
January 8, 2018 9:32 International Journal of Geographical Information Science output

International Journal of Geographical Information Science
Vol. 00, No. 00, Month 2009, 1–25

RESEARCH ARTICLE

Toponym Matching Through Deep Neural Networks

Rui Santosa∗ , Patricia Murrieta-Floresb , Pável Caladoa and Bruno Martinsa

aInstituto Superior Técnico - INESC-ID, University of Lisbon,Portugal;
bDigital Humanities Research Centre, University of Chester, United Kingdom

(Received 00 Month 200x; final version received 00 Month 200x)

Toponym matching, i.e. pairing character strings that represent the same real-
world location, is a fundamental problem in the context of several applications
related to geographical information retrieval and to the geographical informa-
tion sciences. Handling unofficial and/or historical variants of place names,
often quite dissimilar between them, or handling transliterations between lan-
guages, for instance involving different scripts, are some of the challenges when
matching toponyms. The current state-of-the-art relies on string similarity met-
rics, either specifically developed for matching place names, or integrated within
methods that combine multiple metrics. Still, these methods all share a perfor-
mance plateau, in the sense that they rely on common sub-strings in order to
establish similarity relationships. Existing methods do not effectively capture
the character replacements involved in toponym changes due to transliterations
or to changes in language and culture over time. In this article, we present a
novel toponym matching approach, leveraging a deep neural network to classify
pairs of toponyms as either matching or non-matching. The proposed approach
uses Gated Recurrent Units (GRUs) — a type of recurrent neural network
architecture that can be used for modeling sequential data — to build repre-
sentations from the sequences of bytes that correspond to the strings that are
to be matched. These representations are then combined and passed to feed-
forward nodes, finally leading to a classification decision. The entire model can
be trained end-to-end with a set of labeled toponym pairs. We present the re-
sults of a wide-ranging evaluation on the performance of the proposed method,
using a large dataset collected from the GeoNames gazetteer. These results
show that the proposed method can significantly outperform individual string
similarity metrics used in previous studies, as well as previous methods based
on supervised machine learning for combining multiple similarity metrics.

Keywords: toponym matching; duplicate detection; approximate string matching; deep
neural networks; recurrent neural networks; geographic information retrieval

∗Corresponding author. Email: ruipdsantos@tecnico.ulisboa.pt

ISSN: 1365-8816 print/ISSN 1362-3087 online
c© 2009 Taylor & Francis
DOI: 10.1080/1365881YYxxxxxxxx
http://www.informaworld.com

January 8, 2018 9:32 International Journal of Geographical Information Science output

2 Taylor & Francis and I.T. Consultant

1. Introduction

Toponym matching refers to the task of pairing character strings that represent the same
real-world location. For example, the names Bahliz and Paris should be paired, since
both refer to Paris, the capital city of France. Toponym matching is, thus, a fundamental
problem in the context of several applications related to geographical information retrieval
and the geographical information sciences, such as conflation of digital gazetteers or point-
of-interest datasets (Hastings 2008, Zheng et al. 2010, Martins 2011, McKenzie et al. 2014,
Moura et al. 2017), address parsing within geocoding and map search services (Joshi et al.
2008, Berkhin et al. 2015), or toponym resolution over textual contents (Anastácio et al.
2009, Santos et al. 2015, Monteiro et al. 2016), digitized maps (Weinman 2013, Simon
et al. 2014), and digital library contents (Freire et al. 2011).
A standard approach to this problem involves computing a string similarity metric

between the toponyms that are to be matched. Usually, an edit distance (Levenshtein
1966, Damerau 1964) or an heuristic such as the Jaro-Winkler metric (Winkler 1990) is
used to compute the similarity, and then a decision is taken based on a threshold over the
similarity value. While relatively effective, these methods require a laborious tuning of
the similarity threshold. Previous research, either focusing on toponym matching (Recchia
and Louwerse 2013) or on the related problem of person name matching (Cohen et al.
2003, Christen 2006, Moreau et al. 2008, Varol and Bayrak 2012), has in fact suggested
that the performance of different string similarity algorithms is task-dependent, and that
there is no single overall best technique.
More recent research in this area has proposed the usage of supervised machine learning

as an effective approach for combining multiple string similarity metrics (Santos et al.
2017). Still, even the combination of several string similarity metrics will fail to properly
address some of the hard challenges involved in toponym matching, such as handling un-
official and/or historical variants of the same place names, often quite dissimilar between
them, or handling transliterations between languages, for instance involving different
scripts. This occurs because existing string similarity metrics rely on common character
sub-strings in order to establish the semantic similarity relationships, thus not effectively
capturing the character replacements that are often involved in transliterations, or that
are related to changes in language usage over time.
In this article, we present a novel toponym matching approach that can better deal with

the aforementioned challenges. Our solution leverages a deep neural network architecture,
with parameters learned from training data (Goodfellow et al. 2016), to classify pairs of
toponyms as either matching or non-matching. The network uses Gated Recurrent Units
(GRUs), a type of recurrent neural network architecture for modeling sequential data
that was originally proposed by Chung et al. (2014), to build representations from the
sequences of bytes that correspond to the strings that are to be matched. These represen-
tations are then combined and passed to a sequence of feed-forward nodes, finally leading
to a classification decision. The entire model can be trained end-to-end through the back-
propagation algorithm in conjunction with the Adam optimization method (Kingma and
Ba 2015), provided access to a training set of labeled toponym pairs.
Besides advancing this novel method, we also present the results of a wide-ranging

comparative evaluation on the performance of toponym matching methods, leveraging
a very large dataset collected from the GeoNames1 gazetteer. Our experimental data
consists of 5 million toponym pairs, obtained from the lists of alternative place names

1http://www.geonames.org

January 8, 2018 9:32 International Journal of Geographical Information Science output

International Journal of Geographical Information Science 3

that are associated to each record in the gazetteer. Results show that the proposed method
can significantly outperform thirteen different individual string similarity metrics used in
previous studies, as well as previous methods based on supervised machine learning for
combining the results of multiple string similarity metrics.
The remainder of this article is organized as follows: Section 2 presents fundamental

concepts (e.g., string similarity metrics that are frequently used for toponym matching)
and previous research in the area. Section 3 describes the proposed deep learning method,
detailing the neural network architecture that was used for classifying toponym pairs, and
discussing the model training procedure. Section 4 presents the experimental evaluation,
detailing the general protocol, dataset and evaluation metrics, and also presenting and
discussing the obtained results. Finally, Section 5 concludes the article with a summary
of the most interesting findings and with possible paths for future work.

2. Related Work

Most previous studies on toponym matching have relied on methods that involve com-
puting a string similarity metric between the toponyms that are to be matched, and
then taking a decision based on a threshold over the similarity value. The literature on
approximate string matching and on string comparison metrics is, in fact, quite exten-
sive — see Cohen et al. (2003) for a comprehensive review — but traditional methods
can roughly be separated into three classes: character-based, vector-space based, and hy-
brid approaches. Character-based methods rely on character edition operations, such as
deletions, insertions, substitutions and sub-sequence comparisons. Vector-space methods
transform strings into vector representations, over which similarity computations are per-
formed. Hybrid approaches combine both ideas, in order to improve effectiveness when
matching names composed of multiple tokens. Section 2.1 overviews these traditional
methods, while Section 2.2 presents previous work specifically focusing on toponyms.

2.1. Traditional Methods for Approximate String Matching

The best know string matching method is, perhaps, the Levenshtein (1966) edit distance
metric. It is a character-based approach that represents the minimum number of inser-
tions, deletions or substitutions needed to transform a string t1 into another string t2.
For example, the edit distance between the toponyms Lisboa and Lisbonne is three, cor-
responding to one substitution and two insertions, namely a 7→ n, ε 7→ n and ε 7→ e. The
distance metric can be computed through a dynamic programming algorithm, and a cor-
responding normalized string similarity measure can defined as s(t1, t2) = 1− d(t1,t2)

max(|t1|,|t2|) ,
where d(t1, t2) corresponds to the Levenshtein edit distance between strings t1 and t2,
with lengths |t1| and |t2|, respectively. Many variants and/or improvements have been
proposed (Navarro 2001), including the approach by Damerau (1964), in which one basic
edit operation is added (i.e., the transposition of two characters). Other approaches allow
for contiguous sequences of mismatched characters (i.e., affine gaps) in the alignment
of two strings (Needleman and Wunsch 1970), or they instead correspond to adaptable
approaches that learn appropriate weights for the different edit operations (Ristad and
Yianilos 1998, Brill and Moore 2000, Bilenko and Mooney 2003b).
The Jaro metric is another example of a character-based string similarity metric, based

on the number and order of common characters. This metric is specifically designed
for matching short strings, such as person names (Jaro 1989). The heuristic procedure

