the number of clusters is also included as a

benchmark. For each of the simulated datasets, the data were drawn from a d-dimensional

Gaussian mixture model with k components (clusters), each with 100k points as follows.

x ∼
k

∑
j=1

1
k

N(µj, σI)

µj ∼ Uniform(0, 2)

P(σi = s) =


1/2, s = 0.05

1/2, s = 1
∀i = 1, ..., d

The choice of σ in this generative model results in clusters which can be hard to detect

along some projection directions, as seen in Figure 6.4, which shows pairwise plots of two-

dimensional axes parallel projections along four dimensions of a dataset simulated from this

model, and the univariate estimated density along these dimensions.

The effect of the high variability along some projection directions is reduced whenX is

high-dimensional, as illustrated by Figure 6.5, which provides the two-dimensional projec-

tions of two example simulated datasets with 1,000 and 10,000 dimensions onto their first

two principal components. Evidently, the clusters should be identifiable along univariate

projections which retain high variability, as long as the dimensionality ofX is sufficiently

high.
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Figure 6.5: PCA projections of example simulated datasets with 10 clusters as dimensionality
increases.

We simulated datasets with 10, 30 and 50 clusters and 1,000, 10,000 and 19,000 dimen-

sions. The generative model induces higher levels of cluster overlap in datasets with larger

numbers of clusters in fewer dimensions. Therefore, we expect the 1,000-dimensional datasets

with 50 clusters to be the most challenging.

Figure 6.6 shows boxplots of the clustering performance of partitions from hierarchies

of low-density separators located using the proposed RP approaches, PCA, ICA and MDH

as well as k-means++, over 30 datasets, each with 10 and 50 clusters and 1,000 and 19,000
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Figure 6.6: Boxplots of clustering performance from hierarchies of low-density separators
located by RP approaches, PCA, ICA and MDH as well as k-means++ over 30 replications
for simulated datasets with 10 and 50 clusters, 1,000 and 19,000 dimensions.

dimensions. The subfigures 6.6(a) and 6.6(b) correspond to using 100 and 1,000 random

projections for each individual RP cluster hierarchy respectively. We have only included the

most extreme numbers of clusters, dimensions and random projections for brevity. In gen-

eral, we found that MDH was capable of almost perfect performance for all datasets. For the

datasets with 10 clusters, where overlap is relatively low, PCA and ICA also correctly identi-

fied all the clusters. However, for higher numbers of clusters, inducing greater overlap, the

1,000-dimensional datasets were more challenging, particularly for PCA. The performance

of k-means++ was relatively consistent across all the datasets, typically exhibiting clustering

performance slightly below that of MDH. For the RP approaches, greater numbers of clus-
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ters negatively affected performance, since higher overlap reduced the probability of locat-

ing projections along which the clusters were separable. Meanwhile, higher dimensionality

resulted in a much larger search space for an appropriate projection direction. Therefore,

a small, fixed number of random vectors were less likely to locate a set of projections that

permit a low-density separator, unless the cluster overlap was very low. This results in less

competitive performance for the RP approaches with 100 projections in datasets with large

numbers of dimensions. However, taking more projections alleviates this problem.

For the RP approaches on the simulated datasets, all optimality criteria, except the max-

imum variance criterion, tend to locate higher quality partitions when searching over more

random projections. The ensemble approach is effective for the 1,000-dimensional datasets,

in some cases significantly improving performance compared to a single hierarchy. How-

ever, this is not the case for the 19,000-dimensional datasets, where the large search space for

projection directions means the input partitions can be very varied, and in broad disagree-

ment, resulting in inconsistent performance when an ensemble is used.

Over these simulated datasets, the RP approach has the most consistently competitive

clustering performance when the relative depth optimality criterion is used. The maximum

variance optimality criterion performs very poorly, even in the datasets with low cluster

overlap, where PCA performs well. The relative performance of RP with the maximum

dip statistic and minimum kurtosis optimally criteria are more varied. In the majority of

cases, both of these criteria perform similarly to each other, and are generally competitive

with the clustering performance of RP with the maximum relative depth criterion. RP with

these optimality criteria perform well in the 19,000-dimensional datasets, however, using an

ensemble does not improve the performance. By contrast, the individual partitions located

through RP with the maximum dip statistic and the minimum kurtosis optimality crite-
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Figure 6.7: Boxplots of estimated number of clusters from hierarchies of low-density sep-
arators located by RP approaches, PCA, ICA and MDH as well as k-means++ over 30
replications for simulated datasets with 10 and 50 clusters, 1,000 and 19,000 dimensions.

ria are not as competitive for the 1,000-dimensional datasets with 50 clusters, where cluster

overlap is higher. However, if an ensemble is used, the performance of these approaches

improves significantly.

Figures 6.7(a) and 6.7(b) provide boxplots of the estimated number of clusters located

over 30 simulated datasets containing 10 and 50 clusters in 1,000 and 19,000 dimensions

using hierarchies of low-density separators from the proposed RP approaches with 100

and 1,000 random projections respectively. This is compared to the number of clusters

located from a hierarchy of low-density separators arising from PCA, ICA and MDH as
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well as the Gap statistic for k-means++. The black dashed line indicates the true number

of clusters. For the datasets with only 10 clusters where overlap is low, locating a hierarchy

of low-density separators using PCA, ICA and MDH allows the number of clusters to be

estimated almost perfectly. In the datasets with 50 clusters, where overlap is much higher,

ICA and PCA are more susceptible to underestimating the number of clusters, indicating

that for these datasets, it is necessary to actively seek projection directions which permit the

lowest possible density separators to locate all the clusters. Meanwhile, the Gap statistic

overestimates the number of clusters in all cases. All of the RP approaches underestimate

the number of clusters, especially when only 100 random projections are used to search for

an appropriate projection direction. In general, RP with the maximum relative depth and

maximum dip statistic optimality criteria estimate the number of clusters more accurately

than the other two RP approaches, particularly when an ensemble is used. This is a result of

these approaches retaining projections which have a multimodal estimated density, allowing

cluster separation based on our splitting rule. Although the minimum kurtosis optimality

criterion favours projections with a bi-modal structure, this criterion also avoids projections

with outliers. This can result in a tendency to locate a set of projections with a unimodal

density that resembles a uniform distribution over a set of projections with one large mode

and a smaller mode in the estimated density. Meanwhile, the maximum variance optimal-

ity criterion does not consider the modality of the estimated density of the projections so

is also susceptible to selecting projections with a unimodal estimated density, which is not

appropriate to partitionX based on our splitting rule.

6.3.4 Performance Evaluation on Real Data

In this section, the quality of the partitions arising from hierarchies of low-density separa-

tors located using univariate projections computed by our proposed RP approaches, MDH,
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PCA and ICA are investigated across a variety of real benchmark datasets. The datasets con-

sidered are:

• Caltech-101-16 (silhouettes): binary images with 16 by 16 (256) pixels each, which are
silhouettes of the classic Caltech-101 dataset. The original dataset consists of 1641
images from 101 categories. However, many of these categories only contain a small
number of images relative to some larger categories. These small, sparse clusters are
not consistent with our aim of locating dense clusters so we removed these from the
dataset. The resulting dataset contains 2901 images from six categories.

• Caltech-101-28 (silhouettes): the same images as the Caltech-101-16 datasets but with
28 by 28 (784) pixels, processed in the same way as above.

• Coil-20 : Images of 20 grey-scale images of objects against a black background, with
128 by 128 (16,384) pixels. Each object is rotated around 360 degrees, with images
taken at each 5 degree interval. Thus there are 1420 images, belonging to 20 categories
in 16,384 dimensions.

