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Abstract 

Machine learning is a powerful tool that has previously been used to classify 

schizophrenia (SZ) patients from healthy controls (HC) using magnetic resonance 

images. Each study, however, uses different datasets, classification algorithms, and 

validation techniques. Here, we perform a critical appraisal of the accuracy of machine 

learning methodologies used in SZ/HC classifications studies by comparing three 

machine learning algorithms (logistic regression [LR], support vector machines [SVMs], 

and linear discriminant analysis [LDA]) on three independent datasets (435 subjects total) 

using two tissue density estimates and cortical thickness (CT). Performance is assessed 

using 10-fold cross-validation, as well as a held-out validation set. Classification using 

CT outperformed tissue densities, but there was no clear effect of dataset. LR, SVMs, and 

LDA each yielded the highest accuracies for a different feature set and validation 

paradigm, but most accuracies were between 55-70%, well below previously reported 

values. The highest accuracy achieved was 73.5% using CT data and an SVM. Taken 

together, these results illustrate some of the obstacles to constructing effective disease 

classifiers, and suggest that tissue densities and CT may not be sufficiently sensitive for 

SZ/HC classification given current available methodologies and sample sizes.  
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1 Introduction 

Schizophrenia (SZ) and related psychoses are typically diagnosed using criteria defined 

in the 5th edition of The Diagnostic and Statistical Manual of Mental Disorders 

(American Psychiatric Association, 2013). However, the etiology of SZ is poorly 

understood (American Psychiatric Association, 2013; Demirci and Calhoun, 2009; Kim 

et al., 2015). While differences among brain regions have been consistently observed in 

univariate analyses at the group level (Csernansky et al., 2002; Gaser et al., 2004; Narr et 

al., 2005), these differences cannot be used for automated, patient-by-patient, 

biologically-defined diagnosis. To this end, studies have recently explored the diagnostic 

value of magnetic resonance (MR) imaging data (Davatzikos et al., 2005) in combination 

with machine learning, a field of computer science that uses pattern recognition for 

classification and predictive tasks (Kambeitz et al., 2015; Zarogianni et al., 2013).  

These machine learning studies in SZ can be difficult to compare to one another due to 

differences in study populations, data processing steps, classification algorithms, and 

validation techniques. This heterogeneity was recently highlighted in a study that 

surveyed 38 publications that applied machine learning to SZ classification (Kambeitz et 

al., 2015). The 18 studies from this review that used structural MRI data are highlighted 

in Table 1 (along with sample characteristics, choice of inputs, methodology, and 

validation techniques).  

We have performed a comprehensive comparison of machine learning techniques and 

methods used in SZ classification. Our evaluation included the most frequently-used 
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classifiers (linear discriminant analysis and linear and non-linear support vector 

machines), one less common one (logistic regression), and a popular publicly-available 

method (COMPARE (Fan et al., 2007)) across three independent datasets (435 subjects 

acquired at 1.5T and 3T) of both first-episode and chronic patients. We also used three 

MR-derived metrics including voxel based morphometry (VBM) (Ashburner and Friston, 

2000), RAVENS maps (Davatzikos et al., 2001), and cortical thickness measures (Lerch 

and Evans, 2005) yielding a total of 42 comparisons (summarized in Table 2). Finally, we 

assessed the impact of two different validation methods on generalizability: 10-fold 

cross-validation, and a held-out dataset. To the best of our knowledge, this study is the 

most expansive and systematic on this topic to date.  

2 Materials and Methods 

2.1 Datasets Evaluated 

Classification performance was evaluated on three independently-collected datasets, all 

of which have been published previously. For descriptions and demographics, see Table 3 

and Supplementary Materials and Methods Section 1. 

1. Centre for Addiction and Mental Health (CAMH) (Voineskos et al., 2011; 

Wheeler et al., 2013).  

2. Northwestern University Schizophrenia Data and Software Tool (NUSDAST) 

(Wang et al., 2013).  

3. National Institute of Neurology and Neurosurgery (INNN) (de la Fuente-Sandoval 

et al., 2011, 2013; Plitman et al., 2015).  
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2.2 Image Processing 

Three neuroanatomical metrics were selected based on their prevalence in previous 

studies (Table 1). Further information can be found in Supplementary Materials 

and Methods Section 2.  

1) Modulated GM VBM (Ashburner and Friston, 2000; Karageorgiou et al., 2011; 

Nieuwenhuis et al., 2012; Schnack et al., 2013). Briefly, this is a voxel-wise estimate 

of the local density of GM in a given voxel region.  

2) GM RAVENS maps (Davatzikos et al., 2001; Fan et al., 2007; Zanetti et al., 2013). 