January 8, 2018 9:32 International Journal of Geographical Information Science output

4 Taylor & Francis and I.T. Consultant

associated to the computation of the Jaro metric is based on the number of characters in
common between the strings being compared that are located in similar positions, i.e. the
difference between their positions should be no more than half the length of the longer
string. In addition, the Jaro metric takes character transpositions into consideration.
A refined version, advanced by Winkler (1990), extends the Jaro metric with a prefix
scale that gives higher scores to strings that match from the beginning up to a given
prefix length. More recently, noting that the Jaro-Winkler approach can be problematic
if the strings to be matched contain multiple words that are differently ordered (e.g.,
when matching the toponyms Madeira Island and Island of Madeira), Christen (2006)
proposed two variants named (i) sorted Winkler and (ii) permuted Winkler. The former
algorithm sorts the tokens that compose both strings before calculating their Jaro-Winkler
similarity, while the latter calculates the similarity over all possible token permutations
and returns the maximum value.
On what concerns vector-space approaches, computing the cosine similarity metric

between representations based on character n-grams, (i.e., based on sequences of n con-
secutive characters, typically with n = 2 or n = 3) is a common approach. Different
variants of the cosine metric have been used in practice (Cohen et al. 2003, Moreau
et al. 2008), for instance leveraging binary representations for the occurrence of n-grams,
versus using the common information retrieval term weighting heuristic known as Term
Frequency times Inverse Document Frequency (TF-IDF). The Jaccard or the Dice sim-
ilarity coefficients (Jaccard 1912, Dice 1945), when computed between sets of character
n-grams occurring in the strings to be compared, are also commonly employed. Instead of
regular n-grams, some previous studies have suggested that skip-grams, i.e. bi-grams of
non-adjacent letters, considering gaps of zero, one, or two characters, are also an effective
choice for representing the strings to be matched (Keskustalo et al. 2003).
Hybrid metrics combine the advantages of character-based and vector-spaced ap-

proaches, being flexible about word order and position, while still allowing for small
differences in word tokens. Most of these methods are based on applying a sub-measure
to all pairs of word tokens between the two strings (i.e., they rely on second-level mea-
sures), and then computing a final score based on these values. For instance, the scheme
proposed by Monge and Elkan (1996) involves computing the average similarity between
the most similar pairs of word tokens, according to a sub-measure such as the Jaro-
Winkler similarity. Procedures such as the cosine similarity or the Jaccard coefficient
can also be used as hybrid approaches, considering sets of tokens instead of sets of n-
grams, and softening the metrics by allowing for small mismatches (e.g., by applying a
threshold over the results of an inner similarity metric) when aligning the individual word
tokens (Cohen et al. 2003, Moreau et al. 2008).
It is interesting to note that, in addition to the aforementioned metrics based on charac-

ter operations, vector-space representations, or hybrids, some previous studies have also
proposed to leverage phonetic encoding techniques (Christen 2006, Varol and Bayrak
2012). Phonetic techniques attempt to convert a string into a code that captures the
way the words are pronounced. Strings with words encoded into the same representa-
tion can then be said to match. However, the conversion process is language-dependent,
and most of the designed techniques, including classic approaches like Soundex or more
recent methods such as Double Metaphone (Philips 2000), have been developed based
exclusively on the Latin alphabet and the English phonetic structure.

January 8, 2018 9:32 International Journal of Geographical Information Science output

International Journal of Geographical Information Science 5

2.2. Previous Work Focusing on Toponym Matching

Recchia and Louwerse (2013) reported on a comparison of different string similarity mea-
sures, such as those previously described, over a toponym matching task. For the compari-
son, romanized toponyms from different countries, taken from the GEOnet Names Server,
had to be matched against alternative names for the same toponyms. The authors found
that, in general, methods that rely on the number of shared short sub-strings (i.e., bi-
grams, tri-grams, and skip-grams in particular) tend to perform well, although they also
observed a substantial variation in the methods that worked best over datasets from dif-
ferent countries. For instance, the best-performing algorithms on toponyms from China
and Japan were Jaro variants, whereas edit distance performed best on toponyms from
Taiwan, and n-gram based measures worked best on countries with toponyms in Romance
and Germanic languages. As a general recommendation, the authors argue that practi-
tioners should test several algorithms on a country-specific or language-specific dataset,
and use the best-performing algorithm for future developments involving similar data.
Hastings and Hill (2002) have noted that the standard similarity metrics are not partic-

ularly well suited to toponym matching because, in everyday usage, the stylistic variability
of places names is simply too great. Authors like Davis and De Salles (2007), Hastings
(2008), or Kilinç (2016) have specifically designed methods for matching toponyms, in
most cases corresponding to variations of the aforementioned classic procedures, and often
leveraging some form of canonical representation for toponyms.
For instance, taking inspiration from previous work by Fu et al. (2005), Hastings (2008)

proposed an algorithm that relies on token matching, using a language-dependent stem-
ming procedure that attempts to reduce word tokens to canonical base forms. This al-
gorithm essentially matches the occurrence of lower-cased tokens from one toponym,
excluding place-type terms and common stop-words, against the lower-cased and possi-
bly stemmed tokens of the other toponym, and vice-versa. Common abbreviations are
expanded, and common misspellings are also corrected while reducing word tokens to
canonical forms. For each token pairing between the two strings, a match score of zero,
one-quarter, one-half, or one is assigned, giving quarter-weight to infix matches, half-
weight to prefix/stemmed matches, and full-weight to exact matches. The accumulated
bi-directional score is finally normalized by the total number of tokens in the two strings,
to account for unmatched tokens.
The methods proposed by Davis and De Salles (2007) and by Kilinç (2016) instead

correspond to hybrid approaches. For example, in the method by Davis and De Salles
(2007), the first step involves dividing the toponyms into tokens, using blanks, hyphens,
and other similar symbols as delimiters. For matching individual tokens, Davis and De
Salles proposed a variation of the Levenshtein edit distance that incorporates a practical
scheme for matching accented and special characters — characters are organized into
equivalence groups, so that characters belonging to the same group are considered to
match. Two tokens are considered to match if their similarity is above a pre-defined
threshold of α = 0.75. The complete matching strategy involves four distinct phases,
namely (1) replacing tokens that are known abbreviations by their full spelling (e.g.,
avn. would be replaced by avenue), (2) capturing non-standard abbreviations in one of
the strings, namely single-character capitalized tokens and tokens that end with a dot
character, by checking them against tokens in the other string that share a common prefix,
(3) token alignment, using a procedure similar to that of the Levenshtein edit distance in
order to align the tokens from one string against those from the other, and (4) computing
a final similarity score through a linear combination of three different metrics between
sets of tokens, one of which accounting for possible token inversions.

January 8, 2018 9:32 International Journal of Geographical Information Science output

6 Taylor & Francis and I.T. Consultant

Several previous studies have also proposed heuristic combinations of different similar-
ity metrics, computed over attributes such as place names, place types, and/or geospatial
footprints, in order to match gazetteer records (Fu et al. 2005, Smart et al. 2010, Li
et al. 2016). Taking inspiration from some of these studies, other authors have proposed
to use supervised learning for gazetteer record conflation, using classifiers as a princi-
pled approach to combine multiple similarity metrics, computed over different types of
attributes (Sehgal et al. 2006, Zheng et al. 2010, Martins 2011, McKenzie et al. 2014).
For instance Martins (2011) found that string similarity was the most informative type of
feature when detecting duplicate gazetteer records with a method based on the supervised
training of a classifier leveraging the formalism of Support Vector Machines (SVMs). The
same study also reported that n-gram overlap metrics, Jaro-Winkler, and variations of
edit distance were particularly useful. Sehgal et al. (2006) found that edit distance out-
performed both a Jaccard n-gram coefficient and Jaro-Winkler, when mapping between
two sets of romanized place names from Afghanistan, also with a method based on SVMs.
In a problem of matching points-of-interest described in two different location-based so-
cial networks, McKenzie et al. (2014) showed that the Levenshtein edit distance between
names performed the best, within a set of independent methods that also included geo-
graphic distance and matches in categories and in long textual descriptions.
A recent study, leveraging the same dataset that is used in the experiments reported on

this article, presented a comparison of 13 different string similarity metrics over a toponym
matching task (Santos et al. 2017). This article has also reported on experiments with
the usage of supervised machine learning for combining the multiple similarity metrics,
this way avoiding the manual tuning of similarity thresholds. The results showed that the
performance differences between the individual similarity metrics were relatively small,
but that carefully tuning the similarity threshold is crucial for achieving good results.
Methods based on supervised machine learning for combining the similarity metrics, par-
ticularly when considering ensembles of decision trees, achieved good results, significantly
outperforming the individual similarity metrics. However, given that the individual met-
rics were always based on common sub-sequences of characters, several pairs of matching
toponyms involving complex transformations (e.g., transliterations between different al-
phabets) could not be correctly detected, thus motivating the development of approaches
such as the one reported on this article.