• Multi Digits : A set of 649 features of handwritten digits from 0 to 9. Each digit has
200 occurrences, resulting in 2,000 observations belonging to 10 equally sized cate-
gories.

• Phoneme : This dataset is formed from 4,509 continuous speech recordings of five
phonemes. Each speech recording is characterised by 512 samples (taken as the features
for each instance). The number of recordings from each of the five categories ranges
from 695 to 1,163.

• Smartphone : 10,929 sensor (accelerometer) signals recorded on smartphones from 30
volunteers performing 12 tasks (which define the clusters). Each signal is processed to
have 516 features.

• Yale Faces : 5,850 images, each with 1,200 pixels of 10 people under 585 viewing condi-
tions. The clusters are defined by the 10 individuals

Figures 6.8(a) and 6.8(b) show boxplots of the clustering performance of the proposed

RP approaches (over 30 experiments) for the real datasets considered using 100 and 1,000

random projections respectively. We also include dots for the performance of an ensemble

over these 30 partitions, and the performance of hierarchies of low-density separators arising

from MDH, PCA and ICA, as well as k-means++ as a comparison.
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Figure 6.8: Boxplots of clustering performance from hierarchies of low-density separators
located by RP approaches, PCA, ICA and MDH as well as k-means++ over real datasets.

Across the real datasets considered, locating projections which permit cluster separators

that intersect regions of minimal density in p̂x is the most appropriate approach to correctly

identify the clusters, with MDH performing better than PCA or ICA for all but one dataset,

and similarly or better than k-means++ for all datasets. Therefore, the maximum relative

depth is the best performing optimality criterion for RP, while the maximum variance cri-

terion produces relatively poor partitions in general. For the Caltech101 datasets, RP with

the minimum kurtosis and maximum dip statistic optimality criteria also locate compet-

itive partitions, which have similar performance to RP with the maximum relative depth

optimality criterion. For these two datasets, all the RP approaches locate a higher-quality
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partition with an ensemble clustering, with a significant improvement over any single in-

put partition in some cases. For the maximum relative depth and minimum dip statistic

optimality criteria over 1,000 random projections, this ensemble clustering is competitive

with the performance of MDH and k-means++, and exhibits better performance than the

partitions arising from PCA and ICA projections. For the Coil20 dataset, RP with the max-

imum relative depth and maximum dip statistic optimality criteria locate partitions which

are competitive with the partitions from the globally optimal projection techniques and

k-means++, especially with an ensemble clustering, which allows the RP approach to lo-

cate a more accurate clustering than PCA or ICA. For this dataset, the minimum kurtosis

optimality criterion is not as appropriate, however, this still performs significantly better

than the maximum variance criterion. For the Multi Digits dataset, RP using 1,000 ran-

dom projections with the maximum relative depth and maximum dip statistic optimality

criteria and an ensemble clustering allows the RP approach to perform very well, locating a

partition with higher clustering performance than any of the optimal projection methods

or k-means++. Again RP with the minimum kurtosis and maximum variance optimality

criteria are much less competitive. For the phoneme dataset, RP with the maximum dip

statistic and maximum variance optimality criteria perform very poorly. For this dataset, the

minimum kurtosis criterion produces the highest quality partition of the RP approaches,

closely followed by the relative depth criterion. Both of these RP approaches perform better

than PCA or ICA, and also perform similarly to k-means++ when the partitions are com-

bined with an ensemble clustering, but MDH produces the best performing partition for

this dataset. For the Smartphone dataset, all the optimality criteria for the RP approach

locate partitions which are competitive with the partitions arising from hierarchies of low-

density separators located by MDH, PCA and ICA or a centroid-based clustering using k-
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means++. For this dataset, RP with the maximum variance criterion is competitive with the

optimal projection techniques, and is close to the performance of RP with the maximum

relative depth criterion. Due to the relatively low diversity in the performance of the input

partitions, the advantage of using an ensemble is not as significant here. For the Yale Faces

dataset, the clustering structure is not evident in directions of high variability, so PCA and

RP with the maximum variance criterion fail to locate a meaningful partition. By contrast,

RP with the minimum kurtosis and maximum relative depth criteria locate partitions which

have higher clustering performance than any of the alternative projection techniques, in-

cluding MDH or k-means++. RP with the maximum dip statistic optimality criterion per-

forms relatively competitively for this dataset, but an ensemble clustering does not improve

performance.

Figure 6.9 shows boxplots of the estimated number of clusters located by a hierarchy of

low-density separators using the proposed RP approaches, PCA, ICA and MDH as well as

the Gap statistic for k-means++. The dashed black line indicates the true number of clus-

ters for each dataset, and the subfigures 6.9(a) and 6.9(b) correspond to using 100 and 1,000

random projections respectively. For all the datasets except Smartphone, using more ran-

dom projections allows the RP approaches to identify more clusters. For the real datasets,

the RP approaches estimate the number of clusters relatively accurately. In general, RP with

the maximum relative depth and maximum dip statistic optimality criteria are susceptible

to slightly overestimating the number of clusters, while RP with the maximum variance and

minimum kurtosis optimality criteria tend to underestimate the number of clusters. This

is expected since the maximum relative depth and maximum dip statistic criteria select pro-

jections which are more likely to locate a valid bi-partition using our splitting rule, while for

reasons discussed in Section 6.3.3, the minimum kurtosis and maximum variance optimality
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Figure 6.9: Boxplots of estimated number of clusters from hierarchies of low-density sep-
arators located by RP approaches, PCA, ICA and MDH as well as k-means++ over real
datasets.

criteria do not always favour projections with a multimodal estimated density. This over-

estimation of the number of clusters is also the case for MDH, which locates significantly

more than the true number of clusters for the Caltech101 and Yale Faces datasets. Hierarchies

of low-density separators located using PCA and ICA generally underestimate the num-

ber of clusters, since these projection techniques are more likely to locate projections with

a unimodal estimated density than MDH. Meanwhile, the Gap statistic overestimates the

number of clusters for all datasets.

To compare the relative quality of the partitions produced using our RP approaches with

the four optimality criteria considered, Figures 6.10(a) and 6.10(b) provide boxplots of re-

gret associated with each of the optimality criteria over 30 experiments for each of the real
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datasets, when 100 and 1,000 random projections are used. The regret is defined as the dif-

ference in performance of the best performing optimality criterion and the criterion in ques-

tion,

Regret( f ) = NMI(π f ⋆ , π⋆)−NMI(π f , π⋆) (6.11)

where f is the optimality criterion in question, π f is the partition induced by the RP ap-

proach with this criterion and π f ⋆ is the partition induced by the RP approach with the

best performing optimality criterion. This difference is taken over each of the 30 cluster

trees produced by each optimality criterion, for the same collection of random projections,

so any difference in performance is a direct consequence of the different criteria, not differ-

ent random projections. A regret close to zero indicates a consistently competitive perfor-

mance relative to the alternative optimality criteria.

For all the datasets except Phoneme, the relative performance of the different optimality

criteria is similar when using either 100 and 1,000 random projections. The relative depth

criterion is the most competitive optimality criterion, with a median regret close to zero

for all datasets. The maximum dip statistic is the second most competitive criterion for the

Caltech101, Coil20 and Multi Digits datasets, while the minimum kurtosis criterion has the

second best relative performance for the Phoneme and Yale Faces datasets. The maximum

variance criterion has the worst relative performance except for the Smartphone dataset, as

expected from the results in Figure 6.8. The relatively poor performance of the maximum

variance optimality criterion compared to the other criteria suggests that using criteria that

are more likely to select projections with a bi-modal or multimodal structure is beneficial to

more accurately separate the clusters in these datasets.
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Figure 6.10: Boxplots of regret with respect to NMI for the four optimality criteria for RP
approaches.