A RAVENS map is a metric similar to modulated VBM, but is derived using a 

different method for computing local GM density. RAVENS maps are calculated 

using an open-source software package (Davatzikos et al., 2001). 

3) Cortical thickness (Lerch and Evans, 2005; Takayanagi et al., 2011; Yoon et al., 

2007). This metric measures the thickness of the GM cortical mantle at ~80,000 

vertices across the brain.  

2.3 Machine Learning Analyses 

All analyses were performed using R (www.R-project.org) (R Core Team, 2013). 

Following the work of previous studies (Borgwardt et al., 2010; Karageorgiou et al., 

2011; Kasparek et al., 2011; Santos et al., 2010), a Principal Component Analysis (PCA) 

was applied to reduce dimensionality; only those PCs explaining >1% of the input feature 
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variance were retained (Liu et al., 2012) Table S1 contains a breakdown of the PCs. 

Classification methods and parameter optimization are described in greater detail 

in Supplementary Materials and Methods Section 3. The following algorithms were 

explored: 

x Logistic Regression (LR) uses continuous independent variables to describe a 

single dependent categorical variable. To avoid over-fitting, elastic net 

regularization (a combination of LASSO and ridge regression) were added to the 

models.  

x Support Vector Machines (SVMs) distinguish two distinct classes by 

constructing a hyperplane between the classes using the most ambiguous 

datapoints. The performances of both linear and radial basis function (RBF; ie: 

non-linear) kernels were assessed.  

x Linear Discriminant Analysis (LDA) performs classification based on 

continuous variables, and maps input features to a lower dimensional space using 

a linear transformation. In this space, between-class variance is maximized, and 

within-class variance is minimized.  

x COMPARE is a software tool that combines feature reduction techniques with an 

SVM-based classifier (RBF kernel) to perform classifications based on tissue 

densities (Davatzikos et al., 2005; Fan et al., 2007; Zanetti et al., 2013).  

 

Algorithm Validation 
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Two validation methods were compared: 10-fold cross-validation and classification on a 

previously “unseen” and held-out subset of each sample (Figure 1). The data were first 

split randomly (SZ:HC ratio retained) into two subsets (2:1 ratio), which we will 

refer to henceforth as the ‘training’ and ‘validation’ sets. PCA-based dimensionality 

reduction was applied to the full training set, and then the validation dataset was 

projected onto this PC space to ensure consistency in the features between datasets. 

To assist with parameter tuning and to allow for comparison with multiple 

validation methods, we performed 10-fold cross-validation in the training set and 

report the performance. We then applied our trained models to the validation set 

(the 1/3rd of the data that had been held out) to get an estimation of performance on 

an unseen dataset. Algorithm accuracy (percentage of correctly-classified subjects) 

averaged across folds is reported for the training set, while accuracy, sensitivity, and 

specificity are reported for the validation set. Given that our data had only one of two 

possible classes (HC or SZ), the significance of each accuracy result was assessed 

using a test statistic for the binomial distribution. 
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3 Results 

All training set results (using 10-fold cross-validation) are summarized in Table 4. 

Results from the held-out subset are summarized in Table 5. Further details are provided 

in the Supplementary Materials and Methods.  

3.1 Modulated VBM demonstrates poor accuracy 

Results using modulated VBM demonstrate poor accuracy through 10-fold cross-

validation (<65% throughout) (Table 4). Non-linear SVMs offer the highest performance 

(mean accuracy of 63.2% across the three datasets versus 59.8% mean accuracy for LR, 

55.1% for linear SVM, and 57.7% for LDA). The pairing of non-linear SVMs and 

modulated VBM consistently performed the best within each dataset (accuracies 61.7-

64.2%; best performance in NUSDAST dataset). In all cases, performance is better than 

chance based on a binomial probability statistic, with the exception of the linear SVM 

applied to the INNN and NUSDAST datasets.  

The validation results (Table 5) are on par with the training results for most algorithms. 

In the cases of LR and linear SVM, validation set accuracy exceeds 10-fold training 

accuracy in almost all cases, with the biggest gain in the NUSDAST data set (e.g.: LR 

training: 57.4%; LR validation: 65.2%). However, when using a non-linear SVM, the 

accuracy observed for the validation set is notably lower than the training set for both 

NUSDAST (training: 64.2%; validation: 56.5%) and INNN (training: 63.8%; validation: 
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59.4%). Similarly, NUSDAST accuracy improves with the use of LDA in the validation 

set over the training set (training: 56.4%; validation: 63.0%). Nonetheless, based on the 

performance in the validation phase, no single method outperformed the others. There is 

no fixed trend for sensitivity and specificity performance; however, a number of the 

models selectively show very poor sensitivity and specificity (<50% for most trials in the 

CAMH dataset). Conversely, other models demonstrate exceedingly high sensitivity at 

the expense of very low specificity (NUSDAST dataset). Only those methods with >60% 

accuracy in the CAMH and NUSDAST datasets performed better than chance for 

validation.  