3. The Proposed Approach

In contrast to most previous work on toponymmatching, which leveraged individual string
similarity metrics or combinations of multiple metrics with parameters inferred through
supervised learning (Santos et al. 2017), in this article we propose a novel approach, which
leverages the supervised training of a deep neural network that can directly model the
pair of character strings under comparison. A large set of toponym pairs, known to refer
to the same real world place or not, is used to infer the parameters of the neural network.
This network takes toponym pairs (i.e., two sequences of bytes) as input, and outputs a
binary classification decision. After training, the classifier can be used to decide if any new
pair of strings refers to the same location or not. This section provides a brief introduction
to neural networks and deep learning, afterwards describing the specific architecture that
we propose for toponym matching.

January 8, 2018 9:32 International Journal of Geographical Information Science output

International Journal of Geographical Information Science 7

(a) (b)

Figure 1.: Diagrams illustrating (a) a Rectified Linear Unit (i.e., a simple perceptron with
a particular activation function), and (b) a Gated Recurrent Unit.

3.1. Artificial Neural Networks for Data Classification

Artificial neural networks are computational artifacts that channel information through
a series of mathematical operations, performed at the nodes of the network (Goodfellow
et al. 2016). Mathematically, neural networks can be seen as nested composite functions.
Their general purpose is to accurately classify inputs, and we have that all the parameters
in the nested composite functions can be trained directly to minimize a given loss function
computed over the outputs and the expected results. This is achieved through a training
procedure known as back-propagation, in combination with gradient descent optimization
of the parameters (Goodfellow et al. 2016).

3.1.1. Feed-Forward Neural Networks

The individual nodes of an artificial neural network are often referred to as perceptrons,
and the basic concept of using a single perceptron for classifying data patterns was intro-
duced by Rosenblatt (1958). A perceptron (i.e., a single node neural network) computes a
single output from multiple real-valued inputs by forming a linear combination according
to input weights and then putting the output through some activation function. Math-
ematically, this can be written shown as in Equation 1, and a graphical depiction of a
perceptron is shown in Figure 1(a).

y = ϕ

(
n∑

i=1

wixi + b

)
= ϕ

(
wTx+ b

)
(1)

In the equation, y is the returned prediction, x =< x1, . . . , xn > is the vector of inputs,
w denotes the vector of weights, b is a bias term, and ϕ(.) is the activation function.
The original perceptron, as proposed by Rosenblatt (1958), used a threshold step func-

tion as the activation function ϕ(.), although nowadays, and especially in multilayer
networks, the activation function is often chosen to be the logistic sigmoid, the hyper-
bolic tangent, or a rectified linear function (i.e., the ramp function ϕ(x) = max(0, x)).
Perceptrons leveraging a rectified linear activation function are often referred to as Rec-
tified Linear Units (RLUs) and they are nowadays frequently used within more complex
deep neural network architectures (Goodfellow et al. 2016).
Although a single perceptron has a limited mapping ability (i.e., a standard perceptron

can only represent linear decision functions), perceptrons can be used as building blocks
of more complex models. For instance, a MultiLayer Perceptron (MLP) consists of a set

January 8, 2018 9:32 International Journal of Geographical Information Science output

8 Taylor & Francis and I.T. Consultant

of source nodes forming the input layer, one or more hidden layers of computation nodes,
and an output layer of nodes. The input signal propagates through the network layer-by-
layer, until it reaches the output node(s). In the case of one such feed-forward network
with a single hidden layer, the corresponding computations can be written as shown in
Equation 2, and the generalisation to more hidden layers would be simple.

y = ϕ
(
Bϕ′(Ax+ a) + b

)
(2)

In the previous equation, x is a vector of inputs and y a vector of outputs. The matrix
A represents the weights of the first layer and a is the bias vector of the first layer, while
B and b are, respectively, the weight matrix and the bias vector of the second layer.
The functions ϕ′ and ϕ both denote an element-wise non-linearity, i.e. the activation
functions respectively associated to nodes in the hidden layer, and in the output layer.
Training the neural network corresponds to adapting all the weights and biases (e.g.,

the parameters A,B,a and b, in the case of the feed-forward network expressed in the
previous equation) to their optimal values, given a training set of inputs x together with
the corresponding outputs y. This problem can be solved with the back-propagation algo-
rithm, which consists of two steps. In a forward pass, the predicted outputs corresponding
to the given inputs are evaluated. In a backward pass, partial derivatives (i.e., the rela-
tionships between rates of change) of a given loss function with respect to the different
parameters are propagated back through the network. In other words, back-propagation
in neural networks moves backward from the final error through the outputs, weights and
inputs of each layer, assigning those weights responsibility for a portion of the error, by
calculating their partial derivatives.
The chain rule of differentiation can be used to compute the derivatives associated to

nested composite functions. Those derivatives are used by a gradient-based optimisation
algorithm to adjust the weights and biases up or down, whichever direction decreases
error over the training instances, as measured through a loss function. An optimisation
procedure that has been frequently used to train deep neural networks is the Adaptive
Moment Estimation (Adam) algorithm from Kingma and Ba (2015). Adam computes pa-
rameter updates leveraging an exponentially decaying average of past gradients, together
with adaptive learning rates for each parameter. In practice, it performs larger updates
for infrequent parameters, and smaller updates for frequent parameters.

3.1.2. Recurrent Neural Networks

Recurrent neural networks (RNNs) constitute an extension of conventional feed-forward
networks, with the objective of handling variable-length input sequences (i.e., they were
designed to recognize patterns in sequences of data such as character strings). An RNN
handles a variable-length sequence by having a recurrent hidden state whose activation
at each time step is dependent on that of the previous time step. Whereas in classic
feed-forward networks the examples are fed to an input layer and straightly transformed
into an output layer, never performing computations over a given node twice, in RNNs
we take not just the current input instance (e.g., the representation for a given character
within a string) but also what was perceived one step back in time (i.e., the previous
character in the sequence).
Recurrent neural networks thus consider two sources of input, i.e. the present and the

recent past, which are combined to determine how the network should respond to new
data. RNNs have a chain-like structure corresponding to a feedback loop, as they ingest
their own outputs moment after moment as part of the input, and preserve sequential
information in a hidden state, which manages to span many time steps as it cascades

January 8, 2018 9:32 International Journal of Geographical Information Science output

International Journal of Geographical Information Science 9

forward to affect the processing of each new example. More formally, given a sequence
X = (x1,x2, . . . ,xT), an RNN updates its recurrent hidden state ht by sequentially
processing the input sequence and computing:

ht = ϕ (Wxt +Uht−1) (3)

In brief, we have that the hidden state ht at time step t is a function of the input at the
same time step xt, modified by a weight matrix W. This result is added to the hidden
state of the previous time step ht−1, multiplied by its own hidden-state-to-hidden-state
matrix U, otherwise known as a transition matrix. The weight matrices are essentially
filters that determine how much importance should be given to both the present input and
the past hidden state. In a way, RNNs can be seen as a generalization of Markov chains,
where the hidden states are supposedly encoding all previous history in the sequence.
Previous research has noted that standard RNNs have difficulties in modeling long

sequences, and extensions have been proposed to handle this problem. Two well-known
examples are Long Short-Term Memory (LSTM) units (Hochreiter and Schmidhuber
1997) and Gated Recurrent Units (GRUs), originally proposed by Chung et al. (2014).
GRUs involve different components, i.e. gating mechanisms, which interact in a particular
way and according to Equation 4. A graphical depiction of a GRU is shown in Figure 1(b).

zt = ϕg (Wzxt +Uzht−1 + bz)

rt = ϕg (Wrxt +Urht−1 + br)

h̃t = ϕh (Whxt +Uh(rt ◦ ht−1) + bh)

ht = zt ◦ ht−1 + (1− zt) ◦ h̃t

(4)

In Equation 4, the operator ◦ denotes the Hadamard product (i.e., the entry-wise product
of two matrices), while xt denotes the input vector at time step t, and ht denotes the
hidden state at time step t. The parameters W, U and b denote the different weight
matrices and bias vectors, adjusted when training the model.
Notice that a GRU involves two gates, namely a reset gate r, that determines how to

combine the new input with the previous memory, and an update gate z, that defines
how much of the previous memory to keep around. If we set the reset gate to all ones, and
the update gate to all zeros, we again arrive at the plain RNN model that was discussed
previously. The gating mechanism allows GRUs to better handle long-term dependencies.
By learning the parameters for its gates, the network learns how its internal memory
should behave, given that the gates define how much of the input and previous state
vectors should be considered.
Recurrent neural network units such as GRUs can be used to model sequential data

(i.e., for encoding a given input sequence into a vector representation, given by the hidden
state after processing the last position in the sequence, which can then be processed by
other network nodes), or for generating new sequences (e.g., by processing the hidden
state generated at each position of the input sequence). In our case, we use GRUs within
a deep model that considers multiple layers of recurrent and feed-forward processing.