6.4 Experimental Results using n-dimensional Projections of Feature Vec-

tors

In this section, we conduct an empirical evaluation of the proposed RP approach when

X is a set of non-linearly mapped feature vectors, which have been projected onto the n-

dimensional basis defined by the kernel principal components. This non-linear mapping

results in linear separators ofX corresponding to non-linear separators of the original ob-

servations permitting the identification of non-linearly separable clusters. We consider vary-

ing numbers of random projections over which to search for an appropriate projection vec-
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tor for cluster identification, and compare the performance of hierarchies of low-density

separators located using the proposed RP approaches to alternative low-density separators

located using PCA, ICA and MDH, over the mapped feature vectors of a variety of real-

world benchmark datasets. The performance of k-means++, with the number of clusters

determined using the Gap statistic is also included as a benchmark. However, similarly to

Section 6.3, the computational cost of evaluating the Gap statistic was infeasible for some

of the larger datasets, in which case the performance of this method is omitted. We do not

conduct a simulation study as part of this investigation, since it is not possible to generate a

set of observations with any guarantees about their structure after mapping them into the

feature space.

6.4.1 Details of Implementation

Parameter Settings

For all algorithms considered, we used the same parameter settings as stated in Section 6.4.1

for the bandwidth, h, interval width, α (for MDH) and the relative depth threshold for the

stopping rule proposed in Section 6.2.4. We also retained our choice of constructing 30

different trees using our RP approaches as input clusterings to an ensemble. For the con-

struction of these trees we experimented with searching over varying numbers of random

projections at each level of the hierarchy.

Figure 6.11 shows the increase in clustering performance of a bi-partition of the mapped

feature vectors of some of the real datasets considered with increasing numbers of random

projections. This was produced in the same way as Figures 6.1(a) and 6.1(b), by partition-

ing each successive set of univariate projections at the minimiser b⋆ of the estimated density

with maximum relative depth, and recording the current best SR, as stated in Eqs. (6.9) -
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Figure 6.11: Increase in success ratio with increasing number of random projections for
mapped feature vectors of real benchmark datasets summarised in Table 6.1.

(6.10). Some datasets are omitted for clarity, but these showed a similar rate of convergence

to the best partition. For the mapped observations, the RP approach converges to a high-

quality bi-partition faster than for the original observations, with approximately 100 ran-

dom projections being sufficient to locate the best performing bi-partition for most datasets.

For consistency with Section 6.3, we experimented with searching over 100, 500 and 1,000

random projection vectors at each level of the hierarchy for the divisive RP approaches in

Section 6.4.2. However, since Figure 6.11 indicates a higher rate of convergence to a high-

quality separator of the feature vectors, we expect the increase in clustering performance

when searching over large numbers of random projections to be less significant than when

partitioning the original observations.

As for all kernel-based approaches, the choice of kernel function, and any subsequent

parameter values critically affect the clustering performance of all the algorithms applied in

this section. This is a well-documented, open problem in the literature, and as such a robust

approach to determine an optimal choice of kernel is beyond the scope of our work. We use

the Gaussian kernel, since this is the most widely used in the literature. To tune the kernel
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parameter, we use the local scaling approach proposed by Zelnik-Manor and Perona (2004),

κ(yi, yj) = exp

{
−
∥yi − yj∥2

sisj

}

where the yi are the original observations (before the feature mapping) and si and sj are the

distances from the ith and jth original observations to their seventh nearest neighbours re-

spectively. This can handle data on multiple scales and is very effective in our experience. We

use the same kernel matrix for all algorithms considered to compute the projections of the

feature vectors onto their kernel principal components, stored inX , upon which univariate

projections are computed.

6.4.2 Performance Evaluation on Real Data

In this section we conduct an empirical evaluation of the performance of our proposed RP

approaches when locating low-density separators of the n-dimensional KPCA projections

of the feature vectors of real-world benchmark datasets. In the feature space, the dimension-

ality of the search space for an appropriate projection vector for clustering is determined by

the number of observations, and not the dimensionality of the original dataset. Therefore,

when clustering the feature vectors, our RP approach is relevant for datasets with large num-

bers of observations, irrespective of the dimensionality of the original dataset. Hence, in this

section we consider additional datasets to those presented in Section 6.3.4, the main charac-

teristics of which are summarised in Table 6.1. The additional datasets are all available from

the UCI machine learning repository (Lichman, 2013) where more detailed descriptions can

be found, so we omit these here.

Figures 6.12 and 6.13 present boxplots of the clustering performance of hierarchies of

low-density separators located by our proposed RP approaches when applied to the n-
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Table 6.1: Main characteristics of real datasets considered.
Dataset n d k
Cal101-161 2901 256 6
Cal101-281 2901 784 6
Coil202 1420 16384 20
Dermatology3 366 34 6
Heart Disease3 294 13 5
Image Segmentation3 2309 19 7
Ionosphere3 351 33 2
Iris3 150 4 3
Isolet3 7797 617 26
Multi. Digits3 2000 216 10
Opt. Digits3 5620 64 10
Pen Digits3 10992 16 10
Phoneme 4 4506 256 5
Satellite3 6435 36 6
Seeds3 210 7 3
Smartphone3 10929 561 12
Soy Bean3 682 35 19
Synth3 600 60 6
Votes3 435 16 2
Wine3 178 13 3
Yale Faces5 5850 1200 10

1(Marlin, 2014) available from people.cs.umass.edu/~marlin/data.shtml
2(Nene et al., 1996) available from cs.columbia.edu/CAVE/software/softlib/

coil-20.php
3UCI machine learning repository (Lichman, 2013)
4(Hastie et al., 1995) available from statweb.stanford.edu/tibs/ElemStatLearn/

data.html
5(Georghiades et al., 2001) available from cervisia.org/machine_learning_data.php

dimensional KPCA projections of the feature vectors of the real-world datasets considered.

These plots correspond to searching over 100 and 1,000 random projections at each level of

the hierarchy respectively. For each dataset, we located 30 hierarchies of low-density sepa-

rators using the four RP optimality criteria suggested in Section 6.2.6, and then produced

an ensemble clustering over these partitions. The clustering performance of the ensemble

clusterings from the RP approaches are indicated by square dots. As a comparison, the per-

formance of a divisive clustering using low-density separators located by MDH, PCA and

ICA are included along with the clustering performance of k-means++, where the number

of clusters was estimated using the Gap statistic.

For the majority of datasets, searching over more random projections permits the RP
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Figure 6.12: Boxplots of clustering performance from hierarchies of low-density separators
located by RP approaches with 100 projections, PCA, ICA and MDH as well as k-means++
over mapped feature vectors of real datasets.
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Figure 6.13: Boxplots of clustering performance from hierarchies of low-density separa-
tors located by RP approaches with 1,000 projections, PCA, ICA and MDH as well as
k-means++ over mapped feature vectors of real datasets.
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approaches to locate higher quality cluster separators with all the optimallity criteria con-

sidered. However, the increase in clustering performance when using 1,000 instead of 100

random projections is not as substantial as in the original data space (Section 6.3.4). For

the mapped feature vectors, all the proposed RP approaches are capable of locating high-

quality partitions. This performance is almost always improved by an ensemble over the 30

clusterings located by different collections of random projections. The use of this ensemble

clustering allows a group of hierarchies of low-density separators located by the proposed

RP approaches to perform better than k-means++ or a single hierarchy of low-density sepa-

rators located by MDH, PCA or ICA for 17 of the 21 datasets considered.