3.2 Performance with RAVENS is not better than 
modulated VBM 

As with modulated VBM, the use of RAVENS maps demonstrates poor accuracy across 

all datasets and algorithm types. Within the training data (Table 4), LR performed the 

best for the NUSDAST and INNN datasets (66.0% and 70.0%; respectively), while non-

linear SVM performs the best for the CAMH dataset (63.3%). Across methods, LR was 

also the best performer (mean accuracy of 65.6% versus 60.1% for linear SVM, 62.0% 

for non-linear SVM, and 57.6% for LDA). Regardless, there was no discernable impact 

of datasets on performance. Almost all of the training algorithms performed better than 

chance, except for linear SVM and LDA in the CAMH and INNN datasets, respectively. 

Within the validation dataset (Table 5), the RAVENS accuracies do not seriously over- or 

under-perform compared to the training data. Overall, the accuracies were slightly higher 

than the modulated VBM results (61.4% versus 59.9%). LDA in the CAMH dataset 

(69.5%) and linear SVM in the NUSDAST dataset (69.6%) outperformed all other 
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methods. In general, LDA outperformed all other methods with 65.7% accuracy averaged 

across the three datasets (compared to 61.7% for LR, 58.5% for linear SVM, and 59.8% 

for non-linear SVM). None of the datasets notably outperformed the others. Only seven 

of the twelve methods performed better than chance.  

Sensitivity and specificity results were very similar to the observations made using 

modulated VBM. Some models show very poor sensitivity (<50% for most trials in the 

CAMH dataset as with modulated VBM) and specificity, while other models 

demonstrated exceedingly high sensitivity at the expense of very low specificity 

(NUSDAST dataset, as with modulated VBM).  

3.3 Cortical thickness offers improved accuracy, specificity, 
and sensitivity 

Compared to both modulated VBM and RAVENS, the use of cortical thickness as an 

input improves many of the classification results within the training set (Table 4). In this 

particular case we see that many of the accuracies trend towards or exceed 70% 

(nonlinear SVM with CAMH: 68.0%; LR, linear SVM, and nonlinear SVM with 

NUSDAST: 68.8%, 71.9%, and 68.8% respectively). However, the group with the 

smallest sample size, INNN, did not achieve these accuracies. Non-linear SVMs 

outperformed all other methods in the training data (67.0% mean accuracy versus 59.1% 

for LR, 64.2% for linear SVM, and 59.6% for LDA). In this particular case there is a 

clear effect of the dataset used, where NUSDAST dataset yields observably better results 

overall, with a mean accuracy of 68.8% across the four algorithms (compared with 58.6% 

for CAMH and 60.0% for INNN). All training sets performed better than chance except 

for LR in CAMH and INNN datasets.  



Winterburn 12 

In the validation phase, many improvements in classification accuracy are observed 

relative to the two tissue density metrics (Table 5). Similar to the training phase, many of 

the methods trend towards or exceed 70% classification accuracy. The best performance 

was observed using nonlinear SVM in the INNN dataset, with an accuracy of 73.5% 

(CAMH with LDA: 68.3%; NUSDAST with LR, linear SVM, and nonlinear SVM: 70.8, 

68.1, and 70.8%, respectively; LR for INNN: 69.7%). LR outperformed all other methods 

in the validation set, with 66.9% mean accuracy across the three datasets (compared with 

62.9% for linear SVM, 63.7% for non-linear SVM, and 63.9% for LDA). The NUSDAST 

dataset performed better overall across the four algorithms, with 68.1% mean accuracy 

(compared with 63.5% for CAMH and 61.5% for INNN). Similar to the modulated VBM 

data, a number of the models show very poor (<50%) sensitivity, mostly with the CAMH 

dataset. However, this trend is not nearly as prevalent as observed with modulated VBM 

and RAVENS maps. All models performed better than chance except linear SVM and 

LDA using the INNN dataset.  

3.4 Using COMPARE improves classification accuracy 
using modulated VBM 

The input, training, and validation datasets used with the COMPARE algorithm were 

identical to those used for the modulated VBM analyses. On the training sets, 

COMPARE performed with an overall accuracy of 63.3%, 71.3%, and 71.2% on the 

CAMH, NUSDAST, and INNN datasets, respectively (Table 4). These accuracies were 

higher than any of the other methods using modulated VBM in training. On the validation 

set, the performance was 55.9%, 61.0%, and 67.7% for the CAMH, NUSDAST, and 

INNN datasets, respectively (Table 5). These results are similar to the non-COMPARE 
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validation results. However, the accuracy for INNN is better than what was observed in 

any of the validation results for modulated VBM (maximum accuracy 65.2% with LR). 