January 8, 2018 9:32 International Journal of Geographical Information Science output

10 Taylor & Francis and I.T. Consultant

Figure 2.: The neural network architecture proposed to address toponym matching.

3.2. Toponym Matching Using a Deep Neural Network

The neural network architecture proposed in this article for addressing the toponym
matching problem, where recurrent nodes are perhaps the most important components,
is illustrated in Figure 2. This architecture takes its inspiration on previously proposed
models for natural language inference and for computing sentence similarities (Bowman
et al. 2015, Yin et al. 2015, Liu et al. 2016, Mueller and Thyagarajan 2016).
The input to the network are two sequences of binary vectors that represent the strings

to be compared. The strings are first converted to a unicode canonical normalized format
(i.e., we use a fully decomposed UTF-8 representation, in which all combining character
marks are placed in a pre-specified order) and they are also padded with a special symbol
that denotes the beginning and termination of the toponym. The normalized strings are
then represented as a sequence of one-hot binary vectors, in which a single bit is set to
one for each byte in the sequence that corresponds to the unicode normalized string.
The binary vectors are provided as input to bi-directional GRUs, which produce a

vector of real values, also referred to as an embedding, for each of the toponyms being
compared. Bi-directional GRUs work by concatenating the outputs of two GRUs, one
processing the sequence from left to right and the other from right to left (Schuster and
Paliwal 1997). Our neural network architecture actually uses two different layers of bi-

January 8, 2018 9:32 International Journal of Geographical Information Science output

International Journal of Geographical Information Science 11

directional recurrent units. The first bi-directional GRU layer generates a sequence of
real-valued vectors, that is then passed as input to the second bi-directional GRU layer.
The second bi-directional GRU layer outputs a single embedding for the input, resulting
from the concatenation of the last outputs that are produced by the GRUs that process
the input sequences in each direction.
Notice that each of the input toponyms is conceptually processed by individual recur-

rent layers, in order to produce a compact representation for its contents, although the
parameters of these GRUs are shared across the parts of the network that process each
input toponym. In other words, the two layers of bi-directional GRUs, which are used
to process each of the input strings, have the same set of parameters. In the literature,
these network architectures, where different parts have their parameters tied, are typically
referred to as siamese networks (Mueller and Thyagarajan 2016).
The two embeddings produced by the bi-directional GRU layers are then combined

and compared through a set of different operations. Taking inspiration on the network
architecture from Mou et al. (2016), proposed to address the problem of natural language
inference, we produce a combined representation for the pair of toponyms resulting from
(i) the concatenation of the embedding vectors, (ii) the element-wise product of the
embedding vectors, and (iii) the difference between the embedding vectors. This combined
representation is then passed as input to feed-forward network layers: a first layer that
uses a simple combination of the inputs together with a non-linear activation function
(i.e., a rectified linear unit), followed by another simple layer that produces the final
output and that uses a sigmoid activation function.
The entire network is trained end-to-end through back-propagation in combination

with the Adam optimization algorithm, using binary cross-entropy as the loss function
to be optimized. In order to control overfitting and improve the generalization capabil-
ities of the classification model, we use dropout regularization with a probability of 0.1
between each layer of the proposed neural network architecture. Dropout regularization
is a simple procedure based on randomly dropping units, along with their connections,
from the neural network during training. Each unit is dropped with a fixed probability p
independent of other units, effectively preventing the network units from co-adapting too
much (Srivastava et al. 2014). An initial set of experiments showed that using dropout
regularization with the small probability of 0.1 indeed improved the results.

4. Experimental Evaluation

This section describes the dataset used for supporting the experiments, presents the
experimental setup that was applied, and discusses the obtained results. Previous experi-
ments with standard string similarity metrics show that cross-lingual toponym matching
remains a significant challenge, given that the task requires encoding the intrinsic seman-
tic value of sequences of characters, in order to support comparisons. On the other hand,
deep neural network architectures, such as the one proposed in this article, have success-
fully been applied to difficult challenges involving modeling sequences of text, such as
language modeling, machine translation, or even measuring semantic similarity. Through
experiments, we aimed to assess if indeed one such model could improve performance
over state-of-the-art toponym matching techniques, such as those report by Davis and De
Salles (2007), Recchia and Louwerse (2013), or Santos et al. (2017). We used a Python

January 8, 2018 9:32 International Journal of Geographical Information Science output

12 Taylor & Francis and I.T. Consultant

 10

 1000

100000

3 5 7 9 11 13 15 17 19 21 23 25 27 29 >30

Number of Characters

N
um

be
r

of
 T

op
on

ym
s

 10

 1000

 100000

10000000

1 3 5 7 9 11 13 >14

Number of Word Tokens

N
um

be
r

of
 T

op
on

ym
s

Figure 3.: Distribution for the length of the toponyms present in the dataset.

library named Keras1 for implementing the neural network architecture introduced in
Section 3, and then leveraged a large dataset collected from GeoNames to evaluate its
performance. Keras was choosen over other deep learning libraries due to its high-level
API, that already offers implementations for many of the components involved in the
proposed architecture (e.g. GRUs and RLUs).

4.1. Dataset And Experimental Methodology

Our experiments relied on a dataset of five million pairs of toponyms, half of which cor-
responding to alternative names for a same place. This dataset, used already in previous
work (Santos et al. 2017), was generated from lists of alternative place names associated
to records in the publicly available GeoNames gazetteer. Each place that is described in
GeoNames is associated to multiple names, often corresponding to historical denomina-
tions or to transliterations in multiple alphabets/languages. We can, thus, leverage this
information to build a large dataset covering toponyms from all around the globe.
In our dataset, the matching pairs of toponyms correspond to alternative names for

the same place, with more than two characters, that after converting all characters into
their lower-cased equivalents do not match in every character. The non-matching pairs
of toponyms correspond to names for different places, not necessarily within the same
country, that also have more than two characters. In order to build a dataset that is
both representative and challenging for automated classification, a significant portion of
the non-matching pairs should not be completely dissimilar. According to this intuition,
we preferred toponym pairs having a Jaccard similarity coefficient above zero — if the
similarity between a non-matching pair of toponyms is equal to zero, we discard the pair
with a probability of 0.75, when building the dataset.
Table 1 presents elementary characterization statistics for the dataset, which are further

detailed in this section and illustrated in the accompanying figures. In Figure 3, we show
the distribution for the length of the toponyms, both in the number of characters and
the number of words. Figure 4 shows the distribution for the difference in the number of
characters per matching and non-matching toponym pair, a quantity that is related to
the difficulty in matching toponyms (i.e., matching pairs with a larger difference should
be harder to classify). Figure 5 presents the geographical distribution of the dataset,
showing the number of toponyms associated to particular regions (i.e., countries), and

1http://keras.io

January 8, 2018 9:32 International Journal of Geographical Information Science output

International Journal of Geographical Information Science 13

Table 1.: Statistical characterization of the dataset used in our experiments.