For the mapped feature vectors, the most appropriate optimality criterion for locating

univariate projections that allow accurate cluster separation is more varied than for the orig-

inal observations. This is evident for the RP approaches as well as the competing projection

techniques. MDH locates the best projections of the techniques that locate globally optimal

projections, but PCA and ICA also offer similar or better performance regularly. This sug-

gests that projection directions which allow the lowest possible density separator are often,

but not always, the most appropriate for the separation of the true clusters in the feature

space. For the RP approach, none of the optimality criteria consistently result in the highest

clustering performance.

For most datasets, the best choice of optimality criterion for the RP approach is the cri-

terion that most closely relates to the objective of the best performing globally optimal pro-

jection direction. Generally, the maximum relative depth and maximum dip statistic are the

most competitive criteria. RP with the minimum kurtosis optimality criterion also performs

well for most datasets, often performing similarly to the best RP approaches. Meanwhile,

RP with the maximum variance optimality criterion is most susceptible to relatively poor
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performance. The poor performance of RP with this optimality criterion tends to be for

datasets where PCA also fails to locate appropriate projections for clustering. However, for

datasets where directions of high variability are suitable for cluster separation, RP with this

optimality criterion also performs competitively.

Figures 6.14 and 6.15 show boxplots of the number of clusters located by hierarchies of

low-density separators located by the RP approaches, MDH, PCA and ICA as well as the

Gap statistic for k-means++ when applied to the the mapped feature vectors of the real

datasets considered. These figures correspond to using 100 and 1,000 random projections

to search for an appropriate cluster separator respectively. For most datasets, and choices of

optimality criterion for the RP approach, searching over more random projections results in

the location of more clusters.

For the RP approach, the maximum relative depth and maximum dip statistic optimality

criteria tend to locate more clusters than the maximum variance or minimum kurtosis opti-

mality criteria, since projections with a strongly multimodal estimated density (favoured by

the maximum relative depth and maximum dip statistic criteria) will permit cluster separa-

tion based on our splitting rule in Section 6.2.4. Actively seeking such projection directions

tends to lead to an overestimation of the number of clusters in the feature space. This is a

result of the high level of sparsity of the mapped observations over an n-dimensional space,

increasing the probability of locating univariate projections whose estimated density is mul-

timodal, even if a true low-density separator of high-density regions on p̂x does not exist.

This is also evident for MDH, which is susceptible to locating significantly more than the

true number of clusters. The tendency to overestimate the number of clusters as a result of

the sparsity of the mapped observations is not unique to the minimum density separation

approach, with the Gap statistic exhibiting the same problem. By contrast, PCA, ICA and
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Figure 6.14: Boxplots of estimated number of clusters from hierarchies of low-density sep-
arators located by RP approaches with 100 projections, PCA, ICA and MDH as well as
k-means++ over mapped feature vectors of real datasets.
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Figure 6.15: Boxplots of estimated number of clusters from hierarchies of low-density sep-
arators located by RP approaches with 1,000 projections, PCA, ICA and MDH as well as
k-means++ over mapped feature vectors of real datasets.

175



RP with the maximum variance and minimum kurtosis optimality criteria are less likely to

overestimate the number of clusters. This is due to directions of high variability not consid-

ering the modality of the projections at all, and directions with minimal kurtosis being more

robust to outliers in the tails of the estimated density of the projections. However, these

methods fail to identify all the clusters for some datasets.

The relative performance of the different optimality criteria for the RP approaches when

applied to the mapped feature vectors of the real datasets is considered in Figures 6.16 and 6.17.

These provide boxplots of the regret (defined in Eq. (6.11)) associated with selecting a ran-

dom projection for cluster separation from 100 and 1,000 projections respectively, using

each of the four optimality criteria considered. Each of the 30 experiments for each dataset

used a fixed collection of random projections, so the difference in performance is a direct

consequence of the choice of optimality criteria.

For the mapped feature vectors of the datasets considered, the use of more random pro-

jections does not significantly change the relative performance of the different optimality

criteria. When clustering the mapped feature vectors, the most competitive optimality cri-

terion is less clear than for the original observations, with no single criterion consistently

achieving minimal regret. The relative performance of the maximum variance optimality

criterion differs significantly across these datasets, sometimes achieving a regret of almost

zero, but also having a very high regret for some datasets. The regret associated with the

other three optimality criteria is less varied across the different datasets. The relative depth

is the optimality criterion which is least likely to result in an unusually high regret, however,

all four optimality criteria can achieve minimal regret on a number of datasets.
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Figure 6.16: Boxplots of regret with respect to NMI for the four optimality criteria for RP
approaches using 100 projections over mapped feature vectors of real datasets.
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Figure 6.17: Boxplots of regret with respect to NMI for the four optimality criteria for RP
approaches using 1,000 projections over mapped feature vectors of real datasets.
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6.5 Summary of Experimental Results

In Sections 6.3 and 6.4, we found that searching over a finite collection of one-dimensional

subspaces for an approximately optimal projection direction for clustering permits the loca-

tion of low-density cluster separators at a significantly lower computational cost compared

to locating globally optimal projections. Further, if it were possible to quantify the suitabil-

ity of a projection vector based on the clustering accuracy of the resulting partition, a high-

quality cluster separator is located by searching over a relatively small number or random

subspaces. The convergence to a high-quality cluster separator was faster when locating a

bi-partition of the feature vectors than the original observations. This is a result of the high

level of sparsity in the feature space increasing the probability of generating a projection vec-

tor along which a suitable low-density cluster boundary can be located.

In clustering we require alternative criteria to quantify the suitability of a set of projec-

tions for cluster separation. Of the optimality criteria considered, the maximum relative

depth criterion offered the most consistently competitive performance for the proposed RP

approaches, although the difference in performance of the different optimality criteria was

not as significant when clustering the feature vectors. In almost all cases, computing an en-

semble clustering over partitions from different collections of random projections permitted

a higher-quality clustering than considering an individual hierarchy of low-density separa-

tors.

In addition, we found that for our choice of feature mapping, the performance of a hier-

archy of low-density separators of the feature vectors did not significantly improve perfor-

mance compared to locating low-density separators of the original observations. It is likely

that a more rigorous approach to tuning the kernel parameter, or an alternative kernel func-

tion, would result in higher-quality partitions of the resulting feature vectors, but this is
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beyond the scope of this work.

6.6 Conclusions

We proposed an approach for the location of low-density cluster separators using univari-

ate random projections. We search over a finite collection of one-dimensional random sub-

spaces for a set of univariate projections that approximately optimise criteria that may be

indicative of the suitability of a set of projections for cluster separation. These criteria are

related to the objectives of alternative projection techniques such as PCA, ICA and MDH.

Subsequently, linear cluster boundaries are identified by bi-partitioning the dataX at the

minimiser of the estimated density of their projections onto the selected random vector.

These bi-partitions are combined in a divisive hierarchical algorithm to locate a complete

clustering ofX and, through an appropriate stopping rule, also estimate the number of

clusters. We remove the restriction to linear cluster boundaries by considering a non-linear

mapping of the original observations to a set of feature vectors, upon which a linear separa-

tor allows the identification of non-linear cluster boundaries in the original data space.