All results were statistically greater than chance except for the validation subset of the 

CAMH data.  

The subjects selected for inclusion, training, and testing in the RAVENS COMPARE 

analysis were the same as those used in the modulated VBM analysis. With RAVENS 

inputs, COMPARE achieved surprisingly low overall accuracies of 55.8%, 50.0%, and 

50.0% in the training set, and 51.2%, 51.0%, and 50.6% in the validation set for the 

CAMH, NUSDAST, and INNN datasets, respectively. Only the CAMH training data 

yielded an accuracy statistically greater than chance. 
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4 Discussion 

The effectiveness of machine learning algorithms commonly used in the literature for 

classifying patients with SZ from HC were compared on three independent datasets using 

cortical thickness and two estimates of tissue density, and validated using three different 

techniques. The performance of all algorithms on all datasets was poor relative to 

previously reported results; however algorithms constructed using cortical thickness 

generally outperformed the others. Non-linear SVMs marginally outperformed the other 

methods using 10-fold cross-validation with modulated VBM and cortical thickness. LR 

was slightly superior to the other methods using a left-out validation dataset with both 

modulated VBM and cortical thickness, with a maximum accuracy of 70.8% for cortical 

thickness in the NUSDAST dataset. The best algorithms using RAVENS maps were LR 

in the training set and LDA in the validation set. The best result overall was 73.5% in the 

INNN validation subset using a non-linear SVM and cortical thickness.  

No single dataset consistently over- or under-performed relative to the other two, 

although the NUSDAST dataset performed the best of the three datasets when using 

cortical thickness data, which turned out to be the most effective discriminatory 

metric used in this study. This result is not trivial to explain, as the datasets differ in 

multiple ways, including: primary diagnosis of the patient group, illness duration 

and severity, sample size, and the MR field strength used to acquire the images 

(Table 3). Additionally, the NUSDAST dataset is neither the smallest nor the largest 

of the datasets used in this study, and its patient population is not well-characterized 
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in its original publication (only an general diagnosis of schizophrenia is provided). It 

could be that this was the most homogeneous of the three datasets (in terms of 

illness duration, illness severity, medication status), and thus classification into two 

distinct groups was the most straight-forward.  

In general, the diagnoses present across the three datasets are heterogeneous. The 

CAMH dataset contains subjects with both schizophrenia and schizoaffective 

disorder; as mentioned, the subjects in the NUSDAST dataset are not characterized 

diagnostically beyond schizophrenia/control; and the INNN subjects all have non-

affective psychosis (either brief psychotic disorder, schizophreniform disorder, or 

schizophrenia). To explore if the heterogeneity of the samples was causing our low 

accuracies, we reanalyzed the CAMH VBM dataset with the schizoaffective subjects 

(n=26) excluded. Accuracies in this non-affective subset were even lower (<54% for 

all algorithms). Therefore it is unclear if the clinical heterogeneity is affecting the 

accuracies. Given the enforced homogeneity of the INNN dataset (early in disease 

course, unmedicated), as well as the high symptom severity (relative to the CAMH 

dataset, as measured using the Positive and Negative Syndrome Scale (Kay et al., 

1987)), we expected the clearest differentiation between patient and control groups 

compared with the CAMH and NUSDAST datasets. This, however, was not what we 

observed. It may be that this population was composed of patients so early in their 

disease course that they were not yet correctly diagnosed. More likely, the well-

documented effects of medication on neuroanatomy actually aid classification, as 

they further differentiate patient and control groups beyond the subtle natural 
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differences in their neuroanatomy (Ho et al., 2011). The effect of medication on 

classification performance merits significant further study.  

We acknowledge that many of our results are difficult to explain and may seem a bit 

atypical. We believe our results illustrate that, contrary to existing results in the 

literature, reliable and versatile SZ/HC classifiers are difficult to construct, and 

existing classifiers in the literature may be over-estimating performance.  