Number of toponym pairs 5000000
Number of matching toponym pairs 2500000

Number of pairs with toponyms from the same country 4999260
Number of pairs with equal toponyms after lowercasing and removing diacritics 180453
Number of pairs with matching equal toponyms after lowercasing and removing diacritics 167933

Number of pairs with matching toponyms that are completely dissimilar 625754
Number of pairs with non-matching toponyms that are completely dissimilar 993409

Average difference in number of characters per toponym pair 3.74
Average number of characters per toponym 22.72
Average number of word tokens per toponym 3.59
Number of characters in largest toponym 188

Number of pairs with both toponyms involving only Latin characters 3320403
Number of pairs with at least one toponym involving CJK characters 625007
Number of pairs with at least one toponym involving Cyrillic characters 400860
Number of pairs with at least one toponym involving Arabic characters 390145
Number of pairs with at least one toponym involving Thai characters 221007
Number of pairs with at least one toponym involving Greek characters 25941
Number of pairs with at least one toponym involving Armenian characters 16361
Number of pairs with at least one toponym involving Hebrew characters 8503
Number of pairs with at least one toponym involving Georgian characters 4979
Number of pairs with at least one toponym involving Devanagari characters 2087

showing also the top 10 countries with the most toponyms. Finally, in Figure 6, we present
the distribution for the number of toponym pairs per country (i.e., the number of pairs
where both toponyms belong to the same country), focusing on the 10 countries with
the most toponym pairs in our dataset. The same figure also shows the distribution for
the number of toponym pairs per alphabet (i.e., the number of pairs where at least one
of the toponyms only uses characters from a given alphabet). Authors like Recchia and
Louwerse (2013) have noted that the performance of different string similarity algorithms
varies according to the country, and that there is no single overall best technique.
Notice that most of the instances in our dataset correspond to toponyms in the Latin

alphabet, in most cases composed of more than 3 words. Although we could have applied
the same procedure to generate a bigger dataset from GeoNames records, handling 5
million instances is already quite challenging from a computational point of view. Our
completely balanced dataset with 5 million instances is already showing some of the less

0

250000

500000

750000

1000000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 >18

Difference in Toponym Length

N
um

be
r

of
 T

op
on

ym
 P

ai
rs

Matching

Non Matching

Figure 4.: Differences in the number of characters per matching and non-matching pair.

January 8, 2018 9:32 International Journal of Geographical Information Science output

14 Taylor & Francis and I.T. Consultant

Other Countries

Norway

Taiwan

France

Japan

Korea

Afghanistan

Thailand

Russia

Iran

China

 10 1000 100000 10000000

Number of Toponyms

C
ou

nt
rie

s

50

1000

25000

500000

Number of Toponyms

Figure 5.: Distribution for the number of toponyms per geographic region.

frequent combinations of alphabets and/or character transliterations.
A variety of experimental methodologies have been used to evaluate the effectiveness

of methods for matching potential duplicates. Authors like Bilenko and Mooney (2003a)
have advocated that standard information retrieval metrics, such as precision and recall,
provide an informative evaluation methodology within duplicate detection studies, and
previous work in the area has also used these metrics for evaluating toponym match-
ing (Santos et al. 2017). In this work, we also use precision and recall to evaluate the
quality of the proposed method, and complement these values with a detailed analysis of
the cases for which the method produced correct and incorrect results.
Precision and recall are per-class metrics that focus on different aspects of quality for a

classification method. Precision is the ratio formed by the number of items correctly as-
signed to a class divided by the total number of items assigned to that class. In a toponym
matching problem with two possible classes, i.e. match versus non-match, precision for
the match class corresponds to the number of matches that were correctly identified by
the classifier, over the total number of matches (i.e., correctly plus incorrectly) identified
by the classifier. Recall, on the other hand, is the ratio between the number of items
correctly assigned to a class, over the total number of items in the class. Using the previ-
ous example, recall for the match class corresponds to the number of matches that were
correctly identified, over the total number of correct matches in the dataset.
Since precision can be increased at the expense of recall, we also compute the F1-

measure, which equally weights precision and recall through their harmonic mean. Fi-
nally, we also measured the quality of the results through the accuracy metric, which
corresponds to the proportion of correct decisions (i.e., matches or non-matches) that
were returned by the method under evaluation.
Leveraging the aforementioned dataset, we used a two-fold cross-validation methodol-

ogy. This means that the available pairs of toponyms were split into two distinct subsets,
with an equal number of matching and non-matching pairs. Different classification mod-
els, including the method detailed in Section 3, were trained on one of the subsets, and
these models were then evaluated on the other subset of the data. For each evaluation
metric, we report averaged values over the two subsets of the data.

January 8, 2018 9:32 International Journal of Geographical Information Science output

International Journal of Geographical Information Science 15

Other Alphabets

Devanagari

Georgian

Hebrew

Armenian

Greek

Thai

Cyrillic

Arabic

CJK

Latin

 10 1000 100000

Number of Toponym Pairs

N
um

be
r

of
 T

op
on

ym
 P

ai
rs

 p
er

 A
lp

ha
be

t

Matching Toponyms Non Matching Toponyms

Other Countries

Norway

Taiwan

France

Japan

Korea

Afghanistan

Thailand

Russia

Iran

China

 10 1000 100000

Number of Toponym Pairs

N
um

be
r

of
 T

op
on

ym
 P

ai
rs

 p
er

 C
ou

nt
ry

Matching Toponyms Non Matching Toponyms

Figure 6.: Distribution for the number of matching and non-matching pairs of toponyms,
over different alphabets and geographic regions.

It is important to notice that although the deep learning procedure involves many
parameters that can influence its performance, no significant effort was put into fine-
tuning our model for optimal performance. The dimensionality of the outputs for the
GRUs was set to 60, except in the case of two tests where we tried to assess the influence of
this parameter. Dropout was considered as a regularization procedure after each internal
layer of the model, with a value of 0.01. The Adam optimization method (Kingma and Ba
2015) was used with the default value of 0.001 for the learning rate, a fuzz factor of 1e-08,
and the β1 and β2 parameters respectively set to 0.9 and to 0.999 (i.e., the default values
in the Keras library). Although consistent hyper-parameter tuning was not addressed,
we do, nonetheless, report on experiments with variations of the deep neural architecture
given in Section 3, for example by not considering some of the layers in the full model,
or changing the dimensionality of the outputs for the GRU layers.
An initial set of experiments showed that slight variations in the results indeed occurred

as a function of the hyper-parameters. The value of 60 for the dimensionality of the GRUs
achieved the best accuracy on our experiments, with the full model given in Section 3.

4.2. The Obtained Results

Table 2 presents the obtained experimental results, effectively comparing the performance
of (i) individual string similarity metrics, (ii) supervised learning methods that combine

January 8, 2018 9:32 International Journal of Geographical Information Science output

16 Taylor & Francis and I.T. Consultant

Table 2.: Experimental results obtained by the proposed method, by individual string
similarity metrics, and by combining such metrics through supervised machine learning.

Method Accuracy Precision Recall F1-Score Time (50K Pairs)

Damerau-Levenstein (α = 0.55) 65.07 78.65 41.36 54.21 0.27 sec.
Jaro (α = 0.75) 63.78 76.95 39.34 52.06 0.25 sec.
Jaro-Winkler (α = 0.70) 63.59 71.74 44.84 55.19 0.25 sec.
Jaro-Winkler Reversed (α = 0.75) 65.17 78.00 42.26 54.82 0.27 sec.
Sorted Jaro-Winkler (α = 0.70) 61.89 71.44 39.62 50.97 0.34 sec.
Permuted Jaro-Winkler (α = 0.70) 63.42 68.90 48.91 57.21 87.18 sec.
Cosine N -Grams (α = 0.40) 61.50 70.37 39.75 50.80 3.03 sec.
Jaccard N -Grams (α = 0.25) 61.72 71.50 38.97 50.44 0.81 sec.
Dice Bi-Grams (α = 0.50) 62.18 75.36 36.19 48.90 0.61 sec.
Jaccard Skipgrams (α = 0.45) 62.69 73.44 39.76 51.59 2.02 sec.
Monge-Elkan (α = 0.70) 59.57 65.83 39.79 49.60 0.54 sec.
Soft-Jaccard (α = 0.60) 59.43 69.65 33.43 45.18 0.56 sec.
Davis and De Salles (2007) (α = 0.65) 62.10 71.03 40.86 51.88 1.27 sec.

Support Vector Machines 72.38 69.17 80.76 74.52 101.52 sec.
Random Forests 78.67 78.03 79.80 78.91 131.60 sec.
Extremely Randomized Trees 78.37 78.00 79.04 78.52 169.83 sec.
Gradient Boosted Trees 78.54 77.51 80.42 78.94 99.05 sec.