Our approach only requires a single matrix multiplication (with a linear computational

cost with respect to the number of observations and dimensions inX ) to compute the pro-

jections ofX into the collection of random vectors. Therefore, this has a significantly lower

computational cost than locating optimal univariate projections by PCA, ICA or MDH,

all of which have a computational cost that is at least quadratic in the dimensionality ofX ,

so become computationally infeasible whenX is very large and high-dimensional. Our ap-

proach also avoids recomputing the projections at each level of the hierarchy, making the

computational advantage more significant when producing a complete clustering.

Through an empirical evaluation of the clustering performance of the proposed RP ap-
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proach across simulated and real-world benchmark datasets, we find that RP allows the lo-

cation of high-quality cluster separators, which are competitive with the separators located

through alternative projection techniques for a much lower computational expenditure,

and that the number of clusters may be estimated accurately. Furthermore, this approach

converges to a high-quality clustering solution with relatively few random projections. We

find that seeking projections with a strongly multimodal estimated density with a low min-

imiser between larger modes is the most appropriate optimality criterion for selecting ran-

dom projections. This permits a lowest possible density separator (using a given collection

of random projections) that also partitions dense regions associated with clusters. However,

ifX is very sparse, with a susceptibility to outliers, (which is often the case ifX is a set of

mapped feature vectors), this can lead to an overestimation of the number of clusters.
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7
Random Projections with Alternative

Clustering Objectives

Abstract

We investigate how random projection may be applied to locate non-linear separators of a

dataset, which are consistent with the clustering objectives of k-means and spectral cluster-

ing. Our approach relies on univariate random projections of a set of non-linearly mapped

feature vectors. These projections are used to locate a linear separator of the feature vectors,

which corresponds to a non-linear separator of the original observations. We compute mul-

tiple univariate random projections, and bi-partition the feature vectors using the set of pro-

jections that permits the best separator based on optimality criteria which are consistent with

the clustering objectives of k-means and spectral clustering. These bi-partitions are combined

in divisive algorithms to locate a complete clustering of the data. We compare the quality of

the partitions located through random projection to bisecting kernel k-means and hierarchical

spectral clustering across a variety of real-world benchmark datasets. Our results show that

univariate random projections can locate high-quality partitions, which are competitive with

alternative divisive algorithms that are appropriate for clustering in the feature space.
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7.1 Introduction

In the clustering problem, the set of observationsX = {xi}n
i=1 is partitioned into disjoint

subsets or clusters such that within cluster similarity is maximised, and between cluster sim-

ilarity is minimised. There exist multiple approaches to clustering, which rely on different

definitions of similarity. Some of the most commonly applied clustering algorithms rely on

the centroid-based and graph cut definitions. Centroid-based clustering seeks subsets ofX

which minimise the sum of squared distances between the observations and the centroid of

their assigned cluster. Meanwhile, the graph cut problem formulation views the observa-

tions as nodes of an undirected, weighted graph with edge weights proportional to the pair-

wise similarity between observations, and aims to partition the graph such that edges with

minimal weight are cut. These two approaches to clustering are adopted by the k-means and

spectral clustering algorithms respectively, which are discussed in Section 2.1.2.

Both of these algorithms require the pairwise distances between the observations to de-

fine similarity, which is intuitive in low-dimensional datasets. However, as dimensionality

increases, a fixed number of observations become increasingly sparse and high levels of noise

can be introduced along dimensions which do not contain meaningful information for

clustering (Steinbach et al., 2004) . Therefore, spatial proximity is less meaningful in such

datasets, and defining clusters solely on distances between observations in inappropriate for

accurate cluster identification. This motivates the search for low-dimensional subsets ofX ,

in which the clustering structure is apparent.

In Chapter 6, we considered the computationally efficient location of one-dimensional

subspaces that are appropriate for cluster detection under the density-based cluster defi-

nition using random projection (RP) (Achlioptas, 2001). This work showed that RP can

locate one-dimensional projections that allow accurate bi-partitions of clusters, and that
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these bi-partitions can be combined in a divisive clustering algorithm to locate a complete

clustering ofX . In this chapter, we propose to apply this RP approach in divisive clustering

algorithms that locate one-dimensional subspaces which permit successive bi-partitions of

X that are consistent with the centroid-based and graph cut cluster definitions, assumed by

k-means and spectral clustering respectively.

Since partitions located using univariate orthogonal projections ofX only allow the cor-

rect identification of linearly separable clusters, throughout this chapter, we apply our algo-

rithms over a set of non-linearly mapped feature vectors, contained inX , which have been

projected onto an n-dimensional orthonormal basis of the feature space. Therefore, a linear

separator of these mapped feature vectors corresponds to a non-linear separator of the orig-

inal observations, allowing our approaches to identify non-linearly separable clusters. This

makes the approaches proposed in this chapter comparable to alternative divisive algorithms

which cluster feature vectors.

We conduct an empirical evaluation of the performance of the proposed divisive RP algo-

rithms across a variety of real-world benchmark datasets. The performance of the proposed

approach is compared to the performance of bisecting kernel k-means and spectral cluster-

ing, where partitions are located using the kernel matrix of pairwise inner products between

the feature vectors, and therefore separate clusters based on the pairwise separation of the

feature vectors, computed over all dimensions of the feature space. Since divisive algorithms

using centroid-based and graph cut clustering to recursively bi-partitionX do not offer an

intuitive stopping rule, we provide the true number of clusters as an input parameter for all

algorithms considered in this chapter.

The remainder of this chapter is organised as follows. Section 7.2 outlines the method-

ology for the proposed approach. Next, Section 7.3 provides experimental results for the
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clustering performance of the proposed RP approach compared to alternative divisive al-

gorithms, which recursively bi-partition the feature vectors across real-world benchmark

datasets with varying characteristics. Finally the work is concluded in Section 7.4.

7.2 Methodology

In this section, we present the methodology for the proposed RP approach. This is similar

to the methodology in Sections 6.2.3 and 6.2.4, so we omit a complete discussion of RP.

Throughout this chapter, we assume thatX = {xi}n
i=1 ⊂ Rn is a set of non-linearly

mapped feature vectors, which have been projected into the n-dimensional space spanned

by their kernel principal components. This is justified in Section 5.2 since any meaningful

projections for clustering must lie within the span of the feature vectors. We define R =

[ri] to be a matrix whose columns ri for i = 1, ..., r are a set of r random vectors sampled

uniformly over the n-dimensional unit sphere. The univariate random projections ofX

onto the vectors in R are given by the columns ofX r = {R⊤xi}n
i=1 ⊂ Rr.

7.2.1 Divisive Clustering with Univariate Random Projections

Given a collection of univariate random projections ofX , stored inX r, we propose to lo-

cate a bi-partition ofX using the projections which are most appropriate for cluster separa-

tion, based on the centroid-based and graph-cut cluster definitions. These bi-partitions may

be combined in a divisive algorithm to produce a complete clustering ofX into k clusters.

For this to be possible, we require rules to determine which cluster to split at each level of

the hierarchy (selection rule), how to split this cluster (splitting rule) and when to terminate

this procedure (stopping rule).
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Selection Rule

For the approaches proposed in this chapter, we adapt the selection rule suggested in Sec-

tion 6.2.4. We select the cluster,XC, whose projections onto one of the random vectors ri

best satisfies our specified optimality criterion f (·). This is defined formally in Eq. (6.2).

Our choices of optimality criteria, which result in RP approaches that are related to bisect-

ing kernel k-means and hierarchical spectral clustering algorithms are discussed later in Sec-

tion 7.2.3.