To the best of our ability we attempted to replicate the methodologies used in previous 

studies (Table 1). The accuracies we observed are considerably lower than what others 

report. Specifically, studies using SVMs with an RBF kernel trained on tissue densities 

report accuracies between 81.1% and 91.8%, compared with 55.4% - 66.1% achieved 

here (Davatzikos et al., 2005; Fan et al., 2007; Zanetti et al., 2013). Likewise, accuracies 

of 71.4% have been reported using linear SVMs (Nieuwenhuis et al., 2012), compared 

with 51.9% - 65.6% in this study; and 86.1% using LR (Sun et al., 2009), compared with 

56.3% - 67.8%. The cortical thickness results were also lower than what has been 

previously reported (Yoon et al., 2007). Many of these studies, however, have small 

sample sizes (<36 subjects/group) (Fan et al., 2007; Karageorgiou et al., 2011; Sun et al., 

2009), which may limit their results. Additionally, many of the studies use LOOCV, and 

do not validate the model on a held-out dataset. The results from the COMPARE analysis 

were not as high as those initially recorded by Fan and colleagues (Fan et al., 2007). A 

similar result was reported by Zanetti and colleagues (Zanetti et al., 2013), and they 

postulated that it was likely due to the forced homogeneity of the dataset used in the Fan 

study, which does not reflect the ‘real-word’ heterogeneity of a patient population. It has 

been proposed that an SVM classifier with an RBF kernel is not applicable for very high-
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dimensional feature sets, and under certain conditions can lead to severe underfitting 

(subjects are all assigned to the majority class) or overfitting (Keerthi and Lin, 2006). 

Underfitting may have been an issue in our datasets, as the sensitivity and specificity 

results suggest that classifications were sometimes driven by overclassifying a specific 

group (ie: the most stable results may have come from classifying a disproportionate 

number of individuals as SZ or HC). It is possible that this effect could be corrected using 

a weighting term, and this should be explored in future studies. Classification studies 

have also been performed using other imaging modalities. A recent study reviewed 

methods for multivariate analysis in functional MRI (Pereira et al., 2009). Much like 

our study, they were not able to conclude that one particular combination of data 

processing and algorithm was optimal; however hopefully this type of work will set 

a precedent for future systematic studies across imaging modalities.  

It is interesting that we had difficulty replicating the findings of previous manuscripts 

given that our samples are on par with or substantially larger than samples previously 

used in the literature (Fan et al., 2007; Sun et al., 2009; Yoon et al., 2007; Zanetti et al., 

2013). In support of this, there is literature that suggests that larger samples may in 

fact be problematic (Schnack and Kahn, 2016). Smaller studies typically have more 

tightly-controlled exclusion criteria, and therefore are often more homogeneous. As 

sample sizes grow, so does the heterogeneity of the sample. This may have the 

somewhat counter-intuitive and unexpected effect of decreasing performance as 

sample size increases.  

Leave-one-out cross-validation (LOOCV) is used throughout the SZ classification 

literature, although it has been criticized due to its tendency to over-fit data and 
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provide an inconsistent estimate of the true model (Shao, 1993). LOOCV was 

performed in the training set of only the best performing dataset and metric 

combination to illustrate the possibility of overfitting. Given this tendency of LOOCV 

to over-estimate generalizability, we expected to see higher estimates of accuracy from 

the LOOCV experiments, although this was only observed in the non-linear SVM case 

(69.8% LOOCV accuracy versus 68.8% using 10-fold cross-validation). For all 

algorithms, the LOOCV-derived models performed worse on the left-out dataset than the 

models derived from 10-fold cross-validation, which supports the hypothesis that 

LOOCV is prone to over-fitting in the training dataset, and does not always create the 

best model for unseen data.  

Given the above factors, it is difficult to conclude that there is an optimal combination of 

image preprocessing, training, testing, and machine learning methods. However, we 

propose that cortical thickness inputs, when paired with LR or SVM, appear to provide 

the most robust estimates across datasets and methods. Further, we propose the use of 10-

fold cross validation and testing on an “unseen” dataset may be critical to buffer against 

over-fitting models and to provide robust estimates of classification accuracy, sensitivity, 

and specificity. Larger datasets may also help to understand the behaviour of all 

permutations within the methodologies tested. It would have been prohibitive to assess 

all possible variables that contribute to algorithm performance and conduct a fully 

controlled study where all variables are independent. We endeavored in this study, 

however, to shed some light on possible major contributing factors. Significant 

future work is needed to tease out in more detail the specific main effects and 

interactions. 
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Although the sample sizes of our three datasets compare favourably with previous 

studies, a limitation in our study (and in most machine learning studies in neuroimaging) 

is the number of subjects we had available to us. This meant that the number of subjects 

we included was much lower than the number of variables we used. Increasing sample 

size may improve the reliability of our results, or perhaps better expose the limitations of 

dimensionality reduction, training, and machine learning methods. Some of our results 

showed high sensitivity at the expense of low specificity. With a larger sample size, 

this could be mitigated by preserving the patient:control ratio within all folds of the 

10-fold cross-validation. Additionally, the number of features available from an MR 

image is enormous, and overfitting can be an issue with such large feature spaces. In 

order to manage this amount of data, some sort of dimensionality reduction must be 

performed, whether it be selecting a limited number of regions-of-interest (Greenstein, 