Deep Learning Method 88.71 88.43 89.07 88.75 40.60 sec.

these multiple string similarity metrics, and (iii) the deep learning method proposed in
Section 3. Besides precision, recall, F1, and accuracy, we also report the average processing
time associated to the application of each method, for sets of fifty thousand records. All
tests were performed on a standard PC with an Intel Core I7 6700 CPU running at 3.4
GHZ and an NVIDIA GeForce GTX 980 GPU, and with 16GB of RAM. In the case of
the experiments leveraging supervised machine learning, we report the time involved in
computing all the similarity metrics that are used as features (i.e., only in the case of the
methods that combine multiple similarity metrics), plus the time involved in applying
the classification algorithm to the toponym pair.
In Table 2, we do not show the time spent on model training, since we argue that train-

ing can be performed only once, on an offline stage, thus not impacting the performance
of these methods when matching previously unseen toponyms. However, it is important
to state that model training is computationally much more demanding in the case of
methods based on deep learning. Using our hardware (i.e., a single GPU), training and
evaluating each of the deep learning models included in Table 3, when leveraging the
2-fold cross-validation procedure, took approximately 5 days to complete.
The results presented on Table 2 regarding the 13 individual string similarity metrics

and the supervised machine learning methods for combining multiple metrics have already
been reported in the previous work by Santos et al. (2017), which showed that combining
multiple metrics outperformed simpler approaches (Recchia and Louwerse 2013). Details
about the computation of each similarity metric are given in the previous article, and the
threshold value α considered for making the matching decisions was tuned to the best
results in terms of accuracy. The tests with feature-based supervised machine learning
methods relied on implementations provided by the scikit-learn1 and XGBoost2 Python
packages. In particular, we experimented with models based on the formalism of lin-

1http://scikit-learn.org/
2http://xgboost.readthedocs.io

January 8, 2018 9:32 International Journal of Geographical Information Science output

International Journal of Geographical Information Science 17

Table 3.: Results with different variations of our deep neural network architecture.

Method Accuracy Precision Recall F1-Score Time (50K pairs)

Proposed Neural Architecture 88.71 88.43 89.07 88.75 40.60 sec.

Dimensionality of 30 in the GRUs 87.79 87.72 88.35 88.04 49.50 sec.
Dimensionality of 90 in the GRUs 88.40 88.10 88.79 88.44 53.21 sec.

Without Bi-Directional GRUs 88.26 89.12 87.17 88.13 22.36 sec.
Single Bi-Directional GRU Layer 88.22 88.40 87.97 88.19 23.09 sec.
Only Concatenating Representations 87.78 87.68 87.90 87.80 39.82 sec.
Multiple RLU Layers 88.57 87.79 89.60 88.68 42.11 sec.

ear support vector machines and based on different types of state-of-the-art approaches
leveraging ensembles of decision trees (i.e., random forests (Breiman 2001), extremely
randomized trees (Geurts et al. 2006), and gradient boosted decision trees (Chen and
Guestrin 2016)). All these models leveraged the 13 string similarity metrics as features.
The results on Table 2 show that, when properly tuned, the different similarity metrics

achieve very similar results in terms of accuracy (i.e., results range from 61.50 to 65.17).
The supervised machine learning methods that combine the multiple metrics significantly
outperform the individual similarity metrics in terms of matching quality. However, the
novel approach introduced in this article performs even better, with the best results
corresponding to an increase in accuracy, precision, recall, and F1 of 9.9, 9.76, 8.84,
and 9.74 points, respectively. As expected, the methods based on supervised machine
learning are computationally much more demanding, particularly those that involved
the computation of multiple string similarity metrics, given that each metric is already
expensive when computed individually. Still, with modern hardware, it is fairly easy to
process very large datasets using any of the methods that are listed on Table 2. In all
cases that are not leveraging a deep neural network, most of the computational effort
is indeed associated to computing similarity features. It should also be noted that the
deep learning model leverages parallel processing over the GPU, whereas the remaining
methods use only CPU threads.
Table 3 presents results for several variations of the deep learning method introduced

in Section 3. These values shown that the different components included in our neural
network architecture all contribute to improving the quality of the results. Specifically,
the different rows in Table 3 correspond to the following model architectures:

• The full architecture that was described in Section 3;
• The architecture described in Section 3, when considering a lower dimensionality (i.e.,

vectors of 30 dimensions instead of 60) for the GRU outputs;
• The architecture described in Section 3, when considering a higher dimensionality (i.e.,

vectors of 90 dimensions instead of 60) for the GRU outputs;
• Keeping all components of the full model architecture except for the bi-directional GRU

units, i.e., including the two layers of GRUs, for encoding each toponym, but each layer
now only processing the strings from left to right;

• Using a single layer of bi-directional GRU units, together with the remaining compo-
nents of the complete model architecture;

• Combining the representations for each string that are given as output by the GRU
units through a simpler procedure, that only considers concatenating the vectors in-
stead of using concatenation, vector difference, and element-wise vector product;

• Using three layers of Rectified Linear Units (RLUs) prior to the sigmoid node respon-

January 8, 2018 9:32 International Journal of Geographical Information Science output

18 Taylor & Francis and I.T. Consultant

87.74

93.28

90.43

93.56

93.64

84.94

91.17

91.06

85.45

65.27

80.25

65.07

73.49

80.55

72.22

73.98

70.95

81.65

71.90

63.12Devanagari

Georgian

Hebrew

Armenian

Greek

Thai

Arabic

Cyrillic

CJK

Latin

100 50 0 50 100

Accuracy
Single Toponym Using the Alphabet

A
lp

ha
be

t

Deep Neural Network Random Forest

86.86

95.13

95.57

94.53

99.35

89.84

98.47

97.47

92.84

58.18

82.70

80.54

80.71

85.29

92.18

77.60

77.47

87.43

82.69

78.18Devanagari

Georgian

Hebrew

Armenian

Greek

Thai

Arabic

Cyrillic

CJK

Latin

100 50 0 50 100

Accuracy
Both Toponyms Sharing the Alphabet

A
lp

ha
be

t

Deep Neural Network Random Forest

Figure 7.: Accuracy in the results for toponym pairs from different alphabets.

sible for the predictions, instead of considering a single RLU.

Notice that all the variations of the proposed deep learning method outperformed the
simpler approaches that are shown in Table 2, although there are slight differences in
the results from the different methods. The first two variations in Table 3 correspond to
models that use a lower or higher dimensionality in the internal representations produced
by the GRUs. The results show that this dimensionality has an impact on the compu-
tation time, although the quality of the results remains approximately the same for the
values that were tested. Notice that the alternative model shown in Table 3 that corre-
sponds to the use of a higher dimensionality for the GRUs is more demanding in terms
of computational resources, at the same time leading to slightly inferior results. The next
three alternative models that are shown on Table 3 correspond to experiments in which
specific parts of the proposed neural architecture have been removed, leading to a slight
decrease in accuracy although also, in the first two cases, to a significant improvement
in terms of computational complexity. Given the large gains in terms of execution time,
associated to the small losses in terms of accuracy, models with a single GRU layer or
without considering bi-directional GRUs can, in fact, be preferred in some cases. The last
model corresponds to an alternative architecture leveraging additional layers, but that
nonetheless also leads to slightly inferior results in terms of accuracy.
We also analyzed the obtained results according to the alphabets being used in the to-

ponyms (Figure 7), and according to the countries associated to the toponyms (Figure 8).

January 8, 2018 9:32 International Journal of Geographical Information Science output

International Journal of Geographical Information Science 19

95.65

90.77

86.00

93.02

92.02

91.71

84.55

88.15

85.20

86.28

84.60

82.36

83.99

78.15

77.10

81.46

74.94

77.70

83.62

61.06

85.54

77.67Other Countries

Norway

Taiwan

France

Japan

Korea

Afghanistan

Thailand

Russia

Iran

China

100 50 0 50 100

Accuracy

C
ou

nt
ry

Deep Neural Network Random Forest

40

80

100
Accuracy

Random Forest

40

80

100
Accuracy

Deep Neural Network

Figure 8.: Accuracy in the results for toponym pairs from different countries.

In both these cases, we report on the accuracy for the random forest model (i.e., the best
model in terms of accuracy, from the set of baselines corresponding to the supervised
training of classifiers leveraging similarity scores as features) versus the proposed neural
network architecture. Regarding Figure 7, results are shown for the subset of toponym
pairs where (i) at least one of the toponyms uses characters from a given alphabet (i.e.,
the toponyms in these pairs can have different alphabets), or (ii) both toponyms are con-
sistent in their alphabet. Regarding Figure 8, results are shown for the subset of toponym
pairs where both toponyms belong to the same country.
In both Figures 7 and 8, we can see that worse results are indeed being achieved by the

random forest model, particularly for the case of toponym pairs where different alphabets
are being used in each of the involved toponyms (i.e., the average difference between the
accuracy results of both models is of 8.35 in the case of pairs where the toponyms share the
alphabet, versus an average difference of 14.34 in the other case). These results support
the hypothesis that the deep neural network architecture can indeed be more effective in
cases involving complex character transliterations, which indeed were challenging for the
methods surveyed by Recchia and Louwerse (2013) and by Santos et al. (2017).
Finally, Table 4 illustrates the results obtained with the proposed neural network ar-

chitecture, showing examples of both matching and non-matching pairs of records, that
were either correctly or incorrectly classified. Although the table contains only a small set
of examples, a wider manual analysis of the results confirmed that, although the methods
combining multiple similarity metrics can already detect some of the difficult matching

January 8, 2018 9:32 International Journal of Geographical Information Science output

20 Taylor & Francis and I.T. Consultant

Table 4.: Illustrative examples for the results with the method based on deep learning.