Splitting Rule

We propose to bi-partition the set of observations assigned to the selected cluster,XC using

the univariate random projections ofXC which approximately optimise our specified opti-

mality criterion, as detailed in Eqs. (6.5) - (6.6). For centroid-based and graph-cut clustering,

we bi-partition the projections using 2-means and spectral clustering respectively, so the

clusters located in the one-dimensional subspace are consistent with the relevant clustering

objective.

Stopping Rule

Locating bi-partitions of the selected univariate random projections using 2-means or spec-

tral clustering does not offer an intuitive termination rule, therefore we specify the desired

number of clusters as an input to determine when the divisive procedure should terminate.

7.2.2 Combining RP Trees by Ensemble Clustering

As discussed in Section 6.2.5, different clustering results produced by using different col-

lections of random projections may be combined using an ensemble clustering to locate a
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singe partition, which combines information from all of the individual input clusterings.

For the RP approaches proposed in this chapter, we apply the ensemble clustering of Dim-

itriadou et al. (2002), which returns the fuzzy clustering that minimises the sum of squared

Euclidean distances to each of the m input partitions. Full details of this method are pro-

vided in Section 6.2.5.

7.2.3 Optimality Criteria to Select Random Projections

The optimality criteria which we propose to select the most appropriate univariate random

projections for clustering based on the centroid-based and graph cut approaches to cluster-

ing are:

1. Minimum sum of squared euclidean distances between the univariate projections and
their assigned cluster centroid, located by 2-means. This criterion is equivalent to the
k-means cost function, and therefore selecting univariate projections which satisfy
this optimality criterion permits the best bi-partition based on the centroid-based
cluster definition.

2. Minimum second smallest eigenvalue of the normalised graph Laplacian (Ng et al.,
2002). The graph Laplacian, as defined in Section 2.1.2, always has a smallest eigen-
value equal to zero. The second smallest eigenvalue measures the connectivity of
the graph, where small values indicate that the graph has two components which are
nearly disconnected, and therefore suggest that there are two distinct clusters. Select-
ing univariate projections that minimise this optimality criterion therefore permits a
bi-partition which is consistent with the graph-cut approach to clustering.

Divisive clustering algorithms which select the most appropriate set of random projec-

tions for clustering at each level of the hierarchy based on these optimality criteria and sub-

sequently bi-partition these projections using 2-means and spectral clustering are related to

bisecting kernel k-means and hierarchical spectral clustering respectively.
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7.2.4 Notation for RP Approaches

In Section 7.3, we use the following notation to refer to the RP approaches using varying

numbers of random projections and different optimality criteria. RP-sse-r and RP-ev2-r

correspond to locating a single hierarchy using a set of r univariate random projections, and

selecting the set of projections with minimum 2-means cost function and minimum second

smallest eigenvalue of the graph Laplacian respectively. When using multiple hierarchies,

generated from different collections of random projections, we use the notation RP-sse-r-E-

m and RP-ev2-r-E-m to refer to using m hierarchies, each of which use r random projections

to search for the set of univariate projections with minimum 2-means cost function and

minimum second smallest eigenvalue of the graph Laplacian respectively.

7.3 Experimental Results

In this section, we investigate the performance of the RP approaches proposed in Section 7.2

across real benchmark datasets with varying characteristics. Since we only consider the sce-

nario where the original observations have been mapped into the feature space, and pro-

jected onto the kernel principal components, the dimensionality of the problem is defined

by the number of observations and not the dimensionality of the original observations.

Therefore, we consider the datasets summarised in Table 6.1. The performance of the RP

approaches for centroid-based and graph cut clustering are compared to:

1. Bisecting kernel k-means. This algorithm recursively partitions the feature vectors
using kernel 2-means in a divisive algorithm. At each level of the hierarchy, we select
the cluster that maximises the sum of squared Euclidean distances between the feature
vectors and their assigned cluster centroid. This cluster is then bi-partitioned using
kernel 2-means. The details of this algorithm are discussed in Section 2.1.2. We are
not aware of any method to automatically terminate this procedure, and therefore
provide the true number of clusters as an input parameter. For each bi-partition, we
use the implementation of kernel k-means in the R package kernlab which operates
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directly on the kernel matrix of pairwise inner products of the feature vectors, not
their projections onto the kernel principal components.

2. Hierarchical spectral clustering, where the set of original observations is recursively
bi-partitioned using spectral clustering (von Luxburg, 2007) with the normalised
graph Laplacian (Ng et al., 2002). At each level of the hierarchy, we split the cluster
with minimal graph connectivity, measured by the value of the second smallest eigen-
value of the graph Laplacian as defined in Section 2.1.2. Since the computation of the
kernel matrix is an inherent part of the spectral clustering algorithm, this method is
implemented using the kernel matrix and not the n-dimensional mapped observa-
tionsX . This algorithm requires the true number of clusters as an input parameter.
For the each bi-partition using spectral clustering, we use the implementation in the
kernelab package for R.

7.3.1 Details of Implementation

As for all kernel-based approaches, the choice of kernel function and any subsequent pa-

rameter values critically affect the performance of all the algorithms implemented in this

chapter. This is a well-documented, open problem in the literature and as such a robust ap-

proach to determine an optimal choice of kernel is beyond the scope of our work. We use

the Gaussian kernel, since this is the most widely used in the literature. To tune the kernel

parameter, we use the local scaling approach proposed by Zelnik-Manor and Perona (2004),

κ(yi, yj) = exp

{
−
∥yi − yj∥2

sisj

}

where the yi are the original observations (before the feature mapping) and si and sj are

the distances from the ith and jth original observations to their seventh nearest neighbours

respectively. This can handle data on multiple scales and is very effective in our experience.

We use the same kernel matrix for all algorithms considered either directly (for bisecting

kernel k-means and hierarchical spectral clustering) or to compute the projections of the
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Figure 7.1: Increase in success ratio for a bi-partition of univariate random projections of
the feature vectors using 2-means and spectral clustering with increasing number of random
projections for real benchmark datasets summarised in Table 6.1.

feature vectors onto their kernel principal components, stored inX , which is used for the

RP approaches. We also use this local scaling approach to construct the adjacency matrix of

the graph for the RP approach with the minimal second smallest eigenvalue of the graph

Laplacian optimality criterion, and for the selection rule in hierarchical spectral clustering.

For the RP approaches, we experimented using varying numbers of random projections

to search for an appropriate set of projections for clustering at each stage of the divisive al-

gorithm. Figure 7.1 provides the improvement in the clustering performance (measured

by the success ratio) of a bi-partition of the mapped feature vectors for some the datasets

considered with an increasing number of random projections, over which to search for an

appropriate partition. Figures 7.1(a) and 7.1(b) correspond to bi-partitioning each succes-

sive random projection using 2-means and spectral clustering respectively and retaining the

bi-partition with the current best success ratio, as defined in Eq. (6.9). Results for the other

datasets showed a similar pattern so are omitted for clarity.

We found that in the feature space, a high-quality bi-partition was located with only a

small number of random projections. For some of the datasets, the clustering performance

converged very quickly, and in all cases the increase in clustering performance is negligible
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for large numbers of random projections. For the empirical evaluation of the performance

of complete divisive clustering results, located through the proposed RP approaches, we

experimented using 100, 500 and 1,000 random projections, and found that the clustering

performance when using 500 projections was always between the two more extreme cases,

so we omit these results for brevity in Section 7.3.2. For each dataset, we located 30 complete

clusterings, using different collections of random projections, and the ensemble results pre-

sented were computed using these as input partitions.