Malley, Weisinger, Clasen, & Gogtay, 2012; Nakamura et al., 2004; Ota et al., 2012; 

Pettersson-Yeo et al., 2013; Takayanagi et al., 2010, 2011; Yushkevich et al., 2005), 

image downsampling (Davatzikos et al., 2005; Nieuwenhuis et al., 2012), a PCA 

(Kasparek et al., 2011; Santos et al., 2010), an entirely novel method, (Fan et al., 2007; 

Zanetti et al., 2013), or some combination of thereof (Borgwardt et al., 2010; 

Karageorgiou et al., 2011; Nieuwenhuis et al., 2012). With improved computational 

power, it may be possible to retain all variables, and capture more of the subtle variability 

that exists between the brains of SZ patients and HC.  

We used a binomial probability statistic, which indicates how likely a given result is 

assuming the data follows a binomial distribution, to assess how meaningful our 

accuracy results were. Another method for assessing this is permutation testing, 
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which although more computationally expensive, is more generalizable as it does not 

assume an inherent probability distribution. Additionally, it may be more suitable 

to classification studies that use cross-validation (Noirhomme et al., 2014). In our 

case, since our data is non-random and can only be assigned to one of two classes, 

the binomial probability test was sufficient; however, the possible benefits of 

permutation testing should be explored in future studies. 

In conclusion, this study illustrates some of the limitations of applying machine learning 

to neuroimaging data, and suggests that perhaps cortical thickness and tissue densities are 

not reliable features for distinguishing between SZ and HC groups on a patient-by-patient 

basis using these methods. It is always tempting to adjust datasets and algorithms to boost 

accuracy after seeing the final results, but in this study, we endeavored to estimate the 

true discriminative ability of the algorithms, and limit data pre-processing and tailoring. 

Along with future, more extensive studies, the results from this study can be used to 

construct guidelines (such as most discriminative feature type, data preprocessing steps, 

dimensionality reduction, model selection, and training/validation paradigm) for 

performing classifications on novel datasets, which holds the promise of a clinical 

application supplementing symptom-based diagnoses. 
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Figure 1: Validation scheme for training algorithms. Data was split into training and 
validation subsets (ratio 2:1, SZ:HC ratio retained). The validation data was set aside, and 
the training subset was further divided into training and testing groups to tune the model 
parameters using 10-fold cross-validation. The tuned models were then applied to the 
validation set. Performance is reported for both training and validation groups.  
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Table 1: Studies using structural MR imaging to classify schizophrenia patients and healthy controls included in Kambeitz et al., 2015 
Study Sample Method Validation Metric Feature Reduction Accuracy 
Bansal et al., 2012 65 HC, 40 SZ Hierarchical 

Clustering 
10 rounds of 
split-half & 
LOOCV 

Surface morphology of 
cortical & subcortical 
ROIs 

Spherical wavelet 
representation 

93.3% 

Borgwardt et al., 2012 22 HC, 23 FEP SVM (non-linear) Nested cross-
validation 

RAVENS (GM) Multivariate filter 
method & PCA 

86.7% 

Davatzikos et al., 2005 79 HC, 69 SZ SVM (non-linear) LOOCV RAVENS (GM, WM, 
CSF) 

Image downsampling 
& COMPARE 

81.1% 

Fan et al., 2007 Female Sample: 38 HC, 
23 SZ 
Male Sample: 41 HC, 
46 SZ 

SVM (non-linear) LOOCV RAVENS (GM, WM, 
CSF) 

COMPARE 91.8% 
 
90.8% 

Greenstein et al., 2012 99 HC, 98 SZ Random Forests Out-of-bag (33% 
left out at each 
tree) 

74 ROIs (cortical and 
subcortical volumes) 

None 73.6% 

Karageorgiou et al., 
2011 

47 HC, 28 ROS LDA LOOCV 95 ROIs & 75 
neuropsychological 
variables 

PCA 64.3% 
sensitivity, 
76.6% 
specificity 

Kasparek et al., 2011 39 HC, 39 FEP LDA Jackknife 
(LOOCV) 

Local intensity 
features 

PCA 71.8% 

Kawasaki et al., 2007 Training Sample: 30 
HC, 30 SZ 
Held-out Group: 16 
HC, 16 SZ 

LDA LOOCV 
 
Held-out group 

VBM (GM) Eigenimage 
decomposition 

76.7% 
 
84.4% 

Nakamura et al., 2004 Female Sample: 22 HC, 
27 SZ 
Male Sample: 25 HC, 
30 SZ 

LDA Unknown 8 ROIs on 3 coronal 
slices 

Stepwise variable 
addition 

81.6% 
 
80.0% 

Table(s)