Correctly Classified Incorrectly Classified

Lingzhithang ; Lingzi Tāng Dinas a Sir Abertawe ; Swansea
Klejmont ; Claymont Cawdor Castle ; Chateau de Cawdor

St. Simons ; Saint Simons Island 長間瀬 ; Nagamase
Pontypool ; Pont-y-pŵl Ballachuhsh ; Baile a Chaolais

Siedenbrünzow ; Zidenbrincov North Frisia ; Noordfreesland
Sodelhas ; Soudeilles 格伊森 ; Greußen

Buironfosse ; Биронфос Bodenleve ; Badeleben
Matching minaminohara ; ミミミナナナミミミノノノハハハラララ Tehelieg ; Théhillac

吉吉吉野野野町町町 ; よよよしししのののちちちょょょううう Вiльмуазан ; 莱穆瓦桑
Sunny Isles Beach ; Sani Ajls Bich la Tallada d’Empordà ; la Tallada

ジジジョョョスススララランンン ; Жосселен Virgala Mayor ; Birgaragoien
Coity Castle ; Chateau de Coity Scalabis ; Сантарен
ベベベッッッケケケドドドルルルフフフ ; Беккедорф Wonjangan ; Changal-li

Saldaña ; Sal’dan’ja Roxburgh ; Roxburghshire
粗粗粗卡卡卡娘娘娘村村村 ; Cukaniangcun Southend-on-Sea ; Sautend-on-Si

Jaypāsa ; Jaypara Zlatinitsa ; Zlatina
Bliskastel’ ; Bliesdorf Observatorio Griffith ; Griffith Park

Hayy ad Duhayni ; Hayy ad Dihliz Carnarvonshire ; Kernarvonas
Frankfort ; Frederick Cavalier ; Okrug Kavalir
Cleveland ; Clermont Ben Bhuidhe Mhor ; Beinn Bhuidhe
Génissieux ; Geissan Unterdorf ; Унтердiтфурт

Lichtenstein ; Likhtenrade San Joaninho ; Sao Joanico
Non-Matching Burry Port ; Burry Holm Zandersleben ; Zandbostel

Laararja ; Laanabra Longess ; Longness
Shepun ; Shepshed Sordalsvatnet,nedre ; Norddalsvatnet ovre

Rigin Idi ; Rigachikum La Ferreira ; Ferreiros
下晴山 ; やながさわ Pontino ; ポンツァ

Las Flores ; Flores de Leán Cabo Girao ; Pico do Galo
yao shang ; gao yuan Kiriake Gawa ; Ogogawa Sawa

Saint Combs ; St. Columb Minor Grovane ; Grøtvann

cases (e.g., cases with strings that have a high Levenshtein distance between them, such
as Orange County and Comté d’Orange), problems remained in terms of detecting some of
the more complex transliterations (e.g., pairs like Buironfosse and Биронфос, which the
method based on random forests classified incorrectly as non-matching). The proposed
neural network architecture, on the other hand, is much more effective in such cases. The
correctly classified toponyms that are shown in bold on Table 4 correspond to cases where
the random forest model failed to produce a correct classification.
The datasets used in our experiments, as well as a pre-trained neural-network following

the architecture outlined in Section 3, have been made available online1. This can not
only support the realization of comparative experiments with other datasets and/or with
model variations over the same dataset, but also the integration of the ideas advanced over
this article in other downstream tasks that involve toponym matching and toponym-based
geographical search. Currently ongoing work leverages the model presented in this paper
in the context of digital humanities applications, specifically as a way to address challenges
related to gazetteer data conflation (Berman et al. 2016) and toponym resolution in
historical itineraries (Blank and Henrich 2016).

1http://github.com/ruipds/Toponym-Matching

January 8, 2018 9:32 International Journal of Geographical Information Science output

International Journal of Geographical Information Science 21

5. Conclusions and Future Work

This article presented a novel method, based on a deep neural network architecture, for
addressing the task of matching toponyms. Taking inspiration on previous research fo-
cused on natural language inference, the proposed neural network leverages recurrent
units for encoding two input sequences (i.e., the strings that are to be matched), latter
processing these representations in order to classify the input toponyms as either match-
ing or non-matching. Using a very large dataset, with five million pairs of toponyms
collected from lists of alternative place names taken from the GeoNames gazetteer, we
showed that the proposed method can significantly outperform (i) approaches based on
thresholding the results of individual similarity metrics, and (ii) approaches based on
supervised machine learning for combining the results of multiple similarity metrics. The
proposed method is particularly effective in capturing the complex character transliter-
ations involved in some pairs of toponyms, for example when matching Asian or Arabic
toponyms against their Western transliterations, which would be almost impossible for
the similarity metrics considered in previous research.
Despite the interesting results that are reported in the article, there are also many ideas

for future work. We can, for instance, consider the usage or more advanced optimization
methods for training deep neural networks, or consider systematic approaches for tuning
hyper-parameters. More interestingly, we can also experiment with different model archi-
tectures, such those based on applying convolutions over the input sequences, highway
network architectures, or considering the inclusion of attention mechanisms, again taking
inspiration on recent proposals for textual entailment and other related natural language
processing problems (Yin et al. 2015, Liu et al. 2016, Parikh et al. 2016).
For future work, we also plan to test our deep neural models, learned from GeoNames

data, on the task of matching toponyms collected from other datasets. These can include
datasets of historical place names collected from resources such as the Gazetteer of British
Place Names1, the Gazetteer of Scottish Places2, or the Historical Gazetteer of England’s
Place Names3. Experiments with these data would allow us to assess the degree to which
the inferred models can properly generalize to different contexts. We also plan to evaluate
the proposed method on problems related to matching other types of names, such as
variations on names for companies or individuals (Steinberger et al. 2013).
Given the overall good results, it is our belief that the method advanced in this article

can indeed have important implications for tasks such as gazetteer conflation (Hastings
2008, Berman et al. 2016, Moura et al. 2017) or application areas such as geographic in-
formation retrieval, which involve matching toponyms against reference data (e.g., asso-
ciating gazetteer entries to place names in textual documents, so as to disambiguate their
meaning (Monteiro et al. 2016), or matching toponyms in user queries against databases
of geographical information (Berkhin et al. 2015, McKenzie et al. 2014)). For future work,
we also plan to evaluate extensions/adaptations of the proposed neural architecture, in
some of the aforementioned downstream tasks.

1http://www.gazetteer.co.uk/
2http://www.scotlandsplaces.gov.uk
3http://placenames.org.uk

January 8, 2018 9:32 International Journal of Geographical Information Science output

22 REFERENCES

Acknowledgements

This research was supported by the Trans-Atlantic Platform for the Social Sciences and
Humanities, through the Digging into Data project with reference HJ-253525, and also
through the Reassembling the Republic of Letters networking programme (EU COST Ac-
tion IS1310). The researchers from INESC-ID also had financial support from Fundação
para a Ciência e Tecnologia (FCT), through project grants with references PTDC/EEI-
SCR/1743/2014 (Saturn) and CMUPERI/TIC/0046/2014 (GoLocal), as well as through
the INESC-ID multi-annual funding from the PIDDAC programme, which has the refer-
ence UID/CEC/50021/2013.

References

Anastácio, I., Martins, B., and Calado, P., 2009. Classifying documents according to
locational relevance. In: Proceedings of the Portuguese Conference on Artificial In-
telligence Springer.

Berkhin, P., et al., 2015. A New Approach to Geocoding: BingGC. In: Proceedings of the
ACM SIGSPATIAL International Conference on Advances in Geographic Informa-
tion Systems ACM.

Berman, M.L., Mostern, R., and Southall, H., eds. , 2016. Placing Names : Enriching and
Integrating Gazetteers. Indiana University Press.

Bilenko, M. and Mooney, R.J., 2003a. On Evaluation and Training-Set Construction for
Duplicate Detection. In: Proceedings of the KDD Workshop on Data Cleaning, Record
Linkage, and Object Consolidation ACM.

Bilenko, M. and Mooney, R.J., 2003b. Adaptive duplicate detection using learnable string
similarity measures. In: Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining ACM.

Blank, D. and Henrich, A., 2016. A depth-first branch-and-bound algorithm for geocod-
ing historic itinerary tables. In: Proceedings of the ACM Workshop on Geographic
Information Retrieval ACM.

Bowman, S.R., et al., 2015. A large annotated corpus for learning natural language infer-
ence. In: Proceedings of the Conference on Empirical Methods in Natural Language
Processing ACL.