7.3.2 Performance Evaluation on Real Datasets

In this section, we evaluate the performance of the RP approaches using the minimum 2-

means cost function and the minimum second smallest eigenvalue of the graph Laplacian

optimality criteria. The clustering performance of divisive algorithms which partitionX

using these approximately optimal sets of univariate random projections is compared to the

performance of bisecting kernel k-means and hierarchical spectral clustering, which locate

splits at each level of the hierarchy using the kernel matrix of pairwise inner products be-

tween the feature vectors, and therefore consider information from all dimensions of the

feature vectors for a bi-partition.

Figures 7.2 and 7.3 show boxplots of the clustering performance of the RP approaches

proposed in this chapter for the real datasets considered over 30 cluster hierarchies, each of

which use a different collection of 100 and 1,000 random projections respectively. For these

datasets and our choice of feature mapping, there is not a substantial difference in perfor-

mance between searching over 100 and 1,000 random projections for the most appropriate

cluster separator, suggesting that high-quality separators may be located by only considering

relatively small numbers of projections, as indicated by Figures 7.1(a) and 7.1(b).

For the majority of these datasets, taking an ensemble over the 30 hierarchies produced by
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Figure 7.2: Boxplots of clustering performance of RP approaches using 100 projections,
bisecting kernel k-means and hierarchical spectral clustering over mapped feature vectors of
real datasets.
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Figure 7.3: Boxplots of clustering performance of RP approaches using 1,000 projections,
bisecting kernel k-means and hierarchical spectral clustering over mapped feature vectors of
real datasets.
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different random projections resulted in higher performance than the average performance

of the input partitions. For these datasets, the RP approaches perform very well, frequently

locating higher quality partitions than bisecting kernel k-means and hierarchical spectral

clustering. RP with the minimum sum of squared distances to the 2-means centroids op-

timality criterion generally performs better than RP with the minimum second smallest

eigenvalue of the graph Laplacian optimality criterion. In addition, the necessity to com-

pute the graph Laplacian and its eigenvalues makes this optimality criterion more computa-

tionally expensive, and therefore less attractive than the minimum sum of squared distances

to the 2-means centroids.

7.4 Conclusions

In this chapter, we investigated how univariate random projections may be applied to pro-

duce divisive hierarchical clustering algorithms, which locate cluster separators in one-

dimensional subspaces of the feature space. Our proposed approach involves generating

multiple random univariate projections and separating the set of mapped feature vectors

X using the set of projections which is most appropriate for cluster identification based on

optimality criteria that are related to the objectives of k-means and spectral clustering.

We compared the clustering performance of this RP approach to the clustering results

from bisecting kernel k-means and hierarchical spectral clustering across the mapped feature

vectors of a variety of real benchmark datasets. Our results indicate that cluster separators

computed using approximately optimal one-dimensional subspaces, located by RP permits

high-quality clustering results. The proposed approach often outperforms hierarchical al-

gorithms that bi-partition the feature vectors using the kernel matrix directly, and therefore

consider information from all dimensions of the feature space to locate a cluster separator.
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8
Conclusion

8.1 Summary of Contributions

This thesis developed methodology for the identification of groups of similar objects (clus-

ters) in datasets with large numbers of diverse features. Although clustering has a wide va-

riety of application areas and a rich literature, high-dimensional, mixed datasets pose a sig-

nificant challenge for the majority of clustering algorithms. The algorithms proposed in

this thesis can locate, and estimate the number of clusters in high-dimensional datasets,

whose features may contain mixed data types with non-linearly separable clusters. Our al-

gorithms locate minimum density linear cluster separators using optimal one-dimensional

projections of the data, and therefore avoid the challenges associated with cluster detection

in high-dimensional spaces. For mixed datasets, we transform the original dataset to an ap-

propriate continuous representation, upon which clustering is performed. The restriction

to linear separators is lifted by considering a non-linear feature mapping of the original ob-

servations, such that a linear separator in the feature space can correctly identify non-linearly

separable clusters in the original data space. The computation of optimal projections for

clustering becomes expensive in very large, high-dimensional datasets, so we further pro-

pose techniques for the location of approximately optimal univariate projections for cluster

separation using random projection.

In Chapter 4, a hierarchical divisive and a partitional clustering algorithm are proposed,

both of which combine bi-partitions from minimum density hyperplane separators to lo-
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cate an overall clustering of the data, while estimating the number of clusters. These algo-

rithms rely on the density-based approach to clustering, and identify high-density clusters

by defining low-density cluster boundaries, that separate regions of high probability density,

associated with clusters. These low-density cluster separators are computed by globally or

locally minimising the integral of the density on the hyperplane, which may be evaluated

exactly using the estimated density of the one-dimensional projections of the data onto the

vector normal to the hyperplane, making this approach applicable in high dimensions. For

mixed datasets, an appropriate continuous representation is sought, extending the appli-

cability of this approach to datasets with non-continuous attributes. The proposed algo-

rithms can accurately identify clusters in arbitrarily oriented subspaces, and estimate their

number. Of the two approaches, the divisive clustering algorithm provides the most com-

petitive clustering performance, frequently producing higher quality partitions than alter-

native density-based and state-of-the-art clustering algorithms over simulated and real-world

benchmark datasets.

The divisive clustering algorithm proposed in Chapter 4 is extended to feature spaces in

Chapter 5. Through a non-linear mapping of the original data into the feature space, this

extension permits a hyperplane separator to identify non-linear cluster boundaries in the

space of the original observations. Since the density on a hyperplane is evaluated using the

inner product between the data and the vector normal to the hyperplane, it is possible to

formulate the problem of locating a hyperplane with minimal density in the feature space

using the kernel matrix of pairwise inner products between the feature vectors, without ex-

plicit computation of the, potentially infinite-dimensional, mapped vectors. The search

space for the minimum density hyperplane in the feature space is practically restricted to

the n-dimensional space spanned by the feature vectors, where n is the number of observa-
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tions. Therefore, the projections of the feature vectors onto the orthonormal basis formed

by kernel principal component analysis are used to locate a minimum density separator of

the feature vectors. For large datasets, searching over all n dimensions in the span of the fea-

ture vectors for the one-dimensional projection vector that permits the minimum density

separator becomes computationally expensive, so the location of an approximate minimum-

density separator is considered, by restricting the search to a lower-dimensional subspace,

that excludes dimensions which are unlikely to contain meaningful information for clus-

tering. A divisive clustering algorithm which locates successive bi-partitions of the feature

vectors using a minimum density separator at each level of the hierarchy allows a complete

clustering. The proposed approach has competitive performance to alternative clustering

algorithms that are appropriate for clustering feature vectors across a variety of real-world

benchmark datasets.

Chapter 6 presents an approach for the computationally efficient location of approxi-

mately optimal one-dimensional projections for low-density cluster separation. The com-

putation of optimal projections for cluster identification through the minimum density

hyperplane algorithms proposed in Chapters 4 and 5, or alternative projection techniques

such as principal component analysis or independent component analysis have a high com-

putational cost when applied to large, high-dimensional datasets (or their mapped feature

vectors). Therefore, in Chapter 6, random projection is applied to compute a collection of

univariate projections, which may be used to search for an projection that approximately

optimises an appropriate criterion, quantifying the suitability of a set of univariate projec-

tions for cluster identification. The computation of these random projections only requires

a single matrix multiplication, so is much more efficient than the alternative projection tech-

niques considered. Therefore, the proposed approach locates a complete hierarchy of low-
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density cluster separators significantly faster than techniques that seek globally optimal one-

dimensional subspaces at each level of the hierarchy. Further, the clustering performance of

the partitions located through random projection is competitive with the performance of

the projections located through the aforementioned projection techniques across simulated

and real-world datasets with varying characteristics.