Nieuwenhuis et al., 
2012 

Training Sample: 111 
HC, 128 SZ 
Validation Sample: 122 
HC, 155 SZ 

SVM (linear) LOOCV 
 
Independent 
sample 

VBM (GM) Image downsampling, 
selection of top 10% 
ranked discriminatory 
features & some ROI 
selection 

71.4% 
 
70.4% 

Ota et al., 2012 Female Sample: 128 
HC, 61 SZ 

LDA Held-out group 
(23 HC, 23 SZ) 

VBM (GM & CSF) ROIs & stepwise 
variable addition 

71.7% 

Petterson-Yeo et al., 
2013 

19 HC, 19 FEP SVM (linear) LOOCV GM None 63.2% 

Sun et al., 2009 36 HC, 36 ROS Sparse Multinomial 
Logistic Regression 

LOOCV Surface-based GM 
densities 

None 86.1% 

Santos et al., 2010 25 HC, 43 SZ LDA LOOCV Voxel intensities PCA 66.2% 
Takayanagi et al., 
2010 

Male Sample: 24 HC, 
17 FEP 
Female Sample: 24 HC, 
17 FEP 

LDA LOOCV Select ROIs Stepwise variable 
addition 

75.6% 
 
82.9% 

Takayanagi et al., 
2011 

Male Sample: 22 HC, 
29 FEP 
Female Sample: 18 HC, 
23 FEP 

LDA Held-out group 
(~30%) 
Held-out group 
(~30%) 

Select ROIs & cortical 
thickness 

Stepwise variable 
addition 

86.7% 
 
81.2% 

Yushkevich et al., 
2005 

46 HC, 46 SZ SVM LOOCV Select ROIs LOOCV-based feature 
selection 

70.7% 

Zanetti et al., 2013 62 HC, 62 FE SVM (non-linear) LOOCV RAVENS (GM, WM, 
CSF) 

COMPARE 73.4% 

Sample: FEP: First-Episode Psychosis; HC: Healthy Control; ROS: Recent-Onset Schizophrenia; SZ: Schizophrenia 
Method: LDA: Linear Discriminant Analysis; SVM: Support Vector Machine 
Validation: LOOCV: Leave-One-Out Cross-Validation 
Metric: CSF: Cerebrospinal Fluid GM: Grey Matter; RAVENS: Regional Analysis of Volumes Examined in Normalized Space; ROI: 
Region of Interest; VBM: Voxel-Based Morphometry; WM: White Matter 
Feature Reduction: COMPARE: Classification of Morphological Patterns using Adaptive Regional Elements; PCA: Principal 
Component Analysis 



Table 2: Summary of study design. 42 combinations were studied in total across two 
validation schemes. VBM = voxel-based morphometry; GM = grey matter, RAVENS = 
Regional Analysis of Volumes in Normalized Space (Davatzikos et al., 2001); LR = 
logistic regression; LDA = linear discriminant analysis; SVM = support vector machine; 
COMPARE = Classification of Morphological Patterns using Recursive Feature 
Elimination (Fan et al., 2007).   

Dataset Feature Set Classification Method Validation Scheme 
CAMH VBM (GM) LR 10-fold cross-val 
NUSDAST RAVENS (GM) LDA Held-out subset 
INNN Cortical thickness Linear SVM  
  Non-linear SVM  
  COMPARE  
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Table 3: Demographic characteristics of all datasets 

 CAMH (1.5T) NUSDAST (1.5T) INNN (3T) 

Demographic Schizophrenia 
Patients 

Healthy Controls Schizophrenia 
Patients 

Healthy 
Controls 

FEP Patients Healthy 
Controls 

  (n=88) (n=103) (n=91) (n=67) (n=50) (n=50) 

  Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Age 36.6 12.4 35.2 12.4 32.1 12.2 25.8 9.80 25.8 7.35 23.8 4.79 

Education (years)  13.3a 2.33 15.5a 1.91 12.0a 2.00 13.9a 2.56 11.9a 3.26 15.6a 2.57 

Parental Education 
(years) 