Breiman, L., 2001. Random Forests. Machine learning, 45 (1).
Brill, E. and Moore, R.C., 2000. An Improved Error Model for Noisy Channel Spelling

Correction. In: Proceedings of the Annual Meeting on Association for Computational
Linguistics ACL.

Chen, T. and Guestrin, C., 2016. XGBoost: A scalable tree boosting system. In: Proceed-
ings of the ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining ACM.

Christen, P., 2006. A Comparison of Personal Name Matching: Techniques and Practical
Issues. In: Proceedings of the Workshops of the IEEE International Conference on
Data Mining IEEE.

Chung, J., et al., 2014. Empirical evaluation of gated recurrent neural networks on se-
quence modeling. In: Proceedings of the NIPS Workshop on Deep Learning.

Cohen, W., Ravikumar, P., and Fienberg, S., 2003. A Comparison of String Distance Met-
rics for Name-Matching Tasks. In: Proceedings of KDD Workshop on Data Cleaning
and Object Consolidation AAAI.

Damerau, F.J., 1964. A technique for computer detection and correction of spelling errors.

January 8, 2018 9:32 International Journal of Geographical Information Science output

REFERENCES 23

Communications of the ACM, 7 (3).
Davis, C.A. and De Salles, E., 2007. Approximate String Matching for Geographic Names

and Personal Names. In: Proceedings of the Brazilian Symposium on GeoInformatics
INPE.

Dice, L.R., 1945. Measures of the amount of ecologic association between species. Ecology,
26 (3).

Freire, N., et al., 2011. A metadata geoparsing system for place name recognition and res-
olution in metadata records. In: Proceedings of the Annual International ACM/IEEE
Joint Conference on Digital Libraries ACM.

Fu, G., Jones, C.B., and Abdelmoty, A.I., 2005. Building a Geographical Ontology for
Intelligent Spatial Search on the Web. In: Proceedings of the IASTED International
Conference on Databases and Applications ACTA Press.

Geurts, P., Ernst, D., and Wehenkel, L., 2006. Extremely randomized trees. Machine
Learning, 63 (1).

Goodfellow, I., Bengio, Y., and Courville, A., 2016. Deep Learning. MIT Press.
Hastings, J.T., 2008. Automated conflation of digital gazetteer data. International Jour-

nal of Geographical Information Science, 22 (10).
Hastings, J. and Hill, L., 2002. Treatment of duplicates in the Alexandria digital library

gazetteer. In: Proceedings of the International Conference on Geographic Information
Science Springer.

Hochreiter, S. and Schmidhuber, J., 1997. Long Short-Term Memory. Neural Computa-
tion, 9 (8).

Jaccard, P., 1912. The distribution of the flora in the alpine zone.. New phytologist, 11
(2).

Jaro, M.A., 1989. Advances in record-linkage methodology as applied to matching the
1985 census of Tampa, Florida. Journal of the American Statistical Association, 84
(406).

Joshi, T., et al., 2008. Crosslingual Location Search. In: Proceedings of the International
ACM SIGIR Conference on Research and Development in Information Retrieval
ACM.

Keskustalo, H., et al., 2003. Non-adjacent digrams improve matching of cross-lingual
spelling variants. In: Proceedings of the International Symposium on String Process-
ing and Information Retrieval Springer.

Kilinç, D., 2016. An accurate toponym-matching measure based on approximate string
matching. Journal of Information Science, 42 (2).

Kingma, D. and Ba, J., 2015. Adam: A method for stochastic optimization. In: Proceedings
of the International Conference for Learning Representations.

Levenshtein, V.I., 1966. Binary codes capable of correcting deletions, insertions and re-
versals. Soviet Physics Doklady, 10.

Li, L., et al., 2016. Entropy-Weighted Instance Matching Between Different Sourcing
Points of Interest. Entropy, 18 (2), 45.

Liu, Y., et al., 2016. Learning Natural Language Inference using Bidirectional LSTM
Model and Inner-Attention. arXiv preprint arXiv:1605.09090.

Martins, B., 2011. A supervised machine learning approach for duplicate detection over
gazetteer records. In: Proceedings of the International Conference on GeoSpatial Se-
mantics Springer.

McKenzie, G., Janowicz, K., and Adams, B., 2014. A weighted multi-attribute method for
matching user-generated points of interest. Cartography and Geographic Information
Science, 41 (2).

January 8, 2018 9:32 International Journal of Geographical Information Science output

24 REFERENCES

Monge, A.E. and Elkan, C.P., 1996. The Field Matching Problem: Algorithms and Ap-
plications. In: Proceedings of the AAAI International Conference on Knowledge Dis-
covery and Data Mining AAAI.

Monteiro, B.R., Davis, C.A., and Fonseca, F., 2016. A survey on the geographic scope of
textual documents. Computers & Geosciences, 96 (C).

Moreau, E., Yvon, F., and Cappé, O., 2008. Robust similarity measures for named en-
tities matching. In: Proceedings of the International Conference on Computational
Linguistics ACL.

Mou, L., et al., 2016. Natural language inference by tree-based convolution and heuristic
matching. In: Proceedings of the Annual Meeting of the Association for Computa-
tional Linguistics ACL.

Moura, T., Davis, C., and Fonseca, F., 2017. Reference data enhancement for geographic
information retrieval using linked data. Transactions in GIS, 21 (4).

Mueller, J. and Thyagarajan, A., 2016. Siamese Recurrent Architectures for Learning
Sentence Similarity. In: Proceedings of the AAAI Conference on Artificial Intelligence
AAAI.

Navarro, G., 2001. A Guided Tour to Approximate String Matching. ACM Computing
Surveys, 33 (1).

Needleman, S.B. and Wunsch, C.D., 1970. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of molecular biology,
48 (3).

Parikh, A.P., et al., 2016. A Decomposable Attention Model for Natural Language Infer-
ence. In: Proceedings of the Conference on Empirical Methods on Natural Language
Processing ACL.

Philips, L., 2000. The double metaphone search algorithm. C/C++ Users Journal, 18
(6).

Recchia, G. and Louwerse, M., 2013. A Comparison of String Similarity Measures for To-
ponym Matching. In: Proceedings of the ACM SIGSPATIAL International Workshop
on Computational Models of Place ACM.

Ristad, E.S. and Yianilos, P.N., 1998. Learning string-edit distance. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 20 (5).

Rosenblatt, F., 1958. The Perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65 (6).

Santos, J., Anastácio, I., and Martins, B., 2015. Using machine learning methods for
disambiguating place references in textual documents. GeoJournal, 80 (3).

Santos, R., Murrieta-Flores, P., and Martins, B., 2017. Learning to Combine Multiple
String Similarity Metrics for Effective Toponym Matching. International Journal of
Digital Earth.

Schuster, M. and Paliwal, K.K., 1997. Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, 45 (11).

Sehgal, V., Getoor, L., and Viechnicki, P.D., 2006. Entity resolution in geospatial data in-
tegration. In: Proceedings of the Annual ACM International Symposium on Advances
in Geographic Information Systems ACM.

Simon, R., et al., 2014. Towards semi-automatic annotation of toponyms on old maps.
e-Perimetron, 9 (3).

Smart, P.D., Jones, C.B., and Twaroch, F.A., 2010. Multi-source toponym data integra-
tion and mediation for a meta-gazetteer service. In: Proceedings of the International
Conference on Geographic Information Science Springer.

Srivastava, N., et al., 2014. Dropout: A Simple Way to Prevent Neural Networks from

January 8, 2018 9:32 International Journal of Geographical Information Science output

REFERENCES 25

Overfitting. Journal of Machine Learning Research, 15 (1).
Steinberger, R., et al., 2013. JRC-Names: A freely available, highly multilingual named

entity resource. In: Proceedings of the International Conference on Recent Advances
in Natural Language Processing ACL.

Varol, C. and Bayrak, C., 2012. Hybrid Matching Algorithm for Personal Names. Journal
of Data and Information Quality, 3 (4).

Weinman, J., 2013. Toponym Recognition in Historical Maps by Gazetteer Alignment. In:
Proceedings of the International Conference on Document Analysis and Recognition
IEEE.

Winkler, W.E., 1990. String Comparator Metrics and Enhanced Decision Rules in the
Fellegi-Sunter Model of Record Linkage.. Proceedings of the Section on Survey Re-
search Methods of the American Statistical Association.

Yin, W., et al., 2015. ABCNN: Attention-based convolutional neural network for modeling
sentence pairs. arXiv preprint arXiv:1512.05193.

Zheng, Y., et al., 2010. Detecting nearly duplicated records in location datasets. In:
Proceedings of the ACM SIGSPATIAL International Conference on Advances in Ge-
ographic Information Systems ACM.