8.2 Further Work

8.2.1 Tuning the Kernel

The methods proposed in Chapters 5 and 6 and Chapter 7, which locate clusters using non-

linearly mapped feature vectors, all rely on the appropriate selection and tuning of the ker-

nel function, used to construct the kernel matrix of pairwise inner products between the

feature vectors. As for all kernel-based clustering algorithms, these choices change the struc-

ture present in the feature vectors, and therefore critically affect the clustering performance

of the approaches proposed in this thesis, as well as the alternative algorithms considered as a

comparison. Throughout this thesis, when construing a kernel matrix, the Gaussian (radial

basis) kernel function is applied,

κ(xi, xj) = exp

{
−
∥xi − xj∥2

σ2

}

where xi and xj are two original observations and σ is a tuning parameter. This is the most

widely applied kernel function in the literature. However, the choice of σ which is most

suitable for cluster identification in the feature space is heavily dependent on the dataset

of interest and tuning this parameter is a non-trivial problem. Throughout this thesis, we
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apply the local scaling approach proposed by Zelnik-Manor and Perona (2004),

κ(xi, xj) = exp

{
−
∥xi − xj∥2

sisj

}

where si and sj are the distances from the ith and jth observations to their seventh nearest

neighbours respectively. This approach permits clusters on multiple scales and in our ex-

perience is effective, with very poor clustering results in the associated feature space being

rare. However, the selection of the number of nearest neighbours upon which si and sj are

computed is arbitrary, and impossible to justify theoretically.

More recently Huang et al. (2015) proposed an approach to tuning the scaling parame-

ter, which is robust to noise and clusters with different densities. This approach employs a

diffusion-based aggregated heat kernel to model the heat diffusion of the clusters and im-

prove robustness in datasets with various types and levels of noise. Further, a local density

affinity transformation is applied to model the local densities in each of the clusters, and

therefore permit the location of clusters on different scales. The results presented by Huang

et al. (2015) indicate that this approach is highly effective, and offers greater stability, robust-

ness and superior clustering performance than alternative tuning techniques, when applied

for spectral clustering. As further work, we would like to consider the application of this

approach for the kernel-based algorithms proposed in this thesis, to investigate any possi-

ble improvements in clustering performance compared to the more straightforward scaling

of Zelnik-Manor and Perona (2004).

As an extension to this, it may be appropriate to consider alternative choices of kernel

function, such as non-parametric kernels, which aim to avoid the challenges associated with

tuning parameters entirely. Examples of such kernels include Isomap (Tenenbaum et al.,

2000) and the connectivity kernel (Fischer et al., 2004). Both of these approaches operate
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on the graph G(X , E) with nodesX = {xi}n
i=1 and edge weights E proportional to the

pairwise distances between the observations. For Isomap, the kernel matrix K ∈ Rn×n is

defined such that each element Kij is the shortest path between nodes xi and xj in G(X , E).

For the connectivity kernel, Fischer et al. (2004) define the effective dissimilarity along any

possible path between nodes xi and xj in G(X , E) as the maximum edge weight between

any two nodes along this path. Then, each element of the kernel matrix Kij is the minimum

effective dissimilarity along any of the possible paths between nodes xi and xj. It is possible

to show that this may be computed relatively efficiently using Kruskal’s minimum spanning

tree algorithm.

Initial experiments across small toy datasets indicate that these approaches can be effec-

tive, and permit high-quality cluster separators in the resulting feature spaces. However,

the computational cost of locating shortest paths and minimum spanning trees over large

graphs makes the computation of these kernel matrices expensive for large datasets, and ap-

proximation techniques would be required.

8.2.2 Multi-Objective Optimisation for Random Projection Selection

For the random projection algorithms proposed in Chapter 6 and Chapter 7, we consid-

ered a single optimality criterion to select the most suitable set of univariate projections for

cluster separation at each stage of the divisive procedure. However, it is possible to simul-

taneously consider multiple optimality criteria to quantify the appropriateness of a set of

projections for cluster identification. In this case, given a set of observations (or feature vec-

tors) assigned to the cluster which is to be separated,XC ⊂ X = {xi}n
i=1 and the matrix of

columnwise random vectors R = [ri] for i = 1, ..., r, the set of projections upon which the
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bi-partition ofXC is determined would be,

pC = XC · r⋆

r⋆ = arg max
ri ; i∈{1,...,r}

{ f1(XC · ri), ..., fm(XC · ri)}

where each of the f j(·) for j = 1, ..., m are different optimality criteria quantifying the suit-

ability of a set of univariate projections for clustering and XC is the data matrix associated

withXC. It is highly unlikely that the m different optimality criteria will be in agreement

as to the best set of univariate projections, and therefore, selecting a final projection vector

is a non-trivial problem, for which many possible solutions will exist. A further extension

may be to weight the different optimality criteria, depending on some measure of the suit-

ability of the resulting univariate projections for cluster identification, such as a measure of

compactness in the clusters or a measure of separation between the clusters.

8.2.3 Alternative Splitting Rule for Random Projections

In addition to the consideration of alternative optimality criteria to select appropriate ran-

dom projections for clustering, it may also be advantageous for the RP approaches proposed

in Chapter 6 and Chapter 7 to investigate alternative rules for splittingX based on the se-

lected set of univariate random projections. Peña and Prieto (2001) propose a splitting rule

that is related to our approach taken in Chapters 4, 5 and 6 in the sense that their approach

splits a set of projections if there is significant evidence that they have a distribution with

more than one mode. However, the approach proposed in Peña and Prieto (2001) avoids

constructing an estimated density, and instead searches for a significant gap in the set of

ordered univariate projections p1 ⩽ ... ⩽ pn. A gap is considered sufficiently large to indi-

cate a valid partition if it has a very low probability of appearing in that position under the
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assumption that the projections are sampled from a univariate normal distribution. If the

projections (scaled to have zero mean and unit variance) do follow a univariate normal dis-

tribution, the transformed projections, Φ−1(p1), ..., Φ−1(pn) where Φ−1(·) is the inverse

normal distribution function will follow a Uniform(0, 1) distribution. Therefore, the ex-

pected gap between any successive transformed projections is 1
n+1 . Hence any gaps between

successive transformed projections that are significantly larger than this are indicative of a

multi-modal structure in the projections, suggesting that the data should be separated.

Initial experiments indicate that this is an effective splitting criterion. This approach

avoids the computation of an estimated density, and any potential sensitivity to the tun-

ing of the bandwidth parameter or the relative depth threshold applied in our approaches.

However, the specification of an appropriate threshold for a significantly large gap for clus-

ter separation is not straightforward. Some potential values are suggested in Peña and Prieto

(2001), although this would require further investigation.

8.2.4 Higher-Dimensional Subspaces for Random Projection

As an alternative to using RP to search over one-dimensional subspaces for an approx-

imately optimal projection for low-density cluster separation, we could instead project

X ⊂ Rd into an r-dimensional subspace for r ≪ d. Thereafter, a hierarchy of mini-

mum density cluster separators can be sought over the projections ofX into this subspace,

X r = {R⊤xi}n
i=1 ⊂ Rr where R ∈ Rd×r is a random orthogonal matrix. A new sub-

space could be generated at each level of the cluster hierarchy, or for further computational

efficiency, the same random subspace could be retained throughout the divisive clustering.

This approach is closely related to the work of Avogadri and Valentini (2009); Bingham and

Mannila (2001); Goal et al. (2005); Fern and Brodley (2003); Tasoulis et al. (2012), where

clusters are located, using different algorithms, in low-dimensional random subspaces.
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