12.7a 7.00 17.0a 4.37 13.8 3.12 14.3 2.66 9.58a 5.19 13.9a 3.01 

WTAR (IQ)  109a 15.7 117a 8.27 -- -- -- -- -- -- -- -- 

MMSE 28.9a 1.75 29.4a 0.833 -- -- -- -- -- -- -- -- 

CIRS 1.55a 0.811 0.824a 0.639 -- -- -- -- -- -- -- -- 

Age of onset 24.0 6.78 NA NA -- -- NA NA 24.7 7.51 NA NA 

Illness Duration (weeks) 658 641 NA NA -- -- NA NA 35.1 56.0 NA NA 

PANSS                 

Positive 14.18 5.98 NA NA -- -- NA NA 23.9 4.97 NA NA 

Negative 14.27 6.11 NA NA -- -- NA NA 24.3 5.83 NA NA 

General 25.33 6.99 NA NA -- -- NA NA 49.4 8.61 NA NA 

SAPS -- -- NA NA 22.4 16.8 NA NA -- -- NA NA 

SANS -- -- NA NA 30.5 17.3 NA NA -- -- NA NA 

  N N N N N N 

Diagnosis 60 SZ 27 SA NA -- -- NA 11 BPD/ 18 
SFD/ 21 SZ 

NA 

Sex 58 M 30 F 56 M 46 F 61 M 30 F 39 M 28 F 31 M 19 F 32 M 18 F 

Handedness 80 R 6 L  89 R 7 L 80 R 9 L 58 R 9 L 50 R 50 R 

a significant at p<0.05 between diagnostic groups 

Abbreviations: SD = Standard Deviation; WTAR = Weschler Test for Adult Reading; 
MMSE = Mini-Mental State Exam; CIRS = Cumulative Illness Rating Scale; PANSS =  
Positive And Negative Syndrome Scale; SAPS = Scale for Assessment of Positive 
Symptoms; SANS = Scale for Assessment of Negative Symptoms; SZ = Schizophrenia; 
SA= Schizoaffective Disorder; BPD = Bipolar Disorder; SFD = Schizophreniform 
Disorder 
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Table 4: All training set results (using 10-fold cross-validation). Results are reported as % 
accuracy (averaged across all folds).  

 Modulated VBM RAVENS Maps Cortical Thickness 
  CAMH NUSDAST INNN CAMH NUSDAST INNN CAMH NUSDAST INNN 
LR 60.0b 57.4a 62.1a 60.8c 66.0c 70.0c 50.8 68.8c 57.6 
SVM (linear) 55.0a 54.3 56.1 51.7 55.3a 66.7c 60.2b 71.9c 60.6a 

SVM (RBF) 61.7c 64.2b 63.8b 63.3c 60.9b 69.8c 68.0c 68.8c 64.1b 

LDA 59.2b 56.4a 57.6a 59.2b 57.5a 56.1 55.5a 65.6c 57.6a 

COMPARE 63.3c 71.3c 71.2c 55.8a 50.0 50.0 -- -- -- 

Significance in binomial probability test (accuracies are significantly > than chance): 
ap<0.05 
bp<0.01 
cp<0.005 

Table(s)



Table 5: All validation set results. Results are reported as % accuracy (sensitivity/specificity).  
 Modulated VBM RAVENS Maps Cortical Thickness 
  CAMH NUSDAST INNN CAMH NUSDAST INNN CAMH NUSDAST INNN 
LR 62.7a 

(23.1/93.9) 
65.2a 

(100/18.8) 
62.5 

(68.8/56.33) 
67.8c 

(30.1/97.0) 
60.9a 

(92.6/15.8) 
56.3 

(68.8/43.8) 
60.3a 

(24.1/91.1) 
70.8c 

(78.6/60.0) 
69.7a 

(59.0/76.5) 
SVM (linear) 55.9 

(38.5/69.7) 
63.0a 

(63.0/63.2) 
62.5 

(62.5/62.5) 
52.5 

(11.5/84.9) 
69.6b 

(77.8/57.9) 
65.6a 

(68.8/62.5) 
61.9a 

(65.5/58.8) 
68.1c 

(75.0/60.0) 
58.8 

(52.9/64.7) 
SVM (RBF) 62.7a 

(38.5/81.8) 
56.5 

(92.6/5.26) 
59.4  

(56.3/62.5) 
66.1b 

(46.2/81.8) 
58.7  

(100/0) 
53.1 

(87.5/18.8) 
63.5a 

(44.8/79.4) 
70.8c 

(78.6/60.0) 
73.5c 

(58.8/88.2) 
LDA 57.6 

(34.6/75.8) 
63.0a 

(77.8/42.1) 
56.3  

(56.3/56.3) 
69.5c 

(38.5/94.0) 
65.2a 

(81.5/42.1) 
62.5 

(68.8/56.3) 
68.3c 

(65.5/70.6) 
64.6a 

(67.9/60.0) 
58.8 

(41.2/76.5) 
COMPARE 55.9 

(65.4/48.5) 
61.0a 

(81.5/31.6) 
67.7a 

(56.3/80.0) 
51.2 

(52.0/45.1) 
51.0 

(53.1/50.4) 
50.6 

(43.2/52.4) 
-- -- -- 

Significance in binomial probability test (accuracies are significantly > than chance): 
ap<0.05 
bp<0.01 
cp<0.005 

Table(s)
